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Abstract
This paper introduces a framework for survival
analysis by reinterpreting it as a form of density
estimation. Our algorithm post-processes density
estimation outputs to derive survival functions,
enabling the application of any density estimation
model to effectively estimate survival functions.
This approach broadens the toolkit for survival
analysis and enhances the flexibility and applica-
bility of existing techniques for density estimation.
Our framework is versatile enough to handle var-
ious survival analysis scenarios, including com-
peting risk models for multiple event types. It
can also address dependent censoring when prior
knowledge of the dependency between event time
and censoring time is available in the form of
a copula. In the absence of such information,
our framework can estimate the upper and lower
bounds of survival functions, accounting for the
associated uncertainty.

1. Introduction
Survival analysis constitutes a statistical methodology ex-
tensively employed across diverse domains, including
medicine, engineering, and social sciences, to analyze and
predict the probability distribution of the time until the oc-
currence of an event of interest. In numerous real-world
scenarios, the phenomenon of competing risks emerges
when an individual is subject to multiple mutually exclu-
sive events, where the occurrence of one event precludes
the observation or alters the probability of the other events.
The field of survival analysis with competing risks has a
rich historical foundation, as extensively reviewed in survey
papers (Wang et al., 2019; Wiegrebe et al., 2024).

Survival analysis with K competing risks can be conceptual-
ized as a variant of density estimation, a subfield of machine
learning aimed at estimating the probability distribution of a
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target variable. Given this conceptual similarity, numerous
methodologies originally developed for density estimation
have been adapted for survival analysis, particularly in sce-
narios with K = 2 under the conditional independence
assumption. For instance, random forests (Breiman, 2001)
for density estimation have been adapted into random sur-
vival forests (Ishwaran et al., 2008) for survival analysis,
and modern neural network models for density estimation
have been extended into models such as DeepHit (Lee et al.,
2018). Furthermore, strictly proper scoring rules for density
estimation (Gneiting & Raftery, 2007) have been adapted
for survival analysis (Rindt et al., 2022; Yanagisawa, 2023).
Calibration metrics, such as the expected calibration er-
ror (Naeini et al., 2015; Guo et al., 2017), have similarly
been extended to D-calibration for survival analysis (Haider
et al., 2020).

Despite the numerous extensions of density estimation
methodologies for survival analysis, these adaptations en-
counter several limitations. First, these adaptations are typi-
cally tailored to specific methodologies on a case-by-case
basis, necessitating the development of a new customized
extension for each novel density estimation method. Sec-
ond, most survival analysis models rely on the conditional
independence assumption (or even stronger assumptions
such as the proportional hazards assumption (Cox, 1972)),
which may not hold in various real-world applications. This
issue highlights the need for survival models that operate
under weaker assumptions. Third, while Tsiatis (1975)
demonstrates that the survival function cannot be identified
without making any assumption, the estimation of the up-
per and lower bounds of the survival function has not been
fully investigated under the condition where no assump-
tions can be made. Fourth, while the existence of a strictly
proper scoring rule for survival analysis with K = 2 under
the conditional independence assumption has been estab-
lished (Rindt et al., 2022) and can be used as an evaluation
metric, no strictly proper scoring rule has been established
for K > 2.

In this paper, we propose a novel framework that reinterprets
survival analysis through the lens of density estimation. By
post-processing the outputs of density estimation models
in the form of cumulative incidence functions, our algo-
rithm derives survival functions, thus enabling any density
estimation model to be effectively utilized for survival anal-
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Figure 1. Two-step (TS) algorithm for survival analysis with K competing risks: it first estimates the cumulative incidence functions
V̂k(t|x) via density estimation and then postprocesses them to obtain the outputs F̂k(t|x).

ysis, as illustrated in Fig. 1. This reinterpretation not only
broadens the toolkit available for survival analysis but also
enhances the flexibility and applicability of existing density
estimation techniques. Our framework’s versatility is ev-
ident in its capacity to handle a diverse range of survival
analysis scenarios, including competing risks and dependent
censoring.

The contributions of this paper are summarized as follows:

Model-agnostic framework. Our two-step algorithm can
be integrated with any density estimation model, allowing
for the selection of a density model based on various cri-
teria such as prediction performance, training time, and
interpretability. To demonstrate the effectiveness of our al-
gorithm, we show that our algorithm, when combined with
the LightGBM model (Ke et al., 2017), outperforms base-
line models on real datasets. Furthermore, we prove that if
the density estimation can achieve an arbitrarily small error
ϵ (as the number of data points increases), our algorithm can
estimate survival functions with a small error for K = 2
under plausible assumptions (see Appendices C and D).

Dependent censoring. Our approach addresses the chal-
lenge of dependent censoring, a prevalent issue in survival
data where the censoring mechanism is not independent of
the event time. To handle dependent censoring, a widely
used assumption is that prior knowledge regarding the de-
pendency between event time and censoring time is available
in the form of a copula (Emura & Chen, 2018). Our algo-
rithm is based on this copula-based assumption and, there-
fore, relies on weaker assumptions than the conditional inde-
pendence assumption. Additionally, our two-step algorithm
is capable of handling situations where the dependency in-
formation is provided as a parameterized copula, along with
appropriate assumptions on the form of the survival function
to guarantee the identifiability of the parameter.

While our framework is primarily designed to estimate the
individual survival function, for the estimation of the aver-

age survival function, the Kaplan-Meier estimator (1958) is
widely used when the conditional independence assumption
is valid. This estimator has been extended as the copula-
graphic (CG) estimator (Zheng & Klein, 1995; Carrière,
1995), which operates under the same assumption as ours,
that a copula is provided as prior knowledge. Therefore, our
two-step algorithm can be seen as an extension of the CG
estimators to estimate the individual survival function.

Upper and lower bounds estimation. Even in scenarios
where prior knowledge of the dependency is absent, our
framework is capable of estimating the upper and lower
bounds of individual survival functions, accounting for the
uncertainty arising from the lack of knowledge about the
copula. Regarding the estimation of the average survival
function, Peterson (1976) presents the upper and lower
bounds estimation. Our method can be seen as an extension
of this approach for estimating individual survival functions.

Strictly proper scoring rule for competing risks. Given a
probabilistic output, a strictly proper scoring rule is usually
employed as an evaluation metric. Several proper scor-
ing rules exist for survival analysis with K = 2 (Rindt
et al., 2022; Yanagisawa, 2023), but no scoring rule has
been proven to be proper for K > 2. In this paper, we intro-
duce a new strictly proper scoring rule, termed NLL-SC, for
K ≥ 2. NLL-SC is based on the copula and can be used as
an evaluation metric for survival analysis under dependent
censoring, addressing the difficulties discussed by Gharari
et al. (2023) in defining an appropriate evaluation metric
under dependent censoring. Additionally, by utilizing NLL-
SC, we construct a new monotone neural network model
for K competing risks based on the copula-based assump-
tion, named the survival copula network (SC-Net), which
can be seen as an extension of the monotone neural net-
work model for K = 2 under the conditional independence
assumption (Rindt et al., 2022).

2



Survival Analysis via Density Estimation

2. Preliminaries
In this study, we investigate survival analysis with K com-
peting risks. Let X denote the random variable representing
a feature vector whose support is X . Let T1, T2, . . . , TK

be the K random variables corresponding to the event
times of K distinct types of events, with each Tk supported
on R≥0. Due to censoring, direct observation of samples
(t1, t2, . . . , tK) ∼ (T1, T2, . . . , TK) is not feasible. How-
ever, we can observe their minimum T = mink{Tk}Kk=1

and the corresponding index ∆ = argmink{Tk}Kk=1. We
note that in much of the existing literature on survival analy-
sis, the index ∆ starts at 0 (i.e., ∆ ∈ {0, 1} for K = 2); how-
ever, in this paper, we assume ∆ starts at 1 (i.e., ∆ ∈ {1, 2}
for K = 2).

The primary objective of survival analysis is to estimate
the cumulative distribution function (CDF) Fk(t|x) =
Pr(Tk ≤ t|x) of Tk conditioned on x ∈ X for each
k ∈ [K] from samples (x, t, δ)

i.i.d.∼ (X,T,∆), where
[K] = {1, 2, . . . ,K}. In this study, we frame the prob-
lem to estimate Fk(t|x) for each t in a finite set of times
{ζb}Bb=0 such that 0 = ζ0 < ζ1 < · · · < ζB , where ζB is
sufficiently large to ensure 0 ≤ t < ζB for any observed
time t ∼ T . We assume that the true Fk(t|x) is a continu-
ous and monotonically increasing function of t, satisfying
Fk(ζ0|x) = 0 and Fk(ζB |x) = 1 for all k ∈ [K] and x ∈ X .
This discretization approach is commonly adopted in nu-
merous survival models (e.g., (Lee et al., 2018; Yanagisawa,
2023; Hickey et al., 2024)).

While survival analysis often focuses on estimating the sur-
vival function, defined as Sk(t|x) = 1−Fk(t|x), this study
aims to estimate the CDF Fk(t|x) of Tk. Additionally,
we consider the estimation of the average CDF Fk(t) of
Fk(t|x) over x ∼ X and the average survival function
Sk(t) = 1− Fk(t).

Censored Joint Distribution (CJD) representation.
Given an observation (x, t, δ) ∼ (X,T,∆), we interpret
the pair (t, δ) in a K-dimensional space. For instance, in
the case where K = 2, the pair (t, δ) can be represented as
a line segment in a two-dimensional plane, as illustrated in
Fig. 2(a). In this figure, the pair (t, δ) = (20, 1) observed
for x(1) is depicted as a vertical line segment, indicating that
Event 1 is observed at time t1 = 20 and t2 ≥ t1. Similarly,
the pair (t, δ) = (35, 2) observed for x(2) is represented as a
horizontal line segment, indicating that Event 2 is observed
at time t2 = 35 and t1 ≥ t2.

Given that the time horizon is discretized by the boundaries
{ζb}Bb=0, the K-dimensional space is partitioned as illus-
trated in Fig. 2(b) by defining the set Rb,k of observations
(t, δ) ∼ (T,∆) as follows:

Rb,k = {(t, δ) : ζb < t ≤ ζb+1, δ = k}.
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(b) CJD divided by Rb,k

Figure 2. (a) Two observations {(x(1), 20, 1), (x(2), 35, 2)} are
illustrated as vertical and horizontal line segments in the two-
dimensional space. (b) The CJD space with B = 6 and K = 2,
which is divided into subregions Rb,k.

In this study, we refer to this partitioned region as the Cen-
sored Joint Distribution (CJD) representation.

Copula and survival copula. Many models for survival
analysis with K = 2 operate under the conditional indepen-
dence assumption, denoted as T1 ⊥⊥ T2|X , or even stronger
assumptions such as the proportional hazards assumption,
exemplified by the Cox model (1972). In this work, we
adopt a more flexible assumption that the dependence struc-
ture among T1, T2, . . . , TK can be modeled using a copula,
a widely recognized method for capturing dependencies in
survival analysis (Emura & Chen, 2018; Gharari et al., 2023;
Zhang et al., 2024).

In probability theory and statistics, a copula is defined as
a multivariate cumulative distribution function where each
univariate marginal distribution is uniformly distributed over
the interval [0, 1]. Copulas are particularly useful for charac-
terizing the dependence structure among random variables.
Formally, a copula is defined as follows (Nelsen, 2006;
Gharari et al., 2023).

Definition 2.1. (Copula.) A copula is a K-dimensional
function C : [0, 1]K → [0, 1] that satisfies the following
conditions:

• (i) C(u1, u2, . . . , uk−1, 0, uk+1, . . . , uK) = 0 for ev-
ery u ∈ [0, 1]K ,

• (ii) C(1, . . . , 1, u, 1, . . . , 1) = u for every u ∈ [0, 1],

• (iii) Given u, v ∈ [0, 1]K such that uk < vk is valid
for all k ∈ [K], the following condition is satisfied:∑

l∈{0,1}K

(−1)l1+l2+···+lK

· C(ul1
1 v

1−l1
1 , ul2

2 v
1−l2
2 , . . . , ulK

K v1−lK
K ) ≥ 0,

where l = (l1, l2, . . . , lK) is a length-K binary vector.
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A notable example of a copula is the independence copula,
defined as:

Cind(u1, u2, . . . , uK) =

K∏
k=1

uk. (1)

Another example is the Frank copula for the bivariate case
with a non-zero parameter θ:

CFrank(u1, u2) =
1

θ
log

(
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

)
.

(2)

A significant attribute of copulas is that the joint distribu-
tion Pr(T1 ≤ t1, T2 ≤ t2, . . . , TK ≤ tK) can be uniquely
represented using a copula, as stated in Sklar’s theorem.
Theorem 2.2. (Sklar’s Theorem (1959).) There exists a
copula C such that for all t1, t2, . . . , tK ,

Pr(T1 ≤ t1, T2 ≤ t2, . . . , TK ≤ tK)

= C(F1(t1), F2(t2), . . . , FK(tK)).

If the marginal distribution Fk is continuous for all k, then
C is unique.

Copulas are instrumental in computing joint probabilities.
For instance, the joint probability Pr(ζ1 < T1 ≤ ζ4, T2 ≤
ζ3) can be determined using a copula as follows:

Pr(ζ1 < T1 ≤ ζ4, T2 ≤ ζ3)

= C(F1(ζ4), F2(ζ3))− C(F1(ζ1), F2(ζ3)), (3)

where Fk(t) = Pr(Tk ≤ t).

In the context of survival analysis, a survival copula C is
frequently employed, which satisfies the following equation:

Pr(T1 > t1, T2 > t2, . . . , TK > tK)

= C(1− F1(t1), 1− F2(t2), . . . , 1− FK(tK)).

It is well-established that any survival copula C can be repre-
sented using its corresponding copula C (see, e.g., (Georges
et al., 2001)). For instance, in the case where K = 2, the
survival copula C can be expressed as:

C(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2).

Additionally, it is important to note that if C = Cind (de-
fined in (1)), then C = Cind.

3. Two-Step Algorithm
We introduce a two-step algorithm designed to estimate the
CDF Fk(ζb|x) for survival analysis with K competing risks.
As illustrated in Algorithm 1, the initial step involves esti-
mating Vk(t|x), the conditional k-th cumulative incidence
function (CIF), which is formally defined as follows:

Vk(t|x) = Pr(T ≤ t,∆ = k|x). (4)

Subsequently, utilizing the estimated V̂k(ζ|x), we estimate
the probability

rb,k|x = Pr((t, δ) ∈ Rb,k|x)

within the context of the CJD representation via the follow-
ing equation:

r̂b,k|x = V̂k(ζb|x)− V̂k(ζb−1|x). (5)

Thereafter, the output distribution F̂k(ζb|x) is derived from
the estimation r̂b,k|x, assuming that we have prior knowl-
edge regarding the dependencies among the random vari-
ables T1, T2, . . . , TK in the form of a copula C. It is
noteworthy that the conditional independence assumption
(T1 ⊥⊥ T2|X) used in many survival models for K = 2
is equivalent to using the independence copula (1) for the
copula C.

3.1. Step 1: Cumulative Incidence Function Estimation

A straightforward methodology for estimating the CIF (4)
is the application of a distribution regression model, which
is specifically engineered to estimate a conditional CDF
F (y|x) = Pr(Y ≤ y|x) given samples (x, y) i.i.d.∼ (X,Y ),
where the random variables X and Y represent feature vec-
tors and target values from R, respectively. Exemplary dis-
tribution regression models include those based on mono-
tone neural networks (Chilinski & Silva, 2020) and random
forests (Schlosser et al., 2019; Hothorn & Zeileis, 2021;
Ćevid et al., 2022), and NGBoost (Duan et al., 2020), which
is founded on gradient boosting.

An alternative approach involves directly estimating r̂b,k|x
(defined in (5)) through the utilization of a density estima-
tion model. Here, density estimation refers to estimating
Pr(Y = y|x) from samples (x, y)

i.i.d.∼ (X,Y ), where the
random variables X and Y represent feature vectors and tar-
get values from a discrete set, respectively. Most multiclass
classification models can be used for density estimation, in-
cluding random forests (Breiman, 2001), gradient boosting
(e.g., LightGBM (Ke et al., 2017)), and neural networks.
Recent advancements in density estimation techniques are
found in (Filho et al., 2023).

While a broader array of models for density estimation exists
compared to distribution regression models, an advantage
of employing a distribution regression model is that, if we
wish to adjust the hyperparameter B, there is no need to
retrain the predictive model to estimate V̂k(t|x); we only
need to recompute Eq. (5) to obtain r̂b,k|x.

3.2. Step 2: Postprocessing

The second step of our algorithm involves computing
F̂k(ζb|x) utilizing the estimates r̂b,k|x obtained in the first
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step and a specified copula C. Let rb|x ∈ [0, 1]K denote
the vector of length K whose k-th element is rb,k|x, and
let Fb|x ∈ RK denote the vector of length K whose k-th
element is Fk(ζb|x).

We begin by representing rb|x as a function of Fb−1|x, Fb|x,
and the copula C. For simplicity, we consider the case
where K = 2 in this section, with generalizations for K > 2
detailed in Appendix B.1. By the definition of rb,k|x, we
have the following representations:

rb,1|x = Pr(ζb−1 < T1 ≤ ζb, T1 ≤ T2|x)
= q{1},b|x − w1 q{1,2},b|x , (6)

rb,2|x = Pr(ζb−1 < T2 ≤ ζb, T2 ≤ T1|x)
= q{2},b|x − w2 q{1,2},b|x , (7)

where

q{1},b|x = Pr(ζb−1 < T1 ≤ ζb, ζb−1 ≤ T2|x), (8)

q{2},b|x = Pr(ζb−1 < T2 ≤ ζb, ζb−1 ≤ T1|x),

q{1,2},b|x = Pr(ζb−1 < T1 ≤ ζb, ζb−1 < T2 ≤ ζb|x),
(9)

and w1, w2 ≥ 0 are unknown weight parameters such that
w1 + w2 = 1. See Fig. 3 for an illustration of quantities
(8) and (9) with b = 2. Unless otherwise stated, we set
w1 = w2 = 1/2. Note that, if we use a sufficiently large
B, the correction term (9) should be small, and therefore
the choices of the weight parameters w1 and w2 should
have minimal impact on these equations. Then, recalling
that any joint distribution can be computed using a copula
(as demonstrated in equation (3)), it is straightforward to
represent (8)–(9) using F1(ζb−1|x), F1(ζb|x), F2(ζb−1|x),
F2(ζb|x), and the copula C:

q{1},b|x = C(F1(ζb|x), 1)− C(F1(ζb−1|x), 1)

− C(F1(ζb|x), F2(ζb−1|x))
+ C(F1(ζb−1|x), F2(ζb−1|x)), (10)

q{2},b|x = C(1, F2(ζb|x))− C(1, F2(ζb−1|x))

− C(F1(ζb−1|x), F2(ζb|x))
+ C(F1(ζb−1|x), F2(ζb−1|x)), (11)

q{1,2},b|x = C(F1(ζb|x), F2(ζb|x))

− C(F1(ζb|x), F2(ζb−1|x))
− C(F1(ζb−1|x), F2(ζb|x))
+ C(F1(ζb−1|x), F2(ζb−1|x)). (12)

Combining (6)–(12), we can represent rb,1|x and rb,2|x us-
ing F1(ζb−1|x), F1(ζb|x), F2(ζb−1|x), F2(ζb|x), and the
copula C. This means that we can write this relationship as

rb|x = gC(Fb|x|Fb−1|x) (13)

q{1},2|x

q{1,2},2|x

T1

T2

0
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ζ1

ζ2

ζ3

ζ4

ζ5

ζ6

Figure 3. Illustration of q{1},2|x and q{1,2},2|x.

Algorithm 1 Two-Step (TS) Algorithm

1: Estimate V̂k(t|x)
2: Let r̂b,k|x = V̂k(ζb|x)− V̂k(ζb−1|x)
3: Let F̂0|x = 0
4: for b = 1, 2, . . . , B − 1 do
5: Calculate F̂b|x by solving Eq. (13)
6: end for
7: return {F̂b|x}B−1

b=1

by using a function gC that depends on C.

Having established (13), we can obtain the estimation F̂b|x
of Fb|x for all b by solving this equation based on the esti-
mation r̂b|x of rb|x, as outlined in Steps 3–7 of Algorithm 1.
We leverage the initial condition F̂0|x = F0|x = 0 for all
x, where 0 is the K-dimensional vector of zeros. At the
initial step for b = 1, we obtain F̂b|x by solving (13). This
equation is solvable because it contains K equality con-
straints and the unknown value is the length-K vector Fb|x.
We repeat this procedure for b = 2, 3, . . . , B − 1 to obtain
F̂b|x for all b. See Appendix B.2 for more details of the
algorithm.

Note that this second step of our algorithm is similar
to the algorithm based on a bisection root-finding algo-
rithm (Zheng & Klein, 1995), but their algorithm is valid
only for K = 2 and its extension for K > 2 is unknown. In
contrast, our algorithm is extendable for K > 2 as shown
in Appendix B.1. We also note that as B → ∞, Carrière
(1995) shows another method to estimate F̂b|x by solving
an equation similar to (13). We discuss this method further
in Appendix B.3.

Simplified implementation of our algorithm. In our
implementation, we adopted a simpler approach to solve
Eq. (13) for all b simultaneously, rather than sequentially
solving Eq. (13) for each b as outlined in Lines 3–7 of
Algorithm 1. Specifically, by utilizing an automatic differ-
entiation library for Python (e.g., PyTorch and Tensorflow),
we estimate F̂b|x by minimizing the following objective
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Figure 4. Illustration of the upper and lower bounds estimation. Here, region Rb,k is divided into grids, with denser color indicating a
higher probability that a data point is contained in the corresponding region. The lower bound estimation is achieved by assigning the
probability mass r̂b,k to the last time slot within region Rb,k and then calculating the column-wise sum. Conversely, the upper bound
estimation is obtained by assigning the probability mass r̂b,k to the earliest time slot within region Rb,k and calculating the column-wise
sum.

function:

B−1∑
b=1

(
gC(F̂b|x|F̂b−1|x)− r̂b|x

)2

(14)

for all b simultaneously. Note that Eq. (14) is minimized if
Eq. (13) holds for all b.

3.3. Non-Identifiablity

A limitation of our two-step algorithm is the necessity for
prior knowledge of the copula C, which may not be read-
ily available in practical scenarios. One potential approach
to address this issue is to employ a parameterized copula
Cθ, where θ represents some parameter (e.g., the Frank cop-
ula (2) with parameter θ), and to extend the survival analysis
framework to estimate the copula parameter θ in addition to
the CDFs Fk(t|x). However, Tsiatis (1975) demonstrated
that this approach is not feasible because it is impossible to
identify Fk(t|x) without making some assumptions about
Fk(t|x).

Consequently, many researchers have explored the introduc-
tion of additional assumptions on the distribution Fk(t|x)
to ensure the identifiability of both the copula parameter θ
and Fk(t|x). For instance, Gharari et al. (2023) assume that
Fk(t|x) follows a Weibull distribution and present an algo-
rithm to estimate the copula parameter θ. Other examples
include the study of copula identifiability under the propor-
tional hazards assumption in (Heckman & Honoré, 1989;
Deresa & Keilegom, 2024), and the investigation of copula
identifiability for other restricted classes of distributions
Fk(t|x) in (Czado & Keilegom, 2022; Wang, 2023; Zhang
et al., 2024). Under the strongest assumption that the true

distribution Fk(t|x) is completely known, Schwarz et al.
(2013) discuss the identifiability of Archimedean copulas
and the non-identifiability of symmetric copulas.

It is important to note that our two-step algorithm is suffi-
ciently flexible to incorporate these identifiability results.
Suppose that the distribution Fk,η(t|x) and the copula Cθ

are parameterized by η and θ, respectively. If the identi-
fiability of the parameters η and θ is established, then the
objective function (14) should have a unique solution, where
F̂b|x and C are replaced with the parameterized F̂b,η|x and
Cθ, respectively.

4. Upper and Lower Bounds Estimation
As we discuss in Appendix A, there exist scenarios where
it is infeasible to verify dependency in any manner and
we cannot have any copula as a prior knowledge on the
dependency. Even in such instances, our algorithm can still
be employed to estimate the upper and lower bounds of
Fk(t|x). By definition, the following inequalities can be
readily verified:

Fk(ζb|x) ≥ Pr

(t, δ) ∈
⋃
b′≤b

Rb′,k

∣∣∣∣∣∣x


Fk(ζb|x) ≤ Pr

(t, δ) ∈
⋃

b′≤b,k′∈[K]

Rb′,k′

∣∣∣∣∣∣x
 ,

which are equivalent to∑
b′≤b

rb′,k|x ≤ Fk(ζb|x) ≤
∑

b′≤b,k′∈[K]

rb′,k′|x. (15)
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Based on these inequalities, we estimate the upper and lower
bounds of Fk(ζb|x) by substituting rb,k|x with the output
r̂b,k|x from Step 1 of our algorithm. It is important to note
that these inequalities are derived without utilizing the pa-
rameters w1 and w2 in our two-step algorithm. As illustrated
in Fig. 4, the estimation of upper and lower bounds and the
second step of our algorithm to estimate Fk(ζb|x) can be
interpreted as redistributing the probability mass within the
CJD representation into fine-grained grid cells.

While these bounds for Fk(t|x) are computed only for dis-
crete values t ∈ {ζb}Bb=1, it is possible to compute these
bounds for any t using a distribution regression model to
estimate the CIF Vk(t|x) (as defined in (4)). This approach
is explained in Appendix E. These bounds can be viewed as
variants of the bounds established for the average survival
function in (Peterson, 1976).

It is crucial to distinguish that our upper and lower bounds
differ from the concept of a confidence interval, which quan-
tifies the epistemic uncertainty inherent in the prediction
model (Bengs et al., 2022). Our bounds quantify uncertainty
arising from the absence of prior knowledge about the true
copula C. As we discuss in Appendix E, these two types
of bounds can be combined to account for both sources of
uncertainty.

5. Strictly Proper Scoring Rule for Competing
Risks

Strictly proper scoring rules hold significant importance in
the domain of statistics, particularly for the evaluation of
probabilistic estimates (Gneiting & Raftery, 2007). These
scoring rules ensure that the expected score is minimized
when the estimated probabilities accurately reflect the true
distribution of outcomes.

In this section, we establish the existence of a strictly proper
scoring rule for any number of competing risks, K, given
that the dependency structure is defined by a survival copula.
While Rindt et al. (2022) demonstrated the existence of a
strictly proper scoring rule for K = 2 under the assump-
tion of conditional independence, no such rule has been
established for K > 2 or for cases where the conditional
independence assumption does not hold.

We begin by defining proper and strictly proper scoring rules
as follows:

Definition 5.1. (Proper and Strictly Proper Scoring Rules.)
A scoring rule S for the estimation F̂k(t|x) of Fk(t|x) is
proper if the following inequality is satisfied:

E[S({F̂k(t|x)}Kk=1, (t, δ))] ≥ E[S({Fk(t|x)}Kk=1, (t, δ))].
(16)

A scoring rule is strictly proper if equality in (16) holds if
and only if F̂k(t|x) is equal to Fk(t|x) for all k and t.

Subsequently, we demonstrate the existence of a strictly
proper scoring rule for any K. According to Tsiatis (1975),
the derivative vk(t|x) of the cumulative incidence function
(CIF) Vk(t|x) (as defined in Eq. (4)) can be represented
using Fk(t|x) and a survival copula C:

vk(t|x) =
d

dt
Vk(t|x)

= − ∂

∂tk
C(1− F1(t1|x),

1− F2(t2|x),
. . . ,

1− FK(tK |x))
∣∣∣∣
t1=t2=···=tK=t

.

By using this equation, we propose a scoring rule NLL-
SC, which stands for Negative Log-Likelihood based on
Survival Copula.

Assumption 5.2. The Kullback-Leibler (KL) diver-
gence between vk(t|x) and its estimate v̂k(t|x) satisfies
DKL(vx||v̂x) < ∞ for all k, where vx and v̂x denote the
probability distribution over (k, t) of vk(t|x) and v̂k(t|x),
respectively.

Theorem 5.3. (A Strictly Proper Scoring Rule for Compet-
ing Risks.) If Assumption 5.2 holds, the following scoring
rule SNLL−SC is strictly proper:

SNLL−SC({F̂k(t|x)}Kk=1, (t, δ)) = −1δ=k log v̂k(t|x).

Proof. Since Assumption 5.2 ensures the existence of the
KL divergence, we have

E[SNLL−SC({F̂k(t|x)}Kk=1, (t, δ))]

− E[SNLL−SC({Fk(t|x)}Kk=1, (t, δ))]

=

K∑
k=1

∫ ∞

0

vk(t|x)(log vk(t|x)− log v̂k(t|x))dt

= DKL(vx||v̂x)
≥ 0.

Equality in the last inequality holds if and only if vk(t|x) =
v̂k(t|x) holds for all k and t, which is equivalent to that
Fk(t|x) = F̂k(t|x) holds for all k and t. Hence the scoring
rule SNLL−SC is strictly proper.

Neural network model based on NLL-SC. Utilizing the
scoring rule NLL-SC, we propose a new monotone neu-
ral network model, the survival copula network (SC-Net).
Similar to the monotone neural network model for K = 2
proposed by Rindt et al. (2022), our SC-Net employs a
monotone neural network to represent a CDF (Chilinski &
Silva, 2020), and we use the NLL-SC as its loss function.
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Table 1. Evaluation metrics
Task Metric Name Assumption Metric Type

Density estimation CJD-Brier - Discrimination
CJD-Logarithmic - Discrimination
CJD-KS - Calibration

Survival analysis NLL-SC Copula Discrimination
Cen-log Independence Discrimination
D-calibration Independence Calibration
KM-calibration Independence Calibration

We utilized the smooth min-max neural network (Igel, 2024)
as the monotone neural network, though other monotone
neural networks, such as those proposed in (Yanagisawa
et al., 2022; Kim & Lee, 2024), could also be used. Note
that our SC-Net with K = 2 can be viewed as incorporating
prior knowledge of the ground truth copula into the DC-
Survival model (Zhang et al., 2024), although the primary
objective of DCSurvival appears to be the identification of
parameters within an Archimedean copula.

6. Experiments
We conducted a series of experimental evaluations to assess
the performance of our proposed two-step algorithm. We
conducted the experimental procedures on a virtual machine
possessing a single CPU devoid of any GPU, equipped with
a memory of 64 GB, and operating on CentOS Stream 9.
The software implementation was achieved using Python
3.11.6 and PyTorch 2.1.2. The datasets employed for this
purpose were the Dialysis and oldmort datasets, sourced
from the Python package SurvSet (Drysdale, 2022).

Models. In the first step of our algorithm, we utilized
five different models. Specifically, the TS-Brier and TS-
Log models employed neural networks for density estima-
tion, utilizing the Brier and Logarithmic scores (Gneiting
& Raftery, 2007) as their respective loss functions. The
TS-LGB, TS-RF, and TS-DRF models utilized the Light-
GBM (LGB) model (Ke et al., 2017), the random forest
(RF) model available in the Python package sklearn, and
the distribution regression forest (DRF) (Ćevid et al., 2022),
respectively. The prefix TS denotes the Two-Step algorithm,
with each model implementing a distinct first-step model
but sharing a common second-step algorithm (specifically,
the simplified implementation as detailed in Sec. 3.2). The
hyperparameter was set to B = 32. Additionally, we em-
ployed our SC-Net model proposed in Sec. 5.

For comparative purposes, we included the Cox model (Cox,
1972), the random survival forest (RSF) (Ishwaran et al.,
2008), and the DeepHit model (Lee et al., 2018), a neural
network model. In the DeepHit model, we set the parameter

α = 0 to ensure its loss function was a proper scoring rule
as recommended by Yanagisawa (2023).

Evaluation metrics. We used three metrics to evaluate the
estimates of the CJD representation r̂b,k|x and four metrics
to assess the estimated distribution F̂k(t|x) as summarized
in Table 1. For the CJD representation, we used the Brier
and Logarithmic scores (Gneiting & Raftery, 2007) as dis-
crimination metrics. Additionally, we applied the sum of
the Kolmogorov-Smirnov calibration error (Gupta et al.,
2021) as a calibration metric. This metric, based on the
Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov,
1939), is defined as follows:

K∑
k=1

max
0≤σ≤1

∣∣∣hk,σ − h̃k,σ

∣∣∣ ,
where

hk,σ =
1

N

N∑
i=1

1f̂k(x(i))≤σ · 1y(i)=k

and

h̃k,σ =
1

N

N∑
i=1

1f̂k(x(i))≤σ · f̂k(x(i)).

Here, f̂k(x(i)) represents the probability of the feature vec-
tor x(i) being classified in class k, and each f̂k(x) is equal
to its corresponding r̂b,k|x. For models that output only the
distribution F̂k(t|x), the CJD representation r̂b,k|x was esti-
mated using Eq. (13) with the output and the independence
copula Cind (as defined in (1)).

For the estimated distribution F̂k(t|x), we utilized the sim-
plified variant of the censored logarithmic score (referred to
as cen-log) (Yanagisawa, 2023) and our strictly proper scor-
ing rule, NLL-SC, as evaluation metrics. Additionally, D-
calibration (Haider et al., 2020) and KM-calibration (Yanagi-
sawa, 2023) were employed as calibration metrics.

Results. Figure 5 illustrates the results for the Dialysis
and oldmort datasets. The results indicate that while the
DeepHit model demonstrated superior performance com-
pared to the Cox and RSF models, our TS-LGB model
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Figure 5. Performance comparison on the Dialysis and oldmort datasets with B = 32 (lower is better). While DeepHit performs the best
among the baseline models, our TS-LGB model shows comparable or better performances than DeepHit.

exhibited comparable or superior performance relative to
DeepHit. It is also noteworthy that neural network-based
models, including DeepHit, typically require longer train-
ing times compared to tree-based models such as RSF and
TS-LGB. Consequently, the TS-LGB model emerged as the
most effective model for the Dialysis and oldmort datasets.
Additional evaluation results using other datasets for K = 2
and scenarios involving competing risks with K = 3, in
comparison with models such as Deep Survival Machines
(DSM) (Nagpal et al., 2021), DeSurv (Danks & Yau, 2022),
and Neural Fine-Gray (NeuralFG) (Jeanselme et al., 2023),
are detailed in Appendix F. Furthermore, the appendix in-
cludes additional evaluation results encompassing the esti-
mation of upper and lower bounds, as well as an ablation
study on the hyperparameter B.

Source Codes. The implementations of our models are ac-
cessible at https://github.com/CyberAgentAILab/cenreg.

7. Conclusion
We demonstrated a reduction from survival analysis to den-
sity estimation, which allows the application of any density
estimation model to survival analysis. This algorithm op-

erates under the assumption of having prior knowledge of
the copula C, which is a weaker assumption compared to
the conditional independence assumption. This approach
is consistent with Tsiatis’s non-identifiability result (1975),
and we have shown that our algorithm can also be utilized to
estimate the upper and lower bounds of individual survival
functions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. On Applications of Proposed Methods
Survival analysis is a crucial tool in various fields such as medicine, engineering, and social sciences, where the time until
an event of interest occurs is studied. The applicability of our proposed methods can be classified into three distinct types
based on the nature of the dependency between the event time and the censoring time.

• (Conditional Independence.) The first class of applications encompasses scenarios where the conditional independence
assumption between the event time and the censoring time is valid or highly likely to hold. This situation typically arises
in cases of administrative censoring, where data points are censored solely due to the limited window of observation
times. For instance, in clinical trials, patients might be censored at the end of the study period regardless of whether the
event of interest has occurred. In such cases, the conditional independence assumption simplifies the analysis, allowing
the use of survival models based on the conditional independence assumption including our two-step algorithm.

• (Verifiable Dependency.) The second class of applications includes scenarios where there is a dependency between the
event time and the censoring time, but this dependency can be verified, albeit at a significant cost, for a small subset
of data points. An example of this situation is found in medical studies where the primary event of interest is patient
mortality, and censoring occurs when patients are discharged from the hospital. In such cases, it might be feasible to
investigate the true event time for a small fraction of patients, thereby assessing the dependency between the event and
censoring times as a form of copula. This estimated copula can then be used to model the dependency in the entire
dataset, allowing for more accurate estimation of survival functions.

• (Unverifiable Dependency.) The third class of applications involves situations where the dependency between the event
time and the censoring time cannot be determined, even with extensive resources. In such scenarios, identifying the
survival function is inherently challenging due to the unknown nature of the dependency. We note that, even without
any knowledge of the dependency, our method can estimate the upper and lower bounds to account for the uncertainty
in the dependency structure. Additionally, if we have some confidence that the dependency can be represented by a
parameterized copula with some range of the parameters (e.g., the Frank copula with parameters −5 ≤ θ ≤ 5), we can
also estimate the survival functions using the copula information to narrow down the bounds.

B. Step 2 of Proposed Algorithm
B.1. Generalization for competing risks

We generalize the second step of our algorithm presented in Sec. 3 for K > 2. For notational simplicity, we omit x in this
section.

For a subset I ⊆ [K], let QI,b = {(t1, t2, . . . , tK) : ∧k′∈I(ζb−1 < tk′ ≤ ζb) and ∧k′ ̸∈I (ζb−1 ≤ tk′)}. Then we can
compute the probability qI,b = Pr((t1, t2, . . . , tK) ∈ QI,b) by using the inclusion-exclusion principle:

qI,b =

K∑
j=0

(−1)K−j
∑

J:J⊆[K],|J|=j

c(I,J, b),

where c(I,J, b) = C(pI,J,b,1, pI,J,b,2, . . . , pI,J,b,K) and

pI,J,b,k =


1 if k ∈ J \ I,
Fk(ζb) if k ∈ J ∩ I,

Fk(ζb−1) if k ̸∈ J.

Note that, if K = 2, the quantity qI,b here is equal to the quantities computed in equations (10), (11), and (12).

As generalizations of equations (6) and (7) for K > 2, we represent rb,k using qI,b as

rb,k = q{k},b −
K∑
i=2

(−1)i
∑

H:k∈H⊆[K],|H|=i

wH · qH,b︸ ︷︷ ︸
Correction term

,

12
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Algorithm 2 Algorithm to solve equations

1: Initialize F̂b|x = F̂b−1|x

2: while F̂b|x is not converged do
3: for k ∈ {1, 2, . . . ,K} do
4: Increase the k-th element of F̂b|x so that the k-th equation of r̂b|x = gC(F̂b|x|F̂b−1|x) is satisfied (while other

k′-th element (k ̸= k′) of F̂b|x is fixed)
5: end for
6: end while
7: return F̂b|x

where wH ≥ 0 is a weight parameter and we assume that wH = 1/|H|. Note that, if K = 2, this equation is equal to
equations (6) and (7).

Since qI,b are functions of Fb, Fb−1, and copula C, we can write this relationship as

rb = gC(Fb|Fb−1),

by using a function gC that depends on C. Having established this equation, we can estimate F̂b by using Algorithm 1.

B.2. Solving Equations

In this section, we present an algorithm to solve Eq. (13). Algorithm 2 shows a pseudo-code to solve this equation, and it
capitalizes on the following property:

Property B.1. Assuming that F̂b−1|x is fixed:

(1) The k-th element of the length-K vector gC(F̂b|x|F̂b−1|x) is monotonically increasing with respect to the k-th element
of F̂b|x.

(2) The k′(̸= k)-th element of the length-K vector gC(F̂b|x|F̂b−1|x) is monotonically decreasing with respect to the k′-th
element of F̂b|x.

First, we demonstrate that the following inequality always holds during the execution of Algorithm 2:

r̂b|x ≥ gC(F̂b|x|F̂b−1|x). (17)

At line 1 of Algorithm 2, F̂b|x is initialized with F̂b−1|x. Hence, by the definition of Eq. (13), we have gC(F̂b|x|F̂b−1|x) = 0,
which means that inequality (17) holds. At line 4 of this algorithm, we can increase the k-th element of F̂b|x to satisfy
r̂b|x = gC(F̂b|x|F̂b−1|x) due to Property B.1(1), and this increment does not violate inequality (17) due to Property B.1(2).
Since each element in the length-K vector F̂b|x does not decrease during the execution of this algorithm, we can find the
solution to equation (13) by repeating the while-loop (lines 2–6) until the convergence of F̂b|x.

Parameterization. When we formulate equation (13), we assume that Fk(ζb|x) is represented by using some parameters.
In our implementation, we used the parameterization by using the softmax function

Fk(ζb|x) =
∑b

b′=1 exp(αb′,k,x)∑B
b′=1 exp(αb′,k,x)

with B parameters αb,k,x for each k and x. The softmax function was chosen to ensure that any function Fk(ζ|x) can be
expressed. Note that, any other parameterization can be used to represent Fk(ζb|x) in our algorithm.

13
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B.3. Alternative Algorithm for Step 2

We briefly explain the algorithm presented in (Carrière, 1995). This algorithm exploits the following equation:

d

dt
Vk(t) = − ∂

∂tk
C(1− F1(t1), 1− F2(t2), . . . , 1− FK(tK))

∣∣∣∣
t1=t2=···=tK=t

= − ∂

∂tk
C(S1(t1), S2(t2), . . . , SK(tK))

∣∣∣∣
t1=t2=···=tK=t

= − ∂C(u1, u2, . . . , uK)

∂uk

∣∣∣∣
u1=S1(t),u2=S2(t),...,uK=SK(t)

d

dt
Sk(tk)

∣∣∣∣
tk=t

,

where C is the survival copula corresponding to copula C. Assuming that B is sufficiently large, his algorithm solves this
equation with respect to Sk(t) on t ∈ {ζb}Bb=0 by using an estimate V̂k(t) of Vk(t) and these approximations for all k:

uk ≈ Sk(ζb) + Sk(ζb+1)

2
,

d

dt
Sk(t)

∣∣∣∣
t=ζb

≈ Sk(ζb+1)− Sk(ζb)

ζb+1 − ζb
,

d

dt
V̂k(t)

∣∣∣∣
t=ζb

≈ V̂k(ζb+1)− V̂k(ζb)

ζb+1 − ζb
.

This algorithm is designed to estimate the average survival function Sk(t) and thereby Fk(t), but we can modify the
algorithm to obtain Fk(t|x) conditional on x if a conditional estimate V̂k(t|x) is available.

C. Theoretical Analysis
In this section, we theoretically verify that the two-step algorithm outputs solutions with sufficiently small errors. We
consider the case K = 2 for simplicity, and we assume ζb =

b
B ζB . As discussed in the preceding section, various models

can be implemented to estimate the CIF in the first step of our algorithm. Therefore, we evaluate errors affected by Step 2,
solving (13), under the assumption that the models employed in the first step accurately approximate the true probabilities
such that

|r̂b,k − rb,k| ≤ ϵ (18)

holds for all b = 1, . . . , B and k = 1, 2. Note that while how small a value we can take as ϵ in (18) depends on the choice of
the model in Step 1, we can apply the results exhibited in this section. We provide examples of achieving (18) in Appendix D.
To formally state our theoretical results, we introduce the following assumption:

Assumption C.1. We assume the following conditions:

(1) (True probability is not biased.) There exists a global constant c0 > 0 such that for every b = 1, . . . , B and k = 1, 2,
Fk(ζb|x)− Fk(ζb−1|x) = Pr(ζb−1 < Tk ≤ ζb) ≤ c0

B holds.

(2) (Copula.) We assume that the copula C is of class C2 and satisfies

ℓ := inf
(u,v)∈[0,1]2

∂2

∂u∂v
C(u, v) > 0,

L := sup
(u,v)∈[0,1]2

max

{
∂2

∂u2
C(u, v),

∂2

∂u∂v
C(u, v),

∂2

∂v2
C(u, v)

}
< +∞.

(3) (All tk are equally observed.) There exist constants c1 > 0 depend on ℓ, L, and τ > 0 such that the following
condition holds: Let δ0 > 0 be a constant determined by ℓ and L and b0 := max

b

{
b | ∀k, Fk(ζb|x) ≤ 1− δ0

τ logB

}
. Then,

min
k

Fk(ζb0 |x) ≥ 1− c1
logB .

We make some remarks on the assumption. The first condition is required to bound the error by the choice of w1 and w2;
if the probability concentrates on a squared region partitioned by suboptimal w1 and w2, significant errors are inevitable.
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This condition is satisfied if Fk is Lipschitz-continuous with c0ζB serving as the Lipschitz constant. The second condition
manages the sensitivity of the estimation relative to the true distribution and noise. For example, if ∂2C

∂u∂v ≪ 1, indicating
that C exhibits minimal variation as u and v change, substantial adjustments to the estimation are necessary to accommodate
for noise and achieve (13). This condition is typically met for the independence copula C(u, v) = uv with any ℓ < 1 and
L > 1. The third condition appears to be technical. As will be demonstrated in subsequent analyses, errors between F̂k

and Fk can only be effectively bounded for b ≤ b0. As b approaches B, and consequently rb,k diminishes, the impact of ϵ
intensifies. Condition (3) excludes scenarios where a part of tks is concentrated in the region b > b0. In other words, all tks
are equally observed in the region b ≤ b0.

Let W1(·, ·) be the Wasserstein distance1. Then, we provide the statement about the W1 distance between the estimated and
true probabilities. We consider the extension of F̂k(ζb|x) to a CDF on [0, ζB ] by F̂k(t|x) := F̂k(ζb|x), where ζb < t ≤ ζb+1.

Theorem C.2. Suppose that Assumption C.1 holds. Then, there exists a constant cϵ > 0 depending c0, ℓ and L such that if
ϵ ≤ cϵ

B , the following inequality holds:

W1

(
µ̂k|x, µk|x

)
≲ ζB

(
B1+τ ϵ+ c1 ·

B − b0
B logB

)
, (19)

where µ̂k|x and µk|x are probability measures whose CDFs are given by F̂k(·|x) and Fk(·|x), respectively.

The proof is deffered to the following subsection. Suppose that the condition ϵ = o(B1+τ ) holds. Then, we obtain an upper
bound as W1

(
µ̂k|x, µk|x

)
= ζB · o(1). Thus, we can ensure that as B → +∞ and the sample size increases as we can take

sufficiently small ϵ, the output of Step 2 converges to the ground truth distribution in terms of the W1 distance.

We provide some comments on Theorem C.2. We can observe a trade-off in (19) based on the choice of B: while the second
term decreases as B increases, B1+τ and ϵ in the first term should increase. Consequently, an optimal choice of B should
be considered under appropriate assumptions that determine ϵ and b0, such as the model utilized in Step 1 and the properties
of F·|x. It is also significant to examine that the derived bound achieves a statistical min-max lower bound exhibited in
(Niles-Weed & Berthet, 2022; Bilodeau et al., 2023), for example. We reserve these considerations for future research
endeavors.

C.1. Proof of Theorem C.2

This subsection provides proofs of Theorem C.2. Here, for notational simplicity, we abbreviate the conditional variable
x. For example, we denote Fk(ζb) instead of Fk(ζb|x). We assume w1 = w2 = 1

2 just for simplicity. We can extend our
analysis to arbitrary w1, w2 ∈ (0, 1). Moreover, we assume that Step 2 exactly solves (13), i.e., F̂k exactly satisfies the
equation (13).

First, we evaluate the error between the outputs of Step 2 and the true probability.

Proposition C.3 (Estimation error when solving (13)). Suppose that Assumption C.1 holds. Let F̂b be the output of
Algorithm 1. Then, for every b = 1, . . . , B and k = 1, 2, there exists a constant cϵ > 0 depending c0, ℓ and L such that
under the condition ϵ ≤ cϵ

B , for sufficiently large B and every b satisfying max
k∈{1,2}

Fk(ζb) ≤ 1− δ with a positive constant δ

satisfying 8c0L
τℓ logB ≤ δ with τ ∈ (0, 1

2 ),

|F̂k(ζb)− Fk(ζb)| ≤
[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·
(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−b+1

. (20)

Proof. Let us denote ∆b,k := F̂k(ζb)− Fk(ζb). Instead of (20), we aim to obtain a tighter bound

|∆b,k| ≤
[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·

[(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−b+1

− B

4c0L

]
. (21)

1W1(µ, ν) := inf
π∈Π(µ,ν)

∫
R2 |x− y|dπ(x, y), where Π(µ, ν) denotes the set of all couplings of two probability measures µ and ν on

R.
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We give its proof by induction on b. For the case b = 1, we have

C(F̂1(ζ1), 1) = r̂1,1 + w1 · C(F̂1(ζ1), F̂2(ζ1))

and

C(F1(ζ1), 1) = r1,1 + w∗
1,1 · C(F1(ζ1), F2(ζ1))

with w∗
1,1 ∈ [0, 1]. By taking the difference of the both sides, we obtain

C(F̂1(ζ1), 1)− C(F1(ζ1), 1) = r̂1,1 − r1,1 + w1 · C(F̂1(ζ1), F̂2(ζ1))− w∗
1,1 · C(F1(ζ1), F2(ζ1)). (22)

First, we evaluate the term C(F̂1(ζ1), F̂2(ζ1)). Rearranging terms gives

C(F̂1(ζ1), 1)− w1 · C(F̂1(ζ1), F̂2(ζ1)) = r̂1,1 − r1,1 + C(F1(ζ1), 1)− w∗
1,1 · C(F1(ζ1), F2(ζ1))

≤ ϵ+ C(F1(ζ1), 1)

≤ ϵ+ L · c0
B
,

where the first inequality follows from r̂1,1 − r1,1 ≤ ϵ by (18) and w∗
1,1 · C(F1(ζ1), F2(ζ1)) ≥ 0, and the last inequality is

derived from F1(ζ1) ≤ c0
B by Assumption C.1-(1) and

C(F1(ζ1), 1) =

∫ F1(ζ1)

0

∫ 1

0

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≤L

dvdu ≤ L · F1(ζ1) ≤ L · c0
B
.

Since C(F̂1(ζ1), F̂2(ζ1)) ≤ C(F̂1(ζ1), 1), we obtain

C(F̂1(ζ1), 1)− w1 · C(F̂1(ζ1), 1) ≤ C(F̂1(ζ1), 1)− w1 · C(F̂1(ζ1), F̂2(ζ1)) ≤ ϵ+ L · c0
B
.

By using 1− w1 = 1
2 , we obtain

C(F̂1(ζ1), 1) ≤ 2
(
ϵ+ L · c0

B

)
.

Moreover, we have

C(F̂1(ζ1), 1) =

∫ F1(ζ1)

0

∫ 1

0

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≥ℓ

dvdu ≥ ℓF̂1(ζ1),

and hence,

F̂1(ζ1) ≤
2

ℓ

(
ϵ+ L · c0

B

)
.

A similar argument gives

F̂2(ζ1) ≤
2

ℓ

(
ϵ+ L · c0

B

)
.

By combining these bounds, we obtain

C(F̂1(ζ1), F̂2(ζ1)) =

∫ F̂1(ζ1)

0

∫ F̂2(ζ1)

0

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≤L

dvdu ≤ L · F̂1(ζ1)F̂2(ζ1) ≤
4L

ℓ2

(
ϵ+ L · c0

B

)2

. (23)

Thus we get the bound on the term C(F̂1(ζ1), F̂2(ζ1)).
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Moreover, we have

C(F1(ζ1), F2(ζ1)) =

∫ F1(ζ1)

0

∫ F2(ζ1)

0

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≤L

dvdu ≤ L · F1(ζ1)F2(ζ1) ≤ L ·
(c0
B

)2

, (24)

where we use Assumption C.1-(1) for the last inequality.

Then, by taking the absolute value of the both sides of (22), we have∣∣∣C(F̂1(ζ1), 1)− C(F1(ζ1), 1)
∣∣∣ = ∣∣∣r̂1,1 − r1,1 + w1 · C(F̂1(ζ1), F̂2(ζ1))− w∗

1,1 · C(F1(ζ1), F2(ζ1))
∣∣∣

≤ |r̂1,1 − r1,1|+
∣∣∣w1 · C(F̂1(ζ1), F̂2(ζ1))− w∗

1,1 · C(F1(ζ1), F2(ζ1))
∣∣∣

≤ ϵ+max
{
C(F̂1(ζ1), F̂2(ζ1)), C(F1(ζ1), F2(ζ1))

}
≤ ϵ+max

{
4L

ℓ2

(
ϵ+ L · c0

B

)2

, L ·
(c0
B

)2
}

≤ ϵ+
4L

ℓ2

(
ϵ+ L · c0

B

)2

,

where we use the triangle inequality for the first inequality, 0 ≤ w1, w
∗
1,1 ≤ 1 for the second one, and (23), (24) for the third

one. Since
∣∣∣C(F̂1(ζ1), 1)− C(F1(ζ1), 1)

∣∣∣ ≥ ℓ
∣∣∣F̂1(ζ1)− F1(ζ1)

∣∣∣ = ℓ|∆1,1|, we obtain

|∆1,1| ≤
1

ℓ

[
ϵ+

4L

ℓ2

(
ϵ+ L · c0

B

)2
]
≤ 1

ℓ

[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
,

where the last term coincides to the right hand side of (21) with b = 1.

We can obtain the bound for k = 2 by utilizing the same argument. Thus we get (21) for b = 1.

Assume that (21) holds for b = b′, i.e.,

|∆b′,k| ≤
[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·

[(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−b′+1

− B

4c0L

]

holds for k = 1, 2. We consider the case b = b′ + 1. This bound gives that by taking ϵ ≤ cϵ
B with a sufficiently small cϵ,

|∆b′,k| ≤
[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·
(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−b′+1

≤
[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·
(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−B

≤
[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·
(
1

ℓ
+

B

4c0L

)
exp

(
8c0L

ℓδ

)
≤

[
ϵ+

ℓ logB

2c20

(
ϵ+ L · c0

B

)2
]
·
(
1

ℓ
+

B

4c0L

)
Bτ (25)

≲
1

B1−τ
, (26)

where we use 1− x ≤ e−x in the third inequality and the definition of δ in the fourth inequality. This and Fk(ζb′) < 1− δ
gives F̂k(ζb′) < 1− δ

2 for sufficiently large B.

We remind

r̂b′+1,1 = q̂{1},b′ − w1 · q̂{1,2},b′ , (27)
rb′+1,1 = q{1},b′ − w∗

b′+1,1 · q{1,2},b′ , (28)
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Now, we consider integral representation of q̂{1},b′ and q̂{1,2},b′ as

q̂{1},b′ = C(F̂1(ζb′+1), 1)− C(F̂1(ζb′), 1)− C(F̂1(ζb′+1), F̂2(ζb′)) + C(F̂1(ζb′), F̂2(ζb′))

=

∫ F̂1(ζb′+1)

F̂1(ζb′)

∫ 1

F̂2(ζ′
b)

∂2

∂u∂v
C(u, v)dvdu, (29)

q̂{1,2},b′ = C(F̂1(ζb′+1), F̂2(ζb′+1))− C(F̂1(ζb′+1), F̂2(ζb′))− C(F̂1(ζb′), F̂2(ζb′+1)) + C(F̂1(ζb′), F̂2(ζb′))

=

∫ F̂1(ζb′+1)

F̂1(ζb′ )

∫ F̂2(ζb′+1)

F̂2(ζ′
b)

∂2

∂u∂v
C(u, v)dvdu.

The same expression holds for q{1},b′ and q{1,2},b′ by replacing F̂1 and F̂2 with F1 and F2. By taking the difference between
(27) and (28), we obtain

r̂b′+1,1 − rb′+1,1 = q̂{1},b′ − q̂{1},b′ − w1 · q̂{1,2},b′ + w∗
1,1 · q{1,2},b′ . (30)

Similar to the case b = 1, we first evaluate the term q̂{1,2},b′ (note that q̂{1,2},b′ = C(F̂1(ζ1), F̂2(ζ1))). By rearranging
terms, we have

q̂{1},b′ − w1 · q̂{1,2},b′ = r̂b′+1,1 − rb′+1,1 + q{1},b′ − w∗
1,1 · q{1,2},b′

≤ ϵ+ q{1},b′

= ϵ+

∫ F1(ζb′+1)

F1(ζb′ )

∫ 1

F2(ζ′
b)

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≤L

dvdu

≤ ϵ+ L · (F1(ζb′+1)− F1(ζb′))(1− F2(ζ
′
b))

≤ ϵ+ L · c0
B
, (31)

where the first inequality follows from r̂b′+1,1 − rb′+1,1 ≤ ϵ by (18) and q{1,2},b′ ≥ 0, and the last inequality, follows from
Assumption C.1-(1) and 1− F2(ζb) < 1. Moreover, the left hand side is lower bounded by

q̂{1},b′ − w1 · q̂{1,2},b′ ≥ (1− w1)q̂{1},b′

=
1

2

∫ F̂1(ζb′+1)

F̂1(ζb′)

∫ 1

F̂2(ζ′
b)

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≥ℓ

dvdu

≥ 1

2
· ℓ
(
F̂1(ζb′+1)− F̂1(ζb′)

)
(1− F̂2(ζb′)),

where we use 1− w1 = 1
2 and (29) for the equality. Combining this with (31), we have

F̂1(ζb′+1)− F̂1(ζb′) ≤
2

ℓ(1− F̂2(ζb′))

(
ϵ+ L · c0

B

)
. (32)

This and the triangle inequality give

|∆b′+1,1| =
∣∣∣(F̂1(ζb′+1)− F̂1(ζb′)

)
+

(
F̂1(ζb′)− F1(ζb′)

)
+ (F1(ζb′)− F1(ζb′+1))

∣∣∣
≤

∣∣∣F̂1(ζb′+1)− F̂1(ζb′)
∣∣∣+ ∣∣∣F̂1(ζb′)− F1(ζb′)

∣∣∣+ |F1(ζb′)− F1(ζb′+1)|

≤ 2

ℓ(1− F̂2(ζb′))

(
ϵ+ L · c0

B

)
+ |∆b′,1|+

c0
B
,

which we will use in the latter of this proof.

The same bound as (32) holds for k = 2, which gives(
F̂1(ζb′+1)− F̂1(ζb′)

)(
F̂2(ζb′+1)− F̂2(ζb′)

)
≤ 4

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

.
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Thus, we obtain

q̂{1,2},b′ =

∫ F̂1(ζb′+1)

F̂1(ζb′ )

∫ F̂2(ζb′+1)

F̂2(ζ′
b)

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≤L

dvdu (33)

≤ L ·
(
F̂1(ζb′+1)− F̂1(ζb′)

)(
F̂2(ζb′+1)− F̂2(ζb′)

)
≤ 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

.

Moreover, we have

q{1,2},b′|x =

∫ F1(ζb′+1)

F1(ζb′ )

∫ F2(ζb′+1)

F2(ζ′
b)

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≤L

dvdu (34)

≤ L · (F1(ζb′+1)− F1(ζb′))(F2(ζb′+1)− F2(ζb′))

≤ L ·
(c0
B

)2

,

where we use Assumption C.1-(1) for the last inequality.

Then, by taking the absolute value of the both sides of (30), we have

∣∣q̂{1},b′|x − q{1},b′|x
∣∣ = ∣∣r̂b′+1,1 − rb′+1,1 + w1 · q̂{1,2},b′|x − w∗

b′+1,1 · q{1,2},b′|x
∣∣

≤ |r̂b′+1,1 − rb′+1,1|+
∣∣w1 · q̂{1,2},b′|x − w∗

b′+1,1 · q{1,2},b′|x
∣∣

≤ ϵ+max
{
q̂{1,2},b′|x, q{1,2},b′|x

}
≤ ϵ+max

 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

, L ·
(c0
B

)2


≤ ϵ+

4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

, (35)

where we use the triangle inequality for the first inequality, 0 ≤ w1, w
∗
b′+1,1 ≤ 1 for the second one, and (33) and (34) for

the third one.

Then, we evaluate the left hand side. We have

∣∣q̂{1},b′ − q{1},b′
∣∣ = ∣∣∣∣∣

∫ F̂1(ζb′+1)

F̂1(ζb′ )

∫ 1

F̂2(ζ′
b)

∂2

∂u∂v
C(u, v)dvdu−

∫ F1(ζb′+1)

F1(ζb′ )

∫ 1

F2(ζ′
b)

∂2

∂u∂v
C(u, v)dvdu

∣∣∣∣∣
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and

∫ F1(ζb′+1)

F1(ζb′ )

∫ 1

F2(ζ′
b)

∂2

∂u∂v
C(u, v)dvdu−

∫ F̂1(ζb′+1)

F̂1(ζb′ )

∫ 1

F̂2(ζ′
b)

∂2

∂u∂v
C(u, v)dvdu

=

∫ F1(ζb′+1)

F1(ζb′ )

∂

∂u
C(u, 1)du−

∫ F̂1(ζb′+1)

F̂1(ζb′ )

∂

∂u
C(u, 1)du

−
∫ F1(ζb′+1)

F1(ζb′ )

∂

∂u
C(u, F2(ζb′))du+

∫ F̂1(ζb′+1)

F̂1(ζb′ )

∂

∂u
C(u, F̂2(ζb′))du

=

∫ F1(ζb′+1)

F̂1(ζb′+1)

∂

∂u
C(u, 1)du−

∫ F1(ζb′ )

F̂1(ζb′ )

∂

∂u
C(u, 1)du

−
∫ F̂1(ζb′ )

F̂1(ζb′+1)

∂

∂u
C(u, F2(ζb′))du+

∫ F1(ζb′ )

F1(ζb′+1)

∂

∂u
C(u, F2(ζb′))du

+

∫ F̂1(ζb′+1)

F̂1(ζb′ )

[
∂

∂u
C(u, F̂2(ζb′))−

∂

∂u
C(u, F2(ζb′))

]
du

=

∫ F1(ζb′+1)

F̂1(ζb′+1)

∂

∂u
C(u, 1)du−

∫ F1(ζb′ )

F̂1(ζb′ )

∂

∂u
C(u, 1)du

−
∫ F1(ζb′+1)

F̂1(ζb′+1)

∂

∂u
C(u, F2(ζb′))du+

∫ F1(ζb′ )

F̂1(ζb′ )

∂

∂u
C(u, F2(ζb′))du

+

∫ F̂1(ζb′+1)

F̂1(ζb′ )

[
∂

∂u
C(u, F̂2(ζb′))−

∂

∂u
C(u, F2(ζb′))

]
du.

(36)

By the mean value theorem for integrals, there exist constants

ub′,1, ub′,2 ∈
[
min

{
F̂1(ζb′), F1(ζb′)

}
,max

{
F̂1(ζb′), F1(ζb′)

}]
and

ub′+1,1, ub′+1,2 ∈
[
min

{
F̂1(ζb′+1), F1(ζb′+1)

}
,max

{
F̂1(ζb′+1), F1(ζb′+1)

}]
such that

(36) =−∆b′+1,1 ·
∂

∂u
C(ub′+1,1, 1) + ∆b′,1

∂

∂u
C(ub′,1, 1) + ∆b′+1,1 ·

∂

∂u
C(ub′+1,2, F2(ζb′+1))

−∆b′+1,1 ·
∂

∂u
C(ub′,2, F2(ζb′)) +

∫ F̂1(ζb′+1)

F̂1(ζb′ )

[
∂

∂u
C(u, F̂2(ζb′))−

∂

∂u
C(u, F2(ζb′))

]
du.

We denote

(I) = ∆b′+1,1 ·
∂

∂u
C(ub′+1,1, 1)−∆b′,1

∂

∂u
C(ub′,1, 1)

−∆b′+1,1 ·
∂

∂u
C(ub′+1,2, F2(ζb′+1)) + ∆b′+1,1 ·

∂

∂u
C(ub′,2, F2(ζb′)),

(II) =

∫ F̂1(ζb′+1)

F̂1(ζb′ )

[
∂

∂u
C(u, F̂2(ζb′))−

∂

∂u
C(u, F2(ζb′))

]
du.
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We evaluate the each term. First, we have

(I) =(∆b′+1,1 −∆b′,1)
∂

∂u
C(ub′,1, 1) + ∆b′+1,1

[
∂

∂u
C(ub′+1,1, 1)−

∂

∂u
C(ub′,1, 1)

]
− (∆b′+1,1 −∆b′,1)

∂

∂u
C(ub′,2, F2(ζb′))−∆b′+1,1

[
∂

∂u
C(ub′+1,2, F2(ζb′+1))−

∂

∂u
C(ub′,2, F2(ζb′))

]
=(∆b′+1,1 −∆b′,1)

[
∂

∂u
C(ub′,1, 1)−

∂

∂u
C(ub′,2, F2(ζb′))

]
+∆b′+1,1

[
∂

∂u
C(ub′+1,1, 1)−

∂

∂u
C(ub′,1, 1)

]
+∆b′+1,1

[
∂

∂u
C(ub′+1,2, F2(ζb′+1))−

∂

∂u
C(ub′,2, F2(ζb′))

]
.

Thus, we obtain

|(I)| ≥
∣∣∣∣(∆b′+1,1 −∆b′,1)

[
∂

∂u
C(ub′,1, 1)−

∂

∂u
C(ub′,2, F2(ζb′))

]∣∣∣∣
−
∣∣∣∣∆b′+1,1

[
∂

∂u
C(ub′+1,1, 1)−

∂

∂u
C(ub′,1, 1)

]∣∣∣∣− ∣∣∣∣∆b′+1,1

[
∂

∂u
C(ub′+1,2, F2(ζb′+1))−

∂

∂u
C(ub′,2, F2(ζb′))

]∣∣∣∣,
where we use the triangle inequality.

Moreover, we can bound the terms in the above inequality by

∣∣∣∣ ∂∂uC(ub′+1,1, 1)−
∂

∂u
C(ub′,1, 1)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∫ ub′+1,1

ub′,1

∂2

∂u2
C(u, 1)︸ ︷︷ ︸
≤L

du

∣∣∣∣∣∣∣∣ ≤ L(ub′+1,1 − ub′,1) ≤ L
(
|∆b′+1,1|+

c0
B

)
,

and ∣∣∣∣ ∂∂uC(ub′+1,2, F2(ζb′+1))−
∂

∂u
C(ub′,2, F2(ζb′))

∣∣∣∣
≤

∣∣∣∣ ∂∂uC(ub′+1,2, F2(ζb′+1))−
∂

∂u
C(ub′+1,2, F2(ζb′))

∣∣∣∣+ ∣∣∣∣ ∂∂uC(ub′+1,2, F2(ζb′))−
∂

∂u
C(ub′,2, F2(ζb′))

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫ F2(ζb′+1)

F2(ζb′ )

∂2

∂v2
C(ub′+1,2, v)︸ ︷︷ ︸

≤L

dv

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
∫ ub′,2

ub′+1,1

∂2

∂u2
C(u, F2(ζb′))︸ ︷︷ ︸

≤L

du

∣∣∣∣∣∣∣∣
≤ L · c0

B
+ L

(c0
B

+ |∆b′+1,1|
)
= L

(
|∆b′+1,1|+

2c0
B

)
,

where we use Assumption C.1-(1) for the first term and |ub′,2 − ub′+1,2| ≤ ∆b′+1,1 +
c0
B for the second term. Moreover,

we have

|(II)| =

∣∣∣∣∣∣∣∣
∫ F̂1(ζb′+1)

F̂1(ζb′ )

∫ F̂2(ζb′ )

F2(ζb′ )

∂2

∂u∂v
C(u, v)︸ ︷︷ ︸
≤L

dvdu

∣∣∣∣∣∣∣∣ ≤ L
2

ℓδ

(
ϵ+ L · c0

B

)
|∆b′,2| ≤

4c0L
2

Bℓδ
|∆b′,2|,

where we use ϵ ≤ c0
B in the last inequality.

Then, (35) gives

|∆b′+1,1 −∆b′,1| ·
∣∣∣∣ ∂∂uC(ub′,1, 1)−

∂

∂u
C(ub′,2, F2(ζb′))

∣∣∣∣
≤ ϵ+

4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

+
4c0L

2

Bℓδ
|∆b′,2|+ L|∆b′+1,1|

(
|∆b′+1,1|+

3c0
B

)
.
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Moreover, by the triangle inequality, for a sufficiently large B satisfying L · c0
B ≤ ℓδ

2 , we have∣∣∣∣ ∂∂uC(ub′,1, 1)−
∂

∂u
C(ub′,2, F2(ζb′))

∣∣∣∣
≥

∣∣∣∣ ∂∂uC(ub′,2, 1)−
∂

∂u
C(ub′,2, F2(ζb′))

∣∣∣∣− ∣∣∣∣ ∂∂uC(ub′,1, 1)−
∂

∂u
C(ub′,2, 1)

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∫ 1

F2(ζb′ )

∂2

∂v2
C(ub′,2, v)︸ ︷︷ ︸

≥ℓ

dv

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
∫ ub′,2

ub′,1

∂2

∂u2
C(u, 1)︸ ︷︷ ︸
≤L

du

∣∣∣∣∣∣∣∣
≥ ℓ(1− F2(ζb′))− L|ub′,2 − ub′,1| ≥ ℓδ − L · c0

B
≥ ℓδ

2
,

where the third inequality follows from F2(ζb) ≤ 1− δ and

|ub′,2 − ub′,1| ≤ max
{
F̂1(ζb′), F1(ζb′)

}
−min

{
F̂1(ζb′), F1(ζb′)

}
= |∆b′,k| ≤

c0
B

by (26).

Then, we have

|∆b′+1,1 −∆b′,1|

≤ 2

ℓδ

ϵ+ 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

+
4c0L

2

Bℓδ
|∆b′,2|+ L|∆b′+1,1|

(
|∆b′+1,1|+

3c0
B

)
≤ 2

ℓδ

ϵ+ 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

+
4c0L

2

Bℓδ
|∆b′,2|

+
2L

ℓδ
|∆b′+1,1|

(
|∆b′+1,1|+

3c0
B

)
.

We consider two cases (i) ∆b′+1,1 ≤ c0
B and (ii) ∆b′+1,1 > c0

B . If (i) holds, we have

|∆b′+1,1 −∆b′,1| ≤
2

ℓδ

ϵ+ 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

+
4c0L

2

Bℓδ
|∆b′,2|

+
8c0L

Bℓδ
|∆b′+1,1|.

By using the triangle inequality again, we obtain

|∆b′+1,1| ≤|∆b′,1|+
2

ℓδ

ϵ+ 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

+
4c0L

2

Bℓδ
|∆b′,2|

+
8c0L

Bℓδ
|∆b′+1,1|.

Finally, by rearranging the above inequality and using the induction hypothesis, we have(
1− 8c0L

Bℓδ

)
|∆b′+1,1| ≤

[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·

[(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−b′+1

− B

4c0L

]

+
2

ℓδ

ϵ+ 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2


≤

[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·

[(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−b′+1

− B

4c0L

]

+
2

ℓδ

[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
,
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where we use Fk(t) < 1− δ
2 for the last inequality, and hence,

|∆b′+1,1| ≤
[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·

[(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−b′+1

− B

4c0L

](
1− 8c0L

Bℓδ

)−1

+

(
1− 8c0L

Bℓδ

)−1

· 2

ℓδ

[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]

=

[
ϵ+

16Lδ−2

ℓ2

(
ϵ+ L · c0

B

)2
]
·

[(
1

ℓ
+

B

4c0L

)(
1− 8c0L

Bℓδ

)−(b′+1)+1

− B

4c0L

]
,

which ensures (21) for b = b′ + 1 and k = 1. Since the same argument holds for k = 2, we obtain the conclusion for the
case (i).

If (ii) holds, we have

|∆b′+1,1 −∆b′,1| ≤
2

ℓδ

ϵ+ 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

+
4c0L

2

Bℓδ
|∆b′,2|

+
8L

ℓδ
|∆b′+1,1|2.

Then, by using (26), we have |∆b′+1,1|2 ≲ B−2(1−τ). This and triangle inequality gives

|∆b′+1,1| ≤ |∆b′,1|+
2

ℓδ

ϵ+ 4L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

+
3c0L

2

Bℓδ
|∆b′,2|

+
8L

ℓδ
|∆b′+1,1|2

≤ |∆b′,1|+
(
1− 8c0L

Bℓδ

)−1
2

ℓδ

ϵ+ 16L

ℓ2
(
1− F̂1(ζb′)

)(
1− F̂2(ζb′)

)(ϵ+ L · c0
B

)2

+
4c0L

2

Bℓδ
|∆b′,2|


with taking a sufficiently large B. This gives the conclusion for the case (ii).

To obtain the bound with respect to W1, we utilize the following lemma:

Lemma C.4 (Vallender (1974)). Let µ and ν be probability measures on R whose CDFs are defined by F and G. Then,∫ +∞

−∞
|F (t)−G(t)|dt = W1(µ, ν).

Then, we move to the proof of Theorem C.2.

Proof of Theorem C.2. Set δ0 in Assumption C.1-(3) by δ0 := 8c0L
ℓ . By using Lemma C.3, we obtain

W1(F̂k, Fk) =

∫ +∞

−∞

∣∣∣F̂k(t)− Fk(t)
∣∣∣dt

=

∫ T

0

∣∣∣F̂k(t)− Fk(t)
∣∣∣dt

=

b0∑
b=1

∫ ζb

ζb−1

∣∣∣F̂k(t)− Fk(t)
∣∣∣dt︸ ︷︷ ︸

(I)

+

∫ ζB

ζb0

∣∣∣F̂k(t)− Fk(t)
∣∣∣dt︸ ︷︷ ︸

(II)

, (37)

where b0 is defined by Assumption C.1-(3). Then, we bound the each term.

We denote ∆b,k := F̂k(ζb)− Fk(ζb) again. By using the bound (25), we have

|∆b,k| ≲
(
ϵ+

logB

B2

)
B1+τ
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Then, the first term can be bounded by

(I) ≤
b0∑
b=1

∫ ζb

ζb−1

max
{∣∣∣F̂k(t)− Fk(ζb−1)

∣∣∣, ∣∣∣F̂k(t)− Fk(ζb)
∣∣∣}dt

≤
b0∑
b=1

∫ ζb

ζb−1

max
{
|∆b,k|,

c0
B

}
dt

≤
b0∑
b=1

∫ ζb

ζb−1

(
|∆b,k|+

c0
B

)
dt

≲
b0∑
b=1

(
ϵ+

logB

B2

)
B1+τ · ζB

B

≤
B∑

b=1

(
ϵ+

logB

B2

)
B1+τ · ζB

B
=

(
ϵ+

logB

B2

)
B1+τζB . (38)

For the second term, since 1−Fk(ζb′0) ≳ log−1 B by Assumption C.1-(3), we have
∣∣∣F̂k(t)− Fk(t)

∣∣∣ ≲ log−1 B for t ≥ ζb0
with sufficiently large B. This implies

(II) ≲
∫ ζB

ζb0

log−1 Bdt ≤ B − b0
B logB

ζB . (39)

By substituting the bounds (38) and (39) into (37), we obtain the conclusion.

D. Examples of Bounds on Step 1 Error
In this section, we present an example that satisfies (18). As mentioned in Sections 3 and C, any estimation method for the
probability distribution can be employed, and theoretical results pertaining to those models can be leveraged to guarantee
(18). Among the various methods, we introduce results derived from the Distributional Random Forest (DRF) (Ćevid et al.,
2022) and histogram type estimators (Sart, 2017).

D.1. Distributional Random Forest

DRF constructs random forests designed to estimate the conditional distribution of multivariate responses. It achieves this
by splitting the data using a distributional metric, specifically the maximal mean discrepancy (MMD), with the goal of
maximizing the differences in distributions between child nodes. DRF then estimates targets, such as the CIF in this study,
by employing a weight function that reflects how frequently the training data points end up in the same leaf as the test point
across different trees.

Ćevid et al. (2022) impose the following assumptions:

(P1) (Data Sampling.) Instead of the traditional bootstrap sampling with replacement, commonly used in forest-based
methods, a subsampling approach is employed. For each tree, a random subset of size sn is selected from n training
data points. It is assumed that sn approaches infinity as n increases, with the rate specified below.

(P2) (Honesty.) The data used to construct each tree is split into two parts: one part is used for determining the splits, and
the other is used for populating the leaves and thus for estimating the response.

(P3) (α-Regularity.) Each split leaves at least a fraction 0 < α ≤ 0.2 of the available training sample on each side.
Additionally, trees are grown until each leaf contains between κ and 2κ− 1 observations, where κ ∈ N is a fixed tuning
parameter.

(P4) (Symmetry.) The (randomized) output of a tree does not depend on the ordering of the training samples.

(P5) (Random-Split.) At every split point, the probability that the split occurs along the feature Xj is bounded below by π/p,
for some π > 0 and for all j = 1, . . . , p.
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Note that each of these conditions can be verified by inspecting the constructed forest. The following proposition is direct
consequence from Corollary 5 of (Ćevid et al., 2022).

Proposition D.1. Under the assumptions (P1)-(P5), it holds that

r̂b,k|x
p→ rb,k|x

for any b and k as the sample size goes to infinity2.

The proposition above ensures the probabilistic convergence of the estimation. Specifically, for arbitrary values of ϵ > 0
and δ > 0, there exists a sample size threshold nϵ,δ > 0 such that if the sample size exceeds nϵ,δ, then (18) holds with a
probability of at least 1− δ.

D.2. Histogram Type Estimators

Sart (2017) proposes histogram type conditional density estimators on X × Y by

P̂r(y|x) := ŝ(x, y) =
∑
K∈m

∑n
i=1 1K(xi, yi)∑n

i=1(δxi ⊗ µ)(K)
1K(x, y),

where m is a partition of X × Y , µ is a reference measure of the conditional density, and δx is the Dirac measure at x ∈ X .
In the context of survival analysis, we can choose Y = [0, 1]K equipped with the Lebesgue measure µ and m as a set of
regions defined by (ζb−1 < tk ≤ δb, δ = k) for b ∈ [B], k ∈ [K].

Let ν be a measure defined on X and

h(f, g) =

∫
X×Y

(√
f(x, y)−

√
g(x, y)

)2

dν(x) dµ(y)

be the Hellinger distance. Then, Sart (2017) provides the following result:

Proposition D.2 (Proposition 2.6 of (Sart, 2017)). Let s be a true conditional density. Then, there exists global constants
C1, C2 > 0 such that for any ξ > 0,

Pr

[
h2(s, ŝ) ≤ inf

v∈Vm

h2(s, v) + C1
|m|
n

+ C2ξ

]
≥ 1− e−nξ,

where

Vm :=

{ ∑
K∈m

aK1K ,∀K ∈ m, aK ≥ 0

}
.

See (Sart, 2017) for specific examples of deriving the term inf
v∈Vm

h2(s, v) under the conditions on s and X . The bound on the

Hellinger distance implies the bound on the total variation distance TV(f, g) =
∫
X×Y |f(x, y)− g(x, y)| dν(x) dµ(y) as

TV(f, g) ≤ h(f, g),

which follows from the inequality between the L1-norm and the L2-norm. Thus, by utilizing Proposition D.2, we obtain
(18) by taking ϵ as the total variation distance between r̂ and r.

E. Upper and Lower Bounds Based on Cumulative Incidence Function
If the CIF Vk(t|x) (as defined in (4)) is available, the upper and lower bounds of Fk(t|x) can be easily computed by

Pr(T ≤ t, δ = k|x) ≤ Fk(t|x) ≤ Pr(T ≤ t|x)

⇔ Vk(t|x) ≤ Fk(t|x) ≤
∑
k

Vk(t|x).

2 p→ denotes the probability convergence.
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Table 2. Real datasets used in our experiments

Name K N # categorical # numuerical censored max. time

dataDIVAT1 2 5943 3 2 83.6% 6225
oldmort 2 6495 5 2 69.7% 20
Dialysis 2 6805 2 2 76.4% 44
flchain 2 7874 4 6 72.5% 5215
support2 2 9105 11 24 31.9% 2029
prostateSurvival 2 14294 3 0 94.4% 119

PBC 3 312 5 12 45.8% 15
Framingham 3 4434 10 9 56.2% 8767

By averaging over x ∼ X , we can derive the same upper and lower bounds as in (Peterson, 1976):

E
x∼X

[Vk(t|x)] ≤ Fk(t) ≤ E
x∼X

[∑
k

Vk(t|x)

]
. (40)

Given a dataset D = {(x(i), t(i), δ(i))}Ni=1, we can compute the empirical estimates of the expectations in (40) as follows:

E
x∼X

[Vk(t|x)] ≈
1

N

∑
(x(i),t(i),δ(i))∈D

1t(i)≤t,δ(i)=k

E
x∼X

[∑
k

Vk(t|x)

]
≈ 1

N

∑
(x(i),t(i),δ(i))∈D

1t(i)≤t.

Note that these values are equivalent to empirical CDFs, and they may not correspond to the actual bounds if the number of
data points N is insufficient. In such cases, the confidence intervals of these empirical CDFs should also be computed using
methods such as Greenwood’s method (1926).

F. Additional Experiments
Datasets. We used eight datasets, summarized in Table 2, where N denotes the number of data points, and the fourth and
fifth columns indicate the numbers of categorical and numerical features in the feature vectors, respectively. The six datasets
with K = 2 were obtained from the Python package SurvSet (Drysdale, 2022). The Framingham (Kannel & McGee,
1979) and PBC (Therneau & Grambsch, 2000) datasets with K = 3 were ones used in (Jeanselme et al., 2023).

All datasets were randomly split into training (65%), validation (15%), and testing (20%) sets. The results reported in this
section are the mean and standard deviation over five random splits. We divided the time horizon [0, tmax] into B − 1 evenly
spaced boundaries and added an additional time slot to represent times greater than tmax, where tmax is the maximum
observed time within the dataset. This setup means that we used B time slots divided by {ζb}Bb=0. We set B = 32 unless
otherwise stated.

Models and hyperparameters. We used a multi-layer perceptron (MLP) with three hidden layers as a neural network
model. The dropout layer was employed with a dropout rate of 0.5, and the ReLU function was utilized as the activation
layer. The softmax function served as the output layer. The neural network was trained using the AdamWScheduleFree
optimizer (Defazio et al., 2024) with early stopping. For each dataset, we performed a hyperparameter search to determine
the number of neurons in the hidden layers and the learning rate of the optimizer: the number of neurons was chosen from the
set {4, 8, 16, 32, 64, 128, 256}, and the learning rate was chosen from the set {0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}.

For TS-RF and TS-DRF models, hyperparameter searches were performed on these parameters: n estimators
was chosen from the integers between 100 and 1000, max depth was chosen from the integers between 10 and 50,
min samples split was chosen from the integers between 2 and 64, min samples leaf was chosen from the
integers between 1 and 32, max features was chosen from sqrt or log2, criterion was chosen from log loss,
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gini, or entropy, splitting rule was chosen from CART or FourierMMD, num features was chosen from
the integers between 1 and 100, sample fraction was chosen from the numbers between 0.1 and 0.5, min node size
was chosen from the integers between 1 and 10, and alpha was chosen from the numbers between 0.01 and 0.3.

For TS-LGB model, hyperparameter search was performed on these parameters: n estimators was chosen from the
integers between 30 and 300, max depth was chosen from the integers between 1 and 64, min child samples was
chosen from the integers between 1 and 32, num leaves was chosen from the integers between 2 and 64, criterion
was chosen from log loss, gini, or entropy, learning rate was chosen from the numbers between 0.001 and
0.01, lambda l1 was chosen from the numbers between 10−8 and 1.0, and lambda l2 was chosen from the numbers
between 10−8.

Prediction performance on the other datasets. To complement the results in Sec. 6 for the Dialysis and oldmort datasets,
we conducted experiments using the dataDIVAT1, flchain, prostateSurvival, and support datasets with K = 2. The outcomes
of these experiments are presented in Fig. 6. Unlike the Dialysis and oldmort datasets, no single model consistently
outperformed the others across different metrics and datasets.

We also evaluated the prediction performance using the Framingham and PBC datasets with K = 3. As baseline methods, we
compared our models with those utilized in Jeanselme et al. (2023). Specifically, we compared against: DeepHit (Lee et al.,
2018), Deep Survival Machines (DSM) (Nagpal et al., 2021), DeSurv (Danks & Yau, 2022), and Neural Fine-Gray (Neu-
ralFG) (Jeanselme et al., 2023), which is a neural network model extending the Fine-Gray model (Fine & Gray, 1999). For
these models, we used the implementations available at https://github.com/Jeanselme/NeuralFineGray/
under MIT license, and performed hyperparameter searches based on the guidelines provided in the source code. We
compared our models with DeepHit, DSM, DeSurv, and NeuralFG models using the independence copula, and the results
are displayed in Fig. 7. These results demonstrate that our two-step algorithm is competitive with these baseline models.

Ablation study on hyperparameter B. We conducted an ablation study on the hyperparameter B in our two-step
algorithm. This study aimed to evaluate the prediction performance on the cen-log metric using the TS-LGB model with the
parameters w1 ∈ {0, 0.5, 1} and B ∈ {4, 8, 16, 32, 64}, where w1 is the parameter for the primary event of interest. In this
study, we also implemented the method proposed in (Carrière, 1995), which is labeled as ‘middle’.

Figure 8 shows the results, where the prediction performances are normalized relative to those with w1 = 0.5 for each
B. The results indicate that prediction performances varied significantly depending on the choice of the parameter w1 on
several datasets when B was small. However, these differences diminished for B ≥ 32. Regarding the method proposed
in (Carrière, 1995), while it is valid only if B → ∞ in theory, somewhat surprisingly, the results demonstrate that it
performed comparable to our algorithm even for small B in practice.

Upper and lower bounds estimation. We illustrate survival functions along with bounds for the six datasets with K = 2
in Fig. 9. The six graphs on the left depict average survival functions. In these graphs, we employed the Kaplan-Meier (KM)
estimator (1958) and the copula-graphic (CG) estimator (Zheng & Klein, 1995) using the Frank copula (2) with parameters
θ = −5 and θ = 5. Recall that the CG estimator is a generalization of the KM estimator. The shaded regions indicate the
bounds enclosed by the upper and lower limits (Peterson, 1976). The twelve graphs in the center and right display individual
survival functions. To estimate these functions, we used the TS-LGB model combined with the independence copula and the
Frank copula with parameters θ = −5 and θ = 5. The shaded regions represent the bounds enclosed by the upper and lower
limits given in Inequality (15).

The figures displaying the average survival functions indicate that uncertainty due to the unknown copula increases as
time progresses. The figures displaying the individual survival functions also show similar uncertainty, but the degree of
uncertainty varies by individual. In particular, the right figures for the flchain and support2 datasets showed small uncertainty,
even without prior knowledge of the copula. We also see that the estimated uncertainty due to the unknown copula can be
narrowed by using the estimated survival functions based on the Frank copula.
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Figure 6. Prediction performance comparison on dataDIVAT1, flchain, prostateSurvival, and support2 datasets with various metrics (lower
is better).
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Figure 7. Prediction performance comparison on Framingham and PBC datasets with various metrics (lower is better).
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Figure 8. Ablation study on hyperparameter B on the six datasets (lower is better).
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Figure 9. Estimated survival functions with upper and lower bounds for the six datasets with K = 2. The left graphs show average
survival functions, while the graphs in the center and the right show arbitrary chosen individual survival functions. In these graphs, the
shaded region corresponds to the upper and lower bounds of survival functions accounting for the uncertainty arising from the lack of
knowledge about the copula.
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