

000 ROBUST EQUATION STRUCTURE LEARNING WITH 001 002 ADAPTIVE REFINEMENT 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Symbolic regression (SR) aims to automate scientific discovery, but often trun-
012 cates the hypothetico-deductive cycle, focusing on hypothesis and experiment
013 while lacking systematic analysis. We introduce RESTART, a framework that
014 closes this loop by adding a principled analysis stage to diagnose and correct
015 structural errors. RESTART features two core mechanisms: a short-term refine-
016 ment process that uses boosting to identify unexplained signals and guide an LLM
017 toward targeted corrections, and a long-term structure library that distills success-
018 ful refinements into reusable code snippets for cumulative knowledge. On LLM-
019 SRBench across Physics, Biology, and Materials Science, RESTART achieves
020 lower error and higher accuracy than state-of-the-art baselines. It also general-
021izes robustly, recovering near-exact functional forms on out-of-distribution data,
022 representing a significant advance toward fully automated scientific discovery.

023 024 1 INTRODUCTION

025 Scientific progress often unfolds through a simple yet profound *hypothesize-experiment-analyze*
026 loop (bottom left of Figure 1): a scientist proposes a model, tests it against observations, identifies its
027 shortcomings, and refines the hypothesis for next iteration. This iterative cycle powered discoveries
028 from Kepler’s laws of planetary motion to Newton’s formulation of classical mechanics, and remains
029 the foundation of modern science (Nola, 2014; Li et al., 2023b). Automating this process is the goal
030 of *symbolic regression* (SR), which seeks to recover human-interpretable mathematical expressions
031 from data. By discovering equations that both fit observations and remain human-readable, SR has
032 the potential to accelerate scientific insight across domains ranging from physics to biology (Sun
033 et al., 2023; Cranmer et al., 2020; Shi et al., 2023). However, SR is NP-hard (Udrescu & Tegmark,
034 2020), as the search space of expressions grows combinatorially with expression length and operator
035 set, making efficient exploration critical.

036 Existing SR methods can be broadly categorized into *search-based* and *mapping-based* approaches
037 (Shojaee et al., 2024). Search-based methods such as genetic programming (GP) (Koza & Poli,
038 2005; Dubčáková, 2011; Cranmer, 2023; Mundhenk et al., 2021) evolve candidate populations via
039 mutation and crossover, but rely heavily on random exploration and often revisit similar regions
040 of the search space, leading to slow convergence. Mapping-based methods employ autoregressive
041 models such as Transformers (Vaswani et al., 2017; Kamienny et al., 2023; Biggio et al., 2021)
042 trained on large synthetic datasets to directly map numerical data to symbolic expressions. They
043 can produce strong single-shot hypotheses, but lack an explicit mechanism for refining hypotheses
044 based on observed error patterns, making them brittle in out-of-distribution (OOD) settings. Recent
045 work has begun to incorporate Large Language Models (LLMs) into SR, leveraging their capacity
046 for symbolic reasoning and natural language priors (Shojaee et al., 2024; Grayeli et al., 2025; Ma
047 et al., 2024; Wang et al., 2025). However, most such methods still instantiate only the first two steps
048 of the scientific loop—hypothesize and experiment—without a principled analysis mechanism that
049 turns observed errors into explicit guidance for iterative refinement.

050 We introduce **RESTART** (Robust Equation STructure learning with Adaptive RefinememT), a novel
051 framework that explicitly closes the hypothetico-experiment-analyze loop for SR. RESTART starts
052 with a mapping-based initializer to generate a strong first hypothesis, then uses an LLM to iteratively
053 refine it under a two-level guidance mechanism as follows:

- **Short-term Guidance (Targeted Refinement):** After each test, we learn an exploration function to model what the currently learned equation fails to explain, providing highly specific, localized feedback to steer the next hypothesis.
- **Long-term Guidance (Cumulative Knowledge):** We maintain a persistent structure library to store validated refinements. Using an improvement-gated admission policy, we ensure only performance-improving refinements are retained, preventing library bloat and enabling efficient knowledge reuse.

Together, these components form a complete scientific cycle, emulating how human scientists iteratively refine their models. The empirical results show that our method converges faster, discovers more accurate and parsimonious equations. Our **contributions** are summarized as follows:

- We propose RESTART, a framework that operationalizes the entire scientific discovery cycle. Inspired by how human scientists refine hypotheses, RESTART employs a short-term guidance mechanism to learn a data-driven exploration function for localized refinement. Concurrently, a long-term structure library cumulatively stores only performance-improving refinements, enabling reusable knowledge across iterations.
- Extensive empirical studies on LLM-SRbench(Shojaee et al., 2025) show that RESTART achieves lower error and higher recovery accuracy than state-of-the-art baselines, including GP-based, mapping-based, and LLM-based methods.

2 PROBLEM FORMULATION

Symbolic Regression (SR). Let dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, SR seeks $f : \mathbb{R}^d \rightarrow \mathbb{R}$ minimizing the loss function \cdot , which is normally the empirical mean squared error (MSE). The discovered f should be concise and human-interpretable. Some works additionally penalize expression complexity when selecting the final function (Cranmer, 2023).

LLM-guided equation proposal. Let \mathcal{P} be the space of prompts that encode the task description and a few-shot set of equation exemplars. These exemplars are concrete equation candidates previously discovered during the search and stored in the exemplar buffer (see Section 4.4 for details). Let \mathcal{T} be the space of candidate equation *template*, and an equation template $\tau \in \mathcal{T}$ is an equation form whose symbolic operations are fixed while the numeric constants are left unspecified. Later, we fit these constants to data, turning the template into an executable equation. In practice, we represent each template as a short Python code snippet. Conditioned on $p \in \mathcal{P}$, an LLM induces a distribution $q_p(\cdot)$ over \mathcal{T} . Given k i.i.d. samples $\tau_i \sim q_p$, $i = 1, \dots, k$, we define the expected best-of- k loss as

$$\Phi_k(p) = \mathbb{E}_{\tau_i \sim q_p, i=1, \dots, k} \left[\min_{1 \leq j \leq k} \mathcal{L}(\tau_j) \right], \quad (1)$$

where $\mathcal{L}(\tau_j)$ is the fitted loss for template τ_j after parameter optimization, and best-of- k denotes selecting the loss of the best candidate among k independent templates sampled from q_p . Conceptually, one may seek a prompt p^* , such that

$$p^* \in \arg \min_{p \in \mathcal{P}} \Phi_k(p). \quad (2)$$

To this end, finding a better prompt is a way to optimize the final result. However, a static few-shot prompt biases the LLM’s search distribution, q_p , towards regions merely syntactically similar to the exemplars, which may not correspond to regions of low empirical loss. Instead, we construct prompts adaptively based on the evolving exemplar buffer, which can be seen as a form of meta-optimization over p that gradually shifts q_p toward template with lower empirical loss.

3 RELATED WORK

Search-based methods explore equation space via stochastic operators. Genetic programming (GP) (Koza & Poli, 2005; Dubčáková, 2011; Cranmer, 2023) evolves expression trees through crossover and mutation, while RL-based methods cast SR as a sequential decision process (Petersen

108 et al., 2021; Xu et al., 2024). However, both suffer from the combinatorial explosion of the search
 109 space—leading to slow convergence, hyperparameter sensitivity, and overly complex expressions
 110 (Cava et al., 2021; Holt et al., 2023). Critically, they require evaluating hundreds of thousands of
 111 candidates, making them computationally expensive.
 112

113 **LLM-based search and refinement methods** utilize LLMs to encode strong priors and symbolic
 114 reasoning to search-based SR (Shojaee et al., 2024; Wang et al., 2025), enabling more efficient
 115 exploration of the hypothesis space. In these approaches, candidate equations are represented as
 116 executable code, evaluated on data, and then fed back to the LLM, which is prompted to produce
 117 improved versions. Some methods further augment LLM prompting with error-related signals (e.g.,
 118 loss values or residuals) to provide a weak signal (Ma et al., 2024; Wang et al., 2025). More recent
 119 frameworks, such as (Grayeli et al., 2025; Wang et al., 2025), also maintain a dynamic concept li-
 120 brary that summarizes validated patterns and leverages them to bias future generations toward more
 121 promising regions of the search space. Unlike prior work that samples many positive and nega-
 122 tive hypotheses and abstracts them into natural-language concepts, RESTART distills structure only
 123 from high-value generations and stores it as executable code, yielding more efficient and directly
 124 actionable guidance.
 125

126 **Mapping-based methods** treat SR as supervised sequence prediction, training autoregressive
 127 models on large synthetic corpora (Petersen et al., 2021; Biggio et al., 2021; Kamienny et al.,
 128 2022; Li et al., 2023a). They deliver strong single-pass hypotheses but are brittle under distribu-
 129 tion shift. Several works finetune mapping-based SR models with RL objectives (Landajuela et al.,
 130 2022; Kamienny et al., 2023) to improve generalization via error-driven updates. However, this
 131 approach is highly sample-inefficient and gradient updates on large language models are computa-
 132 tionally prohibitive, making it impractical at LLM scale. This motivates coupling mapping-based
 133 initialization with guided, iterative refinement—precisely what our framework achieves.
 134

4 METHODOLOGY

136 Our proposed **RESTART** implements the complete *hypothesize–experiment–identify–improve* cycle
 137 by unifying a powerful LLM-based generator with a principled refinement mechanism, as shown in
 138 Figure 1. Its three core components are:

- 139 • *Informative Initialization*: The search begins with a strong hypothesis from a mapping-
 140 based estimator, preserving nonlinear structures that linear models often miss.
- 141 • *Targeted Refinement*: The unexplained signal from each experiment is explicitly modeled
 142 as an error-aware subproblem. The solution to this subproblem directly guides the LLM’s
 143 next hypothesis.
- 144 • *Cumulative Knowledge Retention*: Successful, boosting-driven revisions are distilled into
 145 a reusable structure library, enabling long-term knowledge accumulation across iterations.

147 Unlike prior work that uses static few-shot prompts, RESTART adaptively constructs prompts by
 148 incorporating both short-term feedback and long-term knowledge.
 149

4.1 INITIALIZATION VIA TRANSFORMER

152 Rather than initializing the search with a simple linear model (Shojaee et al., 2024), which only
 153 captures additive effects of the input variables, we initialize with the transformer-based estimator
 154 E2E (Kamienny et al., 2022). E2E directly maps the input data to symbolic expression as prior.
 155 This data-dependent initialization yields a stronger initial hypothesis f_0 that already encodes salient
 156 nonlinearities, such as polynomial, trigonometric, and exponential functions, as well as interaction
 157 terms between multiple variables.
 158

4.2 INSPECTING SYMBOLIC SUBPROBLEMS

159 At iteration $t = 0, 1, \dots$, let $f_t : \mathbb{R}^d \rightarrow \mathbb{R}$ denote the current symbolic hypothesis. We consider a
 160 symbolic function class \mathcal{G} consisting of exploration functions $g : \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ that take as input both
 161

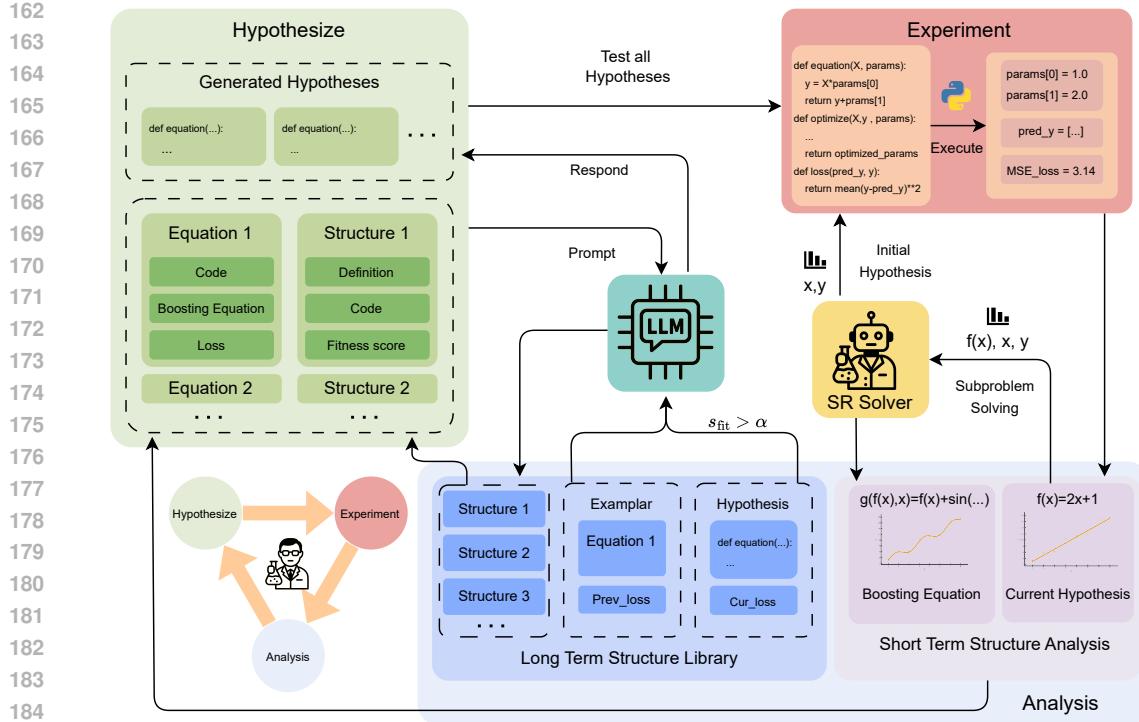


Figure 1: **Overview of the RESTART framework.** The framework follows three main steps of the scientific cycle (illustrated at bottom left): (i) **Hypothesis stage:** We first generate an informative initial hypothesis using a symbolic regression solver. In subsequent iterations, RESTART adaptively constructs prompts from exemplars and the structure library, and queries the LLM to generate several hypothesis $f(x)$ as executable Python functions. (ii) **Experiment stage:** RESTART executes each $f(x)$ on the dataset (X, y) , computes the loss, and optimizes its parameters (constants) to minimize the error. (iii) **Analysis stage:** RESTART formulates a subproblem $g(f(x), x)$ as a targeted refinement, solves it using a symbolic regression solver, and adds both $f(x)$ and $g(f(x), x)$ to the exemplar buffer. It then computes a fitness score s_{fit} ; if $s_{fit} > \alpha$, we use the LLM to summarize the structure that led to the improvement and store it in the structure library for knowledge cumulation.

the prediction $f_t(\mathbf{x})$ at iteration t and the original features \mathbf{x} :

$$g_t \leftarrow \arg \min_{g \in \mathcal{G}} \mathcal{L}(g(f_t(\mathbf{x}), \mathbf{x}), y), \quad (3)$$

where $\mathcal{L}(g(\cdot), y)$ denotes the loss between predictions $g(\cdot)$ and targets y . The objective in Eq. 3 makes the exploration function g_t a boosting-style correction of the hypothesis f_t toward the target y . Because g_t takes both $f_t(\mathbf{x})$ and \mathbf{x} as inputs, the symbolic form of $g_t(f_t(\mathbf{x}), \mathbf{x})$ describes how the current prediction should be adjusted as a function of its current value and the features in order to better match the data.

The backend for solving Eq. 3 is pluggable; viable options include KAN (Liu et al., 2025), RL-based methods (Petersen et al., 2021), or mapping-based methods (Kamienny et al., 2022). The choice of backend does not alter the formulation (see Appendix B.3 for details). In our experiments, we adopt a pre-trained Transformer (Kamienny et al., 2022) to balance speed and accuracy. Finally, we store the tuple $S_t = (f_t, \mathcal{L}(f_t(\mathbf{x}), y), g_t, \mathcal{L}(g_t(f_t(\mathbf{x}), \mathbf{x}), y))$ in the exemplar buffer \mathcal{B}_t to guide subsequent prompt construction.

4.3 RETAINING VALIDATED IMPROVEMENTS

While structure analysis identifies a hypothesis’s shortcomings, applying these insights indiscriminately risks overfitting to short-term noise, inflating complexity, and relying too heavily on approximate equations. To mitigate this, we retain only those boosting-driven updates that demonstrably reduce the task loss. This process involves two steps: (i) gating modifications with a fitness score, and (ii) distilling eligible modifications into reusable structures.

216 **Step 1: Evidence and gating.** To ensure only meaningful modifications are retained, we gate updates using a comprehensive fitness score, s_{fit} . This score holistically evaluates a candidate equation’s improvement by considering both relative and absolute loss reduction compared to exemplars. Given a new hypothesis $f_{\text{new}}(x)$ with loss $l_{\text{new}} = L(f_{\text{new}}(x))$ and the exemplar hypothesis $f_{\text{base}}(x)$ with the lowest loss $l_{\text{base}} = \hat{L}(f_{\text{base}}(x))$ from the current prompt, we compute,

$$222 \quad R = \frac{l_{\text{base}} - l_{\text{new}}}{l_{\text{base}}}, \text{ and } \Delta = l_{\text{base}} - l_{\text{new}},$$

224 where R is the relative improvement ratio and Δ is the absolute improvement. To compare values 225 across different scales, we normalize them to a range of $[0, 1)$ as,

$$226 \quad s_r = 1 - e^{-k*R}, \text{ and } s_a = 1 - (1 + \Delta)^{-1}.$$

228 Here, s_r captures the proportional gain, with k as a hyperparameter that rescales its sensitivity, while 229 s_a captures the absolute gain in a saturating form, preventing extremely large absolute improvements 230 from dominating the score. Then we combine these scores using a weighted average, $s_{fit} = 100 \cdot (w_r s_r + w_a s_a)$, where $w_r + w_a = 1$ (see Appendix B.1 for more details). This design recognizes 231 both large absolute gains on high-error problems and significant relative gains on low-error ones.

233 **Step 2: Structure formation.** After scoring each candidate modification $f_t \rightarrow f_{t+1}$ with s_{fit} , given 234 a threshold α , we retain those with $s_{fit} \geq \alpha$ and refer to them as *high-value*. For any high-value modi- 235 fication, the associated structural change often captures information about the ground-truth equation, 236 which may help explain the high fitness score and can benefit subsequent iterations. Accordingly, 237 we prompt the LLM with $(f_t, f_{t+1}, \mathcal{L}(f_t(\mathbf{x}), y), \mathcal{L}(f_{t+1}(\mathbf{x}), y))$ to summarize the salient change as 238

$$239 \quad c_{t+1} = (\text{name}, \text{desc}, h),$$

240 where `name` is a canonical identifier, `desc` is a brief textual description, and `h` is a small Python 241 code snippet (e.g., `np.sin(x)`) implementing the structure. Representing each structure as a code 242 snippet aligns with our design: the structure is a distilled summary of the observed modification and 243 can directly guide subsequent generations. We update the structure library C by inserting (c_{t+1}, s_{fit}) 244 and, whenever another entry shares the same `name`, merging them by (i) taking the set union of their 245 code snippets `h` with deduplication, (ii) assigning to the merged entry the highest s_{fit} observed across 246 its instances, and (iii) keeping the earliest `desc` among those instances. We enforce a capacity 247 constraint $|C| \leq K$ and, if exceeded, evict the lowest-scoring entries until the constraint is satisfied, 248 thereby limiting redundancy while keeping the library compact and effective.

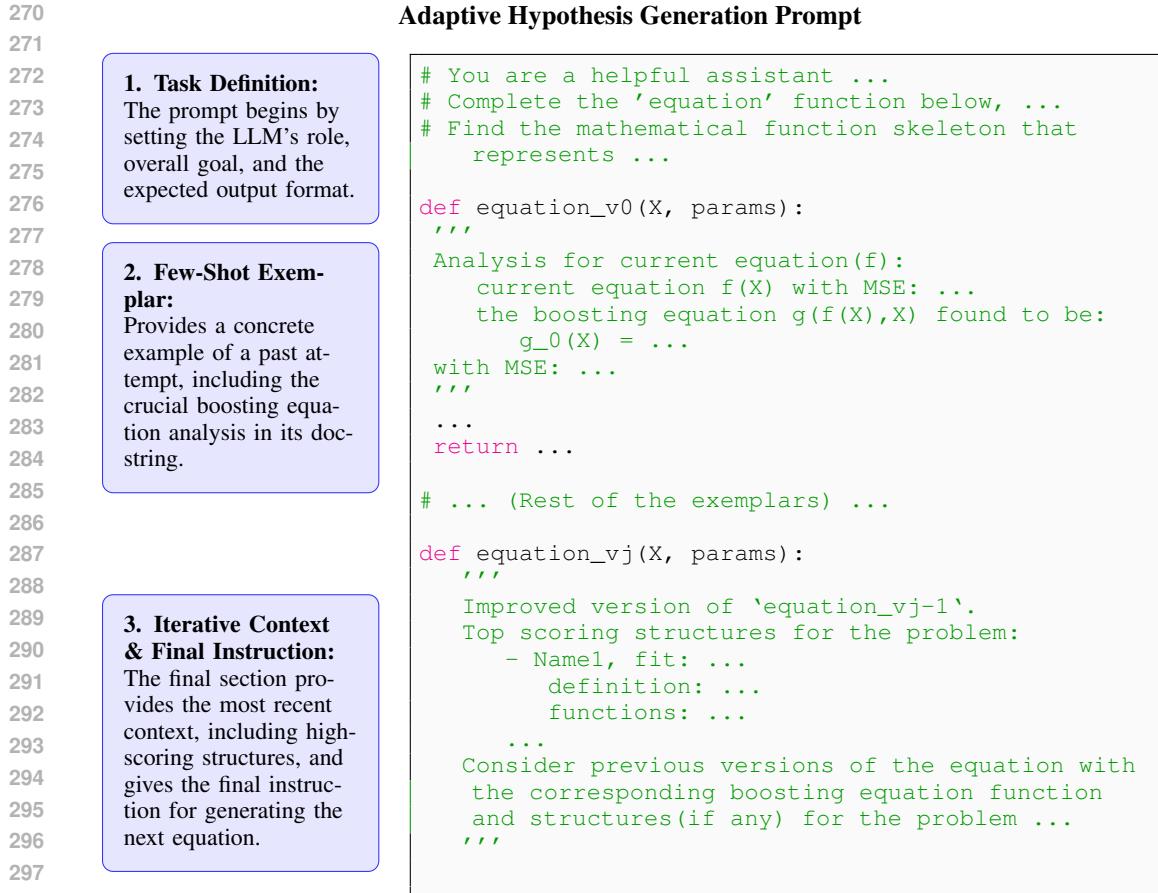
249 250 4.4 ADAPTIVE PROMPT CONSTRUCTION

252 At each iteration, the prompt for generating new hypotheses $f_{t+1,j}$ integrates three complementary 253 information sources: (i) few-shot exemplars, (ii) boosting equation summaries, and (iii) validated 254 candidate structures. This design couples short-term feedback with long-term, reusable knowledge.

255 **Few-shot exemplars.** We maintain an exemplar buffer \mathcal{B}_t as populations with multiple islands, 256 suggested by Shojaee et al. (2024) and Grayeli et al. (2025) (see Appendix B.1 for more details). 257 For iteration $t+1$, we select n exemplars $\{S_{t+1}^{(i)}\}_{i=1}^n \subset \mathcal{B}_t$ via MSE-weighted random sampling to 258 balance quality and diversity. Each exemplar includes the fitted equation and a compact summary 259 of its associated boosting equation, which highlights the residual error. This provides immediate 260 context on what has been learned and what remains unexplained.

262 **Structure snippets.** To inject higher-level, reusable guidance, we sample m structures from the 263 library \mathcal{C}_t with a probability proportional to their validation score. Each structure provides a descrip- 264 tive name, a short definition, and a symbolic code sketch. While boosting equations offer instance- 265 specific, short-term cues, the structure library encodes cumulative, and long-term refinements.

267 **Prompt assembly.** The final prompt is constructed from a fixed template populated with: (i) the 268 task definition and variable specifications, (ii) the n exemplar–boosting equation pairs, and (iii) the 269 m high-scoring structure snippets (see Figure 2). Conditioned on this prompt p_{t+1} , the generator LLM q autoregressively samples k candidate symbolic expressions. Each candidate is emitted as



299 Figure 2: The annotated structure of our adaptive prompt. The prompt is dynamically assembled in
300 three main parts: (1) A fixed **task definition** setting the goal. (2) A series of **few-shot exemplars**
301 showing past attempts and their boosting equation analyses. (3) The final **iterative context**, which
302 includes reusable structure library and the instruction for generating the next hypothesis.

303 a Python function with tunable constants (e.g., `def f(x, params)`). We then optimize these
304 constants using a BFGS solver to minimize the training loss, yielding a set of fitted hypotheses
305 $f_{t+1,j}$. Each new hypothesis, along with its loss and boosting analysis, is appended to the buffer
306 \mathcal{B}_{t+1} , ensuring subsequent prompts reflect the evolving understanding. This approach tightly
307 integrates short-term error signals with long-term structural motifs. Though the per-hypothesis analysis
308 adds computational overhead, it provides precise feedback that significantly improves sampling ef-
309 ficiency. Our experiments show that this leads to faster convergence and superior solutions without
310 a substantial increase in total runtime when using the E2E(Kamienny et al., 2022) backend.

312 5 EXPERIMENTS

314 We present a comprehensive evaluation of our proposed framework, RESTART, designed to val-
315 idate the effectiveness of its end-to-end hypothesize–experiment–analyze loop. Our experiments
316 demonstrate that its principled feedback mechanisms achieve consistently improved performance.

319 5.1 EXPERIMENTAL SETUP

321 LLM-SRBench (Shojaee et al., 2025) is a comprehensive benchmark designed to evaluate LLM-
322 based scientific equation discovery methods beyond simple memorization. We focus on two key
323 categories from this benchmark: i) LSR-Transform, contains 111 problems derived from established
physical models; ii) LSR-Synth, includes 93 problems that combine known scientific terms with

LSR-Transform		Biology		Material Science		Physics		
	NMSE	ACC	NMSE	ACC	NMSE	ACC	NMSE	ACC
DSR	0.472 \pm 1.755	36.04 \pm 48.23	0.206 \pm 0.278	16.67 \pm 38.07	0.058 \pm 0.099	36.00 \pm 48.99	0.104 \pm 0.111	27.27 \pm 45.05
E2E	2.098 \pm 10.794	57.66 \pm 49.63	0.578 \pm 0.400	12.50 \pm 33.78	0.008 \pm 0.016	76.00 \pm 38.51	0.425 \pm 0.430	20.45 \pm 34.64
PySR	0.175 \pm 0.390	72.07 \pm 44.56	0.003 \pm 0.012	54.17 \pm 50.90	0.057 \pm 0.282	72.00 \pm 45.83	0.004 \pm 0.010	73.86 \pm 36.55
LLMDirect	0.355 \pm 0.376	32.88 \pm 46.95	0.454 \pm 0.379	16.67 \pm 38.07	0.012 \pm 0.018	58.00 \pm 47.17	0.099 \pm 0.245	36.36 \pm 48.66
LLMSR	0.160 \pm 0.353	74.32 \pm 42.57	0.016 \pm 0.053	70.83 \pm 44.03	0.003 \pm 0.015	96.00 \pm 20.00	0.002 \pm 0.008	84.09 \pm 37.00
SGA	0.374 \pm 0.579	37.39 \pm 45.46	0.975 \pm 2.587	12.50 \pm 33.78	4.021 \pm 19.996	48.00 \pm 48.99	0.345 \pm 1.260	34.09 \pm 45.46
RESTART	0.157\pm0.407	74.77\pm42.04	0.001\pm0.005	77.08\pm38.95	0.001\pm0.002	96.00\pm20.00	0.003 \pm 0.009	85.23\pm35.07

Table 1: Performance comparison on 4 datasets within training distribution. RESTART achieves the best or near-best performance across all datasets. For LLM based approaches, the backbone model is Qwen3-8B(Team, 2025)

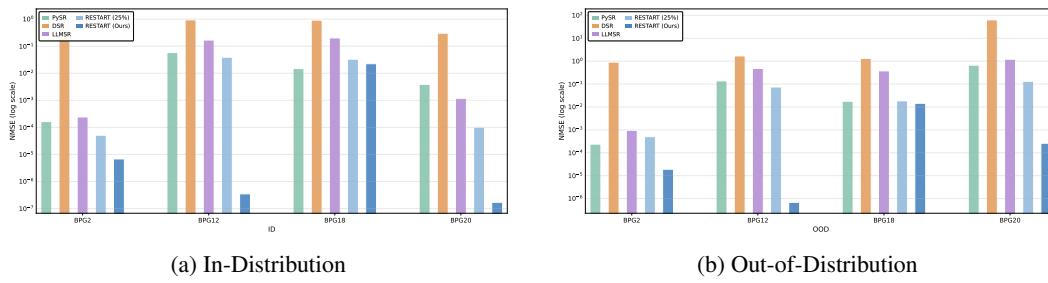


Figure 3: NMSE of RESTART on four challenging problems under (a) in-distribution and (b) out-of-distribution settings. In both settings, RESTART not only performs well on problems solvable by baselines but also yields notable improvements on these more complex tasks.

novel, plausible synthetic terms from biology, physics, and materials science domain (see details in Appendix E).

To contextualize the performance of RESTART, we compare it against representative baselines from major symbolic regression paradigms: PySR (Cranmer, 2023) (GP-based), DSR (Petersen et al., 2021) (RL-based), E2E (Kamienny et al., 2022) (mapping-based), LLMDirect (Shojaee et al., 2025) (LLM baseline), SGA Ma et al. (2024) (LLM optimization), and LLMSR (Shojaee et al., 2024) (Current SOTA LLM-based SR). For LLM-based methods, we use Qwen3-8B(Team, 2025) as the default LLM backbone, unless stated otherwise. Hyperparameters follow the authors' public settings where available (see Appendix D for details).

5.1.1 EVALUATION METRICS

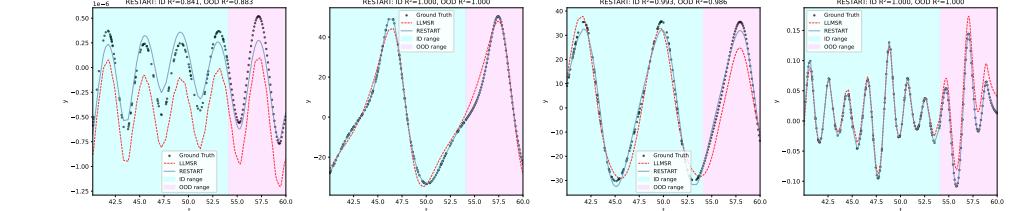
Following (Shojaee et al., 2024; 2025), We evaluate numeric fit quality using the normalized mean squared error (NMSE): $\text{NMSE} = \frac{\sum_{i=1}^{N_{\text{test}}} (\hat{y}_i - y_i)^2}{\sum_{i=1}^{N_{\text{test}}} (y_i - \bar{y})^2}$, where y_i denotes the true target for test input x_i , \hat{y}_i the corresponding model prediction, $\bar{y} = \frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} y_i$ the mean of the test targets, and N_{test} the number of test samples. To ensure numerical stability—particularly when exponential or logarithmic terms cause extreme values or the denominator approaches zero—we clip the NMSE at a maximum of 100. This clipping prevents exploding errors and division-by-near-zero effects from skewing the averages, enabling more robust cross-task comparisons.

Following common practice in SR benchmarks (Shojaee et al., 2025; 2024), we report the Accuracy to tolerance τ (Acc_τ), which measures whether the discovered equation matches the ground-truth expression across the entire input domain: $Acc_\tau = \mathbb{1}\left(\max_{1 \leq i \leq N_{\text{test}}} \left|\frac{\hat{y}_i - y_i}{y_i}\right| \leq \tau\right)$, with $\tau = 0.1$ unless stated otherwise. This metric evaluates generalization by requiring uniformly low relative error across all data points, rather than just low average error, which can mask overfitting. To ensure robust performance estimates and mitigate the influence of pathological outliers, we follow (Kamienny et al., 2022; Biggio et al., 2021) by reporting results over the best 95% of predictions, discarding the worst 5% based on relative error.

378
379
380
381
382
383
384
385

	Biology		Material Science		Physics	
	NMSE	ACC	NMSE	ACC	NMSE	ACC
DSR	29.900 \pm 43.344	16.67 \pm 38.07	7.348 \pm 20.664	84.00 \pm 37.42	5.715 \pm 21.184	25.00 \pm 43.80
E2E	39.465 \pm 45.092	4.17 \pm 20.41	1.395 \pm 2.172	94.00 \pm 21.98	25.310 \pm 39.610	21.59 \pm 36.40
PySR	8.875 \pm 26.612	37.50 \pm 49.45	4.115 \pm 19.980	96.00 \pm 20.00	7.151 \pm 23.052	62.50 \pm 43.30
LLMDirect	68.661 \pm 44.966	12.50 \pm 33.78	1.704 \pm 3.801	84.00 \pm 34.52	28.579 \pm 44.478	13.64 \pm 34.71
LLMSR	6.667 \pm 19.165	45.83 \pm 50.90	0.084 \pm 0.239	96.00 \pm 20.00	14.808 \pm 34.460	65.91 \pm 47.95
SGA	63.701 \pm 45.904	8.33 \pm 28.23	12.072 \pm 29.957	78.00 \pm 38.41	33.410 \pm 44.259	14.77 \pm 35.07
RESTART	5.087\pm14.570	52.08\pm47.73	0.075\pm0.198	100.00\pm0.00	8.167\pm26.233	71.59\pm44.98

Table 2: Performance comparison on 3 datasets (OOD results only). NMSE values are clipped at a maximum of 100. For LLM based approaches, the backbone model is Qwen3-8B(Team, 2025)

Figure 4: **Visualizing equations on challenging tasks.** Each panel shows the ground-truth equation (black) and the outputs from LLMSR (red) and RESTART (blue). We select four challenging equations from the Biology dataset and evaluate the discovered equations over both in-distribution (blue shaded) and out-of-distribution (pink shaded) regions. RESTART not only matches the ground truth within the training range but also generalizes well to unseen regions, closely following the true functional shape.

5.2 MAIN EXPERIMENTAL RESULTS

Research Question 1: Does RESTART discover accurate symbolic expressions from data?

Quantitative results in Table 1 show that RESTART achieves superior performance, with lower NMSE and higher accuracy than all baseline methods across nearly every benchmark. This establishes its effectiveness in discovering accurate symbolic expressions. A focused analysis on the three most challenging tasks from the Biology dataset shown in Figure 3 reveals that RESTART’s relative advantage is greatest under difficult conditions, particularly for problems BPG12 and BPG20. The minimal NMSE values suggest a successful identification of the underlying equation’s structure.

Qualitative analysis confirms this: baseline methods frequently omit key terms, whereas RESTART’s adaptive refinement iteratively incorporates them. This highlights the core benefit of our short-term guidance, where the exploration function g_t provides data-driven signals for precise corrections. For example, RESTART correctly identified the harmonic interaction in BPG12 as shown in Figure 4, a component missed by LLMSR. (An analysis of the refinement process is provided in Appendix H)

Research Question 2: Does RESTART recover equations close to the ground truth? On out-of-distribution (OOD) splits, RESTART achieves the highest accuracy across all domains as shown in Table 2. This demonstrates that our method not only fits the training data well but also discovers equations that generalize effectively to unseen data.

Figure 4 visualizes the equations discovered on a subset of challenging tasks. For problems like BPG18 and BPG20, baselines such as LLMSR may achieve low training error, but their solutions visibly diverge outside the training region. This divergence is often caused by overly complex terms that reduce local error but distort the global function shape. In contrast, RESTART’s short-term guidance mechanism explicitly identifies missing operators or interactions, which prevents the model from fitting noise and yields more robust equations. Furthermore, the improvement-gated structure library retains only validated components, preventing equation bloat and ensuring the final expressions are both concise and physically meaningful.

Research Question 3: Is RESTART computationally efficient? Although our guidance mechanisms introduce overhead for subproblem solving and structure summarization, RESTART is signif-

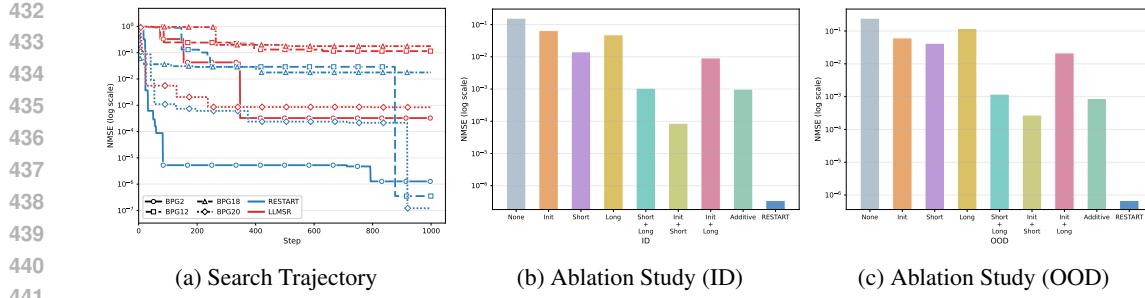


Figure 5: (a) Search trajectories on **four challenging equations**; (b) Ablation study on BPG12 under ID setting; (c) Ablation study on BPG12 under OOD setting.

ificantly more efficient at discovering accurate equations. As shown in Figure 5a, RESTART’s NMSE decreases sharply within the first 100 iterations, rapidly surpassing the performance of LLMSR. This swift convergence demonstrates that the cost of targeted analysis is substantially offset by a major gain in search efficiency. By guiding the search toward promising regions instead of exploring blindly, RESTART drastically reduces the number of ineffective hypotheses evaluated.

Furthermore, Figure 3 shows that RESTART discovers better equations than other baselines using only 25% of the iterations. This underscores its ability to find strong, generalizable solutions with a fraction of the computational budget, proving that our approach achieves a superior trade-off between analysis overhead and overall search effectiveness.

5.2.1 ABLATION STUDY

Research Question 4: What is the individual contribution of each key component: initialization, short-term guidance, and long-term memory? We conduct an ablation study to evaluate the contributions of RESTART along three axes: (i) removing key components from RESTART, (ii) evaluating different LLM backbones, and (iii) using alternative subproblem solvers. The results, shown in Figure 5b 5c, confirm that all three components are critical for peak performance. Removing any one—initialization, short-term analysis, or long-term retention—causes a noticeable performance drop, validating the necessity of the full hypothesize–experiment–analyze loop. Additionally, we evaluated an alternative variant of RESTART, termed *Additive*, whose purpose is to test the behavior of the framework when the boosting step is restricted to fitting the classical additive residual. In this variant, the exploration function is defined as $g : \mathbb{R}^n \rightarrow \mathbb{R}$ and is fit as $g(x) = y - f_t(x)$. After solving this subproblem, we prompt the LLM with $(f_t, \mathcal{L}(f_t(\mathbf{x}), y), g_t, \mathcal{L}(g_t(\mathbf{x}), y - f_t(\mathbf{x})))$, so that the model receives both the current hypothesis and the residual-based signal for comparison with the full RESTART formulation. From Figures 5b and 5c, we observe a substantial increase in NMSE under the Additive variant. This highlights that performance improvements in RESTART arise primarily from structural refinement rather than simply filling the numerical residual gap.

Furthermore, while the choice of LLM backbones affects absolute performance (with stronger models yielding higher accuracy, as seen in Table 3), RESTART consistently outperforms other LLM-based methods regardless of the foundation model. This indicates that its advantage stems from the algorithmic design rather than a specific model’s capabilities.

Finally, as shown in Table 4, we observe a trade-off in subproblem solvers: more expressive solvers can propose better structures at a higher computational cost. However, results in Tables 1 and 2 show that a traditional solver alone is insufficient. Optimal symbolic recovery—achieving both accuracy and parsimony—requires its integration with RESTART’s iterative hypothesis refinement and guidance mechanisms. Details are provided in the Appendix B.3

5.2.2 CASE STUDY

Research Question 5: How does RESTART perform on a real-world scientific task? Here, we consider a real-world scientific discovery task. Defining and measuring particle speed in the classically forbidden region is crucial for testing Bohmian mechanics and understanding microscopic transport. Using coupled waveguides, Sharoglazova et al. (2025) that the measured nondirectional speed follows $v = \sqrt{2|\Delta|/m}$, where v is the particle speed, m the particle mass, and Δ the energy

486 offset inside the step ($\Delta = E - V_0 + \hbar J_0$). This relation describes how speed increases with $|\Delta|$
 487 in the forbidden region and is mirror-symmetric in Δ . **While the equation appears elementary, the**
 488 **actual physical law used in the experiment is:**

$$490 \quad v = \sqrt{\frac{2|\Delta| \cdot 1.602176634 \times 10^{-22}}{m}} / 1000$$

$$491$$

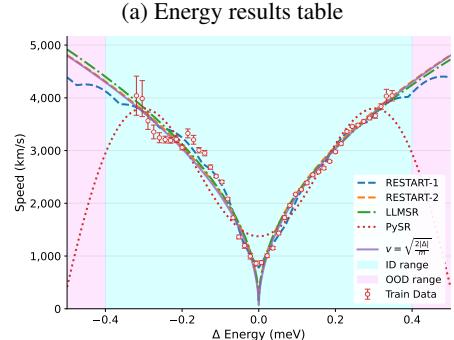
$$492$$

$$493$$

494 , which is more challenging. It involves (i) nested nonlinear operators (absolute value within a square
 495 root), (ii) cross-variable interaction through division, and (iii) large-magnitude unit-conversion
 496 constants embedded inside nonlinear transformations, which makes constant recovery and operator or-
 497 dering difficult for search-based SR.

498 To assess RESTART in a real-world scenario, we re-
 499 examine this physical law from only 46 experimen-
 500 tal data points, including basic unit conversions (e.g.,
 501 meV \rightarrow J). As shown in Figure 6a and Figure 6b,
 502 RESTART successfully rediscovers the relationship
 503 and produces two key expressions: **RESTART-1**
 504 achieves the best fit by recovering the analytic scal-
 505 ing while adding compact, interpretable corrections
 506 (e.g., parameterized scaling and energy-dependent
 507 terms) that may account for known systematics in the
 508 speed extraction process (the parabolic build-up fit
 509 can overestimate v by up to $\sim 6.7\%$ in the for-
 510 bidden regime (Sharoglazova et al., 2025)); **RESTART-2**
 511 more closely adheres to the published formula, sacri-
 512 ficing a small amount of fit quality for greater gener-
 513 alizability and interpretability. These results demon-
 514 strate that RESTART is highly data-efficient and prior-
 515 aware. Through short-term refinement, it can gener-
 516 ate targeted, testable corrections that help bridge the-
 517 ory and experiment, even with scarce, noisy data. **To**
 518 **further validate RESTART’s capability in scientific**
 519 **discovery, we report a more challenging task in Ap-**
 520 **pendix G.**

	$R^2(\text{data})$	$R^2(\text{equation})$
$v = \sqrt{\frac{2 \Delta }{m}}$	0.9642	1.000
RESTART-1	0.9827	0.9699
RESTART-2	0.9672	0.9985
LLMSR	0.9688	0.9958
LLMDIRECT	0.0	0.0
PYSR	0.8984	0.0



(b) Energy figure

Figure 6: (a) Comparison of two RESTART-discovered equations with the reported equation $v = \sqrt{\frac{2|\Delta|}{m}}$ (Sharoglazova et al., 2025) and baselines. $R^2(\text{data})$ denotes the R^2 computed against the measured ground-truth data points, whereas $R^2(\text{equation})$ denotes the R^2 from points sampled via the reported equation. Both discovered equations achieve higher R^2 on experimental data while remaining consistent with the reported equation, suggesting a plausible correction. (b) Visualization of three equations: RESTART-1 fits the data well but slightly diverges from the reported equation in the OOD range.

6 DISCUSSION AND CONCLUSION

524 We presented RESTART, a symbolic regression
 525 framework that completes the hypothe-
 526 size–experiment–analyze cycle by combining LLM-
 527 guided hypothesis generation with structural analysis
 528 and a persistent structure library. Our experiments
 529 demonstrate that the explicit analysis stage is critical:
 530 solving the subproblem $g(f(x), x)$ and using it to
 531 guide the LLM with structural refinements, together
 532 with the structure library, leads to a more efficient
 533 and accurate search process. The physics case study
 534 further illustrates the potential of symbolic regression
 535 for real scientific tasks.

536 Remaining challenges include the computational cost
 537 of repeated LLM queries and the inability to directly verify the correctness of each stored struc-
 538 ture. Future work will explore integrating auxiliary models to pre-filter structures and candidate
 539 hypotheses, as well as incorporating domain constraints to improve plausibility without increasing
 computational overhead.

540 REFERENCES
541

542 Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Paras-
543 candolo. Neural symbolic regression that scales. In Marina Meila and Tong Zhang (eds.),
544 *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Pro-
545 ceedings of Machine Learning Research*, pp. 936–945. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/biggio21a.html>.

546 W. L. Cava, Patryk Orzechowski, Bogdan Burlacu, Fabr’icio Olivetti de Francca, M. Virgolin, Ying
547 Jin, Michael Kommenda, and Jason H. Moore. Contemporary symbolic regression methods and
548 their relative performance. *Advances in neural information processing systems*, 2021 DB1:1–16,
549 2021. URL <https://api.semanticscholar.org/CorpusID:236635250>.

550 Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl,
551 2023. URL <https://arxiv.org/abs/2305.01582>.

552 Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
553 and Shirley Ho. Discovering Symbolic Models from Deep Learning with Inductive Biases. In
554 *Advances in Neural Information Processing Systems*, volume 33, pp. 17429–17442. Curran As-
555 sociates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/c9f2f917078bd2db12f23c3b413d9cba-Abstract.html>.

556 Michael de la Maza and Bruce Tidor. An analysis of selection procedures with particular attention
557 paid to proportional and boltzmann selection. In Stephanie Forrest (ed.), *Proceedings of the 5th
558 International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, June 1993*, pp.
559 124–131. Morgan Kaufmann, 1993. ISBN 1-55860-299-2.

560 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
561 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
562 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
563 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
564 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
565 Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
566 Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
567 Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
568 Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
569 Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
570 Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
571 Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng
572 Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
573 ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
574 Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
575 Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
576 aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
577 Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
578 Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
579 Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
580 Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
581 Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
582 Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
583 Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
584 Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
585 Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
586 Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
587 Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
588 <https://arxiv.org/abs/2412.19437>.

589 Renáta Dubčáková. Eureqa: software review. *Genetic Programming and Evolvable Machines*, 12
590 (2):173–178, June 2011. ISSN 1573-7632. doi: 10.1007/s10710-010-9124-z. URL <https://doi.org/10.1007/s10710-010-9124-z>. TLDR: The aim is to analyse the uncer-
591 tainty in the short term integrated measurement of radon by RM-1 electret detectors to verify the
592 manufacturer’s method for evaluating their detectors’ measurements.

594 Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic regression with a learned concept library. In *Proceedings of the 38th International Conference on Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

598 599 600 Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression. In *The Eleventh International Conference on Learning Representations*, 2023.

601 602 603 604 605 Pierre-alexandre Kamienny, Stéphane d'Ascoli, Guillaume Lample, and Francois Charbonneau. End-to-end Symbolic Regression with Transformers. *Advances in Neural Information Processing Systems*, 35:10269–10281, December 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/42eb37cdbefd7abae0835f4b67548c39-Abstract-Conference.html.

606 607 608 609 610 Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search. In *Proceedings of the 40th International Conference on Machine Learning*, pp. 15655–15668. PMLR, July 2023. URL <https://proceedings.mlr.press/v202/kamienny23a.html>. ISSN: 2640-3498.

611 612 613 614 John R. Koza and Riccardo Poli. Genetic Programming. In Edmund K. Burke and Graham Kendall (eds.), *Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques*, pp. 127–164. Springer US, Boston, MA, 2005. ISBN 978-0-387-28356-2. doi: 10.1007/0-387-28356-0_5. URL https://doi.org/10.1007/0-387-28356-0_5.

615 616 617 Mikel Landajuela, Chak Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio Aravena, Terrell N. Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified framework for deep symbolic regression. In *Advances in Neural Information Processing Systems*, 2022.

618 619 620 621 622 Wenqiang Li, Weijun Li, Linjun Sun, Min Wu, Lina Yu, Jingyi Liu, Yanjie Li, and Songsong Tian. Transformer-based model for symbolic regression via joint supervised learning. In *The Eleventh International Conference on Learning Representations*, 2023a. URL <https://openreview.net/forum?id=ULzyv9M1j5>.

623 624 Zelong Li, Jianchao Ji, and Yongfeng Zhang. From kepler to newton: Explainable ai for science, 2023b. URL <https://arxiv.org/abs/2111.12210>.

625 626 627 628 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y. Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks, 2025. URL <https://arxiv.org/abs/2404.19756>.

629 630 631 632 633 634 635 Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiqing Sun, Joshua B. Tenenbaum, Daniela Rus, Chuang Gan, and Wojciech Matusik. LLM and simulation as bilevel optimizers: A new paradigm to advance physical scientific discovery. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 33940–33962. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/ma24m.html>.

636 637 638 639 640 641 Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel faissol, and Brenden K Petersen. Symbolic Regression via Deep Reinforcement Learning Enhanced Genetic Programming Seeding. In *Advances in Neural Information Processing Systems*, volume 34, pp. 24912–24923. Curran Associates, Inc., 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/d073bb8d0c47f317dd39de9c9f004e9d-Abstract.html>.

642 643 644 Robert Nola. *Theories of Scientific Method: An Introduction*. Routledge, London, 2014. ISBN 978-1-84465-084-2 978-1-317-49349-5.

645 646 647 Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients. In *Proc. of the International Conference on Learning Representations*, 2021.

648 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 649 M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
 650 Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from pro-
 651 gram search with large language models. *Nature*, 625(7995):468–475, January 2024. ISSN
 652 1476-4687. doi: 10.1038/s41586-023-06924-6. URL <https://doi.org/10.1038/s41586-023-06924-6>.

653

654 Juan S. Salcedo-Gallo, Michiel Burgelman, Vincent P. Flynn, Alexander S. Carney, Majd Hamdan,
 655 Tunmay Gerg, Daniel C. Smallwood, Lorenza Viola, and Mattias Fitzpatrick. Demonstration of a
 656 tunable non-Hermitian nonlinear microwave dimer. *Nature Communications*, 16(1):7193, August
 657 2025. ISSN 2041-1723. doi: 10.1038/s41467-025-62620-1. URL <https://doi.org/10.1038/s41467-025-62620-1>.

658

659 Violetta Sharoglazova, Marius Puplaukis, Charlie Mattschas, Chris Toebe, and Jan Klaers. En-
 660 ergy–speed relationship of quantum particles challenges Bohmian mechanics. *Nature*, 643
 661 (8070):67–72, July 2025. ISSN 1476-4687. doi: 10.1038/s41586-025-09099-4. URL <https://doi.org/10.1038/s41586-025-09099-4>.

662

663

664 Hongzhi Shi, Jingtao Ding, Yufan Cao, quanming yao, Li Liu, and Yong Li. Learning symbolic mod-
 665 els for graph-structured physical mechanism. In *The Eleventh International Conference on Learn-
 666 ing Representations*, 2023. URL https://openreview.net/forum?id=f2wN4v_2_W.

667

668 Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K.
 669 Reddy. Llm-sr: Scientific equation discovery via programming with large language mod-
 670 els. *ArXiv*, abs/2404.18400, 2024. URL <https://api.semanticscholar.org/CorpusID:269449436>.

671

672 Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D. Doan, and
 673 Chandan K. Reddy. LLM-SRBench: A New Benchmark for Scientific Equation Discovery with
 674 Large Language Models, April 2025. URL <https://arxiv.org/abs/2504.10415v1>.

675

676 Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discov-
 677 ering governing equations via monte carlo tree search. In *The Eleventh International Confer-
 678 ence on Learning Representations*, 2023. URL https://openreview.net/forum?id=ZTK3SefE8_Z.

679

680 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

681

682 Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for symbolic
 683 regression. *Science Advances*, 6(16):eaay2631, April 2020. doi: 10.1126/sciadv.aay2631. URL
 684 <https://www.science.org/doi/10.1126/sciadv.aay2631>. Publisher: Ameri-
 685 can Association for the Advancement of Science TLDR: This work develops a recursive mul-
 686 tidimensional symbolic regression algorithm that combines neural network fitting with a suite of
 687 physics-inspired techniques and improves the state-of-the-art success rate.

688

689 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 690 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 691 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 692 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 693 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

694

695 Runxiang Wang, Boxiao Wang, Kai Li, Yifan Zhang, and Jian Cheng. Drsr: Llm based sci-
 696 entific equation discovery with dual reasoning from data and experience, 2025. URL <https://arxiv.org/abs/2506.04282>.

697

698 Yilong Xu, Yang Liu, and Hao Sun. Reinforcement symbolic regression machine. In *International
 699 Conference on Learning Representations*, 2024. URL <https://api.semanticscholar.org/CorpusID:271745798>.

700

701

702 **A LLM USAGE**
 703

704 We used LLMs to assist in the preparation of this manuscript. Specifically, LLMs were used for
 705 polishing the language, improving readability, and restructuring sentences for clarity. All conceptual
 706 contributions, experimental design, analyses, and results were produced and verified by the authors.
 707 The authors carefully reviewed and edited all model outputs before inclusion in the final manuscript.
 708

709 **B METHOD DETAILS**
 710

711 **B.1 IMPLEMENTATION AND EXPERIMENT DETAILS**
 712

713 We implement RESTART using a population-based exemplar buffer, following the island-based
 714 search paradigm (Shojaee et al., 2024; Romera-Paredes et al., 2024; Cranmer, 2023). We maintain
 715 $M = 10$ disjoint islands, each storing a diverse population of candidate hypotheses $\{f_i(x)\}$ to
 716 promote exploration. At each iteration, we first select an island \mathcal{I} uniformly at random, and then
 717 sample $k_{\text{exemplar}} = 4$ exemplars from this island to assemble the prompt.

718 Within each island, we group hypotheses according to their loss $L(f_i(x))$. Groups are sampled
 719 proportionally to a Boltzmann distribution(de la Maza & Tidor, 1993) over their losses:
 720

$$721 p_i = \frac{\exp(L(f_i(x))/\beta_c)}{\sum_{j \in \mathcal{I}} \exp(L(f_j(x))/\beta_c)}, \quad \beta_c = T_0 \left(1 - \frac{u \bmod N}{N}\right),$$

724 where u denotes the number of hypotheses in island \mathcal{I} , $T_0 = 0.1$ is an initial temperature, and
 725 $N = 30000$ controls the annealing schedule. This scheme adaptively lowers the temperature as the
 726 island becomes saturated, gradually shifting from exploration to exploitation. Within each group,
 727 exemplars are sampled with a length-based probability,

$$728 p_i^{\text{len}} \propto \exp\left(-\frac{\text{len}(f_i)}{\beta_p}\right),$$

731 where $\text{len}(f_i)$ is the program length and $\beta_p = 1$ is a hyperparameter that encourages shorter and
 732 more interpretable expressions. Newly generated hypotheses are inserted back into the same island
 733 for future iterations.

734 Additionally, Experiments were conducted on two hardware setups: a workstation with
 735 $2 \times \text{RTX} 4090$ GPUs and a server with $8 \times \text{L40S}$ GPUs.
 736

737 **Improvement-Gated Scoring.** To combine absolute and relative improvement signals, we define
 738

$$739 s_{\text{fit}} = w_a \cdot \Delta + w_r \cdot R, \quad w_a + w_r = 1,$$

740 where Δ is the absolute improvement and R is the relative improvement. The weights w_a and w_r
 741 are determined piecewise according to the logarithm of the absolute improvement:
 742

$$743 \Delta_{\log} = \log_{10}(\Delta).$$

744 We then set:
 745

- 746 • If $\Delta_{\log} \geq 1$: $w_a = 0.7$, $w_r = 0.3$.
- 747 • If $0 \leq \Delta_{\log} < 1$: $w_a = 0.5$, $w_r = 0.5$.
- 748 • If $-2 \leq \Delta_{\log} < 0$: $w_a = 0.2$, $w_r = 0.8$.
- 749 • If $\Delta_{\log} < -2$: $w_a = 0.0$, $w_r = 1.0$.

752 This piecewise schedule ensures that large absolute improvements are weighted more heavily,
 753 whereas very small absolute improvements rely primarily on relative gains to be considered significant.
 754 After computing the fitted score s_{fit} , we regard an improvement as *valid* if $s_{\text{fit}} \geq \alpha$, $\alpha =$
 755 40.0, and trigger the structure distillation process. To control memory and maintain efficiency, we
 cap the maximum number of structures stored in the library $K = 20$.

	Qwen3-1B		Qwen3-8B		Qwen3-8B-think	
	ID	OOD	ID	OOD	ID	OOD
LLMSR	0.49983	0.69452	0.20248	0.37592	0.90352	1.22674
RESTART	0.45502	0.77328	0.02254	0.01442	0.00801	0.01103
	Qwen3-32B		Qwen-Flash		DS-Chat	
	ID	OOD	ID	OOD	ID	OOD
LLMSR	4.12\times 10^{-4}	3.09\times 10^{-4}	0.01499	0.02082	0.02884	0.04199
RESTART	1.34\times 10^{-3}	1.46\times 10^{-3}	1.76\times 10^{-5}	3.91\times 10^{-6}	1.70\times 10^{-6}	7.48\times 10^{-7}

Table 3: Comparison of LLMSR and RESTART across different LLM backbones on BPG18.

B.2 LLM BACKBONE

We compare Qwen3(Team, 2025) backbones of varying scales and DeepSeek v3.1(DeepSeek-AI et al., 2025) to assess how the generative prior affects symbolic search performance. Across most backbones, our method consistently outperforms LLM-SR, demonstrating the effectiveness of the structure analysis and targeted refinement. Stronger and reasoning-enabled models yield more accurate candidate programs, leading to improved equation discovery, but they also incur substantially higher computation cost. This comparison highlights a clear accuracy–compute trade-off: smaller backbones offer a good balance of speed and accuracy, whereas reasoning or larger backbones can further boost performance when additional compute budget is available.

	ID	OOD	Average Evaluation Time (s)
LLM	0.02683	0.01481	6.418
Polynomial	0.47034	0.65663	0.580
KAN	0.03668	0.01963	27.651
DSO	0.01486	0.00849	59.91
PySR	0.00122	0.00096	14.153
E2E	0.02254	0.01442	6.587

Table 4: Comparison of different symbolic backbones on BPG18, along with the average time for the experiment and analysis stages per iteration (primarily subproblem solving). Note that the average time includes invalid evaluations, which contribute values close to zero.

B.3 SUBPROBLEM SOLVER BACKEND

Table 4 provides a detailed comparison of candidate backends for solving the symbolic subproblem defined in Eq. (3). We evaluate representatives from mapping-based methods (E2E), search-based methods (PySR, Polynomial, DSR, KAN), a simple polynomial regression baseline, and a direct LLM-based solver that is prompted with the dataset $\{(f(x), X, y)\}$ to generate new equations. This LLM-based solver differs from the Llmdirect baseline in that it is data-aware rather than data-blinded. This comparison isolates the contribution of the subproblem solver from the rest of the RESTART pipeline and quantifies its impact on both accuracy and runtime.

Importantly, the choice of backend does not change the formulation of Eq. (3); it only affects the quality and efficiency of the discovered refinement g_t . This solver-agnostic design keeps the framework modular and allows it to benefit from future advances in symbolic regression without altering its overall search procedure.

Overall, we observe a clear **accuracy–compute trade-off**: more expressive search-based solvers (e.g., PySR, DSR) achieve lower NMSE but incur significantly higher computation cost, whereas fast mapping-based methods (E2E) sacrifice some accuracy in exchange for much higher throughput. Consistent with the results in Tables 1 and 2, a single solver alone is insufficient to recover optimal equations. The best performance is obtained when these solvers are embedded within the iterative hypothesize–experiment–analyze cycle of RESTART, where they provide targeted refinements rather than attempting to solve the entire problem from scratch.

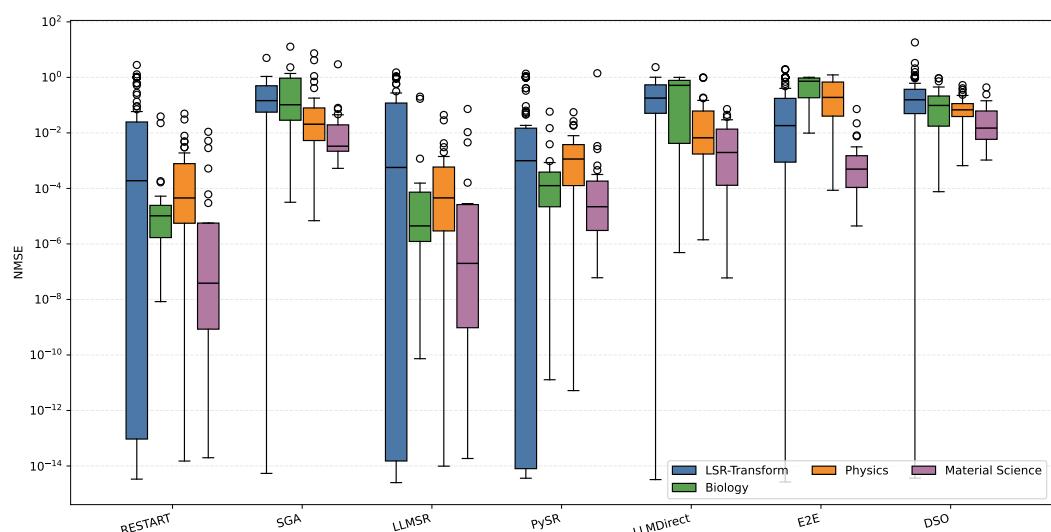
810
811 C RESULT DISTRIBUTION812
813 Following the setup in LLM-SRBench(Shojaee et al., 2025), we report box plots(Figure 7) that illus-
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
9999833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
9999

Figure 7: Distribution of in-distribution NMSE across all benchmark problems

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
8899

D BASELINE METHOD DETAIL

D.1 DSR

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
8899DSR¹ (Petersen et al., 2021). Formulates symbolic expression generation as a sequential decision process in which a policy network constructs expressions token by token. DSR employs a risk-seeking policy-gradient objective that emphasizes learning from top-reward trajectories. Additionally, DSR trains a new model for each dataset. The hyperparameters are presented in Figure 8 and are used as the default settings unless otherwise specified.

D.2 E2E

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
8899E2E² (Kamienny et al., 2022). employs a Transformer encoder–decoder that maps tokenized data directly to a symbolic expression string. The model is supervised on synthetic corpora to learn correspondences from data distributions to formula structures. During inference, autoregressive decoding with beam search outputs parseable expressions, followed by parameter fitting for numeric accuracy. The hyperparameters are presented in Figure 9 and are used as the default settings unless otherwise specified.

D.3 PySR

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
8899PySR³ (Cranmer, 2023) uses a population-based genetic programming framework that represents candidate models as symbolic expression trees composed of primitive operators. It iteratively applies mutation, crossover, and island migration to evolve diverse candidates. A multi-objective criterion balances data-fit and expression complexity and maintains a Pareto front of solutions. The hyperparameters are presented in Figure 10 and are used as the default settings unless otherwise specified.1`https://github.com/dso-org/deep-symbolic-optimization`2`https://github.com/facebookresearch/symbolicregression`3`https://github.com/MilesCranmer/PySR`

```

864 dsr_params:
865   task:
866     task_type: "regression"
867     function_set: ["add", "sub", "mul", "div", "sin", "cos", "exp", "
868       log"]
869     metric: "inv_nrmse"
870     metric_params: [1.0]
871     extra_metric_test: null
872     extra_metric_test_params: []
873     threshold: 1.0e-12
874     protected: false
875     reward_noise: 0.0
876     reward_noise_type: "r"
877     normalize_variance: false
878     decision_tree_threshold_set: []
879   training:
880     n_samples: 1000000
881     batch_size: 10000
882     epsilon: 0.05
883     n_cores_batch: 50
884     policy_optimizer:
885       learning_rate: 0.0005
886       entropy_weight: 0.03
887       entropy_gamma: 0.7
888     prior:
889       length:
890         min_: 4
891         max_: 64
892         "on": true
893       repeat:
894         tokens: "const"
895         min_: null
896         max_: 3
897         "on": true
898       inverse:
899         "on": true
900       trig:
901         "on": true
902       const:
903         "on": true
904       no_inputs:
905         "on": true
906       soft_length:
907         loc: 10
908         scale: 5
909         "on": true
910       domain_range:
911         "on" : false
912
913
914
915
916
917

```

Figure 8: DSR hyperparameter configuration.

D.4 LLMDIRECT

As suggest in Shojaee et al. (2025), we include a data-blind zero-shot LLM baseline⁴ that prompts to produce syntactically valid equations purely from its pretrained knowledge, without conditioning on the dataset. It relies on built-in mathematical priors and general reasoning to propose diverse symbolic forms. The hyperparameters are presented in Figure 11 and are used as the default settings unless otherwise specified.

⁴<https://github.com/deep-symbolic-mathematics/llm-srbench>

```

918 e2e_params:
919   model_path: "e2e.pt"
920   max_input_points: 200
921   n_trees_to_refine: 10
922   rescale: true
923   max_num_samples: 2000

```

924

925 Figure 9: E2E hyperparameter configuration.

926

```

927 pysr_params:
928   niterations: 40
929   maxsize: 30
930   populations: 15
931   population_size: 33
932   ncycles_per_iteration: 550
933   binary_operators: ["+", "*", "-", "/", "^"]
934   unary_operators: ["cos", "exp", "sin", "sqrt", "log"]
935   batching: true
936   batch_size: 5000
937   constraints:
938     "^": [-1, 20]
939     "exp": 20
940     "log": 20
941     "sqrt": 20
942     "sin": 10
943     "cos": 10

```

942

943 Figure 10: PySR Hyperparameter Configuration

944

945

D.5 SGA

946

SGA⁵ (Ma et al., 2024). Adopts a bilevel setup in which an LLM-based agent proposes symbolic structures while a separate optimizer fits the continuous parameters of each proposal. It also uses two different temperatures for LLM generation to separate exploitation and exploration. We follow the default hyperparameter settings suggested by Shojaee et al. (2025) without additional modifications.

951

952

D.6 LLMSR

953

954

LLMSR⁶ (Shojaee et al., 2024). a state-of-the-art LLM-driven evolutionary method that generates equation candidates as code and refines them through LLM queries. It stores generated equations in populations; at each round, LLMSR randomly selects one population and samples equations to construct a new prompt. The hyperparameters are presented in Figure 12 and are used as the default settings unless otherwise specified.

959

960

961

E LLM-SRBENCH

962

963

LLM-SRBench (Shojaee et al., 2025) is a benchmark designed for the systematic evaluation of symbolic regression (SR) methods, with a particular focus on leveraging large language models (LLMs) for scientific discovery. Unlike previous benchmarks such as SRBench(Cava et al., 2021), where LLMs may simply recall the ground-truth equations from memory—thus bypassing the core purpose of the symbolic regression task—LLM-SRBench is constructed to be challenging, diverse, and representative of real-world scientific inference problems. Its design encourages LLMs to move beyond rote memorization and to demonstrate genuine reasoning and equation-discovery capabilities. The benchmark consists of two major categories:

970

971

⁵<https://github.com/PingchuanMa/SGA>

⁶<https://github.com/deep-symbolic-mathematics/LLM-SR>

```

972 llmdirect_params:
973   samples_per_prompt: 5
974

```

Figure 11: LLMDirect hyperparameter configuration.

```

978 llmsr_params:
979   global_max_sample_num: 1000
980   samples_per_prompt: 4
981   num_islands: 10

```

Figure 12: LLMSR hyperparameter configuration.

1. **LSR-Transform:** This category contains 111 problems derived from established physical models such as kinematics, dynamics, and thermodynamics. Each problem is generated by systematically transforming known governing equations, for example by switching input and output variables, rearranging terms, or adding noise to simulate experimental conditions. This construction requires models to reason about the underlying functional relationships rather than merely recall canonical forms, thus providing a robust test of a model’s capability for true equation discovery.
2. **LSR-Synth:** This category focuses on evaluating generalization. It includes problems that combine well-known scientific quantities with synthetic but physically plausible terms, ensuring that the solutions cannot be solved by rote memorization. The tasks span three scientific domains: biology, physics, and materials science. The presence of novel terms forces SR models to infer correct functional forms based on data patterns, simulating real-world scenarios where researchers encounter new variables or unmeasured effects.

Each problem in LLM-SRBench provides training and testing data sampled from the ground-truth function, as well as standardized evaluation metrics such as normalized mean squared error (NMSE). Together, these tasks cover both interpolation and extrapolation settings, making LLM-SRBench a comprehensive and challenging suite for benchmarking LLM-based SR algorithms.

F AVERAGE TRAJECTORY

As show in Figure 13, we reported the average NMSE trajectories for four biology equations. Note that because NMSE values differ on a log scale, the mean can be dominated by the higher-NMSE trajectories. For example, if there are 10 trajectories—one with NMSE 1×10^{-4} and nine with NMSE 1×10^{-9} —the average NMSE will still be above 1×10^{-5} , which is substantially higher than most of the trajectories.

G CASE STUDY

Here we report the discovered RESTART-1 and RESTART-2 in Figure 14 and Figure 15

Method	R^2 (equation)
RESTART	0.9771
PYSR	0.5325
LLMSR	0.1737
LLMDIRECT	0.00

Table 5: Performance on the nonlinear microwave-dimer equation.



Figure 13: Average NMSE vs. Step on 4 Biology Equations and their standard deviation

Additional Case Study. To further evaluate RESTART on a challenging real scientific discovery setting beyond low-order algebraic laws, we add a second case study based on a nonlinear non-Hermitian microwave dimer model from recent experimental physics(Salcedo-Gallo et al., 2025):

$$n_{LC}(\phi, G) = \frac{C_1^{G/C_2} (C_3 + \sin(\phi/C_4)) C_5 - C_6}{C_7}.$$

where C_i is constant. This equation is structurally demanding for SR methods because it includes nested multiplicative terms, ratios, and parameter-dependent nonlinearities. As shown in Table 5 and Figure 16, RESTART recovers the correct governing structure with an R^2 (equation) of 0.97, substantially outperforming baselines. This result strengthens the claim that RESTART can support real scientific modeling workflows: even when the target law is a compact but highly compositional physical formula, RESTART’s analysis-driven refinement enables reliable structural recovery.

H RESTART SEARCH PROCESS

Figure 17 compares the population growth rate equations discovered by RESTART and the baseline LLMSR. RESTART successfully recovers both key components of the ground-truth BPG12 equation: (i) the harmonic oscillation term $0.877 P \sin(0.567t)$ capturing seasonal fluctuations, and (ii) the logistic growth term $0.701(1 - P/65.75)P$ with a realistic carrying capacity. In contrast, LLMSR produces a much noisier expression with only a weak logistic component and no harmonic interaction, yielding lower R^2 on both ID and OOD data.

To understand why RESTART succeeds, we inspect the prompt-response pair in Figure 18 and Figure 19. The prompt contains not only the partially current equation but also the top-ranked structure, where two of these—Harmonic Oscillator Interaction and Seasonal Variation with Damping—are precisely the building blocks needed for the ground-truth solution.

This targeted guidance allows the LLM to synthesize a new hypothesis, `equation_v2`, that directly combines the harmonic interaction and logistic terms. As a result, the MSE dramatically decreases from 52.35 (for exemplar `equation_v1`) to 2.67×10^{-9} , effectively achieving near-perfect symbolic recovery. This case highlights how RESTART’s iterative refinement and structure-guided prompting transform an initially rough approximation into a scientifically valid and highly accurate equation.

```

1080
1081     def RESTART-1(Delta: np.ndarray, mass: np.ndarray, params: np.ndarray
1082     ) -> np.ndarray:
1083
1083     # Step 1: Convert Delta from meV to Joules
1084     Delta_J = Delta * 1.602176634e-21 # 1 meV = 1.602176634e-21 J
1085
1086     # Step 2: Base velocity using WKB approximation (m/s)
1086     velocity_base = np.sqrt(2 * np.abs(Delta_J) / mass)
1087
1088     # Step 3: Convert velocity to km/s
1089     velocity_km_per_s = velocity_base / 1000
1090
1091     # Step 4: Apply parameterized scaling
1091     velocity_km_per_s *= params[0]
1092
1093     # Step 5: Phase-modulated nonlinear corrections
1094     # Phase-dependent sine and cosine corrections
1095     velocity_km_per_s += params[1] * np.sin(0.01 * Delta)
1095     velocity_km_per_s += params[2] * np.cos(0.001 * Delta)
1096
1097     # Hyperbolic tangent correction with tunable phase
1098     phase_tanh = 0.1 + 0.05 * velocity_km_per_s
1099     velocity_km_per_s += params[3] * np.tanh(phase_tanh)
1100
1101     # Nonlinear energy-dependent correction
1101     energy_term = np.sqrt(0.5 + 0.1 * Delta)
1102     velocity_km_per_s += params[4] * energy_term
1103
1104     # Additional nonlinear transformation to stabilize variance
1105     # This term includes a tunable energy-dependent phase and
1105     # amplitude
1106     phase_energy = params[5] * Delta + params[6]
1107     velocity_km_per_s += params[7] * np.sqrt(90.0 + 0.9 * np.abs(2.0 +
1108         30.0 * np.cos(phase_energy)))
1109
1110     # Optional: Add a nonlinear feedback term to stabilize variance
1110     # This is an advanced term that can be used for more complex
1111     # models
1112     if len(params) > 8:
1113         feedback_term = params[8] * np.log(1 + np.abs(Delta)) / (1 + np
1114             .abs(Delta))
1115         velocity_km_per_s += feedback_term
1116
1117     return velocity_km_per_s
1118
1119
1120
1121
1122 I PROMPT
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

```

Figure 14: Discovered RESTART-1

Figure 2 illustrates the design of our adaptive prompt, which is dynamically assembled at each iteration of the hypothesize–experiment–analysis cycle. Unlike static few-shot prompting, our approach builds the prompt from three components that evolve over time:

- **Task Definition:** A fixed preamble that sets the LLM’s role, clarifies the objective (finding an executable mathematical function), and specifies the variable description for given task.
- **Few-Shot Exemplars:** One or more previous hypotheses are inserted, along with their mean squared error, and the corresponding boosting equation analysis. These exemplars serve as in-context refinement guidance.
- **Cumulated Knowledge:** Finally, we include the structures from the structure library as reusable building blocks directly insert into the comment section for next generation. This

```

1134
1135     def RESTART-2(Delta: np.ndarray, mass: np.ndarray, params: np.ndarray
1136     ) -> np.ndarray:
1137         # Constants
1138         hbar = 1.0545718e-34
1139         eV_to_J = 1.602176634e-19 # 1 eV = 1.602e-19 J
1140         km_per_m = 1e-3 # 1 km = 1000 m
1141
1142         # Convert Delta from meV to Joules
1143         Delta_J = Delta * 1e-3 * eV_to_J # meV to eV to J
1144
1145         # Extract tunable parameters
1146         decay_rate = params[0] # B
1147         amplitude = params[1] # A
1148         oscillation_freq = params[2] # C
1149         phase_shift = params[3] # P
1150         quadratic_coeff = params[4] # E
1151         energy_scaling = params[5] # S
1152         velocity_scaling = params[6] # K
1153         offset = params[7] # D
1154
1155         # Compute the exponential decay factor
1156         sqrt_Delta_J = np.sqrt(np.abs(Delta_J))
1157         decay_factor = np.exp(-decay_rate * sqrt_Delta_J)
1158
1159         # Compute the oscillatory modulation
1160         oscillation = np.cos(oscillation_freq * sqrt_Delta_J + phase_shift
1161                             )
1162
1163         # Compute the quadratic correction term
1164         quadratic_term = 1 + quadratic_coeff * (Delta_J ** 2)
1165
1166         # Compute the energy scaling factor
1167         energy_term = 1 + energy_scaling * Delta_J
1168
1169         # Compute the velocity of probability flow
1170         velocity = (
1171             amplitude * decay_factor * oscillation * quadratic_term *
1172             energy_term *
1173             (sqrt_Delta_J / np.sqrt(mass)) * velocity_scaling * km_per_m
1174         ) + offset
1175
1176         return velocity

```

Figure 15: Discovered RESTART-2

step adapts the search to accumulated knowledge and focuses exploration on promising directions.

This dynamic construction allows RESTART to incorporate both short-term error feedback (via boosting equations) and long-term knowledge (via the structure library) into each prompt.

From the optimization perspective introduced in Section 2, this adaptive assembly can be viewed as an approximate solution to Eq. equation 2: instead of using a fixed prompt p that may bias $q_p(\cdot)$ toward syntactically similar but suboptimal regions of the hypothesis space, we iteratively update p by injecting exemplar feedback and discovered structures. This meta-optimization procedure progressively shifts the induced distribution q_p toward regions of lower empirical loss, thereby increasing the probability that the best-of- k sample achieves a smaller loss $\mathcal{L}(\tau)$.

```

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

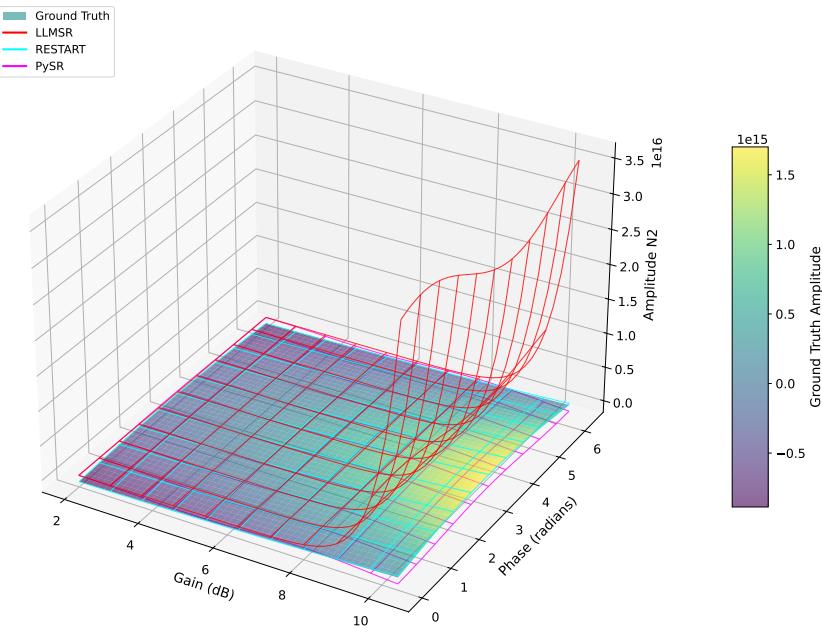


Figure 16: 3D comparison of amplitude trajectory under different methods.

```

def RESTART_BPG12(t, P, params):
    r, a, omega, phi, K, A, theta, gamma, alpha, beta = params
    r_t = r * (1 + a * np.sin(omega * t + phi)) * np.exp(-gamma * t ** beta)
    K_t = K * (1 + A * np.sin(omega * t + theta))
    harmonic = (np.sin(omega * t + phi) * P) * np.exp(-gamma * t ** beta)
    growth_rate = r_t * P * (1 - P / K_t) * alpha + harmonic * beta
    return growth_rate

def llmsr_BPG12(t, P, params):
    r, K0, alpha, beta, eps, omega, eta, gamma, zeta, phi = params
    K = K0 + eta * t
    logistic = r * P * (1 - P / K)
    time_linear = alpha * t
    seasonal = eps * np.sin(omega * t)
    nonlinear = gamma * t ** 2
    delayed_P = np.roll(P, int(phi)); delayed_P[int(phi)] = 0
    feedback = zeta * P * (1 - P / K) * np.sin(omega * (t - phi)) * (1 +
        0.1 * np.sin(omega * t))
    dP_dt = logistic + time_linear + beta + seasonal + nonlinear +
        feedback
    return dP_dt

```

Figure 17: Comparison of RESTART and LLMSR discovered functions for BPG12. The ground-truth equation is $f^*(t, P) = 0.877 P \sin(0.567t) + 0.701 (1 - P/65.75)P$, a two-term structure combining a sinusoidal modulation and a logistic growth term. RESTART correctly recovers this structure, while LLMSR introduces additional linear, quadratic, and delayed-feedback components that deviate from the true form.

```

1242
1243
1244 import numpy as np
1245 MAX_NPARAMS = 10
1246 params = [1.0]*MAX_NPARAMS
1247
1248 def equation_v0(...):
1249     """
1250     Analysis for current equation(f):
1251         Given (X,y), Current equation(f) has MSE: 52.35
1252         Boosted equation candidate: (((2.25 * (-1.50 + 0.0236*P)) *
1253             ...) ... )
1254             with MSE: 72.82
1255     """
1256     ...
1257
1258 def equation_v1(...):
1259     """
1260     Improved version of 'equation_v0'.
1261     Current equation(f) has MSE: 52.35
1262     Boosted equation candidate: (((0.994 * (0.078 + 0.044*current_pred
1263         )) * ...) ... )
1264     with MSE: 770.39
1265     """
1266     ...
1267
1268     # Top scoring concepts for the problem:
1269     # - Harmonic Oscillator Interaction (fit: 95/100)
1270     # - Damped Harmonic Interaction (fit: 88/100)
1271     # - Seasonal Variation with Damping (fit: 85/100)
1272
1273
1274
1275 def equation_v2(t: np.ndarray, P: np.ndarray, params: np.ndarray) ->
1276     np.ndarray:
1277     """
1278     Improved version of the population growth rate equation that
1279         incorporates:
1280         - Damped harmonic oscillation for seasonal variation
1281         - Logistic growth with time-dependent carrying capacity
1282         - Exponential damping
1283         - Harmonic interaction between population and time-dependent
1284             parameters
1285     """
1286     r, a, omega, phi, K, A, theta, gamma, alpha, beta = params
1287     r_t = r * (1 + a * np.sin(omega * t + phi)) * np.exp(-gamma * t ** beta)
1288     K_t = K * (1 + A * np.sin(omega * t + theta))
1289     harmonic_interaction = (np.sin(omega * t + phi) * P) * np.exp(-
1290         gamma * t ** beta)
1291     growth_rate = r_t * P * (1 - P / K_t) * alpha +
1292         harmonic_interaction * beta
1293     return growth_rate
1294
1295

```

Figure 18: Parital prompt content used in the key iteration. It includes current loss, boosted residual equation, and top-ranked structural concepts.

```

1271
1272
1273
1274
1275 def equation_v2(t: np.ndarray, P: np.ndarray, params: np.ndarray) ->
1276     np.ndarray:
1277     """
1278     Improved version of the population growth rate equation that
1279         incorporates:
1280         - Damped harmonic oscillation for seasonal variation
1281         - Logistic growth with time-dependent carrying capacity
1282         - Exponential damping
1283         - Harmonic interaction between population and time-dependent
1284             parameters
1285     """
1286     r, a, omega, phi, K, A, theta, gamma, alpha, beta = params
1287     r_t = r * (1 + a * np.sin(omega * t + phi)) * np.exp(-gamma * t ** beta)
1288     K_t = K * (1 + A * np.sin(omega * t + theta))
1289     harmonic_interaction = (np.sin(omega * t + phi) * P) * np.exp(-
1290         gamma * t ** beta)
1291     growth_rate = r_t * P * (1 - P / K_t) * alpha +
1292         harmonic_interaction * beta
1293     return growth_rate
1294
1295

```

Figure 19: Parital LLM-generated response (equation_v2) that recovers the near-ground-truth BPG12 structure.