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ABSTRACT

Symbolic regression (SR) aims to automate scientific discovery, but often trun-
cates the hypothetico–deductive cycle, focusing on hypothesis and experiment
while lacking systematic analysis. We introduce RESTART, a framework that
closes this loop by adding a principled analysis stage to diagnose and correct
structural errors. RESTART features two core mechanisms: a short-term refine-
ment process that uses boosting to identify unexplained signals and guide an LLM
toward targeted corrections, and a long-term structure library that distills success-
ful refinements into reusable code snippets for cumulative knowledge. On LLM-
SRBench across Physics, Biology, and Materials Science, RESTART achieves
lower error and higher accuracy than state-of-the-art baselines. It also general-
izes robustly, recovering near-exact functional forms on out-of-distribution data,
representing a significant advance toward fully automated scientific discovery.

1 INTRODUCTION

Scientific progress often unfolds through a simple yet profound hypothesize–experiment–analyze
loop (bottom left of Figure 1): a scientist proposes a model, tests it against observations, identifies its
shortcomings, and refines the hypothesis for next iteration. This iterative cycle powered discoveries
from Kepler’s laws of planetary motion to Newton’s formulation of classical mechanics, and remains
the foundation of modern science (Nola, 2014; Li et al., 2023b). Automating this process is the goal
of symbolic regression (SR), which seeks to recover human-interpretable mathematical expressions
from data. By discovering equations that both fit observations and remain human-readable, SR has
the potential to accelerate scientific insight across domains ranging from physics to biology (Sun
et al., 2023; Cranmer et al., 2020; Shi et al., 2023). However, SR is NP-hard (Udrescu & Tegmark,
2020), as the search space of expressions grows combinatorially with expression length and operator
set, making efficient exploration critical.

Existing SR methods can be broadly categorized into search-based and mapping-based approaches
(Shojaee et al., 2024). Search-based methods such as genetic programming (GP) (Koza & Poli,
2005; Dubčáková, 2011; Cranmer, 2023; Mundhenk et al., 2021) evolve candidate populations via
mutation and crossover, but rely heavily on random exploration and often revisit similar regions
of the search space, leading to slow convergence. Mapping-based methods employ autoregressive
models such as Transformers (Vaswani et al., 2017; Kamienny et al., 2023; Biggio et al., 2021)
trained on large synthetic datasets to directly map numerical data to symbolic expressions. They
can produce strong single-shot hypotheses, but lack an explicit mechanism for refining hypotheses
based on observed error patterns, making them brittle in out-of-distribution (OOD) settings. Recent
work has begun to incorporate Large Language Models (LLMs) into SR, leveraging their capacity
for symbolic reasoning and natural language priors (Shojaee et al., 2024; Grayeli et al., 2025; Ma
et al., 2024; Wang et al., 2025). However, most such methods still instantiate only the first two steps
of the scientific loop—hypothesize and experiment—without a principled analysis mechanism that
turns observed errors into explicit guidance for iterative refinement.

We introduce RESTART (Robust Equation STructure learning with Adaptive RefinemenT), a novel
framework that explicitly closes the hypothesize–experiment–analyze loop for SR. RESTART starts
with a mapping-based initializer to generate a strong first hypothesis, then uses an LLM to iteratively
refine it under a two-level guidance mechanism as follows:
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• Short-term Guidance (Targeted Refinement): After each test, we learn an exploration
function to model what the currently learned equation fails to explain, providing highly
specific, localized feedback to steer the next hypothesis.

• Long-term Guidance (Cumulative Knowledge): We maintain a persistent structure li-
brary to store validated refinements. Using an improvement-gated admission policy, we
ensure only performance-improving refinements are retained, preventing library bloat and
enabling efficient knowledge reuse.

Together, these components form a complete scientific cycle, emulating how human scientists iter-
atively refine their models. The empirical results show that our method converges faster, discovers
more accurate and parsimonious equations. Our contributions are summarized as follows:

• We propose RESTART, a framework that operationalizes the entire scientific discovery
cycle. Inspired by how human scientists refine hypotheses, RESTART employs a short-
term guidance mechanism to learn a data-driven exploration function for localized refine-
ment. Concurrently, a long-term structure library cumulatively stores only performance-
improving refinements, enabling reusable knowledge across iterations.

• Extensive empirical studies on LLM-SRbench(Shojaee et al., 2025) show that RESTART
achieves lower error and higher recovery accuracy than state-of-the-art baselines, including
GP-based, mapping-based, and LLM-based methods.

2 PROBLEM FORMULATION

Symbolic Regression (SR). Let dataset D = {(xi, yi)}Ni=1 with xi ∈ Rd and yi ∈ R, SR seeks
f : Rd → R minimizing the loss function ·, which is normally the empirical mean squared error
(MSE). The discovered f should be concise and human-interpretable. Some works additionally
penalize expression complexity when selecting the final function (Cranmer, 2023).

LLM-guided equation proposal. Let P be the space of prompts that encode the task description
and a few-shot set of equation exemplars. These exemplars are concrete equation candidates previ-
ously discovered during the search and stored in the exemplar buffer (see Section 4.4 for details).
Let T be the space of candidate equation template, and an equation template τ ∈ T is an equation
form whose symbolic operations are fixed while the numeric constants are left unspecified. Later,
we fit these constants to data, turning the template into an executable equation. In practice, we rep-
resent each template as a short Python code snippet. Conditioned on p ∈ P , an LLM induces a
distribution qp(·) over T . Given k i.i.d. samples τi ∼ qp, i = 1, . . . , k, we define the expected
best-of-k loss as

Φk(p) = Eτi∼qp, i=1,...,k

[
min

1≤j≤k
L(τj)

]
, (1)

where L(τj) is the fitted loss for template τj after parameter optimization, and best-of-k denotes
selecting the loss of the best candidate among k independent templates sampled from qp. Concep-
tually, one may seek a prompt p⋆, such that

p⋆ ∈ argmin
p∈P

Φk(p). (2)

To this end, finding a better prompt is a way to optimize the final result. However, a static few-shot
prompt biases the LLM’s search distribution, qp, towards regions merely syntactically similar to
the exemplars, which may not correspond to regions of low empirical loss. Instead, we construct
prompts adaptively based on the evolving exemplar buffer, which can be seen as a form of meta-
optimization over p that gradually shifts qp toward template with lower empirical loss.

3 RELATED WORK

Search-based methods explore equation space via stochastic operators. Genetic programming
(GP) (Koza & Poli, 2005; Dubčáková, 2011; Cranmer, 2023) evolves expression trees through
crossover and mutation, while RL-based methods cast SR as a sequential decision process (Petersen
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et al., 2021; Xu et al., 2024). However, both suffer from the combinatorial explosion of the search
space—leading to slow convergence, hyperparameter sensitivity, and overly complex expressions
(Cava et al., 2021; Holt et al., 2023). Critically, they require evaluating hundreds of thousands of
candidates, making them computationally expensive.

LLM-based search and refinement methods utilize LLMs to encode strong priors and symbolic
reasoning to search-based SR (Shojaee et al., 2024; Wang et al., 2025), enabling more efficient
exploration of the hypothesis space. In these approaches, candidate equations are represented as
executable code, evaluated on data, and then fed back to the LLM, which is prompted to produce
improved versions. Some methods further augment LLM prompting with error-related signals (e.g.,
loss values or residuals) to provide a weak signal (Ma et al., 2024; Wang et al., 2025). More recent
frameworks, such as (Grayeli et al., 2025; Wang et al., 2025), also maintain a dynamic concept li-
brary that summarizes validated patterns and leverages them to bias future generations toward more
promising regions of the search space. Unlike prior work that samples many positive and nega-
tive hypotheses and abstracts them into natural-language concepts, RESTART distills structure only
from high-value generations and stores it as executable code, yielding more efficient and directly
actionable guidance.

Mapping-based methods treat SR as supervised sequence prediction, training autoregressive
models on large synthetic corpora (Petersen et al., 2021; Biggio et al., 2021; Kamienny et al.,
2022; Li et al., 2023a). They deliver strong single-pass hypotheses but are brittle under distribu-
tion shift. Several works finetune mapping-based SR models with RL objectives (Landajuela et al.,
2022; Kamienny et al., 2023) to improve generalization via error-driven updates. However, this
approach is highly sample-inefficient and gradient updates on large language models are computa-
tionally prohibitive, making it impractical at LLM scale. This motivates coupling mapping-based
initialization with guided, iterative refinement—precisely what our framework achieves.

4 METHODOLOGY

Our proposed RESTART implements the complete hypothesize–experiment–identify–improve cycle
by unifying a powerful LLM-based generator with a principled refinement mechanism, as shown in
Figure 1. Its three core components are:

• Informative Initialization: The search begins with a strong hypothesis from a mapping-
based estimator, preserving nonlinear structures that linear models often miss.

• Targeted Refinement: The unexplained signal from each experiment is explicitly modeled
as an error-aware subproblem. The solution to this subproblem directly guides the LLM’s
next hypothesis.

• Cumulative Knowledge Retention: Successful, boosting-driven revisions are distilled into
a reusable structure library, enabling long-term knowledge accumulation across iterations.

Unlike prior work that uses static few-shot prompts, RESTART adaptively constructs prompts by
incorporating both short-term feedback and long-term knowledge.

4.1 INITIALIZATION VIA TRANSFORMER

Rather than initializing the search with a simple linear model (Shojaee et al., 2024), which only
captures additive effects of the input variables, we initialize with the transformer-based estimator
E2E (Kamienny et al., 2022). E2E directly maps the input data to symbolic expression as prior.
This data-dependent initialization yields a stronger initial hypothesis f0 that already encodes salient
nonlinearities, such as polynomial, trigonometric, and exponential functions, as well as interaction
terms between multiple variables.

4.2 INSPECTING SYMBOLIC SUBPROBLEMS

At iteration t = 0, 1, . . . , let ft : Rd → R denote the current symbolic hypothesis. We consider a
symbolic function class G consisting of exploration functions g : Rd+1 → R that take as input both
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  def equation(...):

     ...

Cur_loss

f(x)=2x+1

Current HypothesisBoosting Equation

g(f(x),x)=f(x)+sin(...)
Structure 1

Structure 2

Structure 3

Analysis

X,y

f(x), x, y

x,y

 Experiment
def equation(X, params):

    y = X*params[0] 

    return y+prams[1]

def optimize(X,y , params):

    ...

    return optimized_params

def loss(pred_y, y):

    return mean(y-pred_y)**2

Execute

  params[0] = 1.0

  params[1] = 2.0

pred_y = [...]

MSE_loss = 3.14

Figure 1: Overview of the RESTART framework. The framework follows three main steps of the
scientific cycle (illustrated at bottom left): (i) Hypothesis stage: We first generate an informative
initial hypothesis using a symbolic regression solver. In subsequent iterations, RESTART adaptively
constructs prompts from exemplars and the structure library, and queries the LLM to generate sev-
eral hypothesis f(x) as executable Python functions. (ii) Experiment stage: RESTART executes
each f(x) on the dataset (X, y), computes the loss, and optimizes its parameters (constants) to min-
imize the error. (iii) Analysis stage: RESTART formulates a subproblem g(f(x), x) as a targeted
refinement, solves it using a symbolic regression solver, and adds both f(x) and g(f(x), x) to the
exemplar buffer. It then computes a fitness score sfit; if sfit > α, we use the LLM to summarize the
structure that led to the improvement and store it in the structure library for knowledge cumulation.

the prediction ft(x) at iteration t and the original features x:

gt ← argmin
g∈G
L
(
g(ft(x),x), y

)
, (3)

where L(g(·), y) denotes the loss between predictions g(·) and targets y. The objective in Eq. 3
makes the exploration function gt a boosting-style correction of the hypothesis ft toward the target
y. Because gt takes both ft(x) and x as inputs, the symbolic form of gt(ft(x),x) describes how the
current prediction should be adjusted as a function of its current value and the features in order to
better match the data.

The backend for solving Eq. 3 is pluggable; viable options include KAN (Liu et al., 2025), RL-
based methods (Petersen et al., 2021), or mapping-based methods (Kamienny et al., 2022). The
choice of backend does not alter the formulation (see Appendix B.3 for details). In our experiments,
we adopt a pre-trained Transformer (Kamienny et al., 2022) to balance speed and accuracy. Finally,
we store the tuple St = (ft,L(ft(x), y), gt,L(gt(ft(x),x), y)) in the exemplar buffer Bt to guide
subsequent prompt construction.

4.3 RETAINING VALIDATED IMPROVEMENTS

While structure analysis identifies a hypothesis’s shortcomings, applying these insights indiscrimi-
nately risks overfitting to short-term noise, inflating complexity, and relying too heavily on approx-
imate equations. To mitigate this, we retain only those boosting-driven updates that demonstrably
reduce the task loss. This process involves two steps: (i) gating modifications with a fitness score,
and (ii) distilling eligible modifications into reusable structures.

4
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Step 1: Evidence and gating. To ensure only meaningful modifications are retained, we gate up-
dates using a comprehensive fitness score, sfit. This score holistically evaluates a candidate equa-
tion’s improvement by considering both relative and absolute loss reduction compared to exemplars.
Given a new hypothesis fnew(x) with loss lnew = L(fnew(x)) and the exemplar hypothesis fbase(x)
with the lowest loss lbase = L(fbase(x)) from the current prompt, we compute,

R =
lbase − lnew

lbase
, and ∆ = lbase − lnew,

where R is the relative improvement ratio and ∆ is the absolute improvement. To compare values
across different scales, we normalize them to a range of [0, 1) as,

sr = 1− e−k∗R, and sa = 1− (1 + ∆)−1.

Here, sr captures the proportional gain, with k as a hyperparameter that rescales its sensitivity, while
sa captures the absolute gain in a saturating form, preventing extremely large absolute improvements
from dominating the score. Then we combine these scores using a weighted average, sfit = 100 ·
(wrsr + wasa), where wr + wa = 1 (see Appendix B.1 for more details). This design recognizes
both large absolute gains on high-error problems and significant relative gains on low-error ones.

Step 2: Structure formation. After scoring each candidate modification ft→ft+1 with sfit, given
a threshold α, we retain those with sfit ≥ α and refer to them as high-value. For any high-value modi-
fication, the associated structural change often captures information about the ground-truth equation,
which may help explain the high fitness score and can benefit subsequent iterations. Accordingly,
we prompt the LLM with

(
ft, ft+1,L(ft(x), y),L(ft+1(x), y)

)
to summarize the salient change as

ct+1 = (name,desc, h),

where name is a canonical identifier, desc is a brief textual description, and h is a small Python
code snippet (e.g., np.sin(x)) implementing the structure. Representing each structure as a code
snippet aligns with our design: the structure is a distilled summary of the observed modification and
can directly guide subsequent generations. We update the structure library C by inserting (ct+1, sfit)
and, whenever another entry shares the same name, merging them by (i) taking the set union of their
code snippets h with deduplication, (ii) assigning to the merged entry the highest sfit observed across
its instances, and (iii) keeping the earliest desc among those instances. We enforce a capacity
constraint |C| ≤ K and, if exceeded, evict the lowest-scoring entries until the constraint is satisfied,
thereby limiting redundancy while keeping the library compact and effective.

4.4 ADAPTIVE PROMPT CONSTRUCTION

At each iteration, the prompt for generating new hypotheses ft+1,j integrates three complementary
information sources: (i) few-shot exemplars, (ii) boosting equation summaries, and (iii) validated
candidate structures. This design couples short-term feedback with long-term, reusable knowledge.

Few-shot exemplars. We maintain an exemplar buffer Bt as populations with multiple islands,
suggested by Shojaee et al. (2024) and Grayeli et al. (2025) (see Appendix B.1 for more details).
For iteration t+1, we select n exemplars {S(i)

t+1}ni=1 ⊂ Bt via MSE-weighted random sampling to
balance quality and diversity. Each exemplar includes the fitted equation and a compact summary
of its associated boosting equation, which highlights the residual error. This provides immediate
context on what has been learned and what remains unexplained.

Structure snippets. To inject higher-level, reusable guidance, we sample m structures from the
library Ct with a probability proportional to their validation score. Each structure provides a descrip-
tive name, a short definition, and a symbolic code sketch. While boosting equations offer instance-
specific, short-term cues, the structure library encodes cumulative, and long-term refinements.

Prompt assembly. The final prompt is constructed from a fixed template populated with: (i) the
task definition and variable specifications, (ii) the n exemplar–boosting equation pairs, and (iii) the
m high-scoring structure snippets (see Figure 2). Conditioned on this prompt pt+1, the generator
LLM q autoregressively samples k candidate symbolic expressions. Each candidate is emitted as
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Adaptive Hypothesis Generation Prompt

1. Task Definition:
The prompt begins by
setting the LLM’s role,
overall goal, and the
expected output format.

2. Few-Shot Exem-
plar:
Provides a concrete
example of a past at-
tempt, including the
crucial boosting equa-
tion analysis in its doc-
string.

3. Iterative Context
& Final Instruction:
The final section pro-
vides the most recent
context, including high-
scoring structures, and
gives the final instruc-
tion for generating the
next equation.

# You are a helpful assistant ...
# Complete the ’equation’ function below, ...
# Find the mathematical function skeleton that

represents ...

def equation_v0(X, params):
’’’
Analysis for current equation(f):

current equation f(X) with MSE: ...
the boosting equation g(f(X),X) found to be:

g_0(X) = ...
with MSE: ...
’’’
...
return ...

# ... (Rest of the exemplars) ...

def equation_vj(X, params):
’’’
Improved version of ‘equation_vj-1‘.
Top scoring structures for the problem:

- Name1, fit: ...
definition: ...
functions: ...

...
Consider previous versions of the equation with
the corresponding boosting equation function
and structures(if any) for the problem ...
’’’

Figure 2: The annotated structure of our adaptive prompt. The prompt is dynamically assembled in
three main parts: (1) A fixed task definition setting the goal. (2) A series of few-shot exemplars
showing past attempts and their boosting equation analyses. (3) The final iterative context, which
includes reusable structure library and the instruction for generating the next hypothesis.
a Python function with tunable constants (e.g., def f(x, params)). We then optimize these
constants using a BFGS solver to minimize the training loss, yielding a set of fitted hypotheses
ft+1,j . Each new hypothesis, along with its loss and boosting analysis, is appended to the buffer
Bt+1, ensuring subsequent prompts reflect the evolving understanding. This approach tightly inte-
grates short-term error signals with long-term structural motifs. Though the per-hypothesis analysis
adds computational overhead, it provides precise feedback that significantly improves sampling ef-
ficiency. Our experiments show that this leads to faster convergence and superior solutions without
a substantial increase in total runtime when using the E2E(Kamienny et al., 2022) backend.

5 EXPERIMENTS

We present a comprehensive evaluation of our proposed framework, RESTART, designed to val-
idate the effectiveness of its end-to-end hypothesize–experiment–analyze loop. Our experiments
demonstrate that its principled feedback mechanisms achieve consistently improved performance.

5.1 EXPERIMENTAL SETUP

LLM-SRBench (Shojaee et al., 2025) is a comprehensive benchmark designed to evaluate LLM-
based scientific equation discovery methods beyond simple memorization. We focus on two key
categories from this benchmark: i) LSR-Transform, contains 111 problems derived from established
physical models; ii) LSR-Synth, includes 93 problems that combine known scientific terms with

6
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LSR-Transform Biology Material Science Physics
NMSE ACC NMSE ACC NMSE ACC NMSE ACC

DSR 0.472±1.755 36.04±48.23 0.206±0.278 16.67±38.07 0.058±0.099 36.00±48.99 0.104±0.111 27.27±45.05

E2E 2.098±10.794 57.66±49.63 0.578±0.400 12.50±33.78 0.008±0.016 76.00±38.51 0.425±0.430 20.45±34.64

PySR 0.175±0.390 72.07±44.56 0.003±0.012 54.17±50.90 0.057±0.282 72.00±45.83 0.004±0.010 73.86±36.55

LLMDirect 0.355±0.376 32.88±46.95 0.454±0.379 16.67±38.07 0.012±0.018 58.00±47.17 0.099±0.245 36.36±48.66

LLMSR 0.160±0.353 74.32±42.57 0.016±0.053 70.83±44.03 0.003±0.015 96.00±20.00 0.002±0.008 84.09±37.00

SGA 0.374±0.579 37.39±45.46 0.975±2.587 12.50±33.78 4.021±19.996 48.00±48.99 0.345±1.260 34.09±45.46

RESTART 0.157±0.407 74.77±42.04 0.001±0.005 77.08±38.95 0.001±0.002 96.00±20.00 0.003±0.009 85.23±35.07

Table 1: Performance comparison on 4 datasets within training distribution. RESTART achieves the
best or near-best performance across all datasets. For LLM based approaches, the backbone model
is Qwen3-8B(Team, 2025)
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Figure 3: NMSE of RESTART on four challenging problems under (a) in-distribution and (b) out-
of-distribution settings. In both settings, RESTART not only performs well on problems solvable by
baselines but also yields notable improvements on these more complex tasks.

novel, plausible synthetic terms from biology, physics, and materials science domain (see details in
Appendix E).

To contextualize the performance of RESTART, we compare it against representative baselines from
major symbolic regression paradigms: PySR (Cranmer, 2023) (GP-based), DSR (Petersen et al.,
2021) (RL-based), E2E (Kamienny et al., 2022) (mapping-based), LLMDirect (Shojaee et al., 2025)
(LLM baseline), SGA Ma et al. (2024) (LLM optimization), and LLMSR (Shojaee et al., 2024)
(Current SOTA LLM-based SR). For LLM-based methods, we use Qwen3-8B(Team, 2025) as the
default LLM backbone, unless stated otherwise. Hyperparameters follow the authors’ public settings
where available (see Appendix D for details).

5.1.1 EVALUATION METRICS

Following (Shojaee et al., 2024; 2025), We evaluate numeric fit quality using the normalized mean

squared error (NMSE): NMSE =
∑Ntest

i=1 (ŷi−yi)
2∑Ntest

i=1 (yi−ȳ)2
, where yi denotes the true target for test input xi,

ŷi the corresponding model prediction, ȳ = 1
Ntest

∑Ntest
i=1 yi the mean of the test targets, and Ntest the

number of test samples. To ensure numerical stability—particularly when exponential or logarithmic
terms cause extreme values or the denominator approaches zero—we clip the NMSE at a maximum
of 100. This clipping prevents exploding errors and division-by-near-zero effects from skewing the
averages, enabling more robust cross-task comparisons.

Following common practice in SR benchmarks (Shojaee et al., 2025; 2024), we report the Accuracy
to tolerance τ (Accτ ), which measures whether the discovered equation matches the ground-truth
expression across the entire input domain: Accτ = 1

(
max1≤i≤Ntest

∣∣∣ ŷi−yi

yi

∣∣∣ ≤ τ
)
, with τ = 0.1

unless stated otherwise. This metric evaluates generalization by requiring uniformly low relative
error across all data points, rather than just low average error, which can mask overfitting. To
ensure robust performance estimates and mitigate the influence of pathological outliers, we follow
(Kamienny et al., 2022; Biggio et al., 2021) by reporting results over the best 95% of predictions,
discarding the worst 5% based on relative error.
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Biology Material Science Physics
NMSE ACC NMSE ACC NMSE ACC

DSR 29.900±43.344 16.67±38.07 7.348±20.664 84.00±37.42 5.715±21.184 25.00±43.80

E2E 39.465±45.092 4.17±20.41 1.395±2.172 94.00±21.98 25.310±39.610 21.59±36.40

PySR 8.875±26.612 37.50±49.45 4.115±19.980 96.00±20.00 7.151±23.052 62.50±43.30

LLMDirect 68.661±44.966 12.50±33.78 1.704±3.801 84.00±34.52 28.579±44.478 13.64±34.71

LLMSR 6.667±19.165 45.83±50.90 0.084±0.239 96.00±20.00 14.808±34.460 65.91±47.95

SGA 63.701±45.904 8.33±28.23 12.072±29.957 78.00±38.41 33.410±44.259 14.77±35.07

RESTART 5.087±14.570 52.08±47.73 0.075±0.198 100.00±0.00 8.167±26.233 71.59±44.98

Table 2: Performance comparison on 3 datasets (OOD results only). NMSE values are clipped at a
maximum of 100. For LLM based approaches, the backbone model is Qwen3-8B(Team, 2025)
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Figure 4: Visualizing equations on challenging tasks. Each panel shows the ground-truth equation
(black) and the outputs from LLMSR (red) and RESTART (blue). We select four challenging
equations from the Biology dataset and evaluate the discovered equations over both in-distribution
(blue shaded) and out-of-distribution (pink shaded) regions. RESTART not only matches the ground
truth within the training range but also generalizes well to unseen regions, closely following the true
functional shape.

5.2 MAIN EXPERIMENTAL RESULTS

Research Question 1: Does RESTART discover accurate symbolic expressions from data?
Quantitative results in Table 1 show that RESTART achieves superior performance, with lower
NMSE and higher accuracy than all baseline methods across nearly every benchmark. This estab-
lishes its effectiveness in discovering accurate symbolic expressions. A focused analysis on the three
most challenging tasks from the Biology dataset shown in Figure 3 reveals that RESTART’s relative
advantage is greatest under difficult conditions, particularly for problems BPG12 and BPG20. The
minimal NMSE values suggest a successful identification of the underlying equation’s structure.

Qualitative analysis confirms this: baseline methods frequently omit key terms, whereas
RESTART’s adaptive refinement iteratively incorporates them. This highlights the core benefit of
our short-term guidance, where the exploration function gt provides data-driven signals for pre-
cise corrections. For example, RESTART correctly identified the harmonic interaction in BPG12
as shown in Figure 4, a component missed by LLMSR. (An analysis of the refinement process is
provided in Appendix H)

Research Question 2: Does RESTART recover equations close to the ground truth? On out-
of-distribution (OOD) splits, RESTART achieves the highest accuracy across all domains as shown
in Table 2. This demonstrates that our method not only fits the training data well but also discovers
equations that generalize effectively to unseen data.

Figure 4 visualizes the equations discovered on a subset of challenging tasks. For problems like
BPG18 and BPG20, baselines such as LLMSR may achieve low training error, but their solutions
visibly diverge outside the training region. This divergence is often caused by overly complex
terms that reduce local error but distort the global function shape. In contrast, RESTART ’s short-
term guidance mechanism explicitly identifies missing operators or interactions, which prevents the
model from fitting noise and yields more robust equations. Furthermore, the improvement-gated
structure library retains only validated components, preventing equation bloat and ensuring the final
expressions are both concise and physically meaningful.

Research Question 3: Is RESTART computationally efficient? Although our guidance mecha-
nisms introduce overhead for subproblem solving and structure summarization, RESTART is signif-
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Figure 5: (a) Search trajectories on four challenging equations; (b) Ablation study on BPG12 under
ID setting; (c) Ablation study on BPG12 under OOD setting.

icantly more efficient at discovering accurate equations. As shown in Figure 5a, RESTART’s NMSE
decreases sharply within the first 100 iterations, rapidly surpassing the performance of LLMSR. This
swift convergence demonstrates that the cost of targeted analysis is substantially offset by a major
gain in search efficiency. By guiding the search toward promising regions instead of exploring
blindly, RESTART drastically reduces the number of ineffective hypotheses evaluated.

Furthermore, Figure 3 shows that RESTART discovers better equations than other baselines using
only 25% of the iterations. This underscores its ability to find strong, generalizable solutions with
a fraction of the computational budget, proving that our approach achieves a superior trade-off be-
tween analysis overhead and overall search effectiveness.

5.2.1 ABLATION STUDY

Research Question 4: What is the individual contribution of each key component: initializa-
tion, short-term guidance, and long-term memory? We conduct an ablation study to evaluate
the contributions of RESTART along three axes: (i) removing key components from RESTART, (ii)
evaluating different LLM backbones, and (iii) using alternative subproblem solvers. The results,
shown in Figure 5b 5c, confirm that all three components are critical for peak performance. Remov-
ing any one—initialization, short-term analysis, or long-term retention—causes a noticeable perfor-
mance drop, validating the necessity of the full hypothesize–experiment–analyze loop. Additionally,
we evaluated an alternative variant of RESTART, termed Additive, whose purpose is to test the be-
havior of the framework when the boosting step is restricted to fitting the classical additive residual.
In this variant, the exploration function is defined as g : Rn → R and is fit as g(x) = y− ft(x). Af-
ter solving this subproblem, we prompt the LLM with

(
ft, L(ft(x), y), gt, L(gt(x), y − ft(x))

)
,

so that the model receives both the current hypothesis and the residual-based signal for comparison
with the full RESTART formulation. From Figures 5b and 5c, we observe a substantial increase in
NMSE under the Additive variant. This highlights that performance improvements in RESTART
arise primarily from structural refinement rather than simply filling the numerical residual gap.

Furthermore, while the choice of LLM backbones affects absolute performance (with stronger mod-
els yielding higher accuracy, as seen in Table 3), RESTART consistently outperforms other LLM-
based methods regardless of the foundation model. This indicates that its advantage stems from the
algorithmic design rather than a specific model’s capabilities.

Finally, as shown in Table 4, we observe a trade-off in subproblem solvers: more expressive solvers
can propose better structures at a higher computational cost. However, results in Tables 1 and 2
show that a traditional solver alone is insufficient. Optimal symbolic recovery—achieving both
accuracy and parsimony—requires its integration with RESTART ’s iterative hypothesis refinement
and guidance mechanisms. Details are provided in the Appendix B.3

5.2.2 CASE STUDY

Research Question 5: How does RESTART perform on a real-world scientific task? Here, we
consider a real-world scientific discovery task. Defining and measuring particle speed in the clas-
sically forbidden region is crucial for testing Bohmian mechanics and understanding microscopic
transport. Using coupled waveguides, Sharoglazova et al. (2025) that the measured nondirectional
speed follows v =

√
2|∆|/m, where v is the particle speed, m the particle mass, and ∆ the energy

9
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offset inside the step (∆ = E − V0 + ℏJ0). This relation describes how speed increases with |∆|
in the forbidden region and is mirror-symmetric in ∆. While the equation appears elementary, the
actual physical law used in the experiment is:

v =

√
2 |∆ · 1.602176634× 10−22|

m

/
1000

, which is more challenging. It involves (i) nested nonlinear operators (absolute value within a square
root), (ii) cross-variable interaction through division, and (iii) large-magnitude unit-conversion con-
stants embedded inside nonlinear transformations, which makes constant recovery and operator or-
dering difficult for search-based SR.

R2(data) R2(equation)

v =

√
2|∆|
m

0.9642 1.000

RESTART-1 0.9827 0.9699
RESTART-2 0.9672 0.9985
LLMSR 0.9688 0.9958
LLMDIRECT 0.0 0.0
PYSR 0.8984 0.0

(a) Energy results table
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Figure 6: (a) Comparison of two RESTART-
discovered equations with the reported equa-

tion v =
√

2|∆|
m

(Sharoglazova et al., 2025)
and baselines. R2(data) denotes the R2 com-
puted against the measured ground-truth data
points, whereas R2(equation) denotes the R2

from points sampled via the reported equation.
Both discovered equations achieve higher R2

on experimental data while remaining consis-
tent with the reported equation, suggesting a
plausible correction. (b) Visualization of three
equations: RESTART-1 fits the data well but
slightly diverges from the reported equation in
the OOD range.

To assess RESTART in a real-world scenario, we re-
examine this physical law from only 46 experimen-
tal data points, including basic unit conversions (e.g.,
meV→J). As shown in Figure 6a and Figure 6b,
RESTART successfully rediscovers the relationship
and produces two key expressions: RESTART-1
achieves the best fit by recovering the analytic scal-
ing while adding compact, interpretable corrections
(e.g., parameterized scaling and energy-dependent
terms) that may account for known systematics in the
speed extraction process (the parabolic build-up fit
can overestimate v by up to ∼ 6.7% in the forbid-
den regime (Sharoglazova et al., 2025)); RESTART-2
more closely adheres to the published formula, sacri-
ficing a small amount of fit quality for greater gener-
alizability and interpretability. These results demon-
strate that RESTART is highly data-efficient and prior-
aware. Through short-term refinement, it can gener-
ate targeted, testable corrections that help bridge the-
ory and experiment, even with scarce, noisy data. To
further validate RESTART ’s capability in scientific
discovery, we report a more challenging task in Ap-
pendix G.

6 DISCUSSION AND CONCLUSION

We presented RESTART, a symbolic regres-
sion framework that completes the hypothe-
size–experiment–analyze cycle by combining LLM-
guided hypothesis generation with structural analysis
and a persistent structure library. Our experiments
demonstrate that the explicit analysis stage is critical:
solving the subproblem g(f(x), x) and using it to
guide the LLM with structural refinements, together
with the structure library, leads to a more efficient
and accurate search process. The physics case study
further illustrates the potential of symbolic regression
for real scientific tasks.

Remaining challenges include the computational cost
of repeated LLM queries and the inability to directly verify the correctness of each stored struc-
ture. Future work will explore integrating auxiliary models to pre-filter structures and candidate
hypotheses, as well as incorporating domain constraints to improve plausibility without increasing
computational overhead.

10
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A LLM USAGE

We used LLMs to assist in the preparation of this manuscript. Specifically, LLMs were used for
polishing the language, improving readability, and restructuring sentences for clarity. All conceptual
contributions, experimental design, analyses, and results were produced and verified by the authors.
The authors carefully reviewed and edited all model outputs before inclusion in the final manuscript.

B METHOD DETAILS

B.1 IMPLEMENTATION AND EXPERIMENT DETAILS

We implement RESTART using a population-based exemplar buffer, following the island-based
search paradigm (Shojaee et al., 2024; Romera-Paredes et al., 2024; Cranmer, 2023). We maintain
M = 10 disjoint islands, each storing a diverse population of candidate hypotheses {fi(x)} to
promote exploration. At each iteration, we first select an island I uniformly at random, and then
sample kexemplar = 4 exemplars from this island to assemble the prompt.

Within each island, we group hypotheses according to their loss L(fi(x)). Groups are sampled
proportionally to a Boltzmann distribution(de la Maza & Tidor, 1993) over their losses:

pi =
exp

(
L(fi(x))/βc

)∑
j∈I exp

(
L(fj(x))/βc

) , βc = T0

(
1− u mod N

N

)
,

where u denotes the number of hypotheses in island I, T0 = 0.1 is an initial temperature, and
N = 30000 controls the annealing schedule. This scheme adaptively lowers the temperature as the
island becomes saturated, gradually shifting from exploration to exploitation. Within each group,
exemplars are sampled with a length-based probability,

pleni ∝ exp

(
− len(fi)

βp

)
,

where len(fi) is the program length and βp = 1 is a hyperparameter that encourages shorter and
more interpretable expressions. Newly generated hypotheses are inserted back into the same island
for future iterations.

Additionally, Experiments were conducted on two hardware setups: a workstation with
2×RTX 4090 GPUs and a server with 8×L40S GPUs.

Improvement-Gated Scoring. To combine absolute and relative improvement signals, we define

sfit = wa ·∆+ wr ·R, wa + wr = 1,

where ∆ is the absolute improvement and R is the relative improvement. The weights wa and wr

are determined piecewise according to the logarithm of the absolute improvement:

∆log = log10(∆).

We then set:

• If ∆log ≥ 1: wa = 0.7, wr = 0.3.

• If 0 ≤ ∆log < 1: wa = 0.5, wr = 0.5.

• If −2 ≤ ∆log < 0: wa = 0.2, wr = 0.8.

• If ∆log < −2: wa = 0.0, wr = 1.0.

This piecewise schedule ensures that large absolute improvements are weighted more heavily,
whereas very small absolute improvements rely primarily on relative gains to be considered signifi-
cant. After computing the fitted score sfit, we regard an improvement as valid if sfit ≥ α, α =
40.0, and trigger the structure distillation process. To control memory and maintain efficiency, we
cap the maximum number of structures stored in the library K = 20.
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Qwen3-1B Qwen3-8B Qwen3-8B-think

ID OOD ID OOD ID OOD

LLMSR 0.49983 0.69452 0.20248 0.37592 0.90352 1.22674
RESTART 0.45502 0.77328 0.02254 0.01442 0.00801 0.01103

Qwen3-32B Qwen-Flash DS-Chat

ID OOD ID OOD ID OOD

LLMSR 4.12×10−4 3.09×10−4 0.01499 0.02082 0.02884 0.04199
RESTART 1.34×10−3 1.46×10−3 1.76×10−5 3.91×10−6 1.70×10−6 7.48×10−7

Table 3: Comparison of LLMSR and RESTART across different LLM backbones on BPG18.

B.2 LLM BACKBONE

We compare Qwen3(Team, 2025) backbones of varying scales and DeepSeek v3.1(DeepSeek-AI
et al., 2025) to assess how the generative prior affects symbolic search performance. Across most
backbones, our method consistently outperforms LLM-SR, demonstrating the effectiveness of the
structure analysis and targeted refinement. Stronger and reasoning-enabled models yield more ac-
curate candidate programs, leading to improved equation discovery, but they also incur substantially
higher computation cost. This comparison highlights a clear accuracy–compute trade-off: smaller
backbones offer a good balance of speed and accuracy, whereas reasoning or larger backbones can
further boost performance when additional compute budget is available.

ID OOD Average Evaluation Time (s)

LLM 0.02683 0.01481 6.418
Polynomial 0.47034 0.65663 0.580
KAN 0.03668 0.01963 27.651
DSO 0.01486 0.00849 59.91
PySR 0.00122 0.00096 14.153
E2E 0.02254 0.01442 6.587

Table 4: Comparison of different symbolic backbones on BPG18, along with the average time for the exper-
iment and analysis stages per iteration (primarily subproblem solving). Note that the average time includes
invalid evaluations, which contribute values close to zero.

B.3 SUBPROBLEM SOLVER BACKEND

Table 4 provides a detailed comparison of candidate backends for solving the symbolic subprob-
lem defined in Eq. (3). We evaluate representatives from mapping-based methods (E2E), search-
based methods (PySR, Polynomial, DSR, KAN), a simple polynomial regression baseline, and a
direct LLM-based solver that is prompted with the dataset {(f(x), X, y)} to generate new equa-
tions. This LLM-based solver differs from the Llmdirect baseline in that it is data-aware rather than
data-blinded. This comparison isolates the contribution of the subproblem solver from the rest of
the RESTART pipeline and quantifies its impact on both accuracy and runtime.

Importantly, the choice of backend does not change the formulation of Eq. (3); it only affects the
quality and efficiency of the discovered refinement gt. This solver-agnostic design keeps the frame-
work modular and allows it to benefit from future advances in symbolic regression without altering
its overall search procedure.

Overall, we observe a clear accuracy–compute trade-off: more expressive search-based solvers
(e.g., PySR, DSR) achieve lower NMSE but incur significantly higher computation cost, whereas
fast mapping-based methods (E2E) sacrifice some accuracy in exchange for much higher through-
put. Consistent with the results in Tables 1 and 2, a single solver alone is insufficient to recover
optimal equations. The best performance is obtained when these solvers are embedded within the
iterative hypothesize–experiment–analyze cycle of RESTART, where they provide targeted refine-
ments rather than attempting to solve the entire problem from scratch.
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C RESULT DISTRIBUTION

Following the setup in LLM-SRBench(Shojaee et al., 2025), we report box plots(Figure 7) that illus-
trate performance variations across the LLM-SRBench datasets for different methods, highlighting
the distribution of the experimental results.

RESTART SGA LLMSR PySR
LLMDirect E2E DSO

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

102

NM
SE

LSR-Transform
Biology

Physics Material Science

Figure 7: Distribution of in-distribution NMSE across all benchmark problems

D BASELINE METHOD DETAIL

D.1 DSR

DSR1 (Petersen et al., 2021). Formulates symbolic expression generation as a sequential decision
process in which a policy network constructs expressions token by token. DSR employs a risk-
seeking policy-gradient objective that emphasizes learning from top-reward trajectories. Addition-
ally, DSR trains a new model for each dataset. The hyperparameters are presented in Figure 8 and
are used as the default settings unless otherwise specified.

D.2 E2E

E2E2 (Kamienny et al., 2022). employs a Transformer encoder–decoder that maps tokenized data
directly to a symbolic expression string. The model is supervised on synthetic corpora to learn
correspondences from data distributions to formula structures. During inference, autoregressive
decoding with beam search outputs parseable expressions, followed by parameter fitting for numeric
accuracy. The hyperparameters are presented in Figure 9 and are used as the default settings unless
otherwise specified.

D.3 PYSR

PySR3 (Cranmer, 2023) uses a population-based genetic programming framework that represents
candidate models as symbolic expression trees composed of primitive operators. It iteratively ap-
plies mutation, crossover, and island migration to evolve diverse candidates. A multi-objective
criterion balances data-fit and expression complexity and maintains a Pareto front of solutions. The
hyperparameters are presented in Figure 10 and are used as the default settings unless otherwise
specified.

1https://github.com/dso-org/deep-symbolic-optimization
2https://github.com/facebookresearch/symbolicregression
3https://github.com/MilesCranmer/PySR
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dsr_params:
task:
task_type: "regression"
function_set: ["add", "sub", "mul", "div", "sin", "cos", "exp", "

log"]
metric: "inv_nrmse"
metric_params: [1.0]
extra_metric_test: null
extra_metric_test_params: []
threshold: 1.0e-12
protected: false
reward_noise: 0.0
reward_noise_type: "r"
normalize_variance: false
decision_tree_threshold_set: []

training:
n_samples: 1000000
batch_size: 10000
epsilon: 0.05
n_cores_batch: 50

policy_optimizer:
learning_rate: 0.0005
entropy_weight: 0.03
entropy_gamma: 0.7

prior:
length:
min_: 4
max_: 64
"on": true

repeat:
tokens: "const"
min_: null
max_: 3
"on": true

inverse:
"on": true

trig:
"on": true

const:
"on": true

no_inputs:
"on": true

soft_length:
loc: 10
scale: 5
"on": true

domain_range:
"on" : false

Figure 8: DSR hyperparameter configuration.

D.4 LLMDIRECT

As suggest in Shojaee et al. (2025), we include a data-blind zero-shot LLM baseline4 that prompts
to produce syntactically valid equations purely from its pretrained knowledge, without conditioning
on the dataset. It relies on built-in mathematical priors and general reasoning to propose diverse
symbolic forms. The hyperparameters are presented in Figure 11 and are used as the default settings
unless otherwise specified.

4https://github.com/deep-symbolic-mathematics/llm-srbench
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e2e_params:
model_path: "e2e.pt"
max_input_points: 200
n_trees_to_refine: 10
rescale: true
max_num_samples: 2000

Figure 9: E2E hyperparameter configuration.

pysr_params:
niterations: 40
maxsize: 30
populations: 15
population_size: 33
ncycles_per_iteration: 550
binary_operators: ["+", "*", "-", "/", "ˆ"]
unary_operators: ["cos", "exp", "sin", "sqrt", "log"]
batching: true
batch_size: 5000
constraints:
"ˆ": [-1, 20]
"exp": 20
"log": 20
"sqrt": 20
"sin": 10
"cos": 10

Figure 10: PySR Hyperparameter Configuration

D.5 SGA

SGA5 (Ma et al., 2024). Adopts a bilevel setup in which an LLM-based agent proposes symbolic
structures while a separate optimizer fits the continuous parameters of each proposal. It also uses two
different temperatures for LLM generation to separate exploitation and exploration. We follow the
default hyperparameter settings suggested by Shojaee et al. (2025) without additional modifications.

D.6 LLMSR

LLMSR6 (Shojaee et al., 2024). a state-of-the-art LLM-driven evolutionary method that generates
equation candidates as code and refines them through LLM queries. It stores generated equations
in populations; at each round, LLMSR randomly selects one population and samples equations to
construct a new prompt. The hyperparameters are presented in Figure 12 and are used as the default
settings unless otherwise specified.

E LLM-SRBENCH

LLM-SRBench (Shojaee et al., 2025) is a benchmark designed for the systematic evaluation of sym-
bolic regression (SR) methods, with a particular focus on leveraging large language models (LLMs)
for scientific discovery. Unlike previous benchmarks such as SRBench(Cava et al., 2021), where
LLMs may simply recall the ground-truth equations from memory—thus bypassing the core pur-
pose of the symbolic regression task—LLM-SRBench is constructed to be challenging, diverse, and
representative of real-world scientific inference problems. Its design encourages LLMs to move be-
yond rote memorization and to demonstrate genuine reasoning and equation-discovery capabilities.
The benchmark consists of two major categories:

5https://github.com/PingchuanMa/SGA
6https://github.com/deep-symbolic-mathematics/LLM-SR
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llmdirect_params:
samples_per_prompt: 5

Figure 11: LLMDirect hyperparameter configuration.

llmsr_params:
global_max_sample_num: 1000
samples_per_prompt: 4
num_islands: 10

Figure 12: LLMSR hyperparameter configuration.

1. LSR-Transform: This category contains 111 problems derived from established physical
models such as kinematics, dynamics, and thermodynamics. Each problem is generated by
systematically transforming known governing equations, for example by switching input
and output variables, rearranging terms, or adding noise to simulate experimental condi-
tions. This construction requires models to reason about the underlying functional relation-
ships rather than merely recall canonical forms, thus providing a robust test of a model’s
capability for true equation discovery.

2. LSR-Synth: This category focuses on evaluating generalization. It includes problems
that combine well-known scientific quantities with synthetic but physically plausible terms,
ensuring that the solutions cannot be solved by rote memorization. The tasks span three
scientific domains: biology, physics, and materials science. The presence of novel terms
forces SR models to infer correct functional forms based on data patterns, simulating real-
world scenarios where researchers encounter new variables or unmeasured effects.

Each problem in LLM-SRBench provides training and testing data sampled from the ground-truth
function, as well as standardized evaluation metrics such as normalized mean squared error (NMSE).
Together, these tasks cover both interpolation and extrapolation settings, making LLM-SRBench a
comprehensive and challenging suite for benchmarking LLM-based SR algorithms.

F AVERAGE TRAJECTORY

As show in Figure 13, we reported the average NMSE trajectories for four biology equations. Note
that because NMSE values differ on a log scale, the mean can be dominated by the higher-NMSE
trajectories. For example, if there are 10 trajectories—one with NMSE 1 × 10−4 and nine with
NMSE 1 × 10−9—the average NMSE will still be above 1 × 10−5, which is substantially higher
than most of the trajectories.

G CASE STUDY

Here we report the discovered RESTART-1 and RESTART-2 in Figure 14 and Figure 15

Method R2(equation)

RESTART 0.9771
PYSR 0.5325
LLMSR 0.1737
LLMDIRECT 0.00

Table 5: Performance on the nonlinear microwave-dimer equation.
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Figure 13: Average NMSE vs. Step on 4 Biology Equations and their standard diviation

Additional Case Study. To further evaluate RESTART on a challenging real scientific discovery
setting beyond low-order algebraic laws, we add a second case study based on a nonlinear non-
Hermitian microwave dimer model from recent experimental physics(Salcedo-Gallo et al., 2025):

nLC(ϕ,G) =
C

G/C2

1

(
C3 + sin(ϕ/C4)

)
C5 − C6

C7
.

where Ci is constent. This equation is structurally demanding for SR methods because it includes
nested multiplicative terms, ratios, and parameter-dependent nonlinearities. As shown in Table 5
and Figure 16, RESTART recovers the correct governing structure with an R2(equation) of 0.97,
substantially outperforming baselines. This result strengthens the claim that RESTART can support
real scientific modeling workflows: even when the target law is a compact but highly compositional
physical formula, RESTART’s analysis-driven refinement enables reliable structural recovery.

H RESTART SEARCH PROCESS

Figure 17 compares the population growth rate equations discovered by RESTART and the base-
line LLMSR. RESTART successfully recovers both key components of the ground-truth BPG12
equation: (i) theharmonic oscillation term 0.877P sin(0.567t) capturing seasonal fluctuations, and
(ii) the logistic growth term 0.701(1 − P/65.75)P with a realistic carrying capacity. In contrast,
LLMSR produces a much noisier expression with only a weak logistic component and no harmonic
interaction, yielding lower R2 on both ID and OOD data.

To understand why RESTART succeeds, we inspect the prompt–response pair in Figure 18 and Fig-
ure 19. The prompt contains not only the partially current equation but also the top-ranked structure,
where two of these—Harmonic Oscillator Interaction and Seasonal Variation
with Damping—are precisely the building blocks needed for the ground-truth solution.

This targeted guidance allows the LLM to synthesize a new hypothesis, equation v2, that directly
combines the harmonic interaction and logistic terms. As a result, the MSE dramatically decreases
from 52.35 (for exemplar equation v1) to 2.67× 10−9, effectively achieving near-perfect symbolic
recovery. This case highlights how RESTART’s iterative refinement and structure-guided prompting
transform an initially rough approximation into a scientifically valid and highly accurate equation.
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def RESTART-1(Delta: np.ndarray, mass: np.ndarray, params: np.ndarray
) -> np.ndarray:

# Step 1: Convert Delta from meV to Joules
Delta_J = Delta * 1.602176634e-21 # 1 meV = 1.602176634e-21 J

# Step 2: Base velocity using WKB approximation (m/s)
velocity_base = np.sqrt(2 * np.abs(Delta_J) / mass)

# Step 3: Convert velocity to km/s
velocity_km_per_s = velocity_base / 1000

# Step 4: Apply parameterized scaling
velocity_km_per_s *= params[0]

# Step 5: Phase-modulated nonlinear corrections
# Phase-dependent sine and cosine corrections
velocity_km_per_s += params[1] * np.sin(0.01 * Delta)
velocity_km_per_s += params[2] * np.cos(0.001 * Delta)

# Hyperbolic tangent correction with tunable phase
phase_tanh = 0.1 + 0.05 * velocity_km_per_s
velocity_km_per_s += params[3] * np.tanh(phase_tanh)

# Nonlinear energy-dependent correction
energy_term = np.sqrt(0.5 + 0.1 * Delta)
velocity_km_per_s += params[4] * energy_term

# Additional nonlinear transformation to stabilize variance
# This term includes a tunable energy-dependent phase and

amplitude
phase_energy = params[5] * Delta + params[6]
velocity_km_per_s += params[7] * np.sqrt(90.0 + 0.9 * np.abs(2.0 +

30.0 * np.cos(phase_energy)))

# Optional: Add a nonlinear feedback term to stabilize variance
# This is an advanced term that can be used for more complex

models
if len(params) > 8:

feedback_term = params[8] * np.log(1 + np.abs(Delta)) / (1 + np
.abs(Delta))

velocity_km_per_s += feedback_term

return velocity_km_per_s

Figure 14: Discovered RESTART-1

I PROMPT

Figure 2 illustrates the design of our adaptive prompt, which is dynamically assembled at each itera-
tion of the hypothesize–experiment–analysis cycle. Unlike static few-shot prompting, our approach
builds the prompt from three components that evolve over time:

• Task Definition: A fixed preamble that sets the LLM’s role, clarifies the objective (finding
an executable mathematical function), and specifies the variable description for given task.

• Few-Shot Exemplars: One or more previous hypotheses are inserted, along with their
mean squared error, and the corresponding boosting equation analysis. These exemplars
serve as in-context refinement guideance.

• Cumulated Knowledge: Finally, we include the structures from the structure library as
reusable building blocks directly insert into the comment section for next generation. This
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def RESTART-2(Delta: np.ndarray, mass: np.ndarray, params: np.ndarray
) -> np.ndarray:
# Constants
hbar = 1.0545718e-34
eV_to_J = 1.602176634e-19 # 1 eV = 1.602e-19 J
km_per_m = 1e-3 # 1 km = 1000 m

# Convert Delta from meV to Joules
Delta_J = Delta * 1e-3 * eV_to_J # meV to eV to J

# Extract tunable parameters
decay_rate = params[0] # B
amplitude = params[1] # A
oscillation_freq = params[2] # C
phase_shift = params[3] # P
quadratic_coeff = params[4] # E
energy_scaling = params[5] # S
velocity_scaling = params[6] # K
offset = params[7] # D

# Compute the exponential decay factor
sqrt_Delta_J = np.sqrt(np.abs(Delta_J))
decay_factor = np.exp(-decay_rate * sqrt_Delta_J)

# Compute the oscillatory modulation
oscillation = np.cos(oscillation_freq * sqrt_Delta_J + phase_shift

)

# Compute the quadratic correction term
quadratic_term = 1 + quadratic_coeff * (Delta_J ** 2)

# Compute the energy scaling factor
energy_term = 1 + energy_scaling * Delta_J

# Compute the velocity of probability flow
velocity = (

amplitude * decay_factor * oscillation * quadratic_term *
energy_term *

(sqrt_Delta_J / np.sqrt(mass)) * velocity_scaling * km_per_m
) + offset

return velocity

Figure 15: Discovered RESTART-2

step adapts the search to accumulated knowledge and focuses exploration on promising
directions.

This dynamic construction allows RESTART to incorporate both short-term error feedback (via
boosting equations) and long-term knowledge (via the structure library) into each prompt.

From the optimization perspective introduced in Section 2, this adaptive assembly can be viewed as
an approximate solution to Eq. equation 2: instead of using a fixed prompt p that may bias qp(·) to-
ward syntactically similar but suboptimal regions of the hypothesis space, we iteratively update p by
injecting exemplar feedback and discovered structures. This meta-optimization procedure progres-
sively shifts the induced distribution qp toward regions of lower empirical loss, thereby increasing
the probability that the best-of-k sample achieves a smaller loss L(τ).
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Figure 16: 3D comparison of amplitude trajectory under different methods.

def RESTART_BPG12(t, P, params):
r, a, omega, phi, K, A, theta, gamma, alpha, beta = params
r_t = r * (1 + a * np.sin(omega * t + phi)) * np.exp(-gamma * t **

beta)
K_t = K * (1 + A * np.sin(omega * t + theta))
harmonic = (np.sin(omega * t + phi) * P) * np.exp(-gamma * t ** beta)
growth_rate = r_t * P * (1 - P / K_t) * alpha + harmonic * beta
return growth_rate

def llmsr_BPG12(t, P, params):
r, K0, alpha, beta, eps, omega, eta, gamma, zeta, phi = params
K = K0 + eta * t
logistic = r * P * (1 - P / K)
time_linear = alpha * t
seasonal = eps * np.sin(omega * t)
nonlinear = gamma * t ** 2
delayed_P = np.roll(P, int(phi)); delayed_P[:int(phi)] = 0
feedback = zeta * P * (1 - P / K) * np.sin(omega * (t - phi)) * (1 +

0.1 * np.sin(omega * t))
dP_dt = logistic + time_linear + beta + seasonal + nonlinear +

feedback
return dP_dt

Figure 17: Comparison of RESTART and LLMSR discovered functions for BPG12. The ground-truth equation
is f⋆(t, P ) = 0.877P sin(0.567t) + 0.701 (1 − P/65.75)P , a two-term structure combining a sinusoidal
modulation and a logistic growth term. RESTART correctly recovers this structure, while LLMSR introduces
additional linear, quadratic, and delayed-feedback components that deviate from the true form.
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import numpy as np
MAX_NPARAMS = 10
params = [1.0]*MAX_NPARAMS

def equation_v0(...):
"""
Analysis for current equation(f):

Given (X,y), Current equation(f) has MSE: 52.35
Boosted equation candidate: (((2.25 * (-1.50 + 0.0236*P)) *

...) ... )
with MSE: 72.82

"""
...

def equation_v1(...):
"""
Improved version of ‘equation_v0‘.
Current equation(f) has MSE: 52.35
Boosted equation candidate: (((0.994 * (0.078 + 0.044*current_pred

)) * ...) ... )
with MSE: 770.39
"""
...

# Top scoring concepts for the problem:
# - Harmonic Oscillator Interaction (fit: 95/100)
# - Damped Harmonic Interaction (fit: 88/100)
# - Seasonal Variation with Damping (fit: 85/100)

Figure 18: Parital prompt content used in the key iteration. It includes current loss, boosted residual equation,
and top-ranked structural concepts.

def equation_v2(t: np.ndarray, P: np.ndarray, params: np.ndarray) ->
np.ndarray:
"""
Improved version of the population growth rate equation that

incorporates:
- Damped harmonic oscillation for seasonal variation
- Logistic growth with time-dependent carrying capacity
- Exponential damping
- Harmonic interaction between population and time-dependent

parameters
"""
r, a, omega, phi, K, A, theta, gamma, alpha, beta = params
r_t = r * (1 + a * np.sin(omega * t + phi)) * np.exp(-gamma * t **

beta)
K_t = K * (1 + A * np.sin(omega * t + theta))
harmonic_interaction = (np.sin(omega * t + phi) * P) * np.exp(-

gamma * t ** beta)
growth_rate = r_t * P * (1 - P / K_t) * alpha +

harmonic_interaction * beta
return growth_rate

Figure 19: Parital LLM-generated response (equation v2) that recovers the near-ground-truth BPG12 structure.
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