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ABSTRACT

Timestamp prediction aims to accurately determine the date and hour at which
an image was captured using only visual cues, with applications ranging from
image retrieval and metadata correction to digital forensics. In outdoor scenes,
this can be inferred from variables such as overall brightness, hue, and shadow
positions for hourly estimations, as well as weather patterns or seasonal changes
for determining the date. However, these factors vary greatly depending on ge-
ographical location, making the challenges of time-of-capture prediction closely
related to geo-localization. To address this problem, we introduce GeoTimeCLIP, a
novel method capable of simultaneously estimating both the capture time (i.e., hour
and month) and geo-location (i.e., GPS coordinates) of an image using a retrieval
approach. Our model employs an image encoder, a time encoder, and a location
encoder, aligning the time and GPS embeddings with the image embeddings in
a continuous high-dimensional feature space. Considering the cyclical nature of
days and years, we propose an effective way to represent time using Random
Fourier Features. To learn image-time embedding alignment, rather than applying
a standard contrastive loss with hard positives and negatives, we propose a more
effective metric learning-based objective, which provides soft targets by consider-
ing the time difference between samples over a toroidal manifold. We introduce
new benchmarks for time prediction, where we show that our jointly optimized
time-location-based method outperforms baselines optimized solely for time. We
also evaluate our method on existing geo-localization protocols, demonstrating that
our approach performs competitively with expert geo-localization methods. Our
shared embedding space enables various downstream tasks, such as compositional
retrieval and text-based retrieval.

1 INTRODUCTION

Estimating the capture time and geo-location of images is crucial for applications ranging from digital
forensics to ecological studies and social media management. In digital forensics, accurate timestamps
verify image authenticity and help detect manipulation, particularly when camera calibrations are
suspect. This capability is essential for reconstructing events from timestamped images during
accidents or natural disasters, providing critical information to first responders. Ecological studies
benefit from time-ordered images to monitor changes in landscapes and wildlife, while precise
timestamps in social media enhance content management and chronological sorting. Despite its
importance, predicting time from images presents several challenges due to the intricate relationship
between temporal cues and location-specific factors. Time of day and year manifest differently in
images due to variables like scene brightness, shadows, weather, and seasonal changes, making
it difficult to establish consistent patterns. The complexity of the task is further compounded as
the visual appearance of specific hours vary substantially across different months and locations,
influenced by the amount and relative exposure to sunlight. Additionally, the representation of months
fluctuates across various latitudes, with regions near the equator experiencing relatively stable climate
conditions year-round compared to regions at higher latitudes.

Most existing methods (Zhai et al., 2019; Salem et al., 2022; Padilha et al., 2022) rely heavily on
GPS data for accurate time estimation, making the absence of such metadata a significant challenge.
Conversely, state-of-the-art geo-localization models, such as PIGEON (Haas et al., 2024) and
GeoCLIP (Vivanco Cepeda et al., 2024), can effectively predict locations at the country or continent
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level. However, accurately predicting both time and location without relying on additional inputs
remains an unaddressed challenge.

In this paper, we introduce GeoTimeCLIP, a retrieval-based approach for joint geo-localization and
time prediction. We conceptualize time prediction as a retrieval problem, representing time as a
month-hour pair. A schematic diagram of our framework is depicted in Figure 1. Building upon
the CLIP-initialized visual model, our goal is to learn a shared embedding space where we can
align visual (image), time, and location modalities. For time prediction, we first propose a time
representation that considers the cyclical nature days and years. We then project these representation
into a multi-scale, high-dimensional time embedding using random Fourier features (RFFs) (Tancik
et al., 2020). Next, to learn the alignment between the time and image embeddings, we explore
several possibilities. Existing contrastive learning methods, including CLIP (Radford et al., 2021)
and SimCLR (Chen et al., 2020), use other batch instances as negative samples. While suitable for
the image-location contrastive losses in CSP (Mai et al., 2023), GeoCLIP (Vivanco Cepeda et al.,
2024) and SatCLIP (Klemmer et al., 2023), due to the significant variation of visual appearance with
respect to geographical location, this approach does not work well for the image-time modality. As
visual features vary smoothly over time, and adjacent hours or months often appear nearly identical,
treating them as negatives severely impedes alignment. Instead of defining positive-negative pairs as
in contrastive learning, we propose a novel Temporal Metric Learning approach, which encourages
similarity between two instances based on their time difference. To build the target metric for our
proposed loss, we use the toroidal distance between the times of each instance pair to consider the
cyclic nature of time.

This approach enhances performance without the need for explicit assignment of positive and negative
samples, providing a more effective and efficient solution for time prediction. By mapping the image,
location, and time modalities into a unified feature space, our model gains the ability to perform
compositional retrieval tasks. For instance, given a specific time and location, it can efficiently
retrieve all corresponding images from a gallery that closely match the specified criteria.

Our main contributions are the following:

• A framework for joint time-of-capture prediction and geo-localization by aligning the
image, time and location embeddings in a shared multimodal feature space using contrastive
learning.

• First retrieval-based method for time-of-capture prediction where we propose the novel time
representation in month-hour pairs, considering its cyclic nature.

• Novel Temporal Metric Learning based loss function for image-time alignment with soft
targets, eliminating the need to assign positive and negative samples to the anchor. Since
both hours and months are cyclic, we employ a cyclic toroidal distance instead of a regular
L2 distance which results in improved performance.

• We propose new standard benchmarks for time prediction, demonstrating that our jointly
optimized time-location method surpasses time-only optimized baselines and competes
well with expert geo-localization methods. Our shared embedding space further facilitates
downstream tasks like compositional and text-based retrieval.

2 RELATED WORKS

Time-of-capture prediction: Time-of-capture prediction is a relatively new problem that has only
been directly addressed by a handful of prior works. Tsai et al. (2016) proposed a physically inspired
method to infer the time of day by estimating the sun’s position and camera orientation, but their
approach requires sky visibility and additional metadata, such as GPS coordinates and access to an
external image database. In a different line of research, Zhai et al. (2019) introduced a data-centric
approach to learn geo-temporal image features. Their model uses an image, location, and time
encoders to generate mid-level features, which are subsequently passed to a set of classifiers for
predicting time and location as discrete classes. However, their evaluation shows that providing the
location as an input is crucial for predicting the time of day with reasonable accuracy. Similarly,
Salem et al. (2022) proposed a hierarchical model to predict the month, hour, and week of capture,
but this method also assumes known geo-location, limiting its real-world applicability. In contrast,
our model relies solely on images to generate accurate time predictions using a retrieval approach in

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a continuous shared feature space, with resolution determined by a gallery of arbitrary size rather
than discrete classes.

Other works have also explored the time-of-capture task indirectly. Li et al. (2017) presented an
algorithm to verify image capture time and location by comparing the sun position, computed from the
claimed time and location, with the actual sun position derived from shadow length and orientation.
However, their approach assumes that latitude, time-of-day, and time-of-year are given, with only one
potentially corrupted. Padilha et al. (2022) proposed a model for time-of-capture verification using a
data-centric approach, involving four encoders for ground-level images, timestamps, geo-locations,
and satellite images, fed into a binary classifier to predict time consistency. Similarly, Salem et al.
(2020) proposed a model to generate a global-scale dynamic map of visual appearance by matching
visual attributes across images annotated with timestamps and GPS coordinates. Both Padilha et al.
(2022) and Salem et al. (2020) show qualitative results on time prediction, but are limited by their
dependency on geo-location. In contrast, our method accurately estimates both GPS coordinates and
timestamps using only images.

Several additional methods explore problems adjacent to time prediction. Jacobs et al. (2007)
proposed an algorithm for geo-locating static cameras by comparing temporal principal components
of yearly image sequences with those from a gallery of known locations. For shadow detection,
Lalonde et al. (2012) used a multi-stage method to extract pixel-wise ground-shadow features and
find edges using CRF optimization, while Wehrwein et al. (2015) used illumination ratios to label
shadow points in a 3D reconstruction and compute dense shadow labels in pixel space. Another series
of works estimate the sun position for various downstream applications, such as computing camera
parameters from timelapses (Lalonde et al., 2010) and determining outdoor illumination conditions
(Lalonde et al., 2012; Hold-Geoffroy et al., 2017) from single images. Adapting these methods for
time prediction would require additional metadata, which might not be available during inference.
For example, even with correct sun position prediction, day of the year, geo-location, and compass
orientation are needed to accurately predict the hour.

Although the above works contribute to time prediction, they either require additional input metadata
like GPS coordinates, or are not reliable in the absence of specific temporal cues. In contrast, our
proposed GeoTimeCLIP aims to predict both time-of-day and month from a single image without
relying on any additional metadata, making it more broadly applicable for real-time prediction tasks.

Global geo-localization: Geo-localization, the task of estimating the geographic coordinates of an
image, has gained substantial popularity in recent years. Traditionally, geo-localization methods have
adopted either a classification approach (Weyand et al., 2016; Seo et al., 2018; Vo et al., 2017; Muller-
Budack et al., 2018; Pramanick et al., 2022) or an image retrieval approach (Regmi & Shah, 2019;
Shi et al., 2019; 2020; Toker et al., 2021; Zhu et al., 2021; 2022). The classification approach divides
the Earth into a fixed number of geo-cells, assigning the center coordinate of the selected class as the
GPS prediction. However, this method can result in significant errors depending on the size of the
geo-cells, even when the correct class is selected. In contrast, the image retrieval approach compares a
query image to a gallery and retrieves the one with the highest similarity. GeoCLIP (Vivanco Cepeda
et al., 2024) addresses the limitations of traditional approaches by framing global geo-localization as
a GPS retrieval problem. It leverages the pretrained CLIP (Radford et al., 2021) ViT and employs
contrastive learning to align image and location embeddings in a shared feature space. Other methods,
such as PIGEON (Haas et al., 2024), use a hybrid strategy: first employing image classification to
identify the top-k geo-cells with the highest probability, followed by a secondary retrieval stage for
refinement within and across geo-cells. However, PIGEON’s dependence on additional metadata
for training—such as administrative boundaries, climate, and traffic—poses a significant limitation.
Finally, recent methods such as Img2Loc (Zhou et al., 2024) have begun leveraging multimodal
large language models (MLLMs) and retrieval-augmented generation (RAG) to achieve competitive
geo-localization performance without the need for dedicated training. However, this method’s
effectiveness is highly dependent on the underlying MLLM and results in substantial inference
overhead.

Geo-spatial dual-encoder methods: The success of CLIP has inspired to leverage its architecture
for geo-spatial tasks. SatCLIP (Klemmer et al., 2023) aligns satellite imagery and natural images in a
shared feature space, enabling cross-modal retrieval and localization. In a similar fashion, Zavras
et al. (2024) proposes a method for aligning complementary remote sensing modalities beyond RGB
with the CLIP encoders. Other works from Mai et al. (2023) and Mac Aodha et al. (2019), employ
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Figure 1: Overview of GeoTimeCLIP: GeoTimeCLIP uses an image encoder V(·), location encoder
L (·) and time encoder T (·) to generate a set of image Vi, location Li and time Ti embeddings.
Leveraging the CLIP Radford et al. (2021) pretrained ViT-L/14 as image encoder, we aim to align its
image embedding to both location and time embedding. The image-location alignment is learned
through regular CLIP like loss Vivanco Cepeda et al. (2024) and image-time alignment is learned
through proposed Temporal Metric Learning.

a dual image-location encoder architecture to learn robust location representations from images.
However, their ultimate goal is not to geo-locate images. Instead, they use the embeddings from the
pretrained image encoder for downstream tasks like image classification. These methods demonstrate
the effectiveness of dual-encoder architectures for geo-spatial problems, motivating our approach of
using a triple encoder architecture for joint time and location prediction.

3 METHOD

Given a training dataset Strain = {(In, Gn, Dn)}Nn=1 consisting of image In, GPS coordinates Gn

and timestamp Tn triplets, our objective is to train a model that can simultaneously predict the location,
time-of-day (ToD) and time-of-year (ToY) from unseen images. Our GeoTimeCLIP method consists
of three encoders: Image Encoder (V), Location Encoder (L ), and Time Encoder (T ) as shown
in Figure. 1. Both geo-localization and time prediction are framed as a retrieval approach. Given
a query image from the test gallery IQ ∈ Stest, we compute an image embedding, V Q = V(IQ),
using a pre-trained Vision Transformer. Similarly, given a gallery of latitude-longitude pairs, and a
gallery of timestamps, we respectively compute galleries of location embeddings LQ

k = L(GQ
k ) and

time embeddings TQ
k = T (DQ

k ). In order to predict the location and time, the image embedding is
compared against both galleries. The GPS and capture-time with the highest similarity to the image
are selected as predictions.

A fundamental prerequisite for retrieval is the alignment of image, location, and time modalities
within a shared multimodal embedding space. To achieve this, our framework is optimized using
two multimodal alignment objectives: (1) Image-Location alignment, and (2) Image-Time alignment.
Furthermore, to capitalize on large-scale visual pretraining, we employ the pretrained CLIP ViT-
L/14 as our image encoder, projecting it into our shared embedding space using a trainable 2-layer
multi-layer perceptron (MLP).

3.1 IMAGE-LOCATION ALIGNMENT

We adopt GeoCLIP for the image-location modality alignment. Given a latitude-longitude pair Gi,
it first uses Equal Earth Projection (EEP) to mitigate the distortion of the standard GPS coordinate
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Figure 2: (a) Proposed Temporal Metric Learning based loss Ltime: We obtain the Image-
similarity matrix by taking the cosine distance between the image and time embedding of the all
instances of the batch. We obtain Target distance matrix by computing the toroidal distance of time
of each instance pairs. As shown in the red highlighted box, we take the ith row of both matrices and
normalize them using the softmax function σ(·) and 1−σ(·) respectively, resulting in two probability
mass functions pi and qi. The loss is then given by the KL-divergence between pi and qi. (b) Our
proposed distance metric δi,j : Assume we have two normalized month-hour pairs D′

i = (θi, ϕi)
and D′

j = (θj , ϕj). Since month and hours are periodic, they repeat themselves infinitely in both
directions of the θ-ϕ plane. Using the ℓ2 distance overestimates the real distance between the two
times, but our proposed time distance δi,j is able to provide a correct estimate by considering the
minimum distance between D′

i and the periodic copies of D′
j .

system and provide a more accurate representation G′
i. Then, Random Fourier Features (RFF) are

used to map the 2D representation into a rich high-dimensional representation at three scales (M )
using projection matrices γ(·) with different frequencies σi ∈

{
20, 24, 28

}
. Lastly, the RFFs are

passed to a set of MLPs fi and added together, forming a single multi-scale feature vector. This can
be mathematically expressed as the following equation:

Li = L (Gi) =
M∑
i=1

fi(γ(EEP (Gi), σi)). (1)

Next, to compute the image-location contrastive loss, we consider a set of P augmented image Vij

and location Lij embeddings (j ∈ 1, . . . , P ) and S additional location embeddings L̃k (k ∈ 1, . . . , S)
stored in a continually updated dynamic queue of size S. For the batch with size B and temperature
τ the loss is given by:

Lloc = −
N∑
i=1

P∑
j=1

log

(
exp(Vij · Lij/τ)∑B

k=1 exp(Vkj · Lkj/τ) +
∑S

k=1 exp(Vkj · L̃k/τ)

)
. (2)

3.2 IMAGE-TIME ALIGNMENT

Time representation: The capture time of an image is usually a Unix timestamp, an integer tracking
the seconds (or milliseconds) elapsed since January 1, 1970. We discard the year information from
the timestamp, as predicting the year is beyond the scope of this work, and instead focus on Time-
of-Year (ToY, i.e., month) and Time-of-Day prediction (ToD, i.e., hour). Both ToY and ToD are
cyclical, with periods of 12 months and 24 hours, respectively. To convert the Unix timestamp Ui

into a time representation that focuses on the months and hours, we transform it into a date tuple
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Di = unix2tuple(Ui) = (mi, di, Hi,Mi, Si) with the month, day, hour, minute, and second.
From this tuple, we then compute a new time representation comprised of the normalized cyclic
month-hour pair D′

i = (θi, ϕi) using

θi =
1

12

(
(mi − 1) +

(di − 1)

D(mi)

)
, ϕi =

1

24

(
Hi +

Mi

60
+

Si

3600

)
, (3)

where D(mi) is the number of days in month mi. We then convert a Unix timestamp to a normalized
cyclic month-hour pair as D′

i = unix2cyclic(Ui).

Time encoding: By representing time as a pair of continuous numbers, the problem of time prediction
becomes similar in nature to geo-localization. Instead of retrieving the latitude-longitude pair with
the highest similarity, we now want to retrieve a month-hour pair. Our time encoder (T ) follows the
exact same architecture as the location encoder (L ). Similar to Eq. 1, time embedding is obtained
from the proposed time representation from the following equation:

Ti = T (Ui) =

M∑
i=1

fi(γ(unix2cyclic(Ui), σi)). (4)

Proposed Temporal Metric Learning: For location, the visual features change significantly due
to differences in landmarks, resulting in the visual embeddings not maintaining a smooth transition
with the distance in location embeddings. For instance, two neighborhoods in the same city might
appear markedly different. Therefore, formulating standard contrastive objectives with positives
and negatives is appropriate for location-image alignment (Eq 2). However, visual cues vary more
gradually over time. Consequently, treating two samples that are temporally close as negatives can
significantly hinder learning. This makes defining clear positives and negatives, in regular contrastive
loss, challenging for time-image alignment. Motivated by these considerations, we propose a metric-
learning based objective called Temporal Metric Learning, which accounts for the smooth and cyclic
nature of time by matching the similarity of instances according to their temporal distance.

Considering a mini batch with a set of image embeddings {Vi | i ∈ {1, 2, . . . , B}} and a set of time
embeddings {Ti | i ∈ {1, 2, . . . , B}}. Instead of defining a set of positive and negative pairs for each
embedding, we assign soft targets defined by a distance function between the time associated to the
image and to the time embeddings. Since months and hours are cyclical, using the regular ℓ2 distance
between two normalized month-hour pairs (θi, ϕi) and (θj , ϕj) in an Euclidean space can result in
overestimated distance values as shown in Figure. 2(b). Instead, we map the points into a toroidal
manifold, now the new distance δi,j becomes:

δi,j =
√
min(1− |θi − θj |, |θi − θj |)2 +min(1− |ϕi − ϕj |, |ϕi − ϕj |)2. (5)

Then, for each anchor image embedding Vi, we compute a vector pi with the normalized cosine
similarity scores with respect to all the time embeddings Tj in the batch. Similarly, we also compute
another vector qi with the normalized time distances between the anchor time and the other times in
the batch.

pi =

{
pj | pj =

exp (Vi · Tj/τ)∑B
k=1 exp (Vi · Tk/τ)

, j ∈ {1, . . . , B}

}
,

qi =

{
qj | qj = 1− exp (δi,j)∑B

k=1 exp (δi,k)
, j ∈ {1, . . . , B}

}
.

(6)

Since all the elements of pi and qi add up to one, they essentially represent probability mass functions.
Thus, we can define the image-time contrastive loss by using the mean KL-divergence for all samples
in the batch Ltime =

1
B

∑B
i=1 KL(pi||qi). Our overall training objective is adding both alignment

objectives Ltime and Lloc.

Inference: After training the model, the image, location and time modalities are aligned into the
same feature space. Thus, in order to predict the location and time-of-capture of a query image
IQ, we need to compute the cosine similarity between its embedding with the embeddings from the
location and time galleries. Then, the predicted location and time are the samples of the galleries
with the highest cosine similarity. Please see Supplementary Section B.
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4 EXPERIMENTS

Datasets and evaluation details: For training, we use two existing datasets: MediaEval Placing
Tasks 2016 (MP-16) (Larson et al., 2017) and Cross-View Time (CVT) (Salem et al., 2020). MP-16
consists of 4.72 Million images from Flickr annotated only with GPS coordinates. CVT originally
consists of 206k geo-tagged smartphone pictures from the Yahoo Flickr Creative Commons 100
Million Dataset (Thomee et al., 2016) and 98k images from static outdoor webcams of the SkyFinder
Dataset (Mihail et al., 2016).

Geo-localization performance is evaluated by measuring the geodesic distance between the real and
predicted GPS coordinates, and then computing the ratio of images that are correctly predicted given
five different distance thresholds (1 km, 25 km, 200 km, 750 km, and 2500 km). Time prediction
performance is evaluated by measuring the mean absolute month (Em) and hour (EH ) errors between
the real and predicted times. We also report an overall Time Prediction Score (TPS) to select a
single best time model. We compute the TPS based on our proposed cyclical time distance using the
following equation:

TPS = 1−

√
Ẽ2

m + Ẽ2
H

2
, (7)

where Ẽm and ẼH are the normalized time errors. Both have a range between [0, 1]; 0 represents a
perfect prediction and 1 indicates a maximum error of half the period of the respective time scale.
Please refer to Supplementary Sections C to E for more details about the dataset, architecture and
training protocol.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS IN TIME PREDICTION

We present our time prediction results in Table 1. Given the significant reproducibility challenges in
previous time prediction works (see Supplementary Section F), we selected two previous methods as
baselines that provide a fair comparison with GeoTimeCLIP. The first baseline is the triple encoder
architecture by Zhai et al. (2019), which is the most similar to our approach. Although the authors
do not provide the source code, model weights, or exact dataset splits necessary for replication,
they offer a comprehensive description of their protocols, which we strive to follow closely. The
second baseline is Padilha et al. (2022), chosen due to its more recent publication, the availability of
source code, and its use of the CVT dataset for training, similar to our work. The main challenge,
however, is that they do not provide the cross-camera split of CVT, which is the main focus of our
evaluation. Additionally, while they only present qualitative results for time prediction, we extend this
to quantitative evaluation to facilitate comparison. Both Zhai et al. (2019) and Padilha et al. (2022)
use images and geo-locations as inputs, whereas our method relies solely on images. Furthermore,
we introduce a third, more robust baseline, TimeCLIP, which uses only the image and time encoders
from GeoTimeCLIP. This model is akin to GeoCLIP but focuses exclusively on time prediction. Our
experiments demonstrate that GeoTimeCLIP achieves lower errors for month and hour predictions
compared to all baselines, without the need for additional metadata. Moreover, training a model for
both time prediction and geo-localization simultaneously results in richer time representations. In
Figure 3, we provide two sample predictions from our model on images from the SkyFinder dataset,
showcasing its capabilities in both time prediction and geo-localization.

4.2 ABLATION STUDIES

In the following section we conduct further experiments to show the effect of our proposed Temporal
Metric Loss, as well as the robustness of GeoTimeCLIP against limited training data and noisy time
annotations. We refer the reader to Supplementary Section G.1 for additional experiments using
different time encoders and ToY scales.

Effect of the loss function for time prediction: We also experiment with different loss functions
for time. The first approach uses a simple CLIP-based loss (Radford et al., 2021). Second, we
tried the same loss used in the geo-localization contrastive loss with a dynamic queue and a false
negative mask to remove the samples close to the anchors, given a specified threshold. Third, we
use the Rank-N-Contrast loss proposed by Zha et al. (2024), which is specifically designed to tackle
regression problems by contrasting samples against each other by ranking them according to a
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Table 1: Zero-shot time prediction on the unseen
cameras of the SkyFinder dataset. The * indicates
methods that we trained ourselves, closely ad-
hering to the protocols outlined by the original
authors.

Method Month Hour TPS
Error Error

Random guess 2.97 3.96 57.93
Zhai et al. (2019)* 2.46 3.18 65.48
Salem et al. (2022)* 1.62 3.61 71.42
TimeCLIP 1.52 2.84 75.49
GeoTimeCLIP 1.40 2.72 77.00

Table 2: Ablations for time prediction perfor-
mance with different loss functions. L2 refers
to the euclidean distance, while cyclic refers to
the the distance over the toroidal manifold.

Loss Month Hour TPS
Function Error Error
CLIP 1.71 3.51 71.12
RnC 1.87 2.96 71.89
SimCLR 1.50 3.4 73.28
TML (L2) 1.56 2.69 75.73
TML (Cyclic) 1.40 2.72 77.00

GPS: (41.7025, -86.2378)
Time: Dec 18, 1:50 PM

GPS: (41.7011, -86.2388) Time: Jan 18, 11:58 AM

GPS: (50.9780, 11.0287)
Time: Feb 12, 3:04 PM

GPS: (51.4824, 11.9713) Time: Mar 2, 1:03 PM

(a) (b) (c)

Figure 3: (a) Sample images for two cameras of the SkyFinder test set with the ground truth location
and capture time. (b) Spatial distribution of the predicted GPS coordinates colored by the cosine
similarity between the location and image embeddings. (c) Temporal distribution of the predicted
month and hour, weighted by the cosine similarity between the time and image embeddings.

distance metric. Lastly, we present results using our novel loss function replacing the cyclic time
distance with the regular ℓ2 distance. The results, show in Table 2, show that our proposed loss
significantly outperforms all other losses in month prediction, and also outperforms all but the variant
without cyclic distance on hour prediction. This small difference might me attributed to the fact that
the dataset is biased towards daytime. Thus, hours don’t see a major benefit from using a cyclic
distance.

Table 3: Ablations for robustness to limited data
for time-prediction.

Data Month Hour TPS
Availability Error Error
100% 1.40 2.72 77.00
50% 1.69 2.83 74.02
10% 1.70 2.94 73.51
5% 1.89 2.86 72.07

Table 4: Ablations for robustness to label
noise for time-prediction.

Label Month Hour TPS
Noise (σ) Error Error
0 1.40 2.72 77.00
1 1.52 2.71 76.00
2 1.75 2.74 73.81
3 2.16 2.72 69.92

8
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Experiments on the robustness of GeoTimeCLIP: Existing publicly available datasets with time-
of-capture metadata either have a small number of samples or noisy timestamps. Furthermore, even
fewer datasets have fully open sources licenses, restricting their use to research purposes. Taking into
account these issues, we explore the robustness of our model on settings with limited data availability
as well as injected timestamp noise. For data availability, we progressively remove training samples
from the geo-localization and time prediction datasets going from 100% to 5% in four steps. Similarly,
for the noisy setting, we inject Gaussian noise into the time labels with increasing standard deviations,
going from 0 to 3 months and hours. In Tables 3 and 4, we show that our model is surprisingly robust
against both types of perturbations. Even with only 10% of the data (12.5k samples), the model is
still able to learn meaningful time representations, with increased time errors of 0.3 months 0.22
hours. In the noisy labels setting, GeoTimeCLIP is able to handle noise levels up until σ = 2 hours
and months without a major drop in performance. For setting with σ = 3, the error of the month
prediction task increases significantly, but the time error stays constant.

4.3 COMPOSITIONAL IMAGE RETRIEVAL

We also explore the capability of our model for image retrieval: given a pair of query GPS coordinates
GQ and timestamps UQ from the SkyFinder test set, we want to retrieve an image that corresponds
to the specific location and time. We explore a simple method by averaging the query location LQ

and time TQ embeddings to generate a multimodal spatio-temporal embedding, inspired by similar
approaches by Shvetsova et al. (2022a) and Swetha et al. (2023) between video, audio and text
modalities. The spatio-temporal embedding is then compared against a gallery of image embeddings
and we select the one with the highest cosine similarity. We show qualitative results in Figure 4.

GPS: (38.4579, -109.8201)
Time: Feb 1, 8:39 AM

GPS: (38.4579, -109.8201)
Time: Feb 7, 7:39 AM

GPS: (46.91670, 7.4670)
Time: May 4, 7:06 PM

GPS: (46.91670, 7.4670)
Time: Jul 17, 5:06 PM

(a) (b)

Figure 4: Illustrating compositional L+ T → I retrieval with GeoTimeCLIP. Each example Left:
query location and query time, showing actual image. Right: retrieved image for given query location
and time.

4.4 QUALITATIVE RESULTS USING TEXT QUERIES

We also investigate the ability of GeoTimeCLIP of using the pretrained CLIP text encoder to retrieve
times and locations mentioned in the text. For this task, we follow GeoCLIP’s approach and replace
the image backbone by a text backbone, keeping the trained MLP, location encoder and time encoder.
For each text, we create a text embedding, pass it through the MLP and compare it agains the location
and time galleries. We then create spatial and temporal distributions of the top retrieved samples
for each modality, as shown Figure 5, where we see that not only is our model able to pinpoint the
location with high accuracy, but also create meaningful time distributions to words such as ”summer”
and ”evening” that do not explicitly mentioned the time.

4.5 COMPARISON WITH STATE-OF-THE-ART METHODS IN GEO-LOCALIZATION

Table 5 presents the geo-localization performance of our model compared to state-of-the-art methods.
Overall, GeoTimeCLIP delivers competitive results against state-of-the-art models like GeoCLIP and
PIGEOTTO on the Im2GPS3k dataset. While Img2Loc achieves the lowest errors on Im2GPS3k,
its performance is highly dependent on the choice of MLLM, as demonstrated by the significant
difference between LLaVA and GPT-4V. Notably, GeoTimeCLIP outperforms the LLaVA-based
Img2Loc variant, despite using at least 15 times fewer parameters.

On the more challenging GWS15k dataset, GeoTimeCLIP achieves state-of-the-art performance
at the 1 km scale and ranks second across all other scales. Unlike Im2GPS3k, which consists

9
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Figure 5: Qualitative examples of geo-localization and time-of-capture prediction using text queries.
GeoTimeCLIP is capable of providing good estimates of the time and GPS coordinates to each of the
text queries, even when time is not explicitly specified.

Table 5: Geo-localization results on Im2GPS3k & GWS15k datasets, reported on the ratio of
samples that are correctly predicted under different distance thresholds. GeoTimeCLIP achieves
comparable performance to other state-of-the-art methods that focus exclusively on geo-localization
for all scales.

Method
Im2GPS3k GWS15k

Street City Region Country Continent Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km 1 km 25 km 200 km 750 km 2500 km

[L] kNN, sigma=4 (Vo et al., 2017) 7.2 19.4 26.9 38.9 55.9 - - - - -
PlaNet (Weyand et al., 2016) 8.5 24.8 34.3 48.4 64.6 - - - - -
CPlaNet (Seo et al., 2018) 10.2 26.5 34.6 48.6 64.6 - - - - -
ISNs (Muller-Budack et al., 2018) 10.5 28 36.6 49.7 66.0 0.1 0.6 4.2 15.5 38.5
Translocator (Pramanick et al., 2022) 11.8 31.1 46.7 58.9 80.1 0.5 1.1 8.0 25.5 48.3
GeoDecoder (Clark et al., 2023) 12.8 33.5 45.9 61 76.1 0.7 1.5 8.7 26.9 50.5
GeoCLIP (Vivanco Cepeda et al., 2024) 14.1 34.5 50.7 69.7 83.8 0.6 3.1 16.9 45.7 74.1
PIGEOTTO (Haas et al., 2024) 11.3 36.7 53.8 72.4 85.3 0.7 9.2 31.2 65.7 85.1
Img2Loc (LLaVA) (Zhou et al., 2024) 8.0 23.4 29.9 40.1 51.1 - - - - -
Img2Loc (GPT-4V) (Zhou et al., 2024) 17.1 45.1 57.9 72.9 84.9 - - - - -
GeoTimeCLIP 14.4 33.1 49.4 68.4 83.5 0.9 3.48 17.1 47.2 74.6

mainly of images of famous landmarks, requiring models to memorize specific locations, GWS15k
includes images randomly distributed across the globe. The majority of these images depict generic
locations, offering minimal location-specific information beyond broader contextual cues, such
as architectural styles and vegetation. This suggests that GeoTimeCLIP may be learning more
generalizable location features compared to GeoCLIP, potentially at the expense of its ability to
memorize the visual characteristics of specific landmarks. On this dataset, PIGEOTTO obtains the
best overall performance, likely benefiting from the extensive use of additional metadata used during
training.

5 CONCLUSION

We introduce GeoTimeCLIP, a novel framework for jointly predicting the time and location of an
image using a retrieval approach. GeoTimeCLIP not only shows competitive performance compared
to state-of-the-art geo-localization models but also introduces the capability of precise time-of-
capture predictions. A key innovation of our approach is the novel temporal metric loss, which
significantly outperforms traditional contrastive losses in time prediction tasks. Furthermore, our
results demonstrate that GeoTimeCLIP extends beyond standard prediction and geo-localization tasks.
It supports additional functionalities like compositional image retrieval, as well as text-to-location
and text-to-image retrieval, indicating a profound understanding of the interplay between images,
locations, and time.
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A APPENDIX
We organize the supplementary as follows. In Section B we present the inference pipeline of our
framework, followed by training and implementation details in Section C and dataset details in
Section E.

B MODEL INFERENCE

Figure 6: Our framework consists of a model that can predict both the location and capture-time of
an image at the same time using a retrieval approach. Given a query image IQ, a gallery of GPS
coordinates and a gallery of timestamps, GeoTimeCLIP maps the three modalities into a shared feature
space using an image, location and time encoder. The query image embedding V Q is compared
against a set of location embeddings LG and time embeddings TG. The GPS and timestamp with the
highest cosine similarity are selected as the predictions of our model.

Figure 6 represents the overview of our approach.

C IMPLEMENTATION DETAILS
Following GeoCLIP, the backbone of the image encoder is a pretrained ViT-L/14 from CLIP and the
MLP consists of two fully connected layers with ReLU activation function and dimensions 768 and
512 respectively. We use the same architecture for the time and location encoders as GeoCLIP. Both
employ three RFF positional encoding layers, mapping the 2-dimensional GPS to a vector with 512
dimensions. The standard deviation values used to sample the RFF are σi ∈ {20, 24, 28}. The MLPs
from the time and location encoder have three hidden layers with 1024 dimensions and a projection
layer to map the final embeddings into a feature space of 512 dimensions. In the location encoder,
we use a dynamic queue that stores the last 4096 seen locations, but we don’t use it for time. The
GPS coordinates and times are augmented by adding Gaussian noise with standard deviation of 150
meters for the in-batch GPS, 1500 meters for the GPS queue, 0.15 months and 0.15 hours for time.
We perform two augmentations for each image in the training set using random resized crops of size
224, random horizontal flipping and image normalization.

D TRAINING PROTOCOL

GeoTimeCLIP is trained for 20 epochs using a cosine decay scheduler, with learning rate values
ranging from αmax = 3 × 10−5 to αmin = 3 × 10−7. We use Adam optimizer with coefficients
β1 = 0.9, β2 = 0.999 and ℓ2 penalty of 1× 10−6. For the contrastive losses, we use two learnable
temperature parameters that are optimized during training. The batch size B is set to 512 for all
experiments, and the models are trained on a machine with 12 CPU cores and a NVIDIA RTX A6000
GPU.
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E DATASET DETAILS

We apply two filters to remove samples from the CVT that don’t provide meaningful temporal
information. In particular, we remove all night-time and indoor images, since they often have
inconsistent temporal cues. To remove night images, we estimate the sunrise and sunset times from
the date, latitude and longitude using the General Solar Position algorithm, and remove all samples
before sunrise or after sunset. Then, for indoor images, we leverage a CNN model pretrained on
the Places365 Dataset Zhou et al. (2017). In general, night images often have inconsistent artificial
lighting, more noise or specialized cameras such as night vision. Indoor images also have artificial
lighting and controlled temperature, making it difficult to estimate the time or date.

Regarding the levels of noise in the dataset, the SkyFinder subset consists of images with accurate
time estimates, since they were collected from calibrated outdoor webcams. However, we observed
that CVT has a moderate amount of noisy labels. Thus in order to train a model that can accurately
predict the time, we need both datasets in the training set.

For evaluating the models, we employ a subset of unseen SkyFinder cameras, as well as two geo-
localization datasets used by other state-of-the-art methods for evaluation: Im2GPS3k and GWS15k.
Similar to GeoCLIP, we create a 100k GPS gallery to evaluate the model on Im2GPS3k, a 500k GPS
gallery for GWS15k, and a 100k time gallery for the SkyFinder test set. The GPS galleries are created
by sampling GPS coordinates from the MP-16 dataset, while the time gallery is created by sampling
times from the combined CVT and SkyFinder training sets.

F LIMITATIONS AND REPRODUCIBILITY CHALLENGES OF EXISTING TIME
PREDICTION METHODS

Most previous time prediction methods suffer from a lack of standardization in their training and
evaluation protocols. For instance, Zhai et al. (2019) use subsets of the AMOS (Jacobs et al., 2007;
2009) and YFCC100M (Thomee et al., 2016) datasets, without providing the source code or exact
dataset splits necessary to replicate their experiments. Additionally, their time prediction evaluation
relies on cumulative error plots, but they do not provide a single numerical value summarizing the
performance of their model. Similarly, while Salem et al. (2020) and Padilha et al. (2022) offer
datasets and code, they do not include the cross-camera split for zero-shot time prediction—a more
challenging and informative evaluation protocol that we adopt. Moreover, their results are presented
only qualitatively, though they can be adapted for obtaining quantitative results. Salem et al. (2022)
also omit critical details such as dataset splits for the SkyFinder dataset, do not clarify whether their
results corresponds to same- or cross-camera evaluation, and fail to provide the source code for
replication. Their use of top-k accuracy as an evaluation metric further complicates direct comparisons.
Notably, none of these methods, with the exception of Salem et al. (2020) and Padilha et al. (2022),
compare their time prediction performances against each other, and even these comparisons are only
qualitative. Other time prediction approaches, including those by Tsai et al. (2016), Li et al. (2017),
Lalonde et al. (2012), and Hold-Geoffroy et al. (2017), also face similar challenges, such as a lack
of available source code, missing datasets, or datasets that are no longer hosted online. This lack of
standardization prevents consistent benchmarking across different methods.

G ADDITIONAL ABLATIONS

G.1 TIME-OF-YEAR SCALE

Time-of-year (ToY) can be represented at either a monthly or daily scale. In practice, the choice of
time scale should not significantly affect the results, as the value is normalized before being passed
to the time encoder, T (·). However, two approaches are available. The first approach converts the
integer month mi and day di into a real-valued month, normalized over a 12-month period, as shown
in Equation 3. The second approach represents ToY as the number of days elapsed since the start of
the year, normalized over 365 days (assuming no leap years in our dataset). This representation is
defined as:

θi =
1

365

(
di − 1 +

i∑
k=1

D(mk − 1)

)
,
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Table 6: Ablations for time prediction perfor-
mance using monthly and daily scales.

ToY Month Hour TPS
Scale Error Error
daily 1.53 2.71 75.91
monthly 1.40 2.72 77.00

Table 7: Ablations for time prediction perfor-
mance using different time encoders.

Time Month Hour TPS
encoder Error Error
Circular decomp. 1.59 2.86 74.80
Time2Vec 1.56 2.62 75.99
RFF 1.40 2.72 77.00

where D(mk) is the number of days in month mk, and it is assumed that D(0) = 0. In Table 6,
we empirically show that using a monthly scale for ToY representation results in slightly better
performance. However, we attribute this improvement to statistical noise rather than the time
representation method itself.

G.2 TIME REPRESENTATION

Motivated by the cyclical nature of time, Mac Aodha et al. 2019 used circular decomposition to
wrap the temporal input to their geographical prior encoder, resulting in similar embeddings for dates
that are close to the start and end of the year, such as December 31st and January 1st. To achieve
this, for each dimension l of the temporal input x, they perform the mapping [sin(πxl), cos(πxl)],
resulting in two numbers for each dimension.

Time2Vec (Kazemi et al., 2019) is a method for encoding time that captures both periodic and non-
periodic patterns. It transforms scalar time values into a vector of size k+1. The first element models
linear, non-periodic trends, while the remaining elements are defined by a periodic activation function
(e.g., sine), capturing repeating temporal behaviors like daily or weekly cycles. The representation is
defined as:

t2v(τ)[i] =

{
ωiτ + ϕi if i = 0,

F (ωiτ + ϕi) if 1 ≤ i ≤ k,

where F is a periodic activation function, typically sin, and ωi and ϕi are learnable parameters
representing the frequency and phase shift, respectively.

H ADDITIONAL QUALITATIVE RESULTS

We show additional qualitative results of our method in figures 7 and 8. We include a failure case, on
the last row of figure 8, where the time error is high because of the presence of fog in the image.

Sunrise at the Pyramids 
of Giza during May

Morning during Spring at 
the Great Wall of China

Picture taken in Sydney, at 
noon during September

Photo of the Colosseum 
during Noon in April

Figure 7: Additional qualitative examples of geo-localization and time-of-capture prediction using
text queries.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

GPS: (41.7025, -86.2378)
Time: Jul 5, 7:20 AM

GPS: (41.7011, -86.2389) Time: Jun 21, 6:14 AM

GPS: (50.9780, 11.0287)
Time: Dec 2, 10:04 AM

GPS: (51.4824, 11.9713) Time: Jan 23, 11:50 AM

GPS: (46.9170, 7.4670)
Time: Jan 2, 3:06 PM

GPS: (47.2058, 8.1901) Time: Jan 10, 3:18 PM

(a) (b) (c)

GPS: (29.2731, -94.8507)
Time: Jul 16, 7:42 AM

GPS: (29.2743, -94.8533) Time: Jun 13, 7:14 AM

GPS: (38.4579, -109.8201)
Time: Nov 22, 3:09 PM

GPS: (39.1397, -109.0421) Time: Jan 8, 12:33 PM

Figure 8: (a) Additional sample predictions for three cameras of the SkyFinder test set with the ground
truth location and capture time. (b) Spatial distribution of the predicted GPS coordinates colored by
the cosine similarity between the location and image embeddings. (c) Temporal distribution of the
predicted month and hour, weighted by the cosine similarity between the time and image embeddings.
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Figure 9: Convergence of the geo-localization loss (Lloc) and the Time Metric Loss (Ltime) during
training.

I TRAINING STABILITY

Maintaining training stability requires batches with consistent temporal and geographical distributions,
which can be challenging with smaller batch sizes. To address this, we use batches of 512 randomly
sampled images that span diverse locations, hours, and months. As shown in Figure 9, our batching
strategy ensures smooth convergence of both the geo-localization loss (Lloc) and the time metric loss
(Ltime).

J GEOTIMECLIP PREDICTIONS ACROSS DIFFERENT LATITUDES

Figure 10 compares time prediction examples from GeoTimeCLIP and TimeCLIP, a baseline model
trained solely with the visual (V) and temporal (T ) encoders. The results suggest that TimeCLIP
struggles more with hour predictions at higher latitudes (40° to 70°) compared to GeoTimeCLIP. In
contrast, at moderate latitudes (-40° to 40°), both models exhibit more consistent hour prediction
errors, though GeoTimeCLIP demonstrates superior performance in month prediction.

K SIMILARITY MAPS

To gain insights into the features that GeoTimeCLIP leverages for its geo-temporal predictions, we
create attention maps by computing the cosine similarity between the CLIP class embedding and
patch embeddings after passing through the image encoder’s MLP. These attention maps allow us to
identify which regions of an image are most relevant to the model’s predictions.

Figure 11 showcases attention maps for three example images. The highlighted regions correspond to
the features that GeoTimeCLIP considers most significant when predicting time and location:

• Sky and Time of Day (Figure 11a): In this example, the attention is primarily focused on the
sky. The color and lighting conditions in the sky serve as strong indicators of the time of
day, providing critical cues for time-of-day predictions.

• Foliage and Seasonal Changes (Figure 11b): In the second example, the model shifts its
focus to the leaves and branches of trees. Seasonal variations in foliage may play a significant
role in estimating the time-of-year.

• Architectural Features and Geographical Context (Figure 11c): In urban scenes, the model’s
attention centers on buildings. Architectural styles can provide clues about the geographical
location of the image.
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Figure 10: Sample predictions where GeoTimeCLIP outperforms the TimeCLIP baseline across
different latitudes.
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Figure 11: Attention maps computed from GeoTimeCLIP’s image embeddings, highlighting geo-
temporal features like the sky, foliage, and buildings.

L ANALYSIS OF THE LEARNED EMBEDDING SPACE

One of the key motivations for GeoTimeCLIP is to align images, time, and location in a shared multi-
modal embedding space. This approach is inspired by prior works like GeoCLIP (Vivanco Cepeda
et al., 2024), SatCLIP (Klemmer et al., 2023), and CSP (Mai et al., 2023), which embed images
and GPS coordinates in shared spaces, as well as methods like ImageBind Girdhar et al. (2023),
LanguageBind (Zhu et al., 2023), and Everything At Once (Shvetsova et al., 2022b), which align
multiple modalities such as images, text, videos, and audio. Our work extends this idea to include
temporal information, showing in Table 1 that aligning these three modalities leads to improved time
prediction performance compared to using only images and time.

To explore the relationships between these modalities in the learned embedding space, we performed
Principal Component Analysis (PCA) on the embeddings. While PCA has limitations in fully captur-
ing the underlying structure of high-dimensional spaces, the results provide interesting qualitative
insights. Figure 12(a) presents the distributions of image, time, and location embeddings, appearing
in different subspaces. Figures 12(b) and 12(c) show more details about the relationship between
image and time embeddings. The image embeddings are clustered in the center, surrounded by time
embeddings. Notably, the directions of hours and months are well-defined: months are radially
distributed, while hours are linearly distributed in a perpendicular direction. For location embeddings
(Figures 12(d-e)), even though the patterns are less pronounced, the embeddings at different latitudes
and longitudes still form distinct clusters in the feature space.

M ABLATIONS WITH DIFFERENT IMAGE BACKBONES

To evaluate the impact of different image embeddings on time prediction performance, we conducted
ablation studies using three backbones: DINOv2-L (Oquab et al., 2023), OpenCLIP ViT-G (Ilharco
et al., 2021), and OpenAI’s original CLIP ViT-L (Radford et al., 2021). For these experiments,
we used the TimeCLIP model, which incorporates only the image and time encoders. The results,
summarized in Table 8, indicate that OpenAI’s CLIP ViT-L achieves the lowest errors for both hours
and months, as well as the highest Time Prediction Score (TPS).

Backbone Parameters Month Error Hour Error TPS
DINOv2 ViT-L/14 0.3B 2.10 3.25 68.71
OpenCLIP ViT-G/14 1.8B 1.57 2.94 74.65
OpenAI CLIP ViT-L/14 0.2B 1.52 2.84 77.54

Table 8: Comparison of time prediction performance using different backbones.
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Figure 12: PCA plots of the embedding spaces in GeoTimeCLIP. (a) Distribution of the image, time
and location embeddings. (b)-(c) Distribution of the image and time embeddings, colored by the
time-of-day and time-of-year respectively. (c)-(d) Distribution of the image and location embeddings,
colored by the latitude and longitude respectively.
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