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ABSTRACT

The application of Vision Transformers (ViTs) to new domains where an inductive
bias is known but only small datasets are available to train upon is a growing
area of interest. However, training ViT networks on small-scale datasets poses a
significant challenge. In contrast, Convolutional Neural Networks (CNNs) have an
architectural inductive bias enabling them to perform well on such problems. In this
paper, we propose that the architectural bias inherent to CNNs can be reinterpreted
as an initialization bias within ViT. Specifically, based on our theoretical findings
that the convolutional structures of CNNs allow random impulse filters to achieve
performance comparable to their learned counterparts, we design a “structured ini-
tialization” for ViT with optimization. Unlike conventional initialization methods
for ViTs, which typically (1) rely on empirical results such as attention weights in
pretrained models, (2) focus on the distribution of the attention weights, resulting
in unstructured attention maps, our approach is grounded in a solid theoretical
analysis, and builds structured attention maps. This key difference in the attention
map empowers ViTs to perform equally well on small-scale problems while pre-
serving their structural flexibility for large-scale applications. We show that our
method achieves significant performance improvements over conventional ViT ini-
tialization methods across numerous small-scale benchmarks including CIFAR-10,
CIFAR-100, and SVHN, while maintaining on-par if not better performance on
large-scale datasets such as ImageNet-1K.

1 INTRODUCTION

Vision Transformers (ViTs) have shown remarkable performance with large-scale training data.
However, their performance significantly drops when applied to small-scale datasets. To close this
performance gap, various methods have been proposed, including self-supervised pre-training in
large-scale datasets (Dosovitskiy et al., 2021; Touvron et al., 2021), advanced data augmentation
techniques (Yun et al., 2019; Cubuk et al., 2020), and incorporation of convolutional layers (Wu et al.,
2021; Liu et al., 2021; Yuan et al., 2021; Li et al., 2023; Dai et al., 2021). Recently, Zhang et al.
(2022) explored leveraging pretrained weights to initialize ViTs. Building on this pioneering idea,
researchers found that a simple network weight initialization can improve ViT training on small-scale
datasets without altering ViT architectures. In particular, Trockman & Kolter (2023) developed
a “mimetic” method that mimics the distribution of pretrained ViT weights during initialization.
Nevertheless, this distribution relies on the observations from pretrained models with the same
architectures. Similarly, Xu et al. (2024) proposed to directly sample weights from pretrained large-
scale models, while it is not practical to pretrain a large model before deploying a small-scale one. In
conclusion, these initialization strategies (1) focus more on replicating the distribution of attention
weights rather than the structure of attention maps, and (2) rely on pretraining with large-scale
datasets, which are often not readily available for many domain-specific applications.

In this work, we introduce structured initialization for ViTs, which focuses on structuring attention
maps and does not rely on any form of pretraining with large-scale models. This initialization strategy
is grounded in our theoretical findings that the structural bias within randomly initialized depth-wise
(spatial mixing) convolutions is the key factor enabling comparable performance (Cazenavette et al.,
2023) to their learned counterparts in ConvMixer (Trockman & Kolter, 2022) and ResNet (He et al.,
2016) frameworks. We further propose to use random impulse convolution kernels as the initialization
structure for attention maps, as shown in Fig. 1. In detail, we use a simple yet efficient optimization
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Figure 1: Illustration of conventional generative initialization and structured initialization (ours)
strategies for the weights Q and K of the attention map in transformers. Conventional generative
initialization involves sampling parameters Q and K from certain distributions, such as Gaussian
or Uniform, resulting in unstructured initial attention maps. In contrast, our structured initialization
strategy imposes constraints on the structure of the initial attention maps, specifically requiring them
to be random impulse filters. The initialization of parameters Q and K is computed based on this
requirement on attention maps. Note that in both attention maps and random impulse filters, the pink
cells indicate ones, while the gray cells represent zeros.

to solve for attention weights such that the resulting attention maps are structured as convolution
filters. Benefiting from locality assumptions in CNNs, our method enables effective training for ViTs
on small-scale datasets. Additionally, different from methods that directly introduce convolutions
into attention (Yuan et al., 2021; Li et al., 2023; Dai et al., 2021), our method does not change the
architecture of ViTs, maintains the inherent structural flexibility in ViTs.

To conclude, our paper makes the following contributions:

– We build a conceptual link between the structural bias in CNNs and initialization in ViTs, and
provide a solid theoretical analysis for the effectiveness of using random convolution filters as
initialized attention maps.

– To the best of our knowledge, we are the first to focus on the structure of attention maps for ViT
initialization and propose embedding the structural inductive bias of CNNs as an initialization
bias within ViTs without changing the Transformer architectures.

– We further demonstrate state-of-the-art performance for ViT training across various small-scale
datasets including CIFAR-10, CIFAR-100, and SVHN, while achieving competitive performance
on large-scale datasets such as ImageNet-1K.

2 RELATED WORK

Introducing inductive bias of CNN to ViT through architecture. Many efforts have aimed to
incorporate convolutional inductive bias into ViTs through architectural modifications. Dai et al.
(2021) proposed to combine convolution and self-attention by mixing the convolutional self-attention
layers. Pan et al. (2021) and Li et al. (2023) introduced hybrid models wherein the output of each
layer is a summation of convolution and self-attention. Wu et al. (2021) explored using convolution
for token projections within self-attention, while Yuan et al. (2021) demonstrated promising results by
inserting a depthwise convolution before the self-attention map as an alternate strategy for injecting
inductive bias. d’Ascoli et al. (2021) introduced gated positional self-attention (GPSA) to imply a
soft convolution inductive bias. All these efforts have been proven to be effective. However, these
techniques have a fundamental limitation—they aim to introduce the inductive bias of convolution
through architectural choices. Our approach, on the other hand, stands out by not requiring any
modifications of architecture. Such an approach offers several advantages as it: (i) exhibits data
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efficiency on small-scale datasets, (ii) retains the architectural freedom to be seamlessly applied to
larger-scale datasets, and (iii) gives an alternate theoretical perspective on how the inductive bias of
convolution can be applied within transformers.

Initializating ViT from pretrained weights. To date, the exploration of applying inductive bias
through initialization within a transformer is limited. Zhang et al. (2022) posited that the benefit of
pretrained models in ViTs can be interpreted as a more effective strategy for initialization. Trockman
& Kolter (2023); Trockman et al. (2022) recently investigated the empirical distributions of self-
attention weights, learned from large-scale datasets, and proposed a mimetic initialization strategy.
While this approach lies between structured and generative initialization, it relies on the pretraining
results of large models. Xu et al. (2024) directly sampled weights from pretrained large-scale models
as initialization for smaller models. This may be astonishing at first glance, but the sampled weights
must follow the distribution of these pretrained weights, which means this method is a special case of
mimetic initialization. A key difference in our approach is that our method does not require offline
knowledge of pretrained networks (mimetic or empirical). Instead, our initialized structure is derived
from theoretical analysis of convolution layers.

Convolution as attention. Since their introduction (Vaswani et al., 2017; Dosovitskiy et al., 2021),
the relationship between transformers and CNNs has been a topic of immense interest to the vision
community. Andreoli (2019) studied the structural similarities between attention and convolution,
bridging them into a unified framework. Building on this, Cordonnier et al. (2020) demonstrated that
self-attention layers can express any convolutional layers through a careful theoretical construction.
While these studies highlighted the functional equivalence between self-attention in ViTs and con-
volutional spatial mixing in CNNs, they did not delve into how the inductive bias of ViTs could be
adapted through this theoretical connection. In contrast, our work offers a simple insight: random
convolutional impulse filter can be effectively approximated by softmax self-attention.

3 WHY RANDOM FILTERS WORK?

Cazenavette et al. (2023) recently demonstrated remarkable performance of randomly initialized
convolution filters in ConvMixer and ResNet when solely learning the channel mixing parameters.
However, they failed to offer any insights into the underlying reasons. In this section, we provide a
theoretical analysis of how solely learning channel mixing can be sufficient for achieving reasonably
good performance. Our theoretical findings are significant as they establish a conceptual link between
the architecture of ConvMixer and the initialization of ViT, offering a deeper understanding of desired
properties for spatial mixing matrices. Without losing generality, we have omitted activations (e.g.,
GeLU, ReLU, etc.), bias, batch normalization, and skip connections in our equations for clarity.

Remark 1 Let us define the patch embeddings or intermediate layer outputs in ConvMixer as
X= [x1,x2, . . . ,xD], where D is the number of channels and N is the number of pixels in the
vectorized patch x∈RN . An interesting observation is the rank (stable rank, defined as

∑
σ2 / σ2

max)
of X is consistently much smaller than the minimum dimension min(N,D) of X, indicating a
significant amount of redundancy in patch embeddings or intermediate layer outputs in deep networks.

Let us define a 2D convolution filter as h∈Rf×f . In general, this kernel can be represented as a
circulant matrix H∈RN×N , such that h ∗x=Hx, where ∗ is the convolutional operator. The
relation between the convolutional matrix and convolution filters is explained in detail in Ap-
pendix B. A ConvMixer block TConv :RN×D→RN×D is composed of a spatial mixing layer
TConv

S :RN×D→RN×D and a channel mixing layer TConv
C :RN×D→RN×D, where TConv

S is de-
fined by a sequence of convolution filters H= [H1,H2, . . . ,HD]∈RD×N×N , Hi ∈RN×N , and
TConv

C is defined by a weight matrix W∈RD×D. With input X= [x1,x2, . . . ,xD]∈RN×D, one
ConvMixer block can be represented as

TConv
S (X;H) = [H1x1,H2x2, . . . ,HDxD], (1)

TConv
C (X;W) = XW, (2)

TConv(X) = TConv
C (TConv

S (X;H);W) = [H1x1,H2x2, . . . ,HDxD]W. (3)

Definition 1 For a set of vectors V = {vi}Ni=1, we say that V is M − k spanned if there exists a way
to split V into k non-overlapping subsets, such that each subset spans the same M -dimensional
space.
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Patch Embeddings Embedding Basis Convolution Filters

Figure 2: Illustration of why random spatial convolution filters are effective. Patch embeddings
X∈RN×D are typically rank-deficient and can be approximately decomposed to k basis. Meanwhile,
a linear combination of f2 linearly independent filters h can express any arbitrary filter in the filter
space Rf×f . Based on these two observations, we derive the inequality D≥ kf2 in Proposition 1.

Proposition 1 A ConvMixer block T consists of a spatial mixing layer TS with convolution filters
H and a channel mixing layer TC . Let D be the number of channels, k be the rank of input X, and
H be M − k spanned. For any T′ composed of T′

C and T′
S , where T′

S is defined by a H′ in the
M -dimensional space spanned by H, there always exists a channel mixing layer TC with weight W
such that T(X)=T′(X).

For simplicity, we include the full proof in Appendix A. Note that since H are convolution matrices,
their span lies in Rf×f instead of RN×N , where f is the kernel size. In practice, D≥ kf2, indicating
that randomly initialized spatial convolution kernels are f2− k spanned and satisfy Proposition 1.
Consequently, the trained results of T′

C and T′
S can be achieved by solely training the channel

mixing weights W of TC in T, while keeping a fixed spatial mixing layer TS . Hence the following
corollaries can be obtained, and Corollary 1 explains the phenomenon Cazenavette et al. (2023) found,
mentioned at the beginning of the section. The related experimental evidence is given in Sec. 5.5.

Corollary 1 Random initialized spatial convolution filters perform as well as trained spatial convo-
lution filters since the f2− k spanned condition in Proposition 1 is satisfied.

Corollary 2 Random impulse spatial convolution filters perform as well as trained spatial convolu-
tion filters since the f2− k spanned condition in Proposition 1 is satisfied.

Corollary 3 Spatial convolution filters with all ones (referred to as “box” filters) can only produce
averaging values since they are 1− k spanned.

4 STRUCTURED INITIALIZATION FOR ATTENTION MAP

4.1 EXPECTED INITIALIZED ATTENTION MAP STRUCTURE

ConvMixer and ViT share most components in their architectures. The gap in their performance on
small-scale datasets stems from their architectural choices regarding spatial mixing matrix. Although
depthwise convolution (ConvMixer) and multi-head self-attention (ViT) may appear distinct at first
glance, their underlying goal remains the same: to identify spatial patterns indicated by the spatial
mixing matrix. As defined in Sec. 3, similar to the spatial mixing step in ConvMixer defined in
Eq. (1), the spatial mixing step of multi-head attention can be expressed as

TViT
S (X;M)=[M1x1, . . . ,M1xd,M2xd+1, . . . ,M2x2d, . . . ,Mhx(h−1)d+1, . . . ,Mhxh∗d], (4)

where d represents the feature dimension in each head, typically set to D/h, with h being the number
of heads, and the matrices Mi for multi-head self-attention can be expressed as follows:

Mi = softmax(XQi K
T
i X

T ), (5)
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where Qi ,Ki ∈RD×d denote the attention weight matrices.

It is worth noting that in Eq. (1), the spatial matrices H are in convolutional structure, resulting in a
span of Rf×f instead of RN×N , despite each Hi having a size of N ×N . This structural constraint
ensures that CNNs focus on local features but struggle to capture long-range dependencies. In
contrast, the span of spatial matrices M in Eq. (4) is RN×N , allowing for greater learning capacity
without these limitations. However, a random initialized Q and K contain no structural information,
resulting in random matrices as depicted in the bottom left of Fig. 1.

Leveraging this insight, we propose to initialize the attention map for each head in ViT to a con-
volutional structure as denoted in the bottom right of Fig. 1. Our initialization strategy preserves
both the advantage of locality and the capacity to learn long-range information. For clarity and
brevity, the following discussions will focus only on one head of multi-head self-attention. Therefore,
from Eq. (4) and Eq. (1), our structured initialization strategy can be represented as

TViT
S (X;M) ≈ TConv

S (X;M)⇒Minit = softmax(XQinitK
T
initX

T ) ≈ H. (6)

Why using impulse filters? Usually, random convolution filters contain both positive and negative
values, while the output of the softmax function is always positive. One straightforward option is
to use random positive convolution filters with a normalized sum of one, following the property of
softmax. However, this approach often proves inefficient as the patterns may be too complicated for a
softmax function to handle. Tarzanagh et al. (2023) found that the softmax attention map functions as
a feature selection mechanism, and typically tends to select a single related feature. In convolution
filters, this softmax attention map can be viewed as an impulse filter. According to Proposition 1,
random impulse filters are also f2− k spanned. In conclusion, when initializing a softmax attention
map, the most straightforward and suitable choice is random impulse convolution filters.

Pseudo input. The advantage of self-attention is that its spatial mixing map is learned from data.
The real input to an attention layer is P+X for the first layer and X (the intermidiate output from
previous layer) for the following layers. However, during initialization, there is no prior information
about the input. To address this problem, we simply treat all the layers identically and use absolute
sinusoidal positional encoding P (Dosovitskiy et al., 2021) as pseudo input, replacing the actual
input data P+X or intermidiate outputs. Remember that this only happens when we solve the
initialization to avoid data-dependent initialization, while in the training stage the input is not changed.
The ablation study of different pseudo inputs is presented in Appendix C.1.

With the use of impulse filters and the pseudo input, Eq. (6) becomes

Minit = softmax(PQinitK
T
initP

T ) ≈ Himpulse. (7)

4.2 SOLVING QINIT AND KINIT

There exist numerous approaches to solve Eq. (7) for Qinit and Kinit with known Himpulse and P. In
mimetic initialization (Trockman & Kolter, 2023), the product QinitK

T
init is initialized following a

certain distribution. Singular value decomposition (SVD) is utilized to solve Qinit and Kinit. While a
similar SVD-based approach could be employed in our scenario—despite we intend to initialize the
softmax attention map, it is found to be ineffective due to the large error resulting from the pseudo-
inverse of P and low-rank approximation. Consequently, we opt not to pursue an analytical solution
but rather employ a simple optimization to obtain Qinit and Kinit. This approach also addresses
concerns regarding scale and layer normalization in the attention mechanism.

The pseudo code for our initialization strategy is shown in Algorithm 1. In the first step, we compute
the attention map Himpulse based on the 2D impulse convolution matrix. The pseudo input X̃ is then
computed through the absolute positional encoding P. Note that the pseudo input X̃ remains constant
throughout the entire optimization process without requiring re-sampling. Additionally, the constant
scale σ, and any normalization techniques such as layer normalization or batch normalization remain
consistent with those utilized in ViT.

To optimize Qinit and Kinit, our objective function is defined as

argmin
Qinit,Kinit

1

N2

∥∥∥Himpulse − softmax
(
σX̃QinitK

T
initX̃

T
)∥∥∥2

F
, (8)
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Algorithm 1 Convolutional structured impulse initialization for ViT
Input: P, f ▷ Positional encoding, convolution filter size
Output: Qinit, Kinit ▷ Initialization of attention parameters
N,D ← shape of P
Himpulse ← ImpulseConvMatrix(N, f) ▷ Build 2D impulse convolution matrix
X̃← LayerNorm(P) ▷ Get pseudo input
σ ← 1√

D/h
▷ Scale in attention

Qinit, Kinit ← Parameters(·) ▷ Random initialized before optimization
for i← 1,max iter do

Ĥimpulse ← softmax(σX̃QinitK
T
initX̃

T )

Loss← MSE(Ĥimpulse,Himpulse)
Compute gradients and update Qinit and Kinit

end for
return Qinit, Kinit

where X̃ is the normalized pseudo input, and Qinit and Kinit can be random initialized before
optimization. We then optimize for max iter=10, 000 epochs using Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 1e−4 and mean squared error (MSE) loss. It is worth noting that this
optimization is not a pretrained step since no real data is involved. Rather, our optimization algorithm
serves as a surrogate for the SVD solver, converging in just a few seconds (∼5s).

5 EXPERIMENTS AND ANALYSIS

5.1 SETTINGS

Dataset. We evaluate our structured initialization strategy on the small-scale datasets CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), SVHN (Yuval, 2011) with 2× 2 patches. Additionally, we
test our model on a large-scale ImageNet-1K (Deng et al., 2009) dataset with 16× 16 patches.
Furthermore, in validating our theory on ConvMixer, we conduct all ConvMixer related experiments
in Sec. 5.5 on CIFAR-10.

Models. Our experiments primarily focus on the tiny ViT model, namely ViT-T (Dosovitskiy et al.,
2021). Instead of using the classification token and a learnable positional encoding as defined in ViT,
we use the average global pooling and a sinusoidal absolute positional encoding. In general, these
small tweaks will not compromise the performance of ViTs. On the contrary, as shown in Tab. 1,
these two modifications lead to improved performance on the CIFAR-10 dataset. Henceforth, all the
following experiments use this configuration. The default architecture of ViT-T includes a depth of
12, an embedding dimension of 192, and 3 heads. The default architecture of ViT-S includes a depth
of 12, an embedding dimension of 384, and 6 heads.

Training. We utilize the PyTorch Image Models (timm) (Wightman, 2019) to train all ViT models.
We employ a simple random augmentation strategy from (Cubuk et al., 2020) for data augmentation.
Our models were trained with a batch size of 512 using the AdamW (Loshchilov & Hutter, 2019)
optimizer, with a learning rate of 10−3 and weight decay set to 0.01, for 200 epochs. Note that all
experiments were conducted on the Tesla V100 SXM3 with 32GB memory.

Initialization. Considering that the number of heads in ViTs is typically small, we utilized both 3×3
(Imp.-3) and 5×5 (Imp.-5) filters for our structured initialization method. We compare our method
with Pytorch default initialization (Kaiming Uniform (He et al., 2015)), timm default initialization
(Trunc Normal), and mimetic initialization (Mimetic (Trockman & Kolter, 2023)).

5.2 RESULTS ACROSS DATASETS

In Tab. 2, we present the results of five different methods across four datasets. For ImageNet-1K, we
follow the training settings defined in ConvMixer (Trockman & Kolter, 2022), training all models
for 300 epochs. Our proposed methods, both Imp.-3 and Imp.-5, demonstrate comparable—if not
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Table 1: Classification accuracy(%) of ViT-T with various basic settings on CIFAR-10.
Model Classification Token Average Pooling

Learnable PE 81.23 82.23
Sinusoidal PE 83.17 85.30

Table 2: Classification accuracy(%) of ViT-T using different initialization methods on CIFAR-10,
CIFAR-100, SVHN and ImageNet-1K. Red number indicates accuracy decrease, and green number
indicates an increase in accuracy. Note that we compare the performance to the Trunc Normal
initialization method (shaded in gray).

Method CIFAR-10 CIFAR-100 SVHN ImageNet-1K

Kaiming Uniform (He et al., 2015) 86.36 2.27↓ 63.50 3.00↓ 94.51 1.31↑ 74.11 0.69↑
Trunc Normal 88.63 66.50 93.20 73.42
Mimetic (Trockman & Kolter, 2023) 91.16 2.53↑ 70.40 3.90↑ 97.53 4.33↑ 74.34 0.92↑
Ours (Imp.-3) 91.62 2.99↑ 68.81 2.31↑ 97.21 4.01↑ 74.24 0.82↑
Ours (Imp.-5) 90.67 2.04↑ 70.46 3.96↑ 97.23 4.03↑ 74.40 0.98↑

superior—performance compared to mimetic initialization. Particularly on smaller-scale datasets
like CIFAR-10, CIFAR-100, and SVHN, known to pose challenges for ViT models, our method
consistently exhibits 2% to 4% improvement compared to Trunc Normal. Notably, our method
maintains to perform well on large-scale datasets like ImageNet-1K, which shows that our structured
initialization keeps the flexibility of the attention map even when learning from large-scale data.

5.3 RESULTS ACROSS MODELS

Although our method demonstrates impressive performance when training ViT-T on small-scale
datasets, the model ViT-T only has 3 heads, which falls short of the requirements defined in Proposi-
tion 1. To better showcase the advantage of our method, we increased the number of heads to 8 in
ViT-T, denoted as ViT-T/h8. In addition to the experiments with ViT-T, we also tested our method on
the small ViT model (ViT-S). The configuration of ViT-S includes an embedding dimension of 384, a
depth of 12, and 6 heads, denoted as ViT-S/h6. Furthermore, we increasde the number of heads to 16
and denoted this model as ViT-S/h16. The results on CIFAR-100 are shown in Tab. 3.

As the model size increases, particularly with a higher number of heads, our initialization method
demonstrates improved and more stable performance, bringing a larger gap between other initial-
ization methods. This performance increase proves our theory (see Proposition 1) regarding the
expressibility of spatial mixing matrix: more heads provide more linearly independent filters. For
instance, when the number of heads is 3, as in ViT-T/h3, each layer contains only 3 unique “filters”
with each filter having 192 / 3=64 copies. While the number of copies is sufficient, having only 3
unique “filters” is inadequate for forming the filter basis, even for a 3× 3 random impulse filter.

As we increase the number of heads, we observe an adequate improvement in the performance of
our method. However, maintaining a constant embedding dimension while increasing the number of
heads leads to fewer copies per head. While this may not present a significant issue in ConvMxier as
long as the number of copies exceeds the rank of the inputs, a notable challenge arises with multi-head
attention: the dimensionality of Q and K will decrease to D/h as the number of heads h increases.
Consequently, the rank of Q and K diminishes considerably, making it more challenging for the
low-rank approximation QKT to learn an effective attention map.

This phenomenon may explain why the Kaiming Uniform and Trunc Normal methods occasionally
exhibit inferior performance as the number of heads increases. For the mimetic initialization, the
situation is potentially more problematic, as it utilizes SVD to solve for a low-rank Q and K. As
the number of heads increases, resulting in a lower rank, the approximation error grows, further
deviating the actual QKT from the anticipated value. In contrast, our initialization strategy employs
an iterative optimization method, which helps mitigate errors arising from low-rank approximations.
Consequently, our method benefits more when applied with a larger number of heads.
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Table 3: Classification accuracy(%) of ViT-T/h3, ViT-T/h8, ViT-S/h6 and ViT-S/h16 using different
initialization methods on CIFAR-100. Red number indicates accuracy decrease, and green number
indicates an increase in accuracy. Note that we compare the performance to the Trunc Normal
initialization method (shaded in gray).

Method ViT-T/h3 ViT-T/h8 ViT-S/h6 ViT-S/h16

Kaiming Uniform (He et al., 2015) 63.50 3.00↓ 63.09 3.39↓ 66.06 0.75↓ 64.61 2.64↓
Trunc Normal 66.50 66.48 66.81 67.25
Mimetic (Trockman & Kolter, 2023) 70.40 3.90↑ 69.93 3.45↑ 73.86 7.05↑ 72.72 5.47↑
Ours (Imp.-3) 68.81 2.31↑ 70.79 4.31↑ 75.97 9.16↑ 75.40 8.15↑
Ours (Imp.-5) 70.46 3.96↑ 70.86 4.38↑ 73.49 6.68↑ 74.27 7.02↑

Figure 3: Visualization of attention maps in ViT-T using ours, mimetic (Trockman & Kolter, 2023),
and random (Liu et al., 2022) initializations. Red boxes highlight zoomed-in details of the 48×48
upper left corner in attention maps. White boxes indicate the main diagonal blocks of the zoomed-in
attention maps. Our structured initialization method offers off-diagonal attention peaks aligned with
the impulse structures, whereas mimetic initialization primarily strengthens the main diagonal of the
attention map. Random initialization shows little to no patterns.

5.4 ATTENTION MAPS

To show the effectiveness of our initialization on constraining the structure of attention maps, we show
the averaged attention maps across CIFAR-10 training data using ViT-T/h3 at 1st, 6th, and 12th layers
after initialization before training in Fig. 3. The attention map showed here does not have an exact
pattern as seen in impulse filters since we only use positional encoding as pseudo inputs to optimize
the initial attention parameters, while the real input to each attention layer is P+X or intermediate
outputs from the previous layer. Nevertheless, there exists a clear pattern of convolutional structures.
Since mimetic initialization only focusing on distribution of weights, the structure of attention map
can be merely strengthened along the diagonal. Our initialization method offers off-diagnoal peaks in
convolutional structure in attention map. As the network layer goes deeper, these peaks become less
visible, because the difference between pseudo input and real input is getting larger through layers.
The visualization of attention maps for all the layers from 1 to 12 can be found in Appendix C.3

5.5 COMPARING VIT WITH CONVMIXER

Experimental evidence for proposition and corollaries in Sec. 3. To validate our findings
discussed in Sec. 3 regarding the effectiveness of random filters, we train ConvMixer (Trockman &
Kolter, 2022) models with an embedding dimension of 256, a depth of 8, and a patch size of 2 on
the CIFAR-10 dataset, using filter size of 3, 5, and 8. We followed the same configurations defined
in Sec. 5.1, except for setting the learning rate to 0.01, and the number of epochs to 100. Additionally,
we tested with a ConvMixer with an embedding dimension of 512. The results are shown in Tab. 4.
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Table 4: Classification accuracy(%) of ConvMixer (depth 8) with different filter sizes, embedding
dimensions on CIFAR-10.

Kernel
Size

Embedding Dimension = 256 Embedding Dimension = 512

Trained Random Impulse Box Trained Random Impulse Box

3 91.76 90.72 90.68 81.70 92.82 92.15 92.20 81.90
5 92.69 90.87 90.41 80.57 93.90 92.72 91.91 81.19
8 92.34 88.12 87.82 78.95 92.96 90.09 89.61 80.10

Table 5: Classification accuracy(%) of ViT (depth 8) with a different number of heads, embedding
dimensions on CIFAR-10.

Method Embedding Dimension = 256 Embedding Dimension = 512

h4 h8 h16 h32 h4 h8 h16 h32

Kaiming Uniform (He et al., 2015) 85.71 85.16 84.62 84.24 87.28 86.50 85.07 84.17
Trunc Normal 87.27 87.10 87.30 86.71 87.49 87.03 87.74 87.39
Mimetic (Trockman & Kolter, 2023) 90.52 89.45 88.97 86.83 90.94 90.75 90.35 89.27
Ours (Imp.-3) 89.95 90.67 90.59 88.69 91.55 91.75 91.49 91.18
Ours (Imp.-5) 90.08 90.38 90.61 89.14 90.92 91.67 91.87 90.84

We tested on the end-to-end trained ConvMixer along with three different initialization methods:
random (Corollary 1), impulse (Corollary 2), and box (Corollary 3). Please note that the three
initialization methods only initialize the spatial convolution filters without training. Specifically, the
box filters use all ones, serving as an average pooling function.

In general, random and impulse initialization achieve comparable accuracy compared to the end-
to-end trained model, while box initialization exhibits inferior performance. This discrepancy can
be attributed to the deficient rank of box filters, as they lack f2 linearly independent filters, unlike
random and impulse initialization, which can form the basis of the filter space.

ViT and ConvMixer of same embedding dimension and depth. For ConvMixers with the same
embedding dimension, the performance gap between trained filters and random or impulse widens as
the kernel size increases. As we discussed in Sec. 5.3, as the kernel size increases, more unique filters
are needed to form the basis of filter space. Consequently, each head (unique filter) has fewer copies,
making it difficult to match the rank of inputs, thus failing to meet the condition in Proposition 1.
When the embedding dimension doubles, the performance gap between trained filters and random or
impulse filters diminishes with the same kernel size. However, models with larger kernel sizes still
tend to have a bigger gap due to an insufficient number of copies for each unique filter.

Our method is motivated by the similarity between ViT and ConvMixer. To show this connection, we
train ViTs with similar configurations to ConvMixer as described in Sec. 5.5. Specifically, we train
ViTs of a depth of 8 with embedding dimensions of 256 and 512. The number of heads is from 4 to
32. Results of different initialization methods are shown in Tab. 5. We also provide additional results
with embedding dimensions of 64 and 512 in Appendix C.2

Our impulse initialization methods demonstrate superior performance across nearly all configurations.
Especially, our method achieves a top accuracy of 90.67% and 91.87% with an embedding dimension
of 256 and 512, respectively, significantly outperforming other initialization methods. Moreover, our
method achieves results on par with end-to-end trained ConvMixers (91.76% and 92.82%) of equal
depth and embedding dimensions. In addition, these results with different numbers of heads validate
our discussions in Sec. 5.3 regarding the impact of the number of heads on the performance.

6 CONCLUSION

In this paper, we propose a structured initialization method with convolutional impulse filters for
attention maps in ViTs. Our method preserves both the advantage of locality within CNNs and
the capacity to learn long-range dependencies inherited from ViTs. We also provide a thorough
theoretical explanation of the spatial and channel mixing in ConvMixer and ViT, building connections
between the structural bias in CNNs and the initialization of ViTs. Our results on small-scale datasets
validate the effectiveness of the convolutional structural bias, while on-par performance on large-scale
datasets indicates the preservation of architectural flexibility.
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A PROOF FOR PROPOSITION 1

Let w= [w1, w2, . . . , wD]T ∈RD×1 be the channel mixing weights for one output channel and
H1,H2, . . . ,HD are the corresponding spatial convolution filters for each channel. Therefore, the
result y∈RN after spatial and channel mixing can be represented as,

y =

D∑
i=1

wiHixi, (9)

With Remark 1, we can suppose the rank of X≈ZA is k, where Z= [z1, . . . , zk] and k≪D, as
illustrated in Fig. 2. We then obtain

y ≈
D∑
i=1

k∑
j=1

wiajiHizj =

k∑
j=1

H̃jzj , (10)

where aji refers to the row j, column i element of A, and H̃j =
∑D

i=1 wi aji Hi.

Remember that a linear combination of f2 linearly independent filters h can express any arbitrary
filter in filter space Rf×f , where h serves as the basis. Consequently, any desired H̃1, H̃2, . . . , H̃D

can be achieved by only learning the channel mixing weights w. Therefore, we obtain the following
proposition.

B CONVOLUTIONAL REPRESETATION MATRIX

In Sec. 3, we interchangeably use the terms convolution filter h and convolution matrix H. Addition-
ally, we represent the impulse filter as a convolutional matrix. Here, we offer a detailed explanation
of the relationship between the convolutional filters and the convolutional matrices.

Let us define a 2D convolution filter as h∈Rf×f with elements

h =

h11 · · · h1f

...
. . .

...
hf1 · · · hff

 . (11)

When h is convolved with an image x∈RH×W , this convolution operation is equivalent to a matrix
multiplication

vec(h ∗x)=H vec(x), (12)

where H is composed from the elements in h and zeros in the following format:

H =


F1 F2 · · · Ff 0 0 · · · 0
0 F1 F2 · · · Ff 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 F1 F2 · · · Ff 0
0 · · · 0 0 F1 F2 · · · Ff

 , (13)

where

Fi =


hi1 hi2 · · · hif 0 0 · · · 0
0 hi1 hi2 · · · hif 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 hi1 hi2 · · · hif 0
0 · · · 0 0 hi1 hi2 · · · hif

 , (14)

for i=1, 2, . . . , f . Fis are circulant matrices and H is a block circulant matrix with circulant block
(BCCB). Note that convolutions may employ various padding strategies, but the circulant structure
remains consistent. Here, we show the convolution matrix without any padding as an example.
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Table 6: Classification accuracy(%) of different pseudo input on CIFAR-10. Green shaded row
indicates the best choice of pseudo inputs when achieving the best average accuracy. “PE” denotes
positional encoding, and “G” represents random sampling from the Gaussian distribution. “Imp.-3”
represents a 3×3 impulse filter, and “Imp.-5” denotes a 5×5 impulse filter.

Pseudo Input Same Qinit and Kinit Different Qinit and Kinit
Avg.

First
Layer

Following
Layers

ViT-T/h3 ViT-T/h8 ViT-T/h3 ViT-T/h8

Imp.-3 Imp.-5 Imp.-3 Imp.-5 Imp.-3 Imp.-5 Imp.-3 Imp.-5
PE PE 90.75 90.22 90.39 90.24 89.90 90.18 90.19 91.24 90.39
PE U 86.90 86.10 87.99 87.86 87.35 85.56 86.40 86.61 86.85
PE PE+U 89.62 88.40 89.61 89.50 88.99 89.29 89.05 89.47 89.24
U PE 90.34 89.21 90.96 89.83 90.76 90.00 91.20 90.34 90.33
U U 86.05 86.50 86.13 86.44 87.09 87.22 86.03 86.13 86.45
U PE+U 89.91 89.99 89.96 89.93 89.94 89.89 89.60 89.07 89.79

PE+U PE 90.07 89.19 90.31 89.56 90.03 90.72 90.40 90.76 90.13
PE+U U 86.07 86.52 85.55 85.94 86.02 86.07 86.52 85.55 86.02
PE+U PE+U 89.63 89.33 90.02 88.92 89.52 89.28 89.29 89.33 89.41

Table 7: Classification accuracy(%) of ViT (depth 8) with a different number of heads, embedding
dimensions on CIFAR-10.

Method Embedding Dimension = 64 Embedding Dimension = 128

h4 h8 h16 h32 h4 h8 h16 h32

Kaiming Uniform (He et al., 2015) 81.26 80.76 80.71 79.89 84.46 83.83 83.05 82.70
Trunc Normal 81.57 82.12 81.57 80.40 86.19 86.00 85.39 84.37
Mimetic (Trockman & Kolter, 2023) 84.59 82.78 81.78 79.71 87.90 87.49 85.51 83.68
Ours (Imp.-3) 82.73 84.12 81.59 79.39 88.49 87.75 87.63 84.42
Ours (Imp.-5) 83.43 82.66 80.80 79.11 87.82 88.02 87.57 84.79

C ADDITIONAL RESULTS

C.1 PSEUDO INPUT

We offer additional results for the ablation study on pseudo input with random inputs sampled from a
Uniform distribution in Tab. 6. The trend is aligned with the findings in the main paper for random
inputs sampled from a Gaussian distribution. However, the performance of using random inputs
sampled from a Uniform distribution is worse than those using a Gaussian distribution, since the real
input data is more likely to follow a Gaussian distribution.

C.2 RELATIONSHIP BETWEEN HEAD NUMBERS AND EMBEDDING DIMENSION

In the main paper, we have discussed the relationship between the number of heads and the embedding
dimensions. We have provided the results with embedding dimensions of 256 and 512 for a ViT with
depth 8. Here we show additional results with embedding dimensions of 64 and 128 in Tab. 7. The
trend is consistent with the discussions in the main paper.

C.3 ATTENTION MAPS

Here we provide additional visualization of the attention maps for all 12 layers in Fig. 4 and Fig. 5.
Additionally, we have provided the attention maps before and after training in Fig. 6 to further
demonstrate the advantage of our method in capturing both local and global dependencies.
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Figure 4: Visualization of attention maps in ViT-T using our impulse initialization method,
mimetic (Trockman & Kolter, 2023), and random (Liu et al., 2022) initializations. Red boxes
highlight zoomed-in details of the 48×48 upper left corner in attention maps. White boxes indicate
the main diagonal blocks of the zoomed-in attention maps. Our structured initialization method
offers off-diagonal attention peaks aligned with the impulse structures, whereas mimetic initialization
primarily strengthens the main diagonal of the attention map. Random initialization shows little to no
patterns.
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Figure 5: Visualization of attention maps in ViT-T using our impulse initialization method,
mimetic (Trockman & Kolter, 2023), and random (Liu et al., 2022) initializations. Red boxes
highlight zoomed-in details of the 48×48 upper left corner in attention maps. White boxes indicate
the main diagonal blocks of the zoomed-in attention maps. Our structured initialization method
offers off-diagonal attention peaks aligned with the impulse structures, whereas mimetic initialization
primarily strengthens the main diagonal of the attention map. Random initialization shows little to no
patterns.
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Figure 6: Visualization of attention maps in ViT-T using our impulse initialization method and
conventional random initialization on the CIFAR-10 dataset before and after training. Our structured
initialization method offers off-diagonal attention peaks aligned with the impulse structures during
initialization, providing the necessary locality information, and helping with training on small-scale
datasets. On the other hand, random initialization has no structured attention map during initialization,
making training harder for small-scale datasets. Despite being initialized using the impulse structures,
our method can still capture long-range, global dependencies after training, since our method does
not change the Transformer architectures in ViTs.
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