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Abstract

The Transformer architecture has significantly001
advanced deep learning, particularly in natu-002
ral language processing, by effectively man-003
aging long-range dependencies. However, as004
the demand for understanding complex rela-005
tionships grows, refining the Transformer’s ar-006
chitecture becomes critical. This paper intro-007
duces Skip-Layer Attention (SLA) to enhance008
Transformer models by enabling direct atten-009
tion between non-adjacent layers. This method010
improves the model’s ability to capture depen-011
dencies between high-level abstract features012
and low-level details. By facilitating direct at-013
tention between these diverse feature levels,014
our approach overcomes the limitations of cur-015
rent Transformers, which often rely on subopti-016
mal intra-layer attention. Our implementation017
extends the Transformer’s functionality by en-018
abling queries in a given layer to interact with019
keys and values from both the current layer020
and one preceding layer, thus enhancing the021
diversity of multi-head attention without addi-022
tional computational burden. Extensive exper-023
iments demonstrate that our enhanced Trans-024
former model achieves superior performance025
in language modeling tasks, highlighting the026
effectiveness of our skip-layer attention mecha-027
nism.028

1 Introduction029

The Transformer architecture has made notable030

strides in the field of large language models (LLMs)031

(Devlin et al., 2019; Radford and Narasimhan,032

2018; Radford et al., 2019; Brown et al., 2020;033

Ouyang et al., 2022; OpenAI, 2023). These models034

have impressively tackled a variety of tasks, includ-035

ing natural language understanding (Hendrycks036

et al., 2021), general question answering (Rein037

et al., 2023), coding (Chen et al., 2021), mathemat-038

ics (Cobbe et al., 2021), and scientific knowledge039

(Chen et al., 2023). However, as data grows more040

complex and relationships more intricate (Rein041

et al., 2023), there’s a need for ongoing improve- 042

ments in the architecture to keep up with these 043

challenges. 044

The primary strength of the Transformer lies in 045

its self-attention mechanism, which allows each 046

element in the input sequence to compare directly 047

with every other element, thereby capturing depen- 048

dencies regardless of their distance (Vaswani et al., 049

2017). Nevertheless, this design faces limitations 050

when handling more complex relationships. The 051

original intra-layer attention in Transformers is of- 052

ten inadequate for capturing the deeper interactions 053

(i.e., high-level abstract features and low-level de- 054

tails) demanded by more complex tasks (Tenen- 055

baum, 2018; Yang et al., 2016). 056

To address these limitations, researchers have 057

explored various methods employed in earlier mod- 058

els such as ResNet (He et al., 2016) and Highway 059

Networks (Srivastava et al., 2015). Our goal is to 060

refine inter-layer interactions within Transformers. 061

Drawing inspiration from DenseNet (Huang et al., 062

2017) in convolutional neural networks (CNNs), 063

which employs dense cross-layer connections to 064

facilitate feature propagation, we propose a novel 065

Skip-Layer Attention (SLA) approach to enhance 066

the Transformer model. Our implementation aug- 067

ments the Transformer’s capabilities by permitting 068

queries in a given layer to interact not only with 069

keys and values from the current layer but also from 070

the preceding layer. This method enriches the diver- 071

sity of multi-head attention, while maintaining the 072

same computational efficiency. Unlike DenseNets, 073

which focus on identical tokens across layers, our 074

strategy connects both identical and distinct tokens, 075

thereby enhancing the model’s capacity to capture 076

and incorporate both abstract and detailed depen- 077

dencies. Our contributions are as follows: 078

• We propose a novel mechanism that enables 079

direct attention between non-adjacent layers, 080

enhancing the ability to capture dependencies 081

1



Figure 1: Model architecture of the Transformer with skip-layer attention. The left figure illustrates a Transformer
model with 12 layers, each equipped with an additional skip-layer attention connection (e.g., layer 1 to layer 10,
layer 2 to layer 11, layer 3 to layer 12). The center figure provides a zoomed-in view of each layer, highlighting
the skip-layer attention and MLP sublayers. The right figure details the skip-layer attention mechanism, with red
indicating keys and values from the preceding layer.

between high-level abstract features and low-082

level details.083

• Our method extends the Transformer’s func-084

tionality without significantly increasing com-085

putational complexity, making it practical for086

large-scale applications.087

• Through extensive experiments against Trans-088

former baselines, we demonstrate the effec-089

tiveness of our enhanced architecture in lan-090

guage modeling tasks.091

2 Related Work092

The concept of enhancing network connectivity093

originates from earlier architectures such as ResNet094

(He et al., 2016), which introduces residual connec-095

tions. These residual connections enable the train-096

ing of much deeper networks by facilitating the097

flow of gradients during backpropagation. High-098

way Networks (Srivastava et al., 2015) introduce099

gated connections to regulate information flow100

across layers, making the end-to-end training of101

deep networks more feasible.102

DenseNet (Huang et al., 2017) advances this idea103

by creating an intricate connectivity pattern where104

each layer connects to every other layer in a feed-105

forward manner. This dense connectivity promotes106

feature reuse and significantly reduces the number107

of parameters, directly inspiring the skip-layer con- 108

nectivity pattern explored in our work. However, 109

DenseNet primarily targets CNNs and is mainly 110

applied to computer vision tasks, with connections 111

occurring between the same tokens in subsequent 112

layers. Our approach extends this concept to Trans- 113

formers by incorporating direct connections among 114

both identical and distinct tokens. 115

More recently, Brandon et al. (2024) propose 116

sharing key/value heads across adjacent layers to 117

reduce the size of the KV cache. This strategy 118

draws inspiration from the success of Multi-Query 119

Attention (Shazeer, 2019) and Grouped-Query At- 120

tention (Ainslie et al., 2023). Our skip-layer at- 121

tention, however, enables direct attention between 122

non-adjacent layers, thus bridging the dependen- 123

cies between high-level abstract features and low- 124

level details. This approach encapsulates the depth 125

of interactions required by more demanding tasks. 126

3 Method 127

Our novel Transformer model enhances the stan- 128

dard Transformer architecture by incorporating 129

skip-layer attention, aimed at improving the in- 130

formation flow between non-adjacent layers. As 131

shown in Figure 1, our approach replaces the con- 132

ventional multi-head attention sublayer with skip- 133

layer attention sublayer. This upgrade establishes 134

2



direct connections between layers that are not im-135

mediately adjacent, thereby promoting a more effi-136

cient and comprehensive exchange of information137

across the entire network.138

Our model retains the Transformer’s original139

multi-head attention mechanism, utilizing queries,140

keys, and values, but extends this framework by141

enabling queries in a given layer to interact with142

keys and values from both the current layer and143

one preceding layer. This extension is fundamental144

to the implementation of skip-layer attention.145

We denote the queries after linear projection for146

all heads as the tensor Q ∈ Rh×T×d, where h is the147

number of heads, T is the sequence length, and d148

is the hidden size for each head. Similarly, the keys149

and values are represented as tensors K ∈ Rh×T×d150

and V ∈ Rh×T×d, respectively. The number of151

skip layers is denoted as nl, and the number of skip152

heads as nh.153

The attention mechanism for each head is de-154

scribed by the following equations:155

Hl
i =

{
Att(Ql

i,K
l
i , V

l
i ) if i ∈ {1, ..., h− nl}

Att(Ql
i,K

l−nl
i , V

l−nl
i ) if i ∈ {h− nl + 1, ..., h}156

where i represents the index of the head and l rep-157

resents the index of the layer. This formulation158

allows our model to effectively bridge abstract and159

detailed dependencies and improve information160

flow throughout the network. The core implemen-161

tation in PyTorch can be found in Appendix A.1.162

4 Experimental Setup163

4.1 Dataset164

We use the OpenWebText corpus1, an open-source165

recreation of the WebText dataset. It comprises166

approximately 8 million documents sourced from167

Reddit-linked web content. The corpus is divided168

into a training set with about 9 billion tokens and a169

validation set with around 4 million tokens.170

4.2 Training Setup171

Training batches contain 524,288 tokens, stabiliz-172

ing the process across model scales. The train-173

ing spans a maximum of 18,000 steps, processing174

roughly 9.4 billion tokens, equivalent to one full175

epoch on the training set. We experiment with three176

sizes of the GPT-2 architecture: GPT2 (124M),177

GPT2-Medium (350M) and GPT2-Large (774M).178

1https://skylion007.github.io/
OpenWebTextCorpus/

Table 1: Optimal number of skip layers.

#SkipLayer #SkipHead Loss Abs. Impr.

0 (Baseline) 0 3.3826 -
1 6 3.4030 -0.0204
3 6 3.2958 0.0868
6 6 3.2853 0.0973
9 6 3.2750 0.1076
11 6 3.3734 0.0092

Table 2: Optimal number of skip heads.

#SkipLayer #SkipHead Loss Abs. Impr.

0 (Baseline) 0 3.3826 -
9 3 3.3543 0.0283
9 6 3.2750 0.1076
9 9 3.2497 0.1329
9 12 3.2643 0.1183

Flash Attention (Dao, 2023) is incorporated to ac- 179

celerate attention operations. Training is conducted 180

on NVIDIA V100 GPUs with 32GB of memory. 181

We experiment with sequence lengths of 4096, 182

8192, and 16,384 tokens to explore long-range de- 183

pendencies. Code implementation and optimiza- 184

tion are managed using the nanoGPT framework2. 185

All models start with a learning rate of 1.5e-4, de- 186

termined to offer a good balance between rapid con- 187

vergence and stability. Model performance is eval- 188

uated based on the loss on the validation dataset. 189

5 Result 190

5.1 Number of skip layers 191

We initially explore the impact of varying the num- 192

ber of skip layers using a GPT-2 model (124M 193

parameters) as our default backbone. This model 194

has a hidden size of 768, 12 heads, 12 layers, and 195

supports a sequence length of 16,384. The default 196

number of skip heads is set to 6. As shown in 197

Table 1, our findings indicate that the optimal per- 198

formance enhancement via the skip-layer attention 199

method is achieved with 9 skip layers, resulting 200

in a substantial absolute improvement of 0.1076 201

over the baseline. Configurations with 3 and 6 skip 202

layers also demonstrate notable progress. How- 203

ever, employing just a single skip layer yields no 204

benefit; this might be attributed to the similarity 205

between the key and value heads among adjacent 206

layers, as discussed in Brandon et al. (2024). Simi- 207

larly, setting the number of skip layers to 11 does 208

2https://github.com/karpathy/nanoGPT/
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Table 3: Model size and sequence length variations.

Model Length Baseline Skip-Layer Attention Abs. Impr. Training Speedup

GPT2(124M)
4096 3.1858 3.1762 0.0096 -1.69%
8192 3.2077 3.2020 0.0057 -0.28%
16384 3.3826 3.2497 0.1329 0.83%

GPT2-Medium(350M)
4096 2.9538 2.9399 0.0139 -0.76%
8192 3.0335 2.9506 0.0829 -2.34%

GPT2-Large(774M) 4096 2.8271 2.8156 0.0115 -1.24%

not produce noticeable advancements, possibly due209

to the presence of only one skip-layer attention in210

this setup. Based on these results, we recommend211

that 3/4 of the total number of layers is the most212

effective number of skip layers.213

5.2 Number of skip heads214

Subsequently, we investigate the impact of vary-215

ing the number of skip heads, also using a GPT-2216

model (124M) and a sequence length of 16,384 as217

our default backbone. The default number of skip218

layers is set to 9, based on the optimal configura-219

tion identified in the previous section. As presented220

in Table 2, our results indicate that the optimal221

performance enhancement is observed with 9 skip222

heads, yielding a significant absolute improvement223

of 0.1329 over the baseline. Configurations with 6224

and 12 skip heads also demonstrate commendable225

improvements. Notably, the configuration with 12226

skip heads suggests that the keys and values from227

the last 3 layers all use the keys and values from228

the first 3 layers. This implies that direct attention229

modeling between high-level abstract features and230

low-level detail features is more important than231

attention modeling purely between high-level ab-232

stract features. Conversely, employing only 3 skip233

heads shows no substantial benefit, indicating that234

more skip-attention heads are necessary than the235

original attention heads. Based on these findings,236

we recommend setting the number of skip heads to237

3/4 of the total number of heads.238

5.3 Model Size and Sequence Length239

Variations240

In this section, we explore the effects of varying241

model sizes and sequence lengths on performance.242

We maintain the default configuration of using 3/4243

of the total number of layers as skip layers and244

3/4 of the total number of heads as skip heads.245

Due to the 32GB memory limit of the V100 GPU,246

we restrict our tests to model sizes and sequence 247

lengths that do not trigger out-of-memory (OOM) 248

errors when using Distributed Data Parallel (DDP). 249

As shown in Table 3, we observe an absolute im- 250

provement of 0.1329 over the baseline when using 251

GPT-2 (124M) with a sequence length of 16,384. 252

However, no significant improvements are noted 253

for sequence lengths of 4,096 and 8,192. This sug- 254

gests that longer sequences benefit more from our 255

skip-layer attention method, likely because they en- 256

compass more abstract and detailed dependencies. 257

Furthermore, for a sequence length of 8,192, GPT-2 258

Medium (350M) achieves an absolute improvement 259

of 0.0829 over the baseline, while GPT-2 (124M) 260

shows no noticeable improvement. This indicates 261

that larger models gain a greater advantage from 262

our skip-layer attention method. 263

The training time with our skip-layer attention 264

method is slightly longer than the baseline, expe- 265

riencing a maximum decrease in training speed of 266

2.34%. This is likely due to the additional stor- 267

age requirements for keys and values in the lower 268

layers. 269

6 Conclusion 270

In this paper, we propose a Skip-Layer Attention 271

(SLA) mechanism to enhance the Transformer ar- 272

chitecture’s ability to capture complex dependen- 273

cies within input data. By enabling direct atten- 274

tion between non-adjacent layers, our approach 275

improves the model’s capacity to integrate high- 276

level abstract features with low-level details with- 277

out significantly increasing computational com- 278

plexity. Extensive experiments demonstrate that 279

our enhanced Transformer model outperforms stan- 280

dard Transformer baselines in language modeling 281

tasks, validating the effectiveness of our method. 282

Our findings pave the way for further innovations 283

in optimizing neural network architectures. 284
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7 Limitation285

While our research has demonstrated the effective-286

ness of skip-layer attention in Transformer models,287

several avenues for future work remain to be ex-288

plored:289

Scaling to Larger Models: Future research290

could extend skip-layer attention to larger Trans-291

former architectures, such as GPT-3 (Brown et al.,292

2020) and beyond, to assess its effectiveness across293

different scales and complexity levels. Evaluating294

the performance and efficiency on these larger mod-295

els will offer valuable insights into its scalability.296

Real-World Applications: Evaluating the skip-297

layer attention mechanism in various real-world298

applications, such as natural language understand-299

ing (Hendrycks et al., 2021), general question an-300

swering (Rein et al., 2023), coding (Chen et al.,301

2021), and mathematics (Cobbe et al., 2021), will302

be critical to fully understand its practical benefits303

and limitations.304

Beyond Text: Extending the applicability of the305

skip-layer attention mechanism to other domains,306

such as computer vision and speech processing,307

will help determine its versatility and potential for308

cross-modal impact.309

Ablation Studies: Conducting comprehensive310

ablation studies to understand the contributions of311

different components within the skip-layer atten-312

tion mechanism could provide deeper insights. For313

instance, exploring the impact of connections to314

multiple preceding layers rather than just one could315

reveal additional enhancements and inform design316

choices.317
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A Appendix460

A.1 Code461

In this paper, the model code is based on nanoGPT,462

which is publicly available on GitHub3. The im-463

plementation of the skip-layer attention method is464

detailed in the code listing provided below.465
466

import torch.nn.functional as F

class CausalSelfSkipLayerAttention(nn.Module ):

def __init__(self , config ):
super (). __init__ ()
assert config.n_embd % config.n_head == 0
# key , query , value projections for all heads , but in a batch
self.c_attn = nn.Linear(config.n_embd , 3 * config.n_embd , bias=config.bias)
# output projection
self.c_proj = nn.Linear(config.n_embd , config.n_embd , bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.num_skip_layer = config.num_skip_layer
self.split_num = config.n_head - config.num_skip_head

def forward(self , x, prev_k_list =[], prev_v_list =[]):
B, T, C = x.size() # batch size , sequence length , n_embd

q, k, v = self.c_attn(x).split(self.n_embd , dim=2)
k = k.view(B, T, self.n_head , C // self.n_head ). transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head , C // self.n_head ). transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head , C // self.n_head ). transpose(1, 2) # (B, nh, T, hs)

# causal self -attention; Self -attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
# efficient attention using Flash Attention CUDA kernels
if len(prev_k_list) >= self.num_skip_layer and len(prev_v_list) >= self.num_skip_layer:

k_combine = torch.cat([k[:, :self.split_num , :, :], prev_k_list[-self.num_skip_layer ]], dim=1)
v_combine = torch.cat([v[:, :self.split_num , :, :], prev_v_list[-self.num_skip_layer ]], dim=1)
y = F.scaled_dot_product_attention(q, k_combine , v_combine , attn_mask=None ,

dropout_p=self.dropout if self.training else 0,
is_causal=True)

else:
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None ,

dropout_p=self.dropout if self.training else 0,
is_causal=True)

y = y.transpose(1, 2). contiguous (). view(B, T, C)
# output projection
y = self.resid_dropout(self.c_proj(y))
return y, k[:, self.split_num:, :, :], v[:, self.split_num:, :, :]

467

3https://github.com/karpathy/nanoGPT/
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