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Abstract

The Transformer architecture has significantly
advanced deep learning, particularly in natu-
ral language processing, by effectively man-
aging long-range dependencies. However, as
the demand for understanding complex rela-
tionships grows, refining the Transformer’s ar-
chitecture becomes critical. This paper intro-
duces Skip-Layer Attention (SLA) to enhance
Transformer models by enabling direct atten-
tion between non-adjacent layers. This method
improves the model’s ability to capture depen-
dencies between high-level abstract features
and low-level details. By facilitating direct at-
tention between these diverse feature levels,
our approach overcomes the limitations of cur-
rent Transformers, which often rely on subopti-
mal intra-layer attention. Our implementation
extends the Transformer’s functionality by en-
abling queries in a given layer to interact with
keys and values from both the current layer
and one preceding layer, thus enhancing the
diversity of multi-head attention without addi-
tional computational burden. Extensive exper-
iments demonstrate that our enhanced Trans-
former model achieves superior performance
in language modeling tasks, highlighting the
effectiveness of our skip-layer attention mecha-
nism.

1 Introduction

The Transformer architecture has made notable
strides in the field of large language models (LLMs)
(Devlin et al., 2019; Radford and Narasimhan,
2018; Radford et al., 2019; Brown et al., 2020;
Ouyang et al., 2022; OpenAl, 2023). These models
have impressively tackled a variety of tasks, includ-
ing natural language understanding (Hendrycks
et al., 2021), general question answering (Rein
et al., 2023), coding (Chen et al., 2021), mathemat-
ics (Cobbe et al., 2021), and scientific knowledge
(Chen et al., 2023). However, as data grows more
complex and relationships more intricate (Rein

et al., 2023), there’s a need for ongoing improve-
ments in the architecture to keep up with these
challenges.

The primary strength of the Transformer lies in
its self-attention mechanism, which allows each
element in the input sequence to compare directly
with every other element, thereby capturing depen-
dencies regardless of their distance (Vaswani et al.,
2017). Nevertheless, this design faces limitations
when handling more complex relationships. The
original intra-layer attention in Transformers is of-
ten inadequate for capturing the deeper interactions
(i.e., high-level abstract features and low-level de-
tails) demanded by more complex tasks (Tenen-
baum, 2018; Yang et al., 2016).

To address these limitations, researchers have
explored various methods employed in earlier mod-
els such as ResNet (He et al., 2016) and Highway
Networks (Srivastava et al., 2015). Our goal is to
refine inter-layer interactions within Transformers.
Drawing inspiration from DenseNet (Huang et al.,
2017) in convolutional neural networks (CNNs),
which employs dense cross-layer connections to
facilitate feature propagation, we propose a novel
Skip-Layer Attention (SLA) approach to enhance
the Transformer model. Our implementation aug-
ments the Transformer’s capabilities by permitting
queries in a given layer to interact not only with
keys and values from the current layer but also from
the preceding layer. This method enriches the diver-
sity of multi-head attention, while maintaining the
same computational efficiency. Unlike DenseNets,
which focus on identical tokens across layers, our
strategy connects both identical and distinct tokens,
thereby enhancing the model’s capacity to capture
and incorporate both abstract and detailed depen-
dencies. Our contributions are as follows:

* We propose a novel mechanism that enables
direct attention between non-adjacent layers,
enhancing the ability to capture dependencies
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Figure 1: Model architecture of the Transformer with skip-layer attention. The left figure illustrates a Transformer
model with 12 layers, each equipped with an additional skip-layer attention connection (e.g., layer 1 to layer 10,
layer 2 to layer 11, layer 3 to layer 12). The center figure provides a zoomed-in view of each layer, highlighting
the skip-layer attention and MLP sublayers. The right figure details the skip-layer attention mechanism, with red

indicating keys and values from the preceding layer.

between high-level abstract features and low-
level details.

* Our method extends the Transformer’s func-
tionality without significantly increasing com-
putational complexity, making it practical for
large-scale applications.

» Through extensive experiments against Trans-
former baselines, we demonstrate the effec-
tiveness of our enhanced architecture in lan-
guage modeling tasks.

2 Related Work

The concept of enhancing network connectivity
originates from earlier architectures such as ResNet
(He et al., 2016), which introduces residual connec-
tions. These residual connections enable the train-
ing of much deeper networks by facilitating the
flow of gradients during backpropagation. High-
way Networks (Srivastava et al., 2015) introduce
gated connections to regulate information flow
across layers, making the end-to-end training of
deep networks more feasible.

DenseNet (Huang et al., 2017) advances this idea
by creating an intricate connectivity pattern where
each layer connects to every other layer in a feed-
forward manner. This dense connectivity promotes
feature reuse and significantly reduces the number

of parameters, directly inspiring the skip-layer con-
nectivity pattern explored in our work. However,
DenseNet primarily targets CNNs and is mainly
applied to computer vision tasks, with connections
occurring between the same tokens in subsequent
layers. Our approach extends this concept to Trans-
formers by incorporating direct connections among
both identical and distinct tokens.

More recently, Brandon et al. (2024) propose
sharing key/value heads across adjacent layers to
reduce the size of the KV cache. This strategy
draws inspiration from the success of Multi-Query
Attention (Shazeer, 2019) and Grouped-Query At-
tention (Ainslie et al., 2023). Our skip-layer at-
tention, however, enables direct attention between
non-adjacent layers, thus bridging the dependen-
cies between high-level abstract features and low-
level details. This approach encapsulates the depth
of interactions required by more demanding tasks.

3 Method

Our novel Transformer model enhances the stan-
dard Transformer architecture by incorporating
skip-layer attention, aimed at improving the in-
formation flow between non-adjacent layers. As
shown in Figure 1, our approach replaces the con-
ventional multi-head attention sublayer with skip-
layer attention sublayer. This upgrade establishes



direct connections between layers that are not im-
mediately adjacent, thereby promoting a more effi-
cient and comprehensive exchange of information
across the entire network.

Our model retains the Transformer’s original
multi-head attention mechanism, utilizing queries,
keys, and values, but extends this framework by
enabling queries in a given layer to interact with
keys and values from both the current layer and
one preceding layer. This extension is fundamental
to the implementation of skip-layer attention.

We denote the queries after linear projection for
all heads as the tensor Q € R"*7*¢ where h is the
number of heads, 7T is the sequence length, and d
is the hidden size for each head. Similarly, the keys
and values are represented as tensors K € R4
and V € R"™Txd_ respectively. The number of
skip layers is denoted as n;, and the number of skip
heads as ny,.

The attention mechanism for each head is de-
scribed by the following equations:

I Att(QL, KLV ifi € {1,...h —n}
i~ {Att( LK™ viem™y ifie {h—ng+1,...,h}
where 7 represents the index of the head and [ rep-
resents the index of the layer. This formulation
allows our model to effectively bridge abstract and
detailed dependencies and improve information
flow throughout the network. The core implemen-
tation in PyTorch can be found in Appendix A.1.

4 Experimental Setup
4.1 Dataset

We use the OpenWebText corpus', an open-source
recreation of the WebText dataset. It comprises
approximately 8 million documents sourced from
Reddit-linked web content. The corpus is divided
into a training set with about 9 billion tokens and a
validation set with around 4 million tokens.

4.2 Training Setup

Training batches contain 524,288 tokens, stabiliz-
ing the process across model scales. The train-
ing spans a maximum of 18,000 steps, processing
roughly 9.4 billion tokens, equivalent to one full
epoch on the training set. We experiment with three
sizes of the GPT-2 architecture: GPT2 (124M),
GPT2-Medium (350M) and GPT2-Large (774M).

"ttps://skylion@@7.github.io/
OpenWebTextCorpus/

Table 1: Optimal number of skip layers.

#SkipLayer #SkipHead Loss  Abs. Impr.
0 (Baseline) 0 3.3826 -
1 6 3.4030  -0.0204
3 6 3.2958 0.0868
6 6 3.2853 0.0973
9 6 3.2750 0.1076
11 6 3.3734 0.0092
Table 2: Optimal number of skip heads.
#SkipLayer #SkipHead Loss  Abs. Impr.
0 (Baseline) 0 3.3826 -
9 3 3.3543 0.0283
9 6 3.2750 0.1076
9 9 3.2497 0.1329
9 12 3.2643 0.1183

Flash Attention (Dao, 2023) is incorporated to ac-
celerate attention operations. Training is conducted
on NVIDIA V100 GPUs with 32GB of memory.
We experiment with sequence lengths of 4096,
8192, and 16,384 tokens to explore long-range de-
pendencies. Code implementation and optimiza-
tion are managed using the nanoGPT framework?.
All models start with a learning rate of 1.5e-4, de-
termined to offer a good balance between rapid con-
vergence and stability. Model performance is eval-
uated based on the loss on the validation dataset.

S Result
5.1 Number of skip layers

We initially explore the impact of varying the num-
ber of skip layers using a GPT-2 model (124M
parameters) as our default backbone. This model
has a hidden size of 768, 12 heads, 12 layers, and
supports a sequence length of 16,384. The default
number of skip heads is set to 6. As shown in
Table 1, our findings indicate that the optimal per-
formance enhancement via the skip-layer attention
method is achieved with 9 skip layers, resulting
in a substantial absolute improvement of 0.1076
over the baseline. Configurations with 3 and 6 skip
layers also demonstrate notable progress. How-
ever, employing just a single skip layer yields no
benefit; this might be attributed to the similarity
between the key and value heads among adjacent
layers, as discussed in Brandon et al. (2024). Simi-
larly, setting the number of skip layers to 11 does

2https://github.com/karpathy/nanoGPT/
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Table 3: Model size and sequence length variations.

Model Length Baseline Skip-Layer Attention Abs. Impr. Training Speedup
4096 3.1858 3.1762 0.0096 -1.69%
GPT2(124M) 8192 3.2077 3.2020 0.0057 -0.28%
16384  3.3826 3.2497 0.1329 0.83%
. 4096 2.9538 2.9399 0.0139 -0.76%
GPT2-MediumG3S0M)  g197  3.0335 2.9506 0.0829 -2.34%
GPT2-Large(774M) 4096 2.8271 2.8156 0.0115 -1.24%

not produce noticeable advancements, possibly due
to the presence of only one skip-layer attention in
this setup. Based on these results, we recommend
that 3/4 of the total number of layers is the most
effective number of skip layers.

5.2 Number of skip heads

Subsequently, we investigate the impact of vary-
ing the number of skip heads, also using a GPT-2
model (124M) and a sequence length of 16,384 as
our default backbone. The default number of skip
layers is set to 9, based on the optimal configura-
tion identified in the previous section. As presented
in Table 2, our results indicate that the optimal
performance enhancement is observed with 9 skip
heads, yielding a significant absolute improvement
of 0.1329 over the baseline. Configurations with 6
and 12 skip heads also demonstrate commendable
improvements. Notably, the configuration with 12
skip heads suggests that the keys and values from
the last 3 layers all use the keys and values from
the first 3 layers. This implies that direct attention
modeling between high-level abstract features and
low-level detail features is more important than
attention modeling purely between high-level ab-
stract features. Conversely, employing only 3 skip
heads shows no substantial benefit, indicating that
more skip-attention heads are necessary than the
original attention heads. Based on these findings,
we recommend setting the number of skip heads to
3/4 of the total number of heads.

5.3 Model Size and Sequence Length
Variations

In this section, we explore the effects of varying
model sizes and sequence lengths on performance.
We maintain the default configuration of using 3/4
of the total number of layers as skip layers and
3/4 of the total number of heads as skip heads.
Due to the 32GB memory limit of the V100 GPU,

we restrict our tests to model sizes and sequence
lengths that do not trigger out-of-memory (OOM)
errors when using Distributed Data Parallel (DDP).

As shown in Table 3, we observe an absolute im-
provement of 0.1329 over the baseline when using
GPT-2 (124M) with a sequence length of 16,384.
However, no significant improvements are noted
for sequence lengths of 4,096 and 8,192. This sug-
gests that longer sequences benefit more from our
skip-layer attention method, likely because they en-
compass more abstract and detailed dependencies.
Furthermore, for a sequence length of 8,192, GPT-2
Medium (350M) achieves an absolute improvement
of 0.0829 over the baseline, while GPT-2 (124M)
shows no noticeable improvement. This indicates
that larger models gain a greater advantage from
our skip-layer attention method.

The training time with our skip-layer attention
method is slightly longer than the baseline, expe-
riencing a maximum decrease in training speed of
2.34%. This is likely due to the additional stor-
age requirements for keys and values in the lower
layers.

6 Conclusion

In this paper, we propose a Skip-Layer Attention
(SLA) mechanism to enhance the Transformer ar-
chitecture’s ability to capture complex dependen-
cies within input data. By enabling direct atten-
tion between non-adjacent layers, our approach
improves the model’s capacity to integrate high-
level abstract features with low-level details with-
out significantly increasing computational com-
plexity. Extensive experiments demonstrate that
our enhanced Transformer model outperforms stan-
dard Transformer baselines in language modeling
tasks, validating the effectiveness of our method.
Our findings pave the way for further innovations
in optimizing neural network architectures.



7 Limitation

While our research has demonstrated the effective-
ness of skip-layer attention in Transformer models,
several avenues for future work remain to be ex-
plored:

Scaling to Larger Models: Future research
could extend skip-layer attention to larger Trans-
former architectures, such as GPT-3 (Brown et al.,
2020) and beyond, to assess its effectiveness across
different scales and complexity levels. Evaluating
the performance and efficiency on these larger mod-
els will offer valuable insights into its scalability.

Real-World Applications: Evaluating the skip-
layer attention mechanism in various real-world
applications, such as natural language understand-
ing (Hendrycks et al., 2021), general question an-
swering (Rein et al., 2023), coding (Chen et al.,
2021), and mathematics (Cobbe et al., 2021), will
be critical to fully understand its practical benefits
and limitations.

Beyond Text: Extending the applicability of the
skip-layer attention mechanism to other domains,
such as computer vision and speech processing,
will help determine its versatility and potential for
cross-modal impact.

Ablation Studies: Conducting comprehensive
ablation studies to understand the contributions of
different components within the skip-layer atten-
tion mechanism could provide deeper insights. For
instance, exploring the impact of connections to
multiple preceding layers rather than just one could
reveal additional enhancements and inform design
choices.
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A Appendix
A.1 Code

In this paper, the model code is based on nanoGPT,
which is publicly available on GitHub’. The im-
plementation of the skip-layer attention method is
detailed in the code listing provided below.

import torch.nn.functional as F
class CausalSelfSkipLayerAttention(nn.Module):

def __init__(self, config):
super (). __init__()
assert config.n_embd % config.n_head == 0@
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.num_skip_layer = config.num_skip_layer
self.split_num = config.n_head - config.num_skip_head

def forward(self, x, prev_k_list=[], prev_v_list=[]):

B, T, C = x.size() # batch size, sequence length, n_embd

q, k, v = self.c_attn(x).split(self.n_embd, dim=2)

k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
\Y v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
# efficient attention using Flash Attention CUDA kernels
if len(prev_k_list) >= self.num_skip_layer and len(prev_v_list) >= self.num_skip_layer:
k_combine = torch.cat([k[:, :self.split_num, :, :], prev_k_list[-self.num_skip_layer]], dim=1)
v_combine = torch.cat([v[:, :self.split_num, :, :], prev_v_list[-self.num_skip_layer]], dim=1)
y = F.scaled_dot_product_attention(q, k_combine, v_combine, attn_mask=None,
dropout_p=self.dropout if self.training else 0,
is_causal=True)
else:
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None,
dropout_p=self.dropout if self.training else 0,
is_causal=True)

y = y.transpose(1, 2).contiguous().view(B, T, C)

# output projection

y = self.resid_dropout(self.c_proj(y))

return y, k[:, self.split_num:, :, :1, v[:, self.split_num:, :, :]

Shttps://github.com/karpathy/nanoGPT/
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