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Abstract

Humans expertly navigate the world by building rich internal models founded on an
intuitive understanding of physics. Meanwhile, despite training on vast quantities
of internet video data, state-of-the-art deep learning models still fall short of
human-level performance on intuitive physics benchmarks. This work investigates
whether data distribution, rather than volume, is the key to learning these principles.
We pretrain a Video Joint Embedding Predictive Architecture (V-JEPA) model on
SAYCam, a developmentally realistic, egocentric video dataset partially capturing
three children’s everyday visual experiences. We find that training on this dataset,
which represents 0.01% of the data volume used to train SOTA models, does
not lead to significant performance improvements on the IntPhys2 benchmark.
Our results suggest that merely training on a developmentally realistic dataset is
insufficient for current architectures to learn representations that support intuitive
physics. We conclude that varying visual data volume and distribution alone may
not be sufficient for building systems with artificial intuitive physics.

1 Introduction

A core aspect of human intelligence is the ability to engage flexibly with our environments [26} 10 9].
This ability allows us to pursue goals, respond dynamically to changing stimuli, and navigate flexibly
in new settings. Previous research in cognitive science suggests that this aspect of human intelligence
emerges from the rich internal models people build of the surrounding world [[11} 19, 21]. We revisit
the claim that what makes our mental models useful in the physical world is that they are constrained
by internalized physical principles which reflect real-world dynamics [6, [33} 15 21]]. As proposed
by Battaglia et al. [6]], humans may rely on an “internal physics engine”: a cognitive mechanism
that runs coarse, probabilistic simulations of how physical scenes evolve over short time periods.
This mechanism possibly underpins our capacity to act and learn flexibly in novel environments. To
achieve embodied Al systems with human-like abilities, we posit that the underlying world model
should also demonstrate that it has internalized physical principles. However, state-of-the-art (SOTA)
deep learning models still fail to approach human-level performance on intuitive physics benchmarks
[8]]. Despite pretraining on millions of hours of video data and achieving impressive performance on
motion understanding, video question-answering, and other downstream tasks [[1], recent results by
Bordes et al. [8] have provided evidence that these models perform just above chance at classifying
between videos which are physically possible and impossible in the real world.

For humans, decades of developmental psychology research have shown that physical reasoning is
learned implicitly without any formal education and requires very little training data—infants under
the age of one reliably demonstrate knowledge about object permanence and continuity through space
and time [27, |28} |3} 2]]. Thus, our work mainly addresses an empirical question about data distribution:
to what extent can SOTA video models internalize physical principles by training on naturalistic
and developmentally realistic data? Rather than training video models on internet video and image
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datasets, we pretrain a V-JEPA model on SAYCam [32], a developmentally realistic egocentric video
dataset. SAYCam captures the richness and noisiness of early visual experiences, reflects a subset
of the data that infants use to learn intuitive physics, and thus presents itself as a natural option
for addressing learnability of physical principles with respect to data volume and distribution. We
find that the V-JEPA architecture is unable to perform well on intuitive physics benchmarks even
when trained on an approximation of the visual data distribution that human infants receive during
development. Next, both SOTA models and our model, despite being trained on 0.01% of the total
data volume, achieve only slightly above chance performance on IntPhys2. In our analyses, we
additionally show that intuitive physics tasks prove challenging for both the V-JEPA and VideoMAE
learning algorithms. Our results suggest that visual datasets alone may be an insufficient training data
source for current SOTA models to learn representations which support intuitive physics reasoning. In
line with previous research, we propose that future work should utilize embodied datasets (egocentric,
multimodal, action-annotated) and develop further innovations for model architectures.

2 Pretraining V-JEPA on a developmentally realistic dataset

While much prior work has focused on domain-specific models for intuitive physics [30,[33], recent
architectural advancements have allowed for promising improvements to physical understanding in
general-purpose deep learning models [[13 14, 1]]. In particular, the Video Joint Embedding Predictive
Architecture (V-JEPA) model [5, (1] has been hypothesized to learn flexible representations which
may promote performance in physical reasoning tasks [14]]. The V-JEPA model is pretrained in a
self-supervised manner and learns latent representations by predicting future states of masked frames.
Recent work has demonstrated that it learns useful features which are applicable to many downstream
tasks and domains [3]]. Thus, we opted for this model to explore our main question.

2.1 SAYCam dataset

We chose the SAYCam dataset as our training data as it contains 472 hours of egocentric videos
collected from the point of view of children interacting in the real world. We hypothesized that
SAYCam videos would provide richer learning signal for physical reasoning than internet videos from
simulations or online collections since it more closely approximates the input that infants obtain, and
sometimes actively seek, from the environment. Prior work has explored learnability of vision and
language from developmentally realistic and naturalistic data [24} 25]]. In one instance, Orhan et al.
[25] demonstrated that generic deep learning models are able to learn meaningful representations of
visual objects when trained on SAYCam in a self-supervised manner. Dataset details are provided in

Appendix [A]
2.2 Evaluating intuitive physics

Intuitive physics understanding is difficult to measure. Without having direct access to the internal
models of humans or Al systems, researchers often probe for specific knowledge or skills by analyzing
behavioral patterns within a constrained and simplified environment [7]. Prior work in developmental
psychology has established the violation-of-expectation paradigm, which relies on infant looking
times to determine which of a pair of visual events is more surprising, and thus less aligned with the
expectations of the child [22} 4]]. Following suit, many machine learning benchmarks evaluate video
models on intuitive physics concepts by extracting a surprise metric from model outputs for each
video frame [8 29,134, [18]]. This metric assumes that, if the predictions of the video model capture
real-world physical principles, then physically plausible videos should yield lower surprise scores
than implausible videos. The computation of our metrics are detailed in Appendix [B] We chose to
evaluate our model on the IntPhys2 benchmark, which was recently introduced by Bordes et al. [§]]
and improves upon previous intuitive physics understanding benchmarks by incorporating dynamic
shadows and lighting, natural occlusions, and both fixed and moving camera shots. Additional
benchmark details are included in Appendix [C|

2.3 Implementation details

We pretrained a V-JEPA base model (215M parameters) with 16x16 patches at a spatial resolution of
224 (ViT-L/16424) following the procedure set out in Bardes et al. [5]] on the SAY Cam dataset. Further
details on model pretraining are described in Appendix [D} We compared our model against two other
V-JEPA models with differently sized and distributed training datasets and against a Video-MAE
model trained on SAYCam [1} /5| [25]. V-JEPA-2-H-VM22M (654M parameters was pretrained on
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Figure 1: Breakdown of model accuracies on the IntPhys2 benchmark by physical condition, difficulty,
and camera set up. All models achieve around chance performance at classifying between possible
and impossible physical events with small variations in rank. Error bars mark standard error of the
mean accuracy.

VideoMix22M [l1]] (22 million samples), which comprises one egocentric video dataset [16], three
exocentric video datasets [20, 23} 135]], and 1 image dataset [[12] and amounts to over 1.73 million
hours of video data. Next, we evaluate V-JEPA-L-0-1-HowTo100M (326M parameters) which is
pretrained by Garrido et al. [[14] on a 0.1% subsample of the HowTo100M dataset[23]], and receives
128 hours of unique video data. While similarly sized to SAYCam, HowTo100M is made up of
exocentric and general purpose online tutorial videos, allowing us to isolate the effect of video data
distribution on task performance. Finally, the VideoMAE model released by Orhan et al. [25] is
trained in a self-supervised manner on the SAYCam dataset. We include the performance of this
model to again isolate the effect of model architecture on performance. Our training code is available
at https://github.com/eysu35/vjepal and our pretrained model is available for download at
https://huggingface.co/eys8549/vjepa-saycam.

3 V-JEPA pretrained on SAYCam yields similar performance to SOTA
models

We find that our model achieves similar performance to all other benchmarked models. All models
are performing at or slightly above chance (V-JEPA-B-SAYCam (ours): 0.50, V-JEPA-2-H-VM22M:
0.52, MAE-SAYCam: 0.53, V-JEPA-L-0-1-HowTol00M: 0.54), suggesting that neither current
large-scale internet video datasets nor human-scale naturalistic developmental video datasets are
sufficient for V-JEPA architectures to learn intuitive physics concepts. The video pairs in the IntPhys2
dataset vary by physical concept, difficulty, and camera set up (see Figure|[I)), which allows for more
fine-grained analysis compared to previous benchmarks. Despite sharing similar architectures and
being trained on drastically different datasets, the models show consistently poor overall performance.
In contrast, Bordes et al. [8] evaluated human participants and reported a near-perfect score of 96.44%
for overall classification accuracy. Our model, the VideoMAE model, and the V-JEPA large model
were fully trained on a few hundred hours of unique video data. Given that this makes up less
than 0.01% of the data volume which V-JEPA-2-H-VM22M was trained on, we observe that the
performance gain across intuitive physics tasks does not scale well with the size of training dataset.
While pretraining on larger and more diverse video datasets may lead to richer learned representations
and performance improvements in novel downstream tasks, our results highlight the fact that intuitive
physics reasoning in video models remains a challenge currently unsolved by the volume of visual
data alone. Comparison to V-JEPA-L-0-1-HowTo100M and MAE-SAYCam also indicate that data
distribution and model architecture did not result in significant differences in task performance.

3.1 Surprise analysis

We conducted a qualitative analysis to compare the fine-grained behavioral patterns of surprise
values between the V-JEPA models following the analysis in Bordes et al. [8]. The surprise patterns
across video conditions shed light into whether the surprise metric captures higher-level concepts
in the videos and whether the model classification is grounded in its understanding of these events.
Figure [2] shows the predicted values over frames of a pair of correctly classified videos (panel A) and
incorrectly classified videos (panel B). We observe that the surprise predictions from the two models
trained on small-scale datasets follow similar patterns and respond to video contents more so than the
model trained on VideoMix22M. Finally, for both video pairs, the surprise patterns outputted by all
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Figure 2: Model surprises for all V-JEPA models. A) Top: a subsample of video frames for an
impossible video (violates object permanence). Bottom: Frame-by-frame surprise predictions for the
corresponding possible/impossible video pair which all models classified correctly (average surprise
for possible < average surprise for impossible). B) Top: a subsample of video frames for an impossible
video (violates continuity). Bottom: Frame-by-frame surprise predictions for the corresponding
possible/impossible video pair which all models classified incorrectly (average surprise for possible >
average surprise for impossible). The surprise values were taken from the context which reported the
best overall accuracy score. Dotted lines represent average surprise scores.

models are consistently similar for the possible and impossible videos, indicating that computing
classification accuracy based on average surprise is highly sensitive to noise.

4 Discussion

Although previous results suggested that human-level intuitive physics emerges from large-scale
video datasets using latent representation learning [[14]], recently published benchmarks suggest
that physical reasoning in world models remains a machine learning challenge [8]]. In this work,
we explored whether the V-JEPA model could learn representations which reflect intuitive physics
principles when trained on a video dataset that mimics the data a child is exposed to. Although
we found that the model was able to match performance on some dimensions of the benchmark
with significantly less data volume, our conclusion is that all evaluated models, which vary in size,
pretraining data distribution, and architecture, are yet unable to learn representations which support
intuitive physics reasoning. One limitation of our work is that the SAYCam dataset is of a drastically
smaller size than the visual data children have access to and does not fully capture the range of visual
experiences needed to learn intuitive physics. Thus, perhaps models would perform better on intuitive
physics benchmarks if trained on a larger dataset of this distribution. Second, SAYCam only captures
visual information and does not incorporate other aspects of embodiment which may be critical to
learning intuitive physics. For example, perhaps children learn to understand physics by reconciling
their self-directed movements with their visual fields, and thus incorporating motion or action data
alongside visual data may be key to learning good representations for intuitive physics. Other datasets
such as BabyView might be more conducive to learning intuitive physics since they annotate
egocentric videos with accelerometer data. In general, while egocentric and developmentally realistic
video data are components of embodiment, we hypothesize that the signal captured in an agent’s
actions and motion would contribute meaningfully to internalizing physical principles in machine
learning world models. The effort toward artificial intuitive physics aligns with the development of
effective and efficient embodied Al systems that can operate freely in the world.
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A SAYCam dataset

SAYCam is a longitudinal audiovisual dataset of head cam recordings collected from three young
children (nicknamed S, A, and Y) from the ages of 6 to 32 months [32]]. Each infant wore a head cam
for approximately 2 hours per week over the course of approximately 2.5 years. In total, SAYCam
contains 472 hours of video, with 194, 141, and 137 hours of video from S, A and Y, respectively.
The data for each child consist of a set of continuous, natural and uninstructed recordings, each
between 1 to 2 hours. All of the videos take place in the home environments of the children and
include activities such as crawling, being held, lying, or sitting [32].

B Violation of Expectation Metric

The violation-of-expectation paradigm has been extensively used in developmental psychology to
evaluate psychological constructs in preverbal infants [4} 22]. In a typical experimental setup, infants
are presented with two similar visual scenes following habituation, where one of the scenes contains
an event which is hypothesized to appear surprising only if the infant has some understanding of the
underlying property being tested. Surprise is usually obtained by measuring relative looking time
[31], and is used to determine whether a concept violation has occurred.

In recent machine learning literature, this notion of surprise has been adapted to serve as a proxy for
model understanding [14]. Both types of models we evaluated (pixel and latent prediction methods)
can be evaluated in the same way, with the only difference being how the target of the prediction is
encoded. For V-JEPA, we use the latent representations of the future obtained by encoding the video
and then only keeping the future frames, while for the VideoMAE trained on SAY Cam, the target is
simply the normalized future of the video. Considering a video V' with frames 1, ..., T, a context
encoder fy handling C' frames, a target encoder g, producing the ground truth A/ future frames from
the video, and a predictor predicting M frames in the future, we can measure surprise at time ¢ as

St = Ips (fo (Vistrc)) — 99 Visero+nm) |1 1)

Next, prior work reports different design choices for computing model accuracies from surprise
values. Building on this work, we define our accuracy as the fraction of video pairs in which the
average surprise (across all video frames) for a possible video is lower than the impossible video. As
the evaluation is conducted over multiple context lengths as a hyperparameter, our final performance
score is taken from the context which maximized the model accuracy for each condition following
Bordes et al. [8] and Garrido et al. [14]. The average surprise per context is computed as,

. 1
AvgSurprise = Z St @)
te{1,1+s,...T—(C+M)}

where s is a stride parameter for the sliding window, reducing the amount of compute used to evaluate
each video clip. For all our evaluations, we use s = 2.

C Benchmark details

The IntPhys2 benchmark [8]] builds off of the first version by including pixel-to-pixel aligned pairs
of videos simulating physically impossible and possible events. The creators of this benchmark
generated all video pairs with a photorealistic simulation engine which avoids challenges like data
leakage and the appearance of spurious features from video stitching.

The benchmark contains contains three main splits: the “Debug” (30 pairs), “Main” (506 pairs)
and “Held-out” (172 pairs) sets. Metadata containing labels, scene and difficulty among other
attributes were only released for the debug and main splits. This new collection of generated
videos are photorealistic and include dynamic shadows and lighting, natural occlusions, and both
fixed and moving camera shots. All these components add richness to the dataset and establishes
the benchmark as a more comprehensive and realistic evaluation benchmark for intuitive physics
understanding. Following Bordes et al. [8], we evaluate our model on the “Main” data split which
contains metadata annotations. Model performance is measured across object permanence, object
immutability, spatio-temporal continuity, and solidity.



D Implementation Details

The pretraining procedure we followed was heavily influenced by the code and configurations set up
in Bardes et al. [5] and Garrido et al. [14]. As we were comparing our pretrained model to the V-JEPA
version 1 model trained on a large-scale video dataset, we mimicked the original training process as
closely as possible. However, the drastic reduction in dataset size required us to make a few changes:
reducing the training time from 200 (60,000 steps) to 40 epochs (12,000 steps), reducing the warm up
period from 40 to 10 epochs, and fixing the weight decay at 0.04 rather. In addition, we partitioned
the data from each child in SAYCam 80/20 into a train and validation set, monitored the loss curves
of both to ensure convergence, and implemented early stopping to mitigate overfitting. Finally, we
trained our model across 2 NVIDIA A100-SXM4-40GB GPUs.
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While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in our abstract and introduction reflect our empirical results and
identify key areas for future research.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations of our pretraining dataset (size) and the missing
components between egocentric visual data and embodiment.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

Justification: Our paper presents empirical results, but we justify the assumptions we made
in defining our experiment.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:

Justification: We used open source models and datasets and will release the repository
containing our code as well as the checkpoints for our pretrained model in the final version
of this paper. They are currently omitted to preserve anonymity.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include sufficient detail on hyperparameters, implementation configura-
tions and compute resources such that our pretraining job can be reproduced. Our main
experimental results can also be reproduced by running our model (with public checkpoints)
on a publicly available benchmark.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details are included in our appendix [D]and in our methods section.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars which reflect the standard error of the average model
accuracies for each model. Since all models performed close to chance, we did not consider
statistical testing between model performances to be useful.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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10.

Justification: We include the compute resources we used in appendix [D]and followed the
distributed training protocol set out in prior work (cited in the methods and appendix).

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research did not directly involve human research participants nor did we
disclose any private or sensitive information about human subjects involved in the dataset
we used. Our work has no potential harmful downstream consequences.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work contributes to a growing literature in world models and machine
learning for physical reasoning. These efforts will enable future embodied artificial intelli-
gence and the development of many useful technologies for society.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

14


https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no risks for data leakage or other security concerns.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the SAYCam dataset, published under a CC BY 4.0 license, and the
V-JEPA model, published under a CC BY-NC 4.0 license.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not include crowdsourcing or research from human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not include crowdsourcing or research from human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work does not involve LLMs as part of the core method development.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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