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ABSTRACT

Classifier-free guidance (CFG) is a cornerstone of text-to-image diffusion models,
yet its effectiveness is limited by the use of static guidance scales. This “one-size-
fits-all” approach fails to adapt to the diverse requirements of different prompts;
moreover, prior solutions like gradient-based correction or fixed heuristic sched-
ules introduce additional complexities and fail to generalize. In this work, we chal-
lenge this static paradigm by introducing a framework for dynamic CFG schedul-
ing. Our method leverages online feedback from a suite of general-purpose and
specialized small-scale latent-space evaluators—such as CLIP for alignment, a
discriminator for fidelity and a human preference reward model—to assess gener-
ation quality at each step of the reverse diffusion process. Based on this feedback,
we perform a greedy search to select the optimal CFG scale for each timestep,
creating a unique guidance schedule tailored to every prompt and sample. We
demonstrate the effectiveness of our approach on both small-scale models and the
state-of-the-art Imagen 3, showing significant improvements in text alignment, vi-
sual quality, text rendering and numerical reasoning. Notably, when compared
against the default Imagen 3 baseline, our method achieves up to 53.8% human
preference win-rate for overall preference, a figure that increases up to to 55.5%
on prompts targeting specific capabilities like text rendering. Our work establishes
that the optimal guidance schedule is inherently dynamic and prompt-dependent,
and provides an efficient and generalizable framework to achieve it.

1 INTRODUCTION

The remarkable progress in text-to-image synthesis, powered by diffusion models (Ho et al., 2020;
Song et al., 2023), has unlocked unprecedented creative potential. However, generating images
from diffusion models requires hundreds of sampling steps to achieve sufficient generation quality.
Consequently, a critical frontier of research is not only in training more powerful models, but also in
enhancing inference in terms of efficiency and controllability without the need for costly retraining.

A cornerstone of controlling the generation process at inference time is classifier-free guidance
(CFG; Ho & Salimans 2022) which has become the de facto standard in image generation. CFG
provides a mechanism to amplify the influence of the text prompt, allowing to trade diversity for
stronger adherence to the conditioning signal via a single guidance scale. However, the guidance
scale is typically either set to a single, static value for the entire generation process or is defined as a
schedule depending only on the sampling timestep based on empirical observations (Kynkäänniemi
et al., 2024; Chang et al., 2023; Sadat et al., 2023; Wang et al., 2024). In all cases, CFG is reduced
to a “one-size-fits-all” strategy that overlooks the nuanced demands of different prompts during
inference. For example, a prompt requiring complex compositional arrangements may need strong
guidance for text alignment, whereas a prompt focused on a specific artistic aesthetic might benefit
from lower guidance to preserve visual fidelity and diversity. We empirically validate this hypothesis
and further find that generating specific, challenging attributes like legible text within an image often
responds poorly to standard guidance strengths. This rigidity forces an undesirable compromise,
where optimizing for one aspect (e.g., alignment) often degrades another (e.g., aesthetics).

In this paper, we challenge the notion of a static guidance scale in diffusion models. We hypothesize
that the optimal trade-off between prompt alignment and visual quality is not fixed, but is a dynamic
function of the prompt’s content, the current generation stage, and the diffusion model itself. To
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Figure 1: Dynamic CFG. We propose to perform a greedy search over multiple CFG scales and
select the one that maximizes the latent evaluators’ scores at each sampling step. The evaluators are
small-scale and operate directly in the diffusion latent space increasing the computational overhead
during inference by only 1%. Finally, for combining scores by multiple evaluators, we propose an
adaptive weighting dependent on the denoising timestep.

realize this, we propose a framework that dynamically selects the optimal CFG scale using online
feedback from efficient latent evaluators. We employ a suite of these evaluators to measure distinct
generation capabilities: both general-purpose (alignment, visual quality) and specialized ones such
as text rendering and numerical reasoning. Crucially, these evaluators operate directly on noisy
latents within the diffusion process, providing rich feedback with negligible computational overhead.

We leverage a greedy search-based optimization at each sampling step to evaluate a discrete set of
candidate CFG scales. We select the one that maximizes a composite score from our latent evalua-
tors. This procedure generates a dynamic CFG schedule tailored specifically to each prompt and its
evolving sample. Interestingly, the average trend of our schedules aligns with empirical heuristics
from prior work (Kynkäänniemi et al., 2024; Wang et al., 2024), lending external validity to our
approach. However, the key to our superior performance lies in the adaptability of our approach.

Our experiments on a text-to-image model similar to StableDiffusion (Rombach et al., 2022) across
the Gecko (Wiles et al., 2024) and MS COCO (Lin et al., 2014) benchmarks demonstrate that our
method improves both alignment and visual quality simultaneously. This stands in sharp contrast to
prior methods, such as gradient guidance (Nichol et al., 2022; Kim et al., 2023) or fixed heuristic
schedules (Kynkäänniemi et al., 2024; Sadat et al., 2023), which typically improve one aspect at the
expense of the other.

To demonstrate the generality and scalability of our approach, we apply it to the SoTA Imagen 3
model (Team et al., 2024). On the challenging Gecko and GenAI-Bench (Li et al., 2024) prompt sets,
human raters preferred generations from our method over the default Imagen 3 baseline in 53.6% and
53.8% of comparisons, respectively. The high quality of SOTA models also motivates extending our
framework with more specialized, capability-based evaluators. By incorporating a human preference
reward model, and text rendering and numerical reasoning specific evaluators, we achieve even more
fine-grained control. For the MARIO-eval (Chen et al., 2023a) benchmark requiring legible text, and
the GeckoNum (Kajić et al., 2024) one requiring counting skills, this specialized guidance boosts
the human preference rate up to 55.5% and 54.1% over default sampling, respectively.

Our contributions can be summarized as follows:
• We propose a novel framework for dynamically optimizing the CFG schedule during gen-

eration and introduce a suite of latent evaluators that provide online feedback directly on
noisy diffusion latents while increasing the computational requirements only by 1% in con-
trast to 400% for a pixel-space equivalent.

• We show that prior empirical observations on CFG schedules fail to generalize across dif-
ferent model families, prompt sets, and generation skills. In contrast, our method signif-
icantly improves sampling on both a StableDiffusion-equivalent model and SoTA Imagen
3 across general-purpose and skill-specific prompt sets. We empirically demonstrate how
our method’s superiority lies in its adaptability and how the optimal CFG values change
depending on the requirements of the prompt.
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2 RELATED WORK

Evaluation of text-to-image models. Evaluating the output of text-to-image models is a signif-
icant challenge in itself. Beyond traditional metrics, such as FID (Heusel et al., 2017) for image
quality, and CLIPScore for alignment, that cannot offer fine-grained feedback on sample quality,
recent work has developed VQA-based systems as autoraters (Wiles et al., 2024; Hu et al., 2023;
Yarom et al., 2024; Lin et al., 2024). These autoraters show strong correlation with human percep-
tion, but their reliance on large language models (LLMs) makes them too computationally expensive
for use during the iterative inference process, relegating them to post-hoc analysis. This motivates
the search for evaluators that are both effective and efficient enough for online, step-by-step guid-
ance. The most related work in this direction is that of Becker et al. (2025), Xu et al. (2023), Na
et al. (2024), and Singhal et al. (2025). Becker et al. (2025) employ CLIP for evaluation directly
in the latent space but they only assess denoised latents before the final decoding step. Xu et al.
(2023) and Na et al. (2024) use a discriminator for evaluating visual quality during sampling for
rejecting poor quality samples or restart the process earlier on. Finally, Singhal et al. (2025) and
Kim et al. (2025) propose FK steering and DAS, respectively, for improving sampling starting from
multiple random seeds and evaluating the intermediate “potentials” of samples. We introduce a
flexible framework for combining feedback from multiple general and capability-specific evaluators
to enable more fine-grained, multi-faceted control. Crucially, in contrast to prior work, we do not
increase the NFEs and aim at improving a single seed instead of choosing or steering multiple seeds.
Our method is orthogonal to work that rejects bad initial seeds.
Guided image generation. Classifier-free guidance (Ho & Salimans, 2022) has emerged as a
useful way of trading-off sample quality and diversity using a single parameter. Recent work has
focused on tuning the CFG values: Kynkäänniemi et al. (2024) apply guidance only for a limited
time interval, and Chang et al. (2023) find that using a linearly increasing CFG schedule improves
diversity. To improve sample quality and alignment, Sadat et al. (2023) use custom CFG sched-
ules, while Wang et al. (2024) find that tuning such schedules per model and prompt set further
improves results. In an attempt to correct for mistakes caused by CFG, Nichol et al. (2022) propose
to additionally employ classifier guidance via a noise-conditioned CLIP model which gradients push
samples towards the direction of the prompt. In the opposite end of the spectrum, Kim et al. (2023)
propose a similar method using a discriminator for increasing visual fidelity. However, combining
CFG with auxiliary model guidance increases complexity, makes manual hyperparameter tuning
more strenuous and does not offer different guidance strength depending on the prompt.

3 METHOD

3.1 PRELIMINARIES

Diffusion models are a class of generative models that learn to reverse a noising process and are
defined by two Markov processes. The forward process iteratively adds Gaussian noise to the
data x0 with T increasingly noisy steps. At timestep t ∈ [1, T ] noise is added to x0 as follows:
xt =

√
αtx0 +

√
1− αtϵt, ϵt ∼ N (0, I), where αt ∈ (0, 1) are pre-defined schedule parameters.

The learned backward process gradually denoises xT towards the data distribution p(xdata). After
training a diffusion model pθ(x0) to fit the data distribution, we sample from it starting with Gaus-
sian noise: x̂0 = 1√

αt

(
xt −

√
1− αtϵθ(xt, t)

)
, where ϵθ(xt, t) is the model’s noise prediction.

3.2 ONLINE EVALUATORS

Given a noisy latent sample xt at denoising step t, we compute a score et for evaluating the sample’s
quality across a specific dimension using one of the following evaluators.
Alignment. Given xt and the conditioning prompt c, we compute noisy latent CLIP scores as a
prediction of final sample alignment:

eCLIP = CLIPvisionxt ∗ CLIPtextc
T (1)

CLIP is initialized from a standard pre-trained model trained on clean real images and corresponding
captions from the WebLI dataset (Chen et al., 2023b). We replace the embedding layer of the vision
encoder with a randomly initialized one matching the dimensionality of the diffusion encoder. We
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then fine-tune the model on image-text pairs after encoding the images into diffusion latents and
injecting random noise with a similar time schedule as for the diffusion model training. We further
condition the vision encoder on timestep t converting CLIP into a time-conditioned encoder. We use
the standard CLIP contrastive objective to map noisy latents to text descriptions.
Visual quality. Given xt, we compute a score corresponding to the likelihood of an image being
real independently of c via a noisy latent Discriminator trained to differentiate between real and
generated images, similar to prior work (Kim et al., 2023; Na et al., 2024):

eDisc = −log
p(xt|t)

1− p(xt|t)
(2)

where p(xt|t) is the time-conditional probability of image xt to be real on timestep t. We initialize
the discriminator from the latent CLIP vision encoder and introduce a classification head on top for
predicting whether the images are synthetic or real. We train the discriminator on a small set of real
vs. generated images from the MSCOCO dataset (Lin et al., 2014), similar to Kim et al. (2023).
Reward (Human preference). Similarly to reward modeling, we further fine-tune the latent align-
ment evaluator on pairs of generated images for the same prompt given human preference labels that
reflect overall preference (aesthetics, alignment, artifacts). For converting pairwise comparisons to
scores, we follow common approaches from LLM alignment (Ouyang et al., 2022) for reward tuning
and use the Bradley-Terry (BT) model (Bradley & Terry, 1952). According to the BT model, CLIP
is further optimized according to the following training objective:

p(i > j|c) = p(i|c)
p(i|c) + p(j|c)

(3)

where p(i|c) and p(j|c) is CLIP similarity between the prompt c and each image i, j in the compar-
ison pair, with i being the preferred one.
Text rendering. We consider a capability-specific evaluator for text rendering, a challenging as-
pect in image generation. We fine-tune the alignment evaluator on generated images labeled with
scores by an OCR model. We introduce a multimodal head on top of the dual encoder and train the
model to predict text rendering specific scores. We optimize the evaluator with an MSE objective:

MSETR =
1

n

n∑
i=1

(eiTR − eiOCR)
2 (4)

where eTR, eOCR are the scores predicted by the latent evaluator and OCR model, respectively.
Numerical Reasoning. We consider another capability-specific evaluator for numerical reasoning
by fine-tuning the noisy latent CLIP on a subset of WebLI-100B images (Wang et al., 2025) filtered
to contain countable entities. We fine-tune the model with the original contrastive objective on the
capability-specific dataset.

3.3 DYNAMIC CFG SEARCH VIA ONLINE FEEDBACK

Dynamic CFG. Classifier-free guidance (CFG) (Ho & Salimans, 2021) alleviates the need of a
classifier for generating samples with high fidelity and mode coverage. In CFG, a model is trained
to be both conditional and unconditional, and the respective scores are combined during generation
via the CFG scale s, which regulates the trade-off between fidelity, alignment and diversity:

ϵθ(xt|c) = ϵθ(xt|∅) + s(ϵθ(xt|c)− ϵθ(xt|∅)) (5)

where θ is the parameters of the diffusion model, c is the condition applied to the diffusion model,
i.e., the prompt for text-to-image generation, and ∅ is an empty sequence used for training the un-
conditional variant of the diffusion model.

We propose to dynamically select the optimal CFG scale per timestep given feedback e from
the online evaluators of Section 3.2 (see Figure 1). Formally, given a set of CFG scales S =
{s1, s2, . . . , sn}, at every step we select the scale

ŝt = argmaxs∈Set(x
s
t , c), (6)

which maximises the timestep-conditioned evaluator’s score et for the conditioning prompt c.

We optimize the final sample quality via a greedy search across timesteps, selecting the CFG scale
that maximizes our latent evaluators’ scores per step. Crucially, this search is performed without
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increasing the Number of Function Evaluations (NFEs). For each timestep t, we denoise once
to obtain the conditional ϵθ(xt|c) and unconditional ϵθ(xt|∅) predictions, and then cheaply test
multiple CFG scales via Equation 5. Since our latent evaluators are lightweight and operate directly
in the latent space, there is no increase in computation during inference (around 1% increase in
FLOPs in contrast to 400% increase if operating in the pixel-space, see details in Appendix A.3).
Adaptive evaluators’ weighting. We aim to combine feedback from general and capability-
specific evaluators. Intuitively, our approach is founded on the principle that different properties
emerge at different stages of generation. For example, coarse-grained alignment is established early
on, while text legibility and artifact removal are late-stage concerns. Prior work also notes that
high initial guidance can degrade visual quality (Wang et al., 2024). Given this sampling time-
dependency, a static linear weighting of evaluator scores is insufficient. We therefore employ a
dynamic weighting scheme that adjusts the influence of each evaluator e ∈ E according to the
current timestep, a strategy we show to be critical for optimal performance in Section 5.2.

êt =
∑
e∈E

αe,t ∗ et, where αe,t =
et − et+1

et+1
. (7)

Intuitively, our dynamic weighting scheme amplifies an evaluator’s influence at the precise moment
its signal becomes meaningful, which we identify by detecting a significant change in its score across
timesteps—a sign that the generation has entered an information-rich phase for that property.

4 EXPERIMENTAL SETUP

Diffusion Models. We experiment with both open-source and SoTA proprietary model families.
We use LDM (i.e., latent diffusion model), a variant of the open-source StableDiffusion (Rombach
et al., 2022) text-to-image model, trained on web-scale image data. We use LDMsmall (865M param-
eters) for ablations and LDMlarge (2B parameters) for main results. We also transfer our approach to
Imagen 3 (Team et al., 2024) and test whether our improvements hold on near-perfect text-to-image
generation. For each model family we train separate evaluators tuned on the respective latent spaces.

Prompt Sets. We use general purpose and specialized prompt sets for evaluating image gener-
ation performance across different generation aspects. We use Gecko (Wiles et al., 2024) and
GenAI-Bench (Li et al., 2024), which are diverse prompt sets containing fine-grained categories,
for measuring overall preference in text-to-image generation. We use MS-COCO eval (Lin et al.,
2014) for automatic evaluation on visual fidelity due to access to the ground-truth reference images,
MARIO-eval (Chen et al., 2023a) for evaluating text rendering, and GeckoNum (Kajić et al., 2024)
for testing numerical reasoning (i.e., counting).

Evaluation. For automatic evaluation, we use Gecko score (Wiles et al., 2024) for measuring
fine-grained text alignment and FID (Heusel et al., 2017) on MS-COCO for measuring fidelity.
For human evaluation, we run studies via side-by-side comparisons between model variants and
report win rates over the baseline marking significance with 95% confidence intervals. For Gecko
and GenAI-Bench we ask raters to indicate the image that they overall prefer (with respect to both
alignment and aesthetics), for MARIO-eval we ask them to choose the image with the best aligned
rendered text, and for GeckoNum we ask them to indicate the image that more closely represents
the correct count of objects/entities (see details in Appendix A.4).
Latent evaluators’ training. Our analysis reveals that the reliability of feedback from our latent
evaluators depends heavily on the noise level. While coarse attributes like overall visual structure
and semantic alignment can be assessed early in generation, fine-grained details—such as minor
artifacts or the legibility of rendered text—can only be evaluated accurately at lower noise levels.
This motivates a time-weighted loss schedule for the human feedback and text rendering evaluators.
We provide details on training and computational requirements in Appendix A.1.

5 RESULTS

5.1 EVALUATION OF LATENT EVALUATORS

We evaluate the effectiveness of the latent evaluators described in Section 3.2 by answering two
questions: 1. What is the information loss by directly assessing compressed latents instead of pixel-
space images? 2. How early during denoising can we get signal for sample quality?
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Table 1: Filtering performance. We evaluate the degree of prompt alignment via the Gecko score
while filtering samples of poor alignment at different % during sampling. For filtering, we either use
the latent CLIP evaluator or an off-the-shelf CLIP model operating in the pixel space. In all cases,
we select the best out of a batch of 4 when filtering. Computed on the Gecko prompt set.

Model Evaluator No filtering Filter @ [Gecko Score]

25% 50% 75% 100%

LDMsmall
latent-space CLIP 37.6 39.7 41.4 43.0 43.0
pixel-space CLIP 37.6 43.4 44.6 44.7 45.1

LDMlarge
latent-space CLIP 42.9 45.9 45.2 46.6 46.0
pixel-space CLIP 42.9 47.1 48.9 48.4 48.6

Table 2: Automatic evaluation on LDMlarge. We report alignment and visual fidelity performance
via Gecko score and FID respectively for (1) gradient-based guidance that uses auxiliary models
for correcting samples, (2) static CFG schedules derived from empirical observations, and (3) our
dynamic CFG search when using latent alignment and/or visual quality (VQ) evaluators.

Method Latent evaluator/ Gecko score ↑ FID ↓
Static schedule (Gecko prompts) (MS COCO prompts)

Default CFG (fixed) – 43.8 25.6

Gradient guidance
Alignment (Nichol et al., 2022) 46.1 25.6
VQ (Kim et al., 2023) 44.6 25.5
Alignment + VQ 45.3 25.5

Static CFG schedules

Limited Guidance Interval 43.0 26.1(Kynkäänniemi et al., 2024)
Annealing (Sadat et al., 2023) 47.0 28.9
Mean of Dynamic CFG 46.5 26.8
Median of Dynamic CFG 45.8 26.0

Dynamic CFG search

Alignment 45.5 26.4
VQ 44.0 24.8
Alignment + VQ (linear) 45.0 25.4
Alignment + VQ (adaptive) 47.2 24.8

Similarly to Karthik et al. (2023) and Astolfi et al. (2024), we perform filtering for evaluating the
effectiveness of the evaluators. Instead of filtering samples after denoising, we evaluate potential
paths during generation. We consider a large number B of initial seeds per prompt and aim at
subselecting the K best ones at timestep t. We explore filtering at different timesteps t corresponding
to a different percentage of NFEs.

We report the Gecko score on LDMsmall/LDMlarge when filtering images via the alignment (CLIP)
evaluator at different sampling stages in Table 1. We compare the performance of the latent evalua-
tor against a pixel-space equivalent. In this case, we first perform one-step denoising from xt to x0

and decoding of x0 into pixels, which produces clean but blurry images that can be processed by an
off-the-shelf encoder. We find that the information loss we suffer by operating directly on latents is
consistent for different noise levels. Although there is an expected performance drop when using la-
tents, we still maintain information about sample quality while reducing the computational overhead
allowing us to use the latent evaluators online during inference (see Appendix A.3). Importantly, we
find that we correctly discard poorly aligned samples from as early as 25% of the denoising process.
We observe a similar behavior for the visual quality evaluator (see Appendix A.5).

5.2 DYNAMIC CFG SEARCH

LDM. We compare our dynamic CFG search against gradient-based guidance (Nichol et al., 2022;
Kim et al., 2023) and static CFG schedules (Kynkäänniemi et al., 2024; Sadat et al., 2023) on
LDMlarge in Table 2 using the automatic metrics described in Section 4.

Alignment (CLIP) guidance is indeed effective for improving alignment without any benefits in
visual fidelity, whereas the visual quality (Discriminator) guidance only slightly improves align-
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Table 3: Human Preference on Imagen 3. Side-by-side human comparisons of the baseline Imagen
3 and Imagen 3 with our dynamic CFG search. We report win rates for the custom CFG schedules
against the default and underline the wins that are significant with a 95% confidence interval. We
report results on Gecko and GenAI-Bench for overall preference, MARIO-eval for text rendering
and GeckoNum for numerical reasoning.

Method Latent Evaluator Win Rate (%) ↑
Gecko GenAI- MARIO- GeckoNum

Bench eval

Limited Interval – 27.9 33.1 19.6 46.6
Annealing – 46.4 34.4 42.7 50.8

Dynamic CFG
Alignment 50.9 53.2 52.3 51.1
Reward 52.1 51.4 53.8 53.8
Alignment + Reward 53.6 53.8 54.7 53.6

Capability-specific evaluators

Dynamic CFG

Text rendering – – 53.1 –
+ Alignment – – 55.3 –
+ Reward – – 55.5 –

Numerical – – – 52.2
+ Alignment – – – 53.2
+ Reward – – – 54.1

ment, but not FID. When combining the gradients of the two models, we observe no effect; while
CLIP improves alignment, discriminator guidance fails to boost fidelity. In contrast, our dynamic
CFG search (last block of Table 2) demonstrates a clear and controllable trade-off. Using only the
alignment evaluator optimizes the Gecko score, while using only the visual quality evaluator opti-
mizes FID. Our full approach leveraging adaptive weighting to combine the evaluators, successfully
improves both dimensions at once. We find the adaptive weighting to be critical: using a static,
time-independent weighting significantly hurts performance.

We first compare the dynamic CFG search against a constant value, limited-interval guid-
ance (Kynkäänniemi et al., 2024) and an annealing schedule (Sadat et al., 2023) (third block of
Table 2). While the annealing schedule improves alignment at the cost of visual fidelity, our dynamic
schedule matches its alignment performance while simultaneously improving fidelity. To determine
if the gain comes from the schedule’s general shape or its per-prompt adaptability, we create a static
“mean schedule” by averaging our dynamic schedules over all prompts and apply it universally.
We find that performance drops in this condition, which, while still competitive, highlights that the
per-prompt adaptability of our approach is a crucial component of our method’s success.

Imagen 3. We next assess how our method transfers to Imagen 3 via human evaluation as de-
scribed in Section 4. We extend the suite of latent evaluators since we find the discriminator to be
an insufficient visual quality predictor for Imagen 3 during early experimentation1. As discussed in
Section 3.2, we instead use a reward evaluator trained on human preference data alongside with two
capability-specific evaluators: one for text rendering and one for numerical reasoning.

We report win rates of side-by-side comparisons in Table 3 across Gecko, GenAI-Bench, MARIO-
eval and GeckoNum. Our dynamic CFG framework yields statistically significant improvements
over the strong Imagen 3 baseline. Consistent with our findings on LDM, using either the alignment
or the reward evaluator is preferred over the baseline across all prompt sets. We further validate that
combining the two evaluators with adaptive weighting achieves the best results across all prompt
sets reaching up to 54.7% win rate on MARIO-eval for text rendering.

We demonstrate the flexibility of our framework by also deploying two specialized evaluators for text
rendering and numerical reasoning. We test their effectiveness on specialized prompt sets tailored for
measuring each capability separately. On these prompt sets, we find that both evaluators achieve the
highest win rates against the baseline (55.5% on text rendering and 54.1% on numerical reasoning)
when also combined adaptively with the general purpose evaluators (either alignment or reward).

1We hypothesize that since Imagen can generate very high quality photorealistic images, predicting small
artifacts or aesthetic improvements via a discriminator can be more challenging than on LDM.
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(a) Median values in LDM for the
Gecko prompt set when using an
alignment (CLIP) or visual qual-
ity (VQ) evaluator or their com-
bination with a fixed linear or
adaptive weighting.

(b) Smoothed median normalized
values in Imagen 3 for the Gecko
prompt set when using an align-
ment (CLIP) or reward (Human
pref) evaluator or their combina-
tion with adaptive weighting.

(c) Smoothed median normalized
values in Imagen 3 for the differ-
ent prompts when using the best
performing combination of eval-
uators as shown in Table 3.

Figure 2: Median of the dynamic CFG schedule on different models and prompt sets.

Low Guidance in Dynamic CFG

(a) Prompt: “...pop art depicting the Mona Lisa...
blocks of bright pink and yellow in a checkered
design, with a touch of orange and white...”

(b) Prompt: “A photograph of a thin, white line
drawn in the sand on a beach at sunrise. The line is
straight, clean and simple...”

High Guidance in Dynamic CFG

(c) Prompt: “The quick brown fox jumps over the
lazy dog, written in serif font. ”

(d) Prompt: “A peacock fans it’s plumage while a
panda is walking and a jellyfish is swimming in the
ocean.”

Figure 3: We rank images by Imagen 3 from lowest to highest guidance strength when using dynamic
CFG for the Gecko prompt set. For each prompt, we present a pair of images for default (left) vs
dynamic CFG (right). Validating our hypothesis, creative or simple prompts get low guidance,
whereas prompts including text rendering and compositionality get the highest guidance.

We additionally report the performance of the heuristic CFG schedules (Kynkäänniemi et al., 2024;
Sadat et al., 2023) as applied in LDM on Imagen 3. The results are striking: the schedules that
offered modest improvements on LDM fail on Imagen 3, degrading performance below the baseline
in most cases. This failure underscores a fundamental weakness of heuristic-based methods: they are
brittle because they rely on empirical rules derived from a specific model architecture and training
regime. When exploring the interval-based guidance in particular, we find that this schedule fails
completely for text rendering specific prompts. This agrees with our intuition that text rendering
benefits from higher guidance throughout, but also in the final sampling timesteps which the prompt
independent schedules do not take into account. In contrast, both heuristic schedules perform best
on prompts related to numerical reasoning indicating that lower guidance strength in the beginning
of denoising favors diversity for producing entities and objects in variable numbers. Our method’s
strength lies in its model-agnostic, online adaptation. Instead of applying a pre-determined, ”hard-
coded” schedule, derived after cumbersome hyper-parameter search, our framework discovers the
optimal guidance on-the-fly by reacting directly to the outputs of the target model. This is why
our approach generalizes out-of-the-box from a weaker to a state-of-the-art model and consistently
improves performance across different generation skills.
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a stereoscopic 3D cartoon of the simpsons
(a) Artifact correction

“The quick brown fox jumps over the lazy dog”
(b) Text Rendering

Figure 4: Qualitative examples for Imagen 3 on the Gecko prompt set when using default sampling
(left) vs our dynamic search (right).

5.3 DYNAMIC CFG SCHEDULE

LDM. Figure 2a visualizes the median CFG schedule on LDMlarge. The behavior of the individual
evaluators confirms they are working as intended, defining the extremes of the alignment-fidelity
trade-off. The alignment evaluator consistently favors high CFG scales to maximize alignment,
while the visual quality one pushes towards low scales (approaching unconditional generation) to
maximize fidelity. Our full method, using adaptive weighting, successfully navigates this trade-off.
It generates an arc-shaped schedule that avoids extreme CFG values at the beginning and end of
sampling. This emergent shape aligns with empirical findings from prior work (Wang et al., 2024).
In contrast, a static weighting of the evaluators fails to find this balance and produces a schedule
largely dominated by the alignment signal.

Imagen 3. We present the smoothed normalized median of the dynamic CFG schedule for Imagen
3 in Figure 2b when using either of the alignment or reward evaluators or their combination. Simi-
larly to LDM the alignment evaluator favors high guidance strength in the beginning of denoising,
but the optimal median schedule derived by the combination of the two evaluators significantly dif-
fers from the one discovered for LDM. This further validates that no empirical observations regard-
ing CFG can generalize beyond a specific model family, highlighting the strength of our dynamic
approach that can adapt to different models consistently providing improvements.

We also present the smoothed normalized CFG schedule for the best performing variant of our dy-
namic CFG per prompt set in Figure 2c. We find that the patterns in the CFG schedules agree with
our empirical observations: in contrast to the general-purpose prompt sets, text rendering (MARIO-
eval) on average requires higher guidance strength especially in the end of denoising, and numerical
reasoning (GeckoNum) benefits from lower guidance strength in the beginning of generation which
favors diversity and avoids “template-like” generations of objects and entities allowing the model to
generalize to variable counts. We further rank the generated images for the Gecko prompt set, which
contains diverse prompt categories, based on the average selected CFG across timesteps when us-
ing dynamic CFG. We present in Figure 3 two of the lowest ranking examples on the left (i.e.,
low guidance strength) and two of the highest ranking ones. The visualization further validates our
hypothesis that the degree of guidance is dependent on the requirements of the prompt. Indeed,
creative or simple prompts benefit from low CFG values, whereas prompts that require strong align-
ment, such as text rendering and compositionality, need much higher guidance strength. We present
additional qualitative results in Appendix A.6.

6 CONCLUSIONS

In this paper, we propose a framework for dynamically selecting the optimal CFG scale during de-
noising in text-to-image generation. We demonstrate that the optimal trade-off between conditional
and unconditional generation is not fixed, but rather a dynamic function of the prompts’ content, the
sampling timestep, and the diffusion model. We suggest a suite of latent evaluators for assessing
both general purpose (alignment, visual quality) and specialized (text rendering, numerical reason-
ing) properties of generation and demonstrate that we can successfully use them during diffusion
inference at minimal computational cost. Given such evaluators, our proposed dynamic CFG sig-
nificantly boosts generation quality on both weaker (gLDM) and more powerful (Imagen) models,
validating the generalization of the approach. Our approach can be extended to more specialized
skills given appropriate evaluators and the framework can be expanded to perform inference-time
search beyond the CFG schedule.
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Yasumasa Onoe, Chris Knutsen, Cyrus Rashtchian, Jordi Pont-Tuset, et al. Revisiting text-
to-image evaluation with gecko: On metrics, prompts, and human ratings. arXiv preprint
arXiv:2404.16820, 2024.

Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
sampling for improving generative processes. Advances in Neural Information Processing Sys-
tems, 36:76806–76838, 2023.

Michal Yarom, Yonatan Bitton, Soravit Changpinyo, Roee Aharoni, Jonathan Herzig, Oran Lang,
Eran Ofek, and Idan Szpektor. What you see is what you read? improving text-image alignment
evaluation. Advances in Neural Information Processing Systems, 36, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

A APPENDIX

A.1 LATENT EVALUATORS

Training. We initialize the latent alignment (CLIP) evaluator with a pre-trained CLIP model
trained on the WebLI dataset. We use a pre-trained CLIP-ViT-B/16 (Radford et al., 2021; Zhai
et al., 2023) model version with a ViT-B vision encoder and a BERT-Base (Devlin et al., 2019) text
encoder. The dual encoder has in total 194M parameters.

As mentioned in Section 3.2, we randomly initialize the embedding layer of the vision encoder in or-
der to change the pixel-space embedding layer to a diffusion-specific latent-space one. Specifically,
for LDM we convert ViT-B/16 to ViT-B/4 resulting in a 256 token sequence for an image with initial
resolution of (512, 512) encoded into latents. Accordingly, we also change the embedding layer for
Imagen 3. We then fine-tune the whole model on noisy diffusion latents encoded and corrupted from
image-text papers of the WebLI dataset. We fine-tune the model for 90k steps using a batch size of
512. We use a cosine learning rate schedule with linear warm up and no weight decay. Our base
learning rate is 5e−5. We train our model on 64 TPUv5e chips for 1.5 days.

We initialize all other latent evaluators with the above latent alignment evaluator and continue fine-
tuning the whole network for approximately 10k steps on the capability-specific data as described
in Section 3.2 and summarized in Table 4.

Table 4: Training data per latent evaluator.

Latent evaluator Training data
Alignment evaluator WebLI (Chen et al., 2023b)
Visual quality evaluator Real & generated images from MSCOCO (Lin et al., 2014)
Reward evaluator Human preference data on generated images
Text rendering OCR scores on generated images
Numerical reasoning 100K re-captioned image-text pairs by Gemini 2.5 Pro

for accurate descriptions of object counts

We observe that for the reward and text rendering evaluators, which measure fine-grained qualities
in image generation, a useful signal only emerges for timesteps t < tmin+

1
3 (tmax− tmin). Conse-

quently, during the initial high-noise phase of generation (t > tmin + 1
3 (tmax − tmin)), we apply a

near-zero weight to their corresponding loss. For the subsequent phase (t < tmin+
1
3 (tmax− tmin),

as the noise level decreases, we increase the loss weight. We experiment with schedules where this
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weight ramps up—either linearly or exponentially—from its initial low value, reaching a maximum
of 1 at the final timestep (t = tmin):

wloss(t) =

{
0.05 if t > tmin + 1

3 (tmax − tmin)

0.05 + 0.95 · e
k(t−α)

β −1
ek−1

otherwise
(8)

where tmax is the timestep corresponding to pure noise, tmin corresponds to clean data, α =
2(tmax−tmin)

3 , β = tmax+2tmin

3 and k is a hyper-parameter defining the sharpness of the curve
which we set to 5.

A.2 DYNAMIC CFG SEARCH

CFG values. We find that the best default (fixed) value for both LDMsmall and LDMlarge is
7.5. For our dynamic CFG search, we are searching over the following set of 5 CFG values:
[1, 3, 7.5, 11, 15] for all denoising timesteps. For Imagen 3, we extend our search to a set of 24
discrete CFG values.

A.3 COMPUTE

We report FLOPs for different model functions (i.e., denoising, decoding, online evaluation) and for
the full denoising process for the LDM model in Table 5.

We overall use evaluators that are small and lightweight in order to be computationally efficient in
our online sampling setting. By operating in the latent space directly we use a latent CLIP model
which is 4 times more efficient than the pixel-space equivalent due to the compressed inputs. Cru-
cially, when using a latent evaluator, we do not require decoding the latents via the VAE at each
denoising step. This reduces the computational cost from 4 times more than the baseline for the
pixel-space evaluator, which is prohibited, to only 1% of the overall computation required for sam-
pling from LDMlarge.

Table 5: Comparison of FLOPS per model function.

Model FLOPS ×109

LDMsmall denoising step 875
LDMlarge denoising step 2280
VAE-decode 1489

Latent alignment evaluator 5
Pixel-space alignment evaluator 22

LDMlarge: baseline sampling 115,489
LDMlarge: sampling with latent evaluator 116,739
LDMlarge: sampling with pixel-space evaluator 493,239

A.4 HUMAN EVALUATION

We recruited participants (N = 60) through an internal crowdsourcing pool. The full details of our
study design, including compensation rates, were reviewed by our institution’s independent ethical
review committee. All participants provided informed consent prior to completing tasks and were
reimbursed for their time. We collect and aggregate on average two to three ratings per prompt-
image pair, considering both the wins of each model and the ties in the ratings.

For the Gecko and GenAI-Bench prompt sets, we display generated images by different model
variants side-by-side for the same prompt and ask raters to indicate which one they overall prefer
in terms of both aesthetics and prompt adherence (the options are to indicate one or none of the
images). For the MARIO-eval prompt set, we again display the generated images side-by-side
asking the raters to indicate the one they prefer in terms of text rendering, i.e., which one better
visualizes the text requested by the prompt. Finally, for GeckoNum, we ask the raters to indicate the
generated image out of the two that better reflects the number of objects or entities described in the
prompt.
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Table 6: Filtering performance. We report FID while filtering samples of poor visual quality at
different % during sampling. For filtering, we use the visual quality evaluator and select the best out
of a batch of 4 when filtering. Computed on the MS COCO prompt set.

Model Noisy evaluator Baseline Filter @ [FID ↓]

25% 50% 75% 100%

gLDMlarge latent Disc 29.2 27.6 27.4 27.0 26.8

(a) Default CFG. (b) Dynamic CFG (Disc). (c) Dynamic CFG (CLIP). (d) Dynamic CFG (CLIP
+ Disc).

Prompt: “the tiger wears glasses and wears a paisley tie”

(e) Default CFG. (f) Dynamic CFG (Disc). (g) Dynamic CFG (CLIP). (h) Dynamic CFG (CLIP
+ Disc).

Prompt: “the panda waves to the koala bear”

Figure 5: Qualitative examples for LDM when using different CFG schedules on the Gecko prompt
set. The images of the first row are generated for the prompt: “the tiger wears glasses and wears a
paisley tie” and the images of the second row are generated for the prompt: “the panda waves to the
koala bear”.

A.5 ADDITIONAL EXPERIMENTAL RESULTS

Evaluation of latent evaluators. Additional to the results of Table 1 when using the alignment
evaluator, we report the filtering performance of the latent visual quality evaluator on LDM in terms
of FID on the Gecko prompt set in Table 6. We validate that the latent visual quality can correctly
predict bad samples from as early as 25% offering improvements over the baseline.

A.6 QUALITATIVE EXAMPLES

Qualitative Analysis on LDM. Figure 5 provides a qualitative comparison between the default
CFG and our dynamic approach on LDM, showcasing the effects of each latent evaluator. As the ex-
amples illustrate, the individual evaluators successfully target their respective domains but introduce
trade-offs. Guiding with the discriminator alone enhances photorealism—for instance, improving
the panda’s fur texture in Example 2—but does so at the expense of prompt alignment, causing the
koala from the prompt to disappear. Conversely, using only the CLIP evaluator enforces stronger
prompt adherence, correctly adding glasses to the tiger in Example 1, but often at the cost of im-
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Arifacts (Gecko).

(a) Prompt: “An orange is being squashed under a glass bottle which is splintering into bits.”

Text alignment (GenAI-Bench).

(b) Prompt: “There are two bananas in the basket, but no apples.”

Text rendering (MARIO-eval).

(c) Prompt: “In the factory, a sign that reads “Safety First”.”

Numerical reasoning (GeckoNum).

(d) Prompt: “5 cookies.”

Figure 6: Qualitative examples for Imagen 3 on the Gecko prompt set when using different CFG
schedules: default (left) vs ours dynamic (right). We observe improvements in alignment, artifacts,
text rendering, and numerical reasoning.

age quality and coherence, resulting in a ”pasted-together” artifact. Our full method with adaptive
weighting successfully resolves this tension, synthesizing the strengths of both evaluators to produce
images that are both photorealistic and faithful to the prompt.
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Qualitative Improvements on Imagen 3. Next, in Figure 6, we demonstrate our method’s ability
to improve upon the already powerful Imagen 3 baseline. The qualitative improvements are most
striking in areas where even state-of-the-art models can falter. Our dynamic CFG approach consis-
tently reduces subtle visual artifacts, improves overall text alignment and, most notably, produces
significantly more coherent and legible rendered text than the default sampler. This highlights our
method’s value not only for enhancing general quality but also as a tool for targeted improvements
on specific, challenging generation tasks.

A.7 LLM USE DISCLOSURE

An LLM was used for polish writing of the paper and improving the phrasing of certain sentences.
No LLM was used to write extended parts of the paper from scratch, or for retrieval, discovery and
research ideation.
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