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Abstract. In the medical domain, where a misdiagnosis can have life-
altering ramifications, understanding the certainty of model predictions
is an important part of the model development process. However, deep
learning approaches suffer from a lack of a native uncertainty metric
found in other statistical learning methods. One common technique for
uncertainty estimation is the use of Monte-Carlo (MC) dropout at train-
ing and inference. Another approach is Conformal Prediction for Uncer-
tainty Quantification (CUQ). This paper will explore these two methods
as applied to a cervical cancer screening algorithm currently under devel-
opment for use in low-resource settings. We find that overall, CUQ and
MC inference produce similar uncertainty patterns, that CUQ can aid in
model development through class delineation, and that CUQ uncertainty
is higher when the model is incorrect, providing further fine-grained in-
formation for clinical decisions. Code available here
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1 Introduction

Cervical cancer is the fourth-leading cancer in women worldwide, and poses a
significant threat in lower and middle-income countries due primarily to inequal-
ities in access to vaccination, screening, and treatment services [16]. A common
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screening method, colposcopies, require expertise to properly administer and in-
terpret results, and this can be a challenge in some areas of the world [10].
The hPv-Automated Visual Examination (PAVE) project has developed an Au-
tomated Visual Evaluation (AVE) algorithm, a deep learning (DL) model for
cervical cancer screening [5]. This algorithm was designed to act in conjunc-
tion with HPV genotyping to triage the risk of HPV-positive individuals, per-
haps with additional methods, such as Visual Inspection with Acedic Acid (VIA)
[5,1]. The current, three-class model showed improved performance relative to
the two-class version, as many of the “Normal” images were reclassified as “Gray
Zone”, providing an intermediary between “Normal” and “Precancer+” [5]. How-
ever, this middle class suffers from substantial interrater variability in diagnosis
[13]. It is model uncertainty and its relationship to model performance, particu-
larly around the “Gray Zone” class, that we explore in this work through the use
of a metric derived from Monte Carlo (MC) inference and another technique,
Conformal Prediction for Uncertainty Quantification (CUQ).

In this work, we first determine the relationship between model uncertainty
and performance using different CUQ algorithms. Next, we compare CUQ to
the results of the uncertainty as determined through MC inference. Finally, we
hope to understand the aleatoric uncertainty surrounding the “Gray Zone” class.
Though other research groups have approached the uncertainty problem in DL
with CUQ in the medical domain, such as in skin lesion classification [12] and
prostate cancer [15], not all results have been positive, as in [14]. Our contribu-
tion will be the exploration of CUQ for determining the effect of ground-truth
categorization on model uncertainty and better understanding misclassifications,
especially “Normal” to “Precancer+” or vice versa, in the cervical cancer domain
for applications in low-resource settings.

2 Methods

2.1 Conformal Prediction Overview

For classification, our goal is to develop a model, f̂y(x), which estimates the
quantity P[Y = y|X = x], where y is the label and x is the datum, with outputs
in ∆K , the K-simplex.

To understand the model uncertainty, we will construct a conformal predic-
tion set for a test point xtest, Ĉ(xtest) ⊆ Y, where Y is all our possible classes
(i.e., |Y| = K), such that P[ytest ∈ Ĉ(xtest)] ≥ 1−α. We call 1−α the (empirical)
coverage and α is the error rate [2].

2.2 Least Ambiguous Set-Valued Classifier

We will briefly describe two conformal prediction algorithms, beginning with
Least Ambiguous Set-Valued Classifier (LAC) [2].

We will divide our data X into three sets, Xtrain, Xcalibration, and Xtest,
where Xtrain is our standard training set used to train the model f̂ , Xcalibration
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is a calibration set to prepare for our conformal predictions, and Xtest is the set
of data we wish to construct conformal predictions for. Let ncal be the number
of calibration points.

Now, we introduce a score function, s(x, y) which tells us how well the model
is performing. The LAC algorithm uses the probability of that specific class. As
in, if f̂(x)y = [p0, . . . , pK−1], we can take:

s(x, y) = 1− f̂(x)yi
, yi = Index of correct class

For each element of our calibration set Xcal, we repeat the above process,
giving us {s1, . . . , sncal

}, from which we calculate the quantile:

q̂ = quantile

(
{s1, . . . , sncal

}; ⌈(1− α)(ncal + 1)⌉
ncal

)
From this, we can construct our Ĉ(xtest) as:

Ĉ(xtest) = {y : s(xtest, ytest) ≤ q̂} = {y : f̂(xtest)y ≥ 1− q̂}

Since we don’t have ytrue for our test point, we are choosing all the indices
of f̂(xtest) with a value greater than 1− q̂.

2.3 Adaptive Prediction Sets

For our second algorithm, the Adapative Prediction Set (APS) version of con-
formal prediction, we begin by changing our score function [2]. Now, we will
take all the softmaxed output scores and arrange them by size, taking us from
f̂(x) to π(x). The correct class will appear at some index k of the rearranged
probability vector, y = πk(x), and we sum up to this index along π(x):

s(x, y) =
k∑

j=1

f̂(x)πj(x)

We create our q̂ same as above, and then our prediction set is created by:

Ĉ(xtest) = {π1(xtest), . . . , πk(xtest)}, k = sup

k′ :

k′∑
j=1

f̂(x)πj(x) < q̂


These prediction sets carry a native measure of model uncertainty, the num-

ber of classes included in each set, denoted the length, which we will use as our
uncertainty metric [2].
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2.4 Uncertainty Estimation with Monte Carlo Dropout and
Inference

Dropout is used as a regularization tool to improve generalizability by preventing
the model from “memorizing” the data and addressing the problem of epistemic
uncertainty [20]. As an additional outcome, by leaving dropout on during in-
ference and running several inferences, the result mimics an ensemble of models
[7] and allows for uncertainty quantification [6]. Thus, in addition to normal
inference (i.e., with all stochastics turned off), we run 50 inferences per datum
with dropout left on to generate our MC predictions. From these 50 predictions,
we find the expected value of each prediction, E[p] =

∑2
i=0 ipi. We define our

uncertainty with the MC method as the coefficient of variation (CoV), σ
µ , of

these expected values.

3 Model Development and Data Description

The use of AI for cervical cancer screening has been explored before, as in [21]
with dual-stain cytology. However, collection, transportation, and analysis of
cytological samples requires significant infrastructure and expertise [10]. Alter-
native screening methods, such as VIA have been proposed and explored, but
suffer from high subjectivity and variability [4,19]. DL has also been applied
to cervical images themselves as a screening methodology, but a lack of per-
formance on, or absence of, a held-out test set and the inability to maintain
performance in different settings demands additional development [8,17,22,18].
With these considerations, the current, best performing AVE model is a three-
class model trained to classify cervical images taken during a colposcopy into
“Normal”, “Gray Zone”, and “Precancer+”, denoting a normal cervix, unsure/not
sufficiently advanced to determine, and already or likely to result in cancer [9].
To improve repeatability, Monte-Carlo (MC) dropout was introduced to positive
effects [1,11]. With the inclusion of a dropout layer, a notion of uncertainty in
model predictions can be measured [3] as described in the Methods section.
We will be using this model, as well as the closest-performing two-class model,
for our investigation.

The final, labeled dataset has 9,462 women from five studies conducted in
Costa Rica, the US, and the Netherlands, for a total of 17,013 images. Each study
has its own particulars which can be found in the supplementary material for [5],
but we highlight that the images are of cervices captured by a standard cervis-
cope or a Nikon digital single-lens reflex (DSLR) camera during a colposcopy
and resized to 224× 224 for the model. These were divided into training, valida-
tion, test 1 and test 2, splitting on patient level, resulting in a data percentage
split of ≈ 33/6/51/10. The AVE study is using test 2 as the out-of-distribution
dataset, and so we maintain this here. We are using a calibration/testing divi-
sion of 20/80 of test 2, as this was used as the out-of-distribution set after final
model selection. This has 1348 images. Regarding the difference in ground-truth
determination in the two models, all the “Gray Zone” images in the three-class
model were originally given a “Normal” ground truth in the two-class model [5].
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4 Experiment

First, an appropriate α value and algorithm choice needs to be made. We have
run both LAC and APS with α = 0.05, 0.1, and 0.2 and decided that LAC
with α = 0.1 resulted in the most reasonable set sizes. This determination was
made by balancing variation in the prediction set sizes and empirical coverage.
Some algorithm and α combinations created length-0 sets, indicating a failure,
or gave mostly length-3 sets, denying any nuanced analysis. So, we will display
here the results of LAC and APS with α = 0.1, but we will include more in the
Supplementary Material.

Task 1: Accuracy and Conformal Prediction Set Length We subset
our conformal results based on correct, incorrect, single-class misclassifications
(SC), i.e., “Normal" to “Gray Zone", and two-class misclassifications (TC), i.e.,
“Normal" to “Precancer+". Though SC errors are an issue, given the risks with
missing a cancerous lesion or performing an unnecessary biopsy, it is these TC
errors that are most concerning. We also look at each ground truth individually,
taking the average prediction set length of the images correctly classified as that
class and comparing it to the images incorrectly classified as that class.

Task 2: Relationship between MC Uncertainty and CUQ We calcu-
late the Spearman’s correlation coefficient [23] between the average conformal
prediction set length and coefficient of variation of the expected values of the
MC inferences and provide a distribution graphic of the coefficients of variation
color-coded by conformal prediction length.

Task 3: Role of “Gray Zone” in Three and Two-Class Models We find
the average conformal prediction set length of the images with each ground truth
from the three-class model and run a t-test of these averages to determine if the
model is less certain of particular ground truths, as we expect it is uncertain
of “Gray Zone” images. Then, we pivot to the two-class model to determine
the uncertainty around the images that in the three-class model were given a
ground truth of “Gray Zone” and perform a series of t-tests on these averages
to validate through uncertainty the decision to use a three-class model over a
two-class version.

5 Results

5.1 Task 1: Accuracy and Conformal Prediction Set Length

From Figure 1, we compare the diagonals, (i.e., predicted “Normal" and ground-
truth “Normal", etc.) and we see they are always less than or equal to the rest
of values in the same predicted column. In Table 1, we also see that though
the correct predictions have a lower average conformal prediction set length,
the single-class misclassifications have larger average conformal prediction set
lengths than the two-class misclassifications, which is surprising. However, look-
ing at the confusion matrices, we see strong uncertainty for both algorithms
when the model predicts incorrectly an image as belonging to the “Gray Zone”
class, showing how the model struggles with this class and explaining why the
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Fig. 1: Confusion Matrix of Average Conformal Prediction Length for LAC (Left)
and APS (Right) with α=0.1

Table 1: T-Test for Average Prediction Length, µPL, Comparison for Correct,
Incorrect, Single, Two-Class Misclassification and Per Ground Truth Correct or
Not (95% Confidence). * indicates p < 0.05.
µPL,1 vs µPL,2 LAC APS pLAC pAPS

Corr vs Incor 1.78± 0.05 vs 2.38± 0.06 2.26± 0.04 vs 2.57± 0.05 * *
Corr vs SC 1.78± 0.05 vs 2.43± 0.06 2.26± 0.04 vs 2.60± 0.05 * *
Corr vs TC 1.78± 0.05 vs 1.93± 0.13 2.26± 0.04 vs 2.24± 0.14 0.16 0.81
SC vs TC 2.43± 0.06 vs 1.93± 0.13 2.60± 0.05 vs 2.24± 0.14 * *
GT 0: Corr vs Incor 1.58± 0.05 vs 2.54± 0.07 2.19± 0.04 vs 2.70± 0.05 * *
GT 1: Corr vs Incor 2.39± 0.07 vs 1.90± 0.10 2.57± 0.07 vs 2.12± 0.08 * *
GT 2: Corr vs Incor 1.88± 0.13 vs 2.31± 0.12 2.04± 0.10 vs 2.57± 0.11 * *



Uncertainty in Cervical Cancer Screening 7

single-class misclassifications have larger prediction set sizes. Figure 1 in the
Supplementary Material displays the confusion matrices for LAC with α = 0.2
and 0.05. These analyses demonstrate that generally, when the model is wrong, it
is also uncertain, one of the key findings that if it were not true, would frustrate
attempts to use uncertainty clinically.

5.2 Task 2: Relationship between MC Uncertainty and CUQ

Fig. 2: Box-and-Whisker Plot of Conformal Prediction Length vs Coefficient of
Variation (Left) and Distribution of Coefficient of Variation Color-Coded by
Conformal Prediction Set Length (Right) for LAC (Top) and APS (Bottom)
with α = 0.1

From Figure 2, we demonstrate that as the conformal prediction set length
increases, so do the coefficients of variation, and that there is a strong correla-
tion between the two in the LAC case. However, though this relationship holds
for APS, it is not quite as strong. From these two points, we establish a con-
nection between MC uncertainty and these CUQ algorithms. Figure 2 in the
Supplementary Material shows the same figure for LAC with α = 0.2 and 0.05.
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5.3 Task 3: Average Conformal Conformal Prediction Set Lengths
by Ground Truth

From Table 2, we see that the “Gray Zone” and “Precancer+” classes have higher
average prediction set lengths than "Normal" for the LAC. However, between
the “Gray Zone” and “Precancer+”, the difference isn’t statistically significant
at the p = 0.05 level. With the APS algorithm, we find that the “Normal”
and “Precancer+” averages are closer and the differences are not statistically
significant.

Table 2: T-Test for Average Prediction Length, µPL, Comparison by Ground-
Truth Class (95% Confidence). * indicates p < 0.05.
µPL,1 vs µPL,2 LAC APS p LAC p APS
Normal vs GZ 1.89± 0.05 vs 2.24± 0.07 2.35± 0.04 vs 2.43± 0.06 * *
Normal vs PC+ 1.89± 0.05 vs 2.13± 0.11 2.35± 0.04 vs 2.34± 0.09 * 0.82
GZ vs PC+ 2.24± 0.07 vs 2.13± 0.11 2.43± 0.06 vs 2.34± 0.09 0.07 0.10

5.4 Task 3: “Gray Zone” in the Two-Class Model

Table 3 shows the results of statistical tests on the average conformal prediction
set length of the images in the two-class model that were re-classified as “Gray
Zone” and compares them to the overall average prediction set length for the
remaining images given “Normal” and “Precancer+” in the three-class model.

Table 3: T-Test for Average Conformal Prediction Lengths Compared to the
“Gray Zone”, µGZ , by LAC with α = 0.1 in the Two-Class Model (95% Confi-
dence). * indicates p < 0.05.

µGZ vs µPL LAC p

GZ 1.51± 0.06 (ref.)
Overall Inc GZ 1.31± 0.03 *
Overall Exc GZ 1.26± 0.03 *
Normal 1.23± 0.03 *
PC+ 1.46± 0.09 0.28

With the LAC algorithm, we see a clear and statistically significant difference
in the average conformal prediction set lengths of the “Normal” and the “Gray
Zone” images, showing that the model is uncertain about this subset of images.
This pattern also holds for the APS algorithm and this table with the APS values
can be found in the Supplementary Material Table 1 for space considerations.
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6 Discussion

In this paper, we have explored conformal prediction as a means of measuring
model uncertainty in a specific case of cervical cancer screening using the AVE
model. Focusing on the LAC algorithm, we were able to see significant differences
in the uncertainty between correct predictions and misclassifications. With the
APS version, we still saw this, but it was not as strong. We also see a connection
between MC inference uncertainty and CUQ through the Spearman correlation
coefficients in Figure 2, but the relationship is not as strong with APS. From [1],
we see that experiments showed better performance with three classes, having
taken many “Normal” images and reclassifying them as “Gray Zone” and having
the model predict this class, as well, and with the LAC algorithm, the model is
less certain of these images. The difference in the three analyses with the LAC
and APS algorithms can be explained by the overall larger prediction set sizes
by the APS algorithm, which do not allow for as nuanced of an analysis.

Though these two techniques, CUQ and MC inference, deliver comparable
results, their implementations require careful thought about the kind of resources
available for the user. MC runs require the image to be passed through the
model several times, adding to inference time. CUQ bypasses this, as the user
only needs to store the q̂ on the device and the rest of the operations do not
require significant computational resources. Further, using CUQ to determine
partitions of data into classes is helpful when there is not an a priori, or obvious,
way to do so, aiding in model development. Additionally, the uncertain images
could then be removed to see if the model improves and/or further analyzed to
determine why the model is uncertain of them beyond the ground truth, perhaps
exposing a flaw in their capture, like blur, or the presence of obfuscating mucus or
blood, allowing the clinician to retake the image under different circumstances.
However, the drawback to this method is that the choice of alpha, type of CUQ
algorithm, creation of the calibration set, etc., can have a marked effect on the
outcomes.
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