MoDE: Weight Denoising Towards Better LLLM Performance through a
Mixture of Domain Experts

Anonymous ACL submission

Abstract

In LLM weight pruning, the “criteria” method,
alongside sparse training, relies on ranking
weight importance to guide pruning decisions.
However, this approach frequently leads to per-
formance degradation, as it assumes that im-
portance equates to contribution, implying that
any removal inevitably incurs loss. Our find-
ings reveals that, under specific domain, some
weights may act as noise, and pruning them
can actually improve performance. This of-
fers a new perspective on pruning: Shifting the
goal from loss minimization to performance
gains. To this end, 1) we propose the Noise
Weight Hypothesis, which posits the existence
of harmful weights in LLMs whose activation
can degrade performance in domain-specific
tasks. 2) We introduce the DENoise (Domain
Expert weight deNoising) algorithm, which
removes domain-aware noise weight without
fine-tuning. 3) We further develop the MoDE
(Mixture of Domain Experts), which employs a
bilevel trainable router to dynamically activate
the domain-specific expert, leading to improved
task accuracy. Results show that applying DE-
Noise algorithm achieves 2-3% performance
gains on each benchmarks without any addi-
tional parameters or tuning, while MoDE yields
an average improvement of over 1.1% against
baseline models.

1 Introduction

The rapid growth of large language models has
made deployment increasingly costly due to ex-
cessive parameter counts (Patterson et al., 2021;
Strubell et al., 2019). Pruning, which removes re-
dundant weights while minimizing accuracy loss,
is widely regarded as an effective solution(Cheng
etal., 2024). A common strategy involves ranking
parameters by importance—typically measured by
magnitude (Han et al., 2015b; See et al., 2016),
norm(Li et al., 2016; He et al., 2018), or estimated
loss change(You et al., 2019; Liu et al., 2021)—and

removing the lowest-ranked ones to preserve key
contributing parameters to performance. However,
this method relies on an implicit assumption: all pa-
rameters, even those with small or negative values,
are inherently beneficial. As a result, pruning these
weights is often assumed to degrade performance.
Nonetheless, this commonly held assumption
warrants reconsideration. Let the biological inspi-
ration of neural networks (Hinton and Sejnowski,
1986) be the conceptual analogy, studies reveal that
certain weights, while functionally meaningful in
general, can exhibit disruptive responses under spe-
cific tasks, a phenomenon known as neuronal noise
(Faisal et al., 2008). Then it is reasonable to hy-
pothesize that in artificial neural network, some
weights, though beneficial for generalization, may
trigger misleading activations in specific down-
stream tasks. Removing “noise” may therefore
enhance task performance. Interestingly, our pre-
liminary (see Section 2) support this hypothesis.
When evaluating model performance on specific
task datasets under pruning conditions, we found
that removing weights from certain mid-to-low im-
portance intervals led to improved accuracy, and
was consistently observed across up to 57 tasks.
Motivated by this, we propose the Noise Weight
Hypothesis, suggesting that harmful weights ex-
ist in LLMs and their removal can enhances task-
driven performance without further training. To
make the hypothesis practical, we integrate it into
a Mixture-of-Experts (MoE) framework—whose
core principle is that, for each specific domain of
task, the model dynamically activates the most suit-
able expert (Fedus et al., 2022). Following this
rationale, we propose the DENoise (Domain Ex-
pert weight deNoising) algorithm, which identifies
and removes noise-like weights (defined as Noise
Weights) from self-attention and FFN layers to con-
struct domain expert subnetworks. Building on
this, we develop the MoDE (Mixture of Domain
Expert) framework, which routes each input to its

0%-5%

90%-95% o 10%-15% 90%-100% <

80%-85% 0%-25%

80%-90%

70%-75% 0%-35%

0%-80%

7 40%-45%

60%-65% 60%-70%

50%-55%
a). Comparison when pruned by 5%

0%-10%

50%-60%
b). Comparison when pruned by 10%

0%-20%

™ 0%-20%

80%-100%

20%-30% 20%-40%

«_ouresed e,

30%-40%

60%-80%

> 40%-50% > 40%-60%

¢). Comparison when pruned by 20%

Figure 1: Parameter Importance Sensitivity Analysis on the MMLU Philosophy Task. This figure evaluates model
performance variation under different pruning ratios (5%, 10%, and 20%) by selectively removing weights across
ranked importance intervals based on the metric |W| x || X||2. Results reveal a non-monotonic relationship between
parameter importance and performance, with marginal gains observed when pruning mid-to-low ranked weights.

most relevant denoised expert at the sequence level
for efficient activation. Thereby, the main contribu-
tions of this work are as follows:

Improvement Perspective for Reinterpreting
Parameter Redundancy. The Noise Weight Hy-
pothesis offers a perspective by focusing on nega-
tively contributing weights, suggesting that LLMs
may contain noise weights that interfere with task
performance. This viewpoint complements exist-
ing importance-based pruning strategies and opens
up a new theoretical dimension for understanding
and approaching model compression.

Noise Weight Elimination Mechanism for
Performance Improvement. The tuning-free
DENoise algorithm identifies and removes noise
weights to derive task-specialized expert subnet-
works from pretrained LLMs. Experimental re-
sults show an average performance improvement
of 1%—-3% on benchmarks such as MMLU, MBPP,
and GSMB8K, with a maximum gain of 6.8%. This
method demonstrates that model compression and
performance improvement can be achieved simul-
taneously, providing a practical tool for optimizing
LLMs in resource-constrained environments.

Lightweight and Deployable Domain Expert
Construction. The MoDE integrates the DENoise
algorithm with a bilevel dynamic router to con-
struct a domain expert system. MoDE offers an op-
timization option that requires no extensive model
modifications and can be directly integrated into
existing architectures, achieving an average per-
formance improvement of 1.1% across multiple
mainstream LLMs. This provides a practical solu-
tion for efficient deployment and enhanced domain
adaptability of LLMs.

2 Preliminary

Recent studies have revealed that large language
models (LLMs), despite being trained as mono-
lithic architectures, inherently exhibit internal struc-
tures resembling a Mixture-of-Experts (MoE) sys-
tem (Zhang et al., 2023; Dai et al., 2024). Specif-
ically, weights with different activation patterns
within layers demonstrate emergent functional pref-
erences for certain representation region (Zhang
et al., 2022).

Formally, let a pretrained LLM be parameter-
ized by W € R“*?, which operates on input fea-
ture matrix X € R"*“ to produce hidden activa-
tions H = WX. Generally, all parameters WV
participate in inference. However, due to over-
parameterization, it is possible to decompose W
into subsets {Wy, Wa, ..., Wg}, where each sub-
set corresponds to an implicit expert £.. The model
output can thus be reformulated as:

E
H=>) Rlzel] (£X), (1)
e=1

where R[-] € {0,1} is a routing function specify-
ing whether the input = belongs to the representa-
tion region I, relevant to expert &,.

Under this framework, the critical question
is to construct the expert. Typically, we apply
importance-based parameter selection methods,
where each parameter is assigned an importance
score (Han et al., 2015b). Under the common as-
sumption that parameters with lower importance
contribute less positively to model performance,
such parameters are prioritized for pruning. In
contrast, sudies such as the Lottery Ticket Hy-

25 1
------- LLaMA-2-7b-chat

- = -LLaMA-2-13b-chat
20 4 | — - Gemma-7b
====Gemma-2-9b

15 4

10 4

Number of Improved Tasks

'[/
S ,/”
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Pruning Interval by 10%

0

Figure 2: The number of tasks achieving accuracy im-
provements within different pruning intervals by 10%
across models. Note that each task may experience per-
formance gains in multiple pruning intervals.

pothesis (Frankle and Carbin, 2018), have chal-
lenged the importance assumption by demonstrat-
ing that sparse sub-networks with randomly initial-
ized weights can achieve competitive performance,
suggesting that high importance does not necessar-
ily equate to high contribution.

Thus, we pose the question: Does importance
score serve as an initial filtering signal rather than
a final decision criterion?

Noise Weight Hypothesis. To explore the re-
lationship between parameter importance and
task performance, we conduct extensive ex-
periments across 57 tasks with pruning ratios
of 1%, 5%, 10%, 20% and 50% on 4 mod-
els 11ama-2-7b/13b-chat-hf and Gemma-7b/9b
model. Parameter importance is measured using
the widely adopted pruning metric V| x || X |2,
(He et al., 2018; Ma et al., 2023; Sun et al., 2024)
and weights are pruned from different ranked im-
portance intervals. Figure 1 demonstrates this
phenomenon on the MMLU Philosophy task using
the 11ama-2-7b-chat-hf, with similar trends ob-
served across diverse domains. To prove the robust-
ness, Figure 2 shows that many tasks benefit from
pruning weights within mid-to-low importance in-
tervals. This may suggests that the widely used im-
portance metrics may not serve as definitive criteria
for parameter evaluation. Based on these observa-
tions, we propose the Noise Weight Hypothesis,
which posits the widespread presence of previously
overlooked parameters—noise weights—in LLMs.
These weights may appear active by importance
metrics but in fact negatively impact performance.

3 Method

3.1 DENoise

Based on the Noise Weight Hypothesis, we first de-
sign a Domain Expert Weight Denoising algorithm
(DENoise) , using importance score as intermediate
variable to further detect and remove noise weights
in hiddn layers, including attention and FFN layers.

Clustering-based Classification. Consider
a set of distinct knowledge domains D =
{D1,Da,...,D,}, where each domain D); encap-
sulates specialized knowledge relevant to a specific
task. These domains are aggregated into a compre-
hensive main knowledge set D.

For a given task 7, the algorithm selects the
most suitable main knowledge domain D; by com-
puting the posterior probability P(D | T), which
quantifies the likelihood of task 7 belonging to
each domain. This process is expressed as:

D;,=arg max P(D;|T),)
J gje{l,.“,n} (J’)

where D; is the domain with the highest poste-
rior probability, ensuring that the task 7 is matched
with the most relevant domain.

Once the main domain D) is selected, it is fur-
ther subdivided into smaller subdomains using K-
means clustering. For each dataset within D}, fea-
ture representations are extracted via the embed-
ding layer of a Transformer model, forming a set
of feature vectors 7; = {F},, Fj,, ..., Fj }, where
each F);, corresponds to a data sample. K-means
clustering is then applied to partition . into k sub-
domains by minimizing the intra-cluster variance,
formalized as:

k
C'=argmin > [If —pl2 3

i=1 feC;

where C; C F; denotes the set of points as-
signed to the i-th cluster, p; represents the centroid
of cluster C;, and f € Fj indicates that all data
points considered belong to the feature set extracted
from domain D);.

For given any new task 7, its feature vector
Fs = Embedding('i') is extracted and compared
to the centroids py, of the subdomains. The task is
assigned to the subdomain D;, (equivalently, clus-
ter C) that minimizes the Euclidean distance:

k :argmljn|]F7-—uk||2. “4)

Once assigned to the subdomain D, , the task
is further processed according to the knowledge
characteristics. The complete procedure for opti-
mizing the denoising threshold for domain experts
is outlined in Algorithm 1.

Metric Calculation on Patches. After identify-
ing the subdomain D, , this section quantifies the
critical information contained within it. Activation
values serve as an effective metric for assessing
the importance of weights and connections within
the network because they directly measure how
strongly weights respond to input features, reflect-
ing their contribution to the network’s output (Han
et al., 2015b). To perform this assessment, we be-
gin by scaling the weight matrix »V and feature
matrix X (activation embedding vector). A scaling
factor « reduces the dimensionality of the matrices,
yielding a smaller matrix of size Su x Sv (Where
B = 1/a). Each element in this reduced matrix
corresponds to a patch P, which represents a
subregion of the original matrix and contains con-
densed information.

Afterwards, to further evaluate the significance
of each patch, we calculate the following impor-
tance metric M,,, based on the /,-norm:

My, = Z (Wt x ([Xstllp) . (5)

(s,t)EPyy

This metric aggregates the weighted contribu-
tions of each element within the patch, computed
using the /,-norm. With the norm vector of the
input feature activations, the importance of each
weight can be determined by performing a patch-
wise dot product.

Domain Experts Formation. To identify and re-
move noise weights for a given task 7, we first de-
fine a candidate set of noise weights by evaluating
importance scores row-wise. For each row ¢, a spe-

cific threshold interval [Qr(m)n, eﬁfgx] is determined,
and all parameters whose importance scores fall
within this interval are considered potential noise

candidates. The candidate set 6, is defined as:

Bu
97‘ = L__Jl {Mz(a) ‘ M’L(U) Hil)naemax }
where 9() CR.
(6)

Based on the candidate set 6,., we systematically
evaluate the impact of removing different candidate
intervals on model performance. By measuring the

Algorithm 1 Threshold Optimization for Domain
Experts Weight Denoising.

Input: Domain-specific dataset Dr; initial thresh-
old 6iyir; maximum threshold 6p,,x; step size dg;
pre-trained weights W.

Output: Optimal denoising threshold 6*.

1: Initialize 8 < O, 0*
best_acc <+ 0.
2: Extract features: Frp < Embedding(Dr).
3: Partition k£ subdomains:
C < KMeansClustering(Fr, k).
4: while 0 < 6.« do

— eimt , and

5: Compute candidate noise neurons:

6, < ComputeNoiseNeurons(C,#).
6: Denoise parameters: Waenoised <— YV \ 0.
7 Evaluate accuracy:

acc < Acc(Wdenoiseds Pk)-
if acc > best_acc then
: Update best_acc <— acc, 0% < 6.
10: end if
11: Increment threshold: 6 < 0 + dg.
12: end while
13: return 6%,

accuracy Acc(W \ 0,) after removing each candi-
date interval, we determine the interval that yields
the best post-denoising performance. The optimal
denoising threshold 6* is selected as:

Er =W\ 6%,
where 6% = argmax Acc(W \ 0,) .)
0,CW

Finally, the denoised hidden layers are aggre-
gated to construct the Domain Expert, ensuring
that critical knowledge is preserved while redun-
dant and noisy parameters are effectively removed.

3.2 MODE Architecture

To fully leverage the specialized weight config-
urations constructed by DENoise, we introduce
MoDEMixture of Domain Expert), which em-
ploys a bilevel trainable router to dynamically clas-
sify any tasks into the most relevant domain and
activate the expert.

A Bilevel Trainable Router. We introduce a
bilevel trainable router R, where each level is im-
plemented as a single-layer MLP, to classify tasks
through two hierarchical stages. First, the task em-
bedding F is classified into a main knowledge

Frozen
& Trainable

Main Knowledge Domain
ification)

- 2|
1
b Main]Domain
o .
h

d

" we”gb(D

|- Sub Domain

(by clustering)

‘ g Sub Knowledge Domain

Domain Identification

oooEw
e

Noisi,, -~

Apply the results from DENoise Algorithm

Output
Sample layer 0 DDDDDDDD
7 % J
§ & ’ - 4
e ._ﬁ

Matrix Patch°

Pre-trained LLM Hidden Layers (aention + FFN)

SIOLIBIN uadxg urewoqq

a4

Figure 3: The inference flow through our MODE. The embedded input tokens ((]) is first processed by a bilevel
trainable (¢}) router, where it is initially classified into the main knowledge domain by level 1 and further into a
sub knowledge domain by level 2. The input is then passed to the identified Domain Expert, which is formed by

applying the result from DENoise Algorithm, from the hidden layers of a frozen (

) pre-trained LLM. Finally

output tokens ([[)) are processed by Domain Expert to output.

domain Dj. Then, in the second stage, the task is
further classified into a subdomain Dj, within the
selected main domain, as shown:

Db,; = Rsub,b(Rmain(F’f‘))- (8)

Here, Rmain(F7) maps the task embedding to a
specific main domain Dy, and Ry 5 (F7), condi-
tioned on this domain, further assigns the task to a
subdomain Db;;'

The router is trained by minimizing cross-
entropy loss at both levels, optimizing the clas-
sification process:

Ly = CrossEntropyLoss(7,y)

= —qulog(P(D
q=1

where y = [y1, ..., yn] is the one-hot encoded
true label vector with y, € {0,1}, § = [P(D; |
X),...,P(Dy | X)] is the predicted probability
distribution over the n domain classes, and P (D, |
X') = g4 denotes the predicted probability of input
X being classified into domain D,,.

MODE Inference. The inference process in
MOoDE begins with the input tokens X;,, which
are first passed through an embedding layer into the
embedded representation X . The embedded tokens
X are then fed into the router, a trainable classifier
designed to assign the input to the most relevant
domain. The router R classifies the input into a
main knowledge domain and then sub knowledge
domain, depending on the characteristics of the
task, expressed as:

Dy

= R(X). (10)

A

After classification, the model proceeds DENoise.
This step filters out irrelevant weights from the
pretrained LLM, retaining only those necessary
for the selected domain. The denoised weights,
denoted as Wiyenoised, form the core of the Domain
Expert:

Wienoised = DENoise(W, D,.@/\). (11D
These denoised expert in dynamically activated to
process the embedded input X, ensuring that only
the domain-relevant parameters are used for the
current task. The embedded input X is then for-
warded through the selected Domain Expert, which
generate the intermediate output Y. Finally, the
intermediate output Y is subjected to a linear trans-
formation and a softmax operation to produce the
final output Y, which represents the model’s predic-
tion for the given task. Whole inference procedure
is shown in Figure 3.

4 Experiment

4.1 Setup

Datasets. We conduct experiments across three do-
mains: general knowledge, code, and mathematics.
For general knowledge, we use MMLU (Hendrycks
et al., 2021). For code, we adopt MBPP (Austin
et al., 2021) and HumanEval (Chen et al., 2021),
and for mathematics, we use GSM8K (Cobbe et al.,
2021) and MathQA (Amini et al., 2019). Validation
sets from MMLU, MBPP, MathQA, and GSM8K
are used as reference data, with final evaluations
on their respective test sets. For HumanEval, we
follow standard practice by using the MBPP vali-
dation set as reference and evaluating on the full
dataset. We adopt a 5-shot for MMLU and 0-shot
for all other datasets.

Table 1: Performance comparison of DENOISE and MODE with baseline on foundation models.

‘ Method

| MMLU | MBPP | HumanEval | GSMSK | MathQA

| acc | pass@1 pass@10 | pass@1 pass@10 | acc | acc

| BASELINE | 4581 | 19.24

2360 | 14.45 1951 | 2024 | 25.33

DENOISE 47.83 21.32
1lama-2-7b-chat-hf | Improvement | +2.02 +2.08

26.40 15.73 20.73 22.21 27.34
+2.80 +1.28 +1.22 +1.97 +2.01

MoDE 47.34 20.58
Improvement | +1.53 +1.34

25.80 14.51 19.51 20.79 26.13
+2.20 -+0.06 +0 +0.55 +0.80

BASELINE 52.34 9.68

13.00 18.66 28.05 31.77 24.86

DENOISE 53.18 11.52
1lama-2-13b-chat-hf | Improvement | +0.84 +1.84

16.00 19.45 29.88 34.42 27.57
+3.00 +0.79 +1.83 +2.65 +2.71

MoDE 52.93 12.39
Improvement | +-0.59 +2.71

14.80 19.13 29.27 33.86 26.34
+1.80 +0.47 +1.22 +2.09 +1.48

BASELINE 66.87 45.22

66.15 30.52 59.34 59.47 35.12

DENOISE 68.89 47.15
1Lama-2-70b-chat-hf | Improvement | +2.02 +1.93

66.98 31.71 60.72 61.83 35.96
+0.83 +1.19 +1.38 +2.36 +0.84

MoDE 68.12 45.93
Improvement | +1.25 +0.71

66.34 31.22 60.01 60.56 35.33
+0.19 +0.70 +0.67 +1.09 +0.21

BASELINE 63.56 2.94

9.00 15.31 20.12 57.92 37.12

DENOISE 65.30 6.20
Gemma-7b Improvement | +1.74 +3.26

15.80 16.77 22.56 59.59 39.57
+6.80 +1.46 +2.44 +1.67 +2.45

MoDE 65.05 5.85
Improvement | +1.49 +2.91

13.90 12.93 18.29 59.29 38.79
+4.90 —0.38 —0.11 +1.37 +1.67

BASELINE 69.71 8.36

9.80 12.87 18.90 68.46 50.75

DENOISE 71.07 8.52

10.80 15.12 22.56 69.98 51.22

Gemma-2-9b Improvement | +1.36 +0.16 +1.00 +2.25 +3.66 +1.52 +0.47
MODE 70.90 8.28 10.40 14.33 20.73 69.45 50.97
Improvement | +1.19 —0.08 +0.60 +1.46 +1.83 +0.99 +0.22

Baseline & Foundation Models. We eval-
uvate our method on five foundation models:
1lama-2-7b/13b/70b-chat and Gemma-7b/2-9b,
covering a wide range of model sizes. Both
LLaMA-2 and Gemma series are decoder-only
transformer-based models optimized for dialogue
and natural language understanding. This setup
verifies the effectiveness of our approach across
dense pretrained models of different scales.

Evaluation Metrics. We report accuracy
(acc%) for general and mathematics tasks. For
coding tasks, we additionally use pass@1 and
pass@10, which measure the probability that at
least one of the top-k generated solutions is correct,
calculated as:

N

1
pass@k = z; Ciy (12)
Z:

where ¢; € {0,1} indicates whether the i-th task
has at least one correct solution in Top-k.

4.2 Main Results

Our DENOISE algorithm consistently boosts per-
formance across datasets: MMLU, MBPP, Hu-
manEval, GSM8K and MathQA. When incorpo-
rated into the MODE architecture, it further im-
proves efficiency, adaptability and stability, as
shown in Table 1.

DENOISE. The application of DENOISE using
lo-norm and 10% de noise ratio results in consis-
tent performance improvements with an average
gain of 2.04% over the baseline models, as shown
in Table 1. Specifically, 11ama-2-7b-chat-hf’s
accuracy on MMLU increases by 2.02%, while its
performance on MBPP (pass@1) rose by 2.08%,
and its accuracy on GSM8K improves by 1.97%.
Similar patterns are observed for the other models.
Notably, Gemma-7b exhibits an increase of 3.26%
in MBPP (pass@10) and a 2.4% improvement in
MathQA accuracy, demonstrating DENOISE’s effi-
cacy across different models and tasks.

Model Improvements with DENoise Algorithm

o

N

Accuracy Improvement (%)

—q"
s 02
T
= =
e
==

o

Model Improvements with MoDE

w

? []
=
<
< 4
=
£

[]
2?2 °
51___'.__5 ____________________________ s
)
E) e '.
g0 o
<
<.

Model 8] Liama-2-7b-chat 8] Liama-2-13b-chat 5] Liama-2-70b-chat [5] Gemma-7b EX] Gemma-2-9p

Figure 4: Comparative boxplot analysis of models using DENoise and MoDE methods.

MODE. To make further comparison, we eval-
uate the MODE architecture on the same set
of LLMs to examine its effectiveness. Firstly,
applying MODE also led to noticeable perfor-
mance gains of 1.11% in average, though the im-
provements were generally more moderate com-
pared to DENOISE, as shown in Table 1. In de-
tail, 11ama-2-7b-chat-hf’s accuracy on MMLU
increases by 1.53%, while its performance on
MBPP (pass@1) improves by 1.34%, and its ac-
curacy on GSMS8K see a 0.55% rise. Similarly,
Gemma-7b’s performance in MBPP (pass@10) in-
creases by 2.91%, with MathQA showing a 1.67%
gain. Secondly, the accuracy improvements under
MODE primarily fall within the range of 0.5% to
2.5%, with the highest to 4.9%. The results suggest
that MODE, while less impactful than DENOISE in
terms of absolute gains, offers a viable and sta-
ble method for enhancing model performance with
minimal additional computation. Moreover, as
shown in Figure 4, both DENoise and MoDE con-
sistently improve model accuracy, yet their dis-
tribution patterns differ. As the expert, DENoise
exhibits more concentrated gains across models,
suggesting its stable performance. While MoDE
shows greater variance and occasional performance
dips, which may be partially attributed to the addi-
tional routing mechanism.

4.3 Ablation Studies

In the ablation studies, we wuse the
llama-2-7b-chat-hf model due to its sta-
ble performance in previous results. Employing
DENOISE, we analyze [,-norm, denoise ratios,
layers, and patch-square configurations. Further-
more, employing MODE, we analyze the k-means
clustering process.

l,-norm. We firstly evaluate the performance of
different p-norm values on the MMLU dataset. For

p = 2, accuracy improves to 47.83%, representing
a2.02% increase over the base accuracy. For p = 4,
accuracy decreases to 47.27%, noting that differ-
ent p-norm configurations yield varying results in
terms of performance, with p = 2 achieving the
highest accuracy, as shown in Table 2.

Table 2: DENOISE Performance of Different p in [,,-
norm on datasets.

| p | MMLU | GSMSK | MathQA
1| 46.26 21.34 26.13
acc(%) | 2 | 47.83 22.21 27.34
4 | 47.27 22.05 26.57

Denoising Ratio. We denoise the all model lay-
ers (layers O to 31) using a 1 x 1 patch-square
configuration and examine different ratios on the
MMLU dataset grouped into 12 clusters. With
a 10% denoising ratio, accuracy reaches 47.83%,
a 2.02% increase over the 45.81% of base. This
shows the 10% ratio effectively balances accuracy
and computational cost, as shown in Table 3.

Table 3: DENOISE Performance of Different Denoising
Ratio on MMLU Dataset.

\ Ratio \ MMLU \ Ratio \ MMLU

base 45.81 5% 47.79
acc(%) 1% 47.75 10% 47.83
3% 47.83 20% 45.33

Denoising Sublayers. We then apply a 5% de-
noising to MLP layers and Self-Attention layers,
from layers O to 31, evaluating the impact on the
GSMS8K and MathQA, grouped into 8 clusters.
Results shows denoising the Self-Attention layers
yields the best on GSM8K, with a 3.18% improve-
ment. On MathQA, the combination performs best,
reaching a 2.01% increase, as shown in Table 4.

Table 4: DENOISE Performance of Denoising Different
Sublayers on GSM8K and MathQA Datasets.

| Patch GSMSK | MathQA
base 20.24 25.33
aco(%) MLP 21.61 26.87
7’| Self-Attention | 23.42 925.90
Combination 22.21 27.34

Table 5: DENOISE Performance of Different Patch Size
on MBPP and HumanEval Datasets.

| patcn, | MBPP | HumanEval
| | @(%) e@10(%) | e1(%) e10(%)
base | 19.24 23.60 | 1445 19.51
1x1 | 2080 2600 | 1573 20.73
passek | 2x2 | 19.88 25.60 | 15.67 20.12
4x4 | 1858 24.00 | 14.88 20.73
16 x 16 | 18.40 2440 | 13.97 17.68

Patch-square Configuration. Besides, based
on 10% denoising ratio, we evaluate different
patch-square configurations on the MBPP and Hu-
manEval, grouped into 3 clusters. For MBPP,
the 1 x 1 patch-square achieves the best perfor-
mance on pass@1 with a 1.56% improvement, and
on pass@10 with a 2.40% increase. Similarly,
on HumanEval, the 1 x 1 configuration lead with
1.28% gains for pass@1 and 1.22% for pass@10
respectively over the baseline, as shown in Table 5.

K-means Clustering. Finally, we examine the
impact of different K values applied in MODE in
the K-means clustering step on the MMLU dataset,
grouped into 12 clusters. We vary the number of
clusters from 6 to 16, the results show that with
K=12, the accuracy reaches the highest value of
47.79%, outperforming other cluster settings, as
shown in Table 6.

Table 6: MODE Performance of Different K-means on
MMLU Dataset.

\K\MMLU\K\MMLU

6 4727 | 12| 47.79
acc(%) | 8 4750 | 14 | 47.27
10 | 47.46 | 16 | 47.65

5 Related Works

Pruning. Based on granularity, neural network
pruning methods are categorized as unstructured,
structured, or semi-structured. Unstructured prun-
ing removes individual low-importance weights
to achieve high sparsity; structured pruning elimi-
nates entire structures such as neurons or channels
(Blalock et al., 2020; Frantar and Alistarh, 2023;
Wang et al., 2019); semi-structured pruning offers
a trade-off between flexibility and regularity (Syed
et al., 2023). One of the core component of pruning
is the design of importance metrics, which assess
parameter relevance using heuristics such as mag-
nitude, gradient-based estimates, or loss sensitivity
(Han et al., 2015a; Molchanov et al., 2019; Sun
et al., 2024). These metrics guide the removal of
redundant parameters but have shown limited con-
sistency and robustness across architectures and
tasks (Sutskever et al., 2013). Our work reframes
pruning as a mechanism not only for structural sim-
plification but also for enhancing model effective-
ness, providing a novel extension to its theoretical
and practical scope.

Mixture of Experts. Most existing Mixture-
of-Experts (MoE) architectures construct experts
by replicating feed-forward networks (FFNs)
within Transformer blocks, assuming specialization
emerges implicitly through routing during train-
ing (Lepikhin et al., 2020; Fedus et al., 2022; Du
et al., 2022). Recent works like DS-MoE (Pan
et al., 2023) and the Emergent Modularity hypoth-
esis (Zhang et al., 2023) provide empirical evi-
dence of latent sparsity and modularity in FFN
layers, while MoEfication (Zhang et al., 2022) and
LLaMA-MOoE (Zhu et al., 2024) further explore ex-
pert configuration through parameter reallocation
and reuse without retraining. Our work explicitly
constructs domain-specialized experts across both
FFN and self-attention layers, enabling lightweight,
task-adaptive modularization.

6 Conclusion

Conclusion. In this work, we empirically demon-
strate that removing certain weights can lead to
performance improvements of LLLMs on specific
tasks. Building on this observation, we propose the
DENoise algorithm to prune noise weights from
both attention and FFN layers to construct domain
experts. We further introduce a lightweight MoDE
framework that can be integrated into decoder-only
LLM architecture.

Limitation and Future Work. This work pri-
marily has 3 limitations. Regarding the proposed
Noise Neuron Hypothesis, First, our validation re-
lies on the use of the /,-norm to estimate weight im-
portance; incorporating additional metrics such as
loss sensitivity, gradient-based scores, or influence
functions could further solidify our conclusions.
Second, although this work introduces practical
and deployable methods derived from the hypoth-
esis, the justification of the hypothesis itself re-
mains largely empirical. We do not yet propose a
generalized metric grounded in theory to precisely
quantify noise weights. Future work will explore
constructing refined metrics based on or beyond
importance estimation to localize such harmful pa-
rameters more effectively. Third, from an applica-
tion perspective, our evaluation is limited to a set
of representative NLP tasks; extending this frame-
work to more diverse tasks such as open-ended
generation, multi-modal reasoning, or real-world
dialogue systems remains an open challenge for
assessing the generalizability of the hypothesis.

References

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
Preprint, arXiv:1905.13319.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. 2020. What is the state of
neural network pruning? Proceedings of Machine
Learning and Systems, 2:129—-146.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.
2024. A survey on deep neural network pruning: Tax-
onomy, comparison, analysis, and recommendations.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(12):10558-10578.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y Wu, and et al. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Nan Du, Lei Hou, Zongwei Mao, and et al. 2022. Glam:
Efficient scaling of language models with mixture-
of-experts. In International Conference on Machine
Learning (ICML).

A. Aldo Faisal, Luc P. J. Selen, and Daniel M. Wolpert.
2008. Noise in the nervous system. Nature Reviews
Neuroscience, 9(4):292-303.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10323-10337. PMLR.

Song Han, Huizi Mao, and William J Dally. 2015a.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. In Proceedings of the International
Conference on Learning Representations (ICLR).

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015b. Learning both weights and connections for ef-
ficient neural networks. Preprint, arXiv:1506.02626.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu,
and Yi Yang. 2018. Soft filter pruning for acceler-
ating deep convolutional neural networks. In Pro-
ceedings of the 27th International Joint Conference
on Artificial Intelligence, IICAI’ 18, page 2234-2240.
AAAI Press.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

G. E. Hinton and T. J. Sejnowski. 1986. Learning and
relearning in Boltzmann machines, page 282-317.
MIT Press, Cambridge, MA, USA.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.

https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/TPAMI.2024.3447085
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://doi.org/10.1038/nrn2258
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In International
Conference on Learning Representations.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2016. Pruning filters for effi-
cient convnets. ArXiv, abs/1608.08710.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun
Zhou, Jingliang Xue, Xinjiang Wang, Yimin Chen,
Wenming Yang, Qingmin Liao, and Wayne Zhang.
2021. Group fisher pruning for practical network
compression. In International Conference on Ma-
chine Learning.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: on the structural pruning of large lan-
guage models. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, NIPS 23, Red Hook, NY, USA. Curran
Associates Inc.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Turi Fro-
sio, and Jan Kautz. 2019. Importance estimation for
neural network pruning. In Conference on Computer
Vision and Pattern Recognition, pages 11264-11272.

Hao Pan, Renjie Zhang, Zhiyuan Liu, and Maosong
Sun. 2023. Ds-moe: Expert sparsity in pretrained
transformers. In Findings of the Association for Com-
putational Linguistics (ACL).

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lucia Munguia, David Rothchild, and Jef-
frey Dean. 2021. Carbon emissions and large neural
network training. arXiv preprint arXiv:2104.10350.

Abigail See, Minh-Thang Luong, and Christopher D.
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings of the
20th SIGNLL Conference on Computational Natu-
ral Language Learning, pages 291-301, Berlin, Ger-
many. Association for Computational Linguistics.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3645-3650. Association for Com-
putational Linguistics.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2024. A simple and effective pruning approach for
large language models. In The Twelfth International
Conference on Learning Representations.

Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. 2013. On the importance of initial-
ization and momentum in deep learning. In Pro-
ceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Ma-
chine Learning Research, pages 1139-1147, Atlanta,
Georgia, USA. PMLR.

10

Aaquib Syed, Phillip Huang Guo, and Vijaykaarti Sun-
darapandiyan. 2023. Prune and tune: Improving
efficient pruning techniques for massive language
models.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong
Zhang. 2019. Eigendamage: Structured pruning in
the kronecker-factored eigenbasis. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97, pages 6566—-6575. PMLR.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and
Ping Wang. 2019. Gate decorator: global filter prun-
ing method for accelerating deep convolutional neu-
ral networks. Curran Associates Inc., Red Hook, NY,
USA.

Renjie Zhang, Qian Liu, Hao Pan, and Zhiyuan
Liu. 2023. Emergent modularity and task-
alignment in pretrained transformers. arXiv preprint
arXiv:2305.15450.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2022. MokEfication:
Transformer feed-forward layers are mixtures of
experts. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 877-890,
Dublin, Ireland. Association for Computational Lin-
guistics.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
Llama-moe: Building mixture-of-experts from
llama with continual pre-training. arXiv preprint
arXiv:2406.16554.

https://api.semanticscholar.org/CorpusID:14089312
https://api.semanticscholar.org/CorpusID:14089312
https://api.semanticscholar.org/CorpusID:14089312
https://api.semanticscholar.org/CorpusID:235825363
https://api.semanticscholar.org/CorpusID:235825363
https://api.semanticscholar.org/CorpusID:235825363
https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554

A Scaling Hidden Layers into Patches
Maintains Information in
Self-Attention and MLP

In Transformer models, the Self-Attention and
MLP layers are critical for capturing global contex-
tual information and performing non-linear trans-
formations on feature representations. The scaling
of hidden layers into patches might raise concerns
about the potential loss of information, but this pro-
cess is designed to preserve both local and global
relationships in the model.

Global Context Preservation in Self-Attention.
The Self-Attention mechanism ensures that every
token in the input sequence can attend to all other
tokens, capturing global dependencies. This opera-
tion is described by:

Q T
Attention(Q, K, V') = softmax <

i)y
e
(13)
Where: @, K, and V are the Query, Key, and
Value matrices. dj, is the dimensionality of the Key
vectors. By scaling hidden layers into patches, each
patch retains local interactions within the patch.
Meanwhile, the Self-Attention mechanism ensures
that global interactions between patches are main-
tained. This is because the attention mechanism
operates across all patches, allowing the model to
propagate global information and maintain context
across the entire sequence of patches. As a result,
the scaled matrix retains the full global context, en-
suring no information is lost during patch scaling.
Patch Scaling and Information Compression.
When the hidden layers are scaled by a factor «,
the resulting reduced matrix of size X x Y
(8 = 1/«) has elements that correspond to patches
in the original matrix. Each patch P;; captures
a compressed representation of the information
within the original matrix. By aggregating the con-
tributions from each element in a patch, the scaled
matrix effectively compresses the local information,
while Self-Attention ensures that this compressed
representation continues to interact globally. The
importance of each patch is calculated as:

bij = Z ([Winn| X | Xmnll2) (14)

(m,n)EP;;

This compression allows for efficient representa-
tion of both local and global information, preserv-
ing the integrity of the original model.

11

MLP Layer and Information Flow. Follow-
ing Self-Attention, the MLP layer processes the
globally-contextualized output. The MLP is de-
fined as:

MLP(h) = o(Wy - ReLU(W; - h)) (15)

Where: h is the output from Self-Attention. Wy
and W5 are the weight matrices in the MLP. o is
the activation function (typically ReLU). The MLP
performs non-linear transformations on the com-
pressed feature representations from the patches.
Since the MLP does not rely on spatial relation-
ships, it processes the patch-level information with-
out any risk of information loss. The critical feature
transformations in the MLP are unaffected by the
scaling process, ensuring that the information flow
remains intact.

B Procedure of DENOISE to Select Best 6

In this section, we present the procedure for select-
ing the optimal threshold 6 in the DENoise method.
The goal is to assess the impact of varying 6 val-
ues on performance across multiple datasets and
domains, specifically MMLU, GSMS8K, MathQA,
and HumanEval. Each table provides a comprehen-
sive comparison of the DENoise performance over
different ranges of 6, from 50% to 100%, highlight-
ing its effectiveness in selecting the most relevant
experts in various domains.

C Threshold-Based Performance Analysis
Across Datasets

This appendix provides a comprehensive analysis
of the performance trends observed across vary-
ing threshold 6 values for the datasets GSMS8K,
MathQA, HumanEval, MBPP, and MMLU. Each
dataset, representing a distinct domain, showcases
unique response patterns when applying the MoDE
framework. As 6 increases, we observe noticeable
fluctuations in accuracy, highlighting the dynamic
behavior of domain-specific subnetworks. The re-
sults consistently demonstrate that activating ex-
perts based on denoised domain-specific weights
yields stable improvements across tasks. This
analysis reinforces the scalability and adaptability
of MoDE, validating its ability to enhance task-
specific accuracy without the need for fine-tuning.

Table 7: Performance comparison of DENOISE throughout all MMLU domains with different 6.

cluster_id | Samples | 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% | Max (%) | Ratio (%)

mmlu_0 2047 57.79 58.72 58.96 59.26 59.99 59.94 60.67 60.23 60.77 60.92 60.92 14.58
mmlu_1 1518 35.57 34.72 34.32 35.70 35.38 35.31 35.84 35.44 36.17 35.77 36.17 10.81
mmlu_2 895 23.02 24.02 22.57 23.35 23.02 22.01 22.46 22.68 22.79 22.57 24.02 6.37
mmlu_3 1586 48.93 47.92 49.37 48.99 49.87 49.50 49.43 50.44 50.88 51.01 51.01 11.29
mmlu_4 212 27.83 28.77 28.30 25.94 28.77 26.89 27.83 26.89 27.36 26.89 28.77 1.51
mmlu_5 1477 59.58 59.04 60.39 59.51 60.12 60.80 60.93 61.61 61.61 61.75 61.75 10.52
mmlu_6 322 35.09 32.92 33.85 34.78 33.54 34.78 33.54 34.16 35.09 35.09 35.09 2.29
mmlu_7 434 27.65 25.58 29.95 26.96 26.96 27.19 28.11 29.72 27.19 29.49 29.95 3.09
mmlu_8 2016 55.21 55.36 55.46 55.51 56.15 55.56 56.35 57.04 57.19 57.44 57.44 14.36
mmlu_9 1839 46.66 47.53 46.82 46.49 47.36 47.74 47.36 48.02 48.45 48.29 48.45 13.09
mmlu_10 1174 30.92 30.15 31.26 31.09 30.49 30.15 30.83 32.03 32.28 31.86 32.28 8.36
mmlu_11 522 42.34 45.21 44.25 4291 46.74 45.40 46.74 47.32 46.36 47.13 47.32 3.72

Table 8: Performance comparison of DENOISE throughout all GSM8K domains with different 6.

cluster_id ‘ Samples ‘ 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% ‘ Max (%) ‘ Ratio (%)

gsm8k_0 240 12.92 15.00 15.83 18.75 13.75 17.08 16.67 17.50 15.83 16.67 18.75 18.20
gsm8k_1 8 0.00 12.50 12.50 37.50 25.00 12.50 12.50 37.50 0.00 12.50 37.50 0.61
gsm8k_2 225 17.78 21.78 18.22 24.00 22.67 22.67 22.22 21.78 20.44 24.00 24.00 17.06
gsm8k_3 361 18.28 16.90 19.67 20.50 19.94 23.82 21.05 23.82 21.61 23.82 23.82 27.37
gsm8k_4 113 13.27 17.70 9.73 15.04 15.93 19.47 17.70 13.27 17.70 16.81 19.47 8.57
gsm8k_5 193 12.44 10.88 12.95 13.99 15.03 17.62 20.73 18.65 17.10 19.69 20.73 14.63
gsm8k_6 [§ 33.33 16.67 50.00 33.33 33.33 16.67 33.33 33.33 16.67 50.00 50.00 0.45
gsm8k_7 173 16.18 14.45 17.92 23.12 17.34 19.08 17.34 19.65 18.50 19.65 23.12 13.12

Table 9: Performance comparison of DENOISE throughout all MathQA domains with different 6.
cluster_id | Samples | 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% | Max (%) | Ratio (%)

mathga_0 289 19.03 19.72 20.42 23.53 26.99 28.72 26.30 22.84 26.30 22.15 28.72 9.68
mathqga_1 318 24.53 24.84 24.21 22.96 31.45 23.58 29.87 29.25 26.42 25.79 31.45 10.65
mathqa_2 453 20.75 22.30 27.15 22.96 24.06 25.39 23.18 26.49 25.39 22.96 27.15 15.18
mathga_3 107 24.30 27.10 28.97 20.56 28.04 27.10 28.04 20.56 22.43 20.56 28.97 3.58
mathga_4 238 24.37 20.17 29.83 21.01 22.69 29.41 22.69 27.31 29.41 28.15 29.83 7.97
mathqa_5 269 26.77 20.45 24.91 25.65 29.37 27.14 25.65 21.56 23.79 29.00 29.37 9.01
mathqa_6 659 24.28 19.58 20.49 21.40 20.64 22.91 21.55 18.97 20.64 19.88 24.28 22.08
mathga_7 652 20.09 21.47 21.32 24.08 22.70 22.70 25.92 24.54 23.47 22.55 25.92 21.84

Table 10: Performance comparison of DENOISE throughout all HumanEval domains with different 6.

cluster_id | Metric | Samples | 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% | Max (%) | Ratio (%)

humaneval_0 | pass@l 44 11.82 17.05 15.68 14.77 15.00 16.36 17.05 15.23 15.45 14.77 17.05 26.83
humaneval_1 | pass@l 75 8.27 9.47 10.80 10.67 13.07 15.33 12.67 13.20 13.47 13.33 15.33 45.73
humaneval_2 | pass@1 45 6.89 12.22 1111 9.33 14.22 14.00 15.11 14.00 14.89 15.11 15.11 27.44
humaneval_0 | pass@1@ 44 18.18 25.00 25.00 18.18 22.73 18.18 25.00 18.18 20.45 20.45 25.00 26.83
humaneval_1 | pass@10 75 10.67 14.67 13.33 12.00 18.67 18.67 16.00 17.33 17.33 16.00 18.67 45.73
humaneval_2 | pass@10 45 8.89 15.56 15.56 13.33 15.56 15.56 17.78 15.56 20.00 17.78 20.00 27.44

Table 11: Performance comparison of DENOISE throughout all MBPP domains with different 6.

clusterﬁid‘ Metric ‘Samples ‘ 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% ‘ Max (%) ‘ Ratio (%)

mbpp_0 pass@1 185 35.68 34.32 33.89 38.16 34.05 35.19 37.51 34.65 36.65 36.38 38.16 37.00
mbpp_1 pass@1 53 17.74 15.47 20.19 27.92 22.83 25.47 23.96 20.75 19.62 22.08 27.92 10.60
mbpp_2 pass@1 262 7.29 6.18 5.84 6.34 6.56 8.09 6.56 6.45 7.75 7.52 8.09 52.40
mbpp_0 pass@10 185 40.54 43.24 42.16 42.16 40.54 41.08 44.32 39.46 42.70 42.16 44.32 37.00
mbpp_1 pass@10 53 24.53 26.42 28.30 32.08 28.30 35.85 30.19 26.42 26.42 33.96 35.85 10.60
mbpp_2 pass@10 262 9.16 9.16 9.92 9.16 10.31 11.83 9.92 10.31 11.83 11.45 11.83 52.40

12

35
50
30
40 ——GSMSK_0 —-MathQA_0
g ——GSMSK_1 SLas ~MathQa,_L
N - GSMSK_2 = ~MathQA_2
5 ——GSMSK_3 £ ~-MathQA 3
2 - GSMBK_4 E 20 ——MathQA_4
20 ~~-GSMSK_5 - MathQA_5
——GSMSK_6 ——MathQA_6
10 ——GSMSK_7 15 ——MathQA_7
10
50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100%
Different § Different 6
(a) GSM8SK (b) MathQA
180
160
0 140
25 - 120
g ~MBPP_2_pass@10
Hzo 3100 ~~MBPP_I_pass@10
S —HumanEval_0_pass@! P ~-MBPP_0_pass@10
E's ——humaneval_I_pass@! E ~MBPP_2_pass@1
3 —HumanEval_2_pass@! 60 —MBPP_1_pass@!
g ~—HumanEval_0_pass@10 - -
° ——HumanEval_1_pass@10 40 MBPP_0_pass@]1
v ~+HumanEval_2_pass@10
s 20

50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100%

50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100%
Different &

Different 6

(c) HumanEval (d) MBPP

65

60 ———
—e-mmlu_0
55 ——mmlu_I
—mmly_2
,\?50 —"] —-mmlu_3
s —T | T | —mmh4
g —-mmly_5
g 40 ——mmlu_6
< 15 r__::_,_.‘ ——mmlu_7
— | ~mms
30 —~—mmlu_9
e~ —~—mmlu_10
25 | emmun

50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100%
Different

(e) MMLU

Figure 5: Accuracy comparison of DENOISE across different thresholds 6 for various datasets including GSM8K,
MathQA, HumanEval, MBPP, and MMLU. Each subfigure (a-e) shows performance variations with respect to the 0
values, highlighting dataset-specific accuracy trends.

13

	Introduction
	Preliminary
	Method
	DENoise
	MoDE Architecture

	Experiment
	Setup
	Main Results
	Ablation Studies

	Related Works
	Conclusion
	Scaling Hidden Layers into Patches Maintains Information in Self-Attention and MLP
	Procedure of DENoise to Select Best
	Threshold-Based Performance Analysis Across Datasets

