
MoDE: Weight Denoising Towards Better LLM Performance through a
Mixture of Domain Experts

Anonymous ACL submission

Abstract001

In LLM weight pruning, the “criteria” method,002
alongside sparse training, relies on ranking003
weight importance to guide pruning decisions.004
However, this approach frequently leads to per-005
formance degradation, as it assumes that im-006
portance equates to contribution, implying that007
any removal inevitably incurs loss. Our find-008
ings reveals that, under specific domain, some009
weights may act as noise, and pruning them010
can actually improve performance. This of-011
fers a new perspective on pruning: Shifting the012
goal from loss minimization to performance013
gains. To this end, 1) we propose the Noise014
Weight Hypothesis, which posits the existence015
of harmful weights in LLMs whose activation016
can degrade performance in domain-specific017
tasks. 2) We introduce the DENoise (Domain018
Expert weight deNoising) algorithm, which019
removes domain-aware noise weight without020
fine-tuning. 3) We further develop the MoDE021
(Mixture of Domain Experts), which employs a022
bilevel trainable router to dynamically activate023
the domain-specific expert, leading to improved024
task accuracy. Results show that applying DE-025
Noise algorithm achieves 2–3% performance026
gains on each benchmarks without any addi-027
tional parameters or tuning, while MoDE yields028
an average improvement of over 1.1% against029
baseline models.030

1 Introduction031

The rapid growth of large language models has032

made deployment increasingly costly due to ex-033

cessive parameter counts (Patterson et al., 2021;034

Strubell et al., 2019). Pruning, which removes re-035

dundant weights while minimizing accuracy loss,036

is widely regarded as an effective solution(Cheng037

et al., 2024). A common strategy involves ranking038

parameters by importance—typically measured by039

magnitude (Han et al., 2015b; See et al., 2016),040

norm(Li et al., 2016; He et al., 2018), or estimated041

loss change(You et al., 2019; Liu et al., 2021)—and042

removing the lowest-ranked ones to preserve key 043

contributing parameters to performance. However, 044

this method relies on an implicit assumption: all pa- 045

rameters, even those with small or negative values, 046

are inherently beneficial. As a result, pruning these 047

weights is often assumed to degrade performance. 048

Nonetheless, this commonly held assumption 049

warrants reconsideration. Let the biological inspi- 050

ration of neural networks (Hinton and Sejnowski, 051

1986) be the conceptual analogy, studies reveal that 052

certain weights, while functionally meaningful in 053

general, can exhibit disruptive responses under spe- 054

cific tasks, a phenomenon known as neuronal noise 055

(Faisal et al., 2008). Then it is reasonable to hy- 056

pothesize that in artificial neural network, some 057

weights, though beneficial for generalization, may 058

trigger misleading activations in specific down- 059

stream tasks. Removing “noise” may therefore 060

enhance task performance. Interestingly, our pre- 061

liminary (see Section 2) support this hypothesis. 062

When evaluating model performance on specific 063

task datasets under pruning conditions, we found 064

that removing weights from certain mid-to-low im- 065

portance intervals led to improved accuracy, and 066

was consistently observed across up to 57 tasks. 067

Motivated by this, we propose the Noise Weight 068

Hypothesis, suggesting that harmful weights ex- 069

ist in LLMs and their removal can enhances task- 070

driven performance without further training. To 071

make the hypothesis practical, we integrate it into 072

a Mixture-of-Experts (MoE) framework—whose 073

core principle is that, for each specific domain of 074

task, the model dynamically activates the most suit- 075

able expert (Fedus et al., 2022). Following this 076

rationale, we propose the DENoise (Domain Ex- 077

pert weight deNoising) algorithm, which identifies 078

and removes noise-like weights (defined as Noise 079

Weights) from self-attention and FFN layers to con- 080

struct domain expert subnetworks. Building on 081

this, we develop the MoDE (Mixture of Domain 082

Expert) framework, which routes each input to its 083

1

Figure 1: Parameter Importance Sensitivity Analysis on the MMLU Philosophy Task. This figure evaluates model
performance variation under different pruning ratios (5%, 10%, and 20%) by selectively removing weights across
ranked importance intervals based on the metric |W| × ∥X∥2. Results reveal a non-monotonic relationship between
parameter importance and performance, with marginal gains observed when pruning mid-to-low ranked weights.

most relevant denoised expert at the sequence level084

for efficient activation. Thereby, the main contribu-085

tions of this work are as follows:086

Improvement Perspective for Reinterpreting087

Parameter Redundancy. The Noise Weight Hy-088

pothesis offers a perspective by focusing on nega-089

tively contributing weights, suggesting that LLMs090

may contain noise weights that interfere with task091

performance. This viewpoint complements exist-092

ing importance-based pruning strategies and opens093

up a new theoretical dimension for understanding094

and approaching model compression.095

Noise Weight Elimination Mechanism for096

Performance Improvement. The tuning-free097

DENoise algorithm identifies and removes noise098

weights to derive task-specialized expert subnet-099

works from pretrained LLMs. Experimental re-100

sults show an average performance improvement101

of 1%–3% on benchmarks such as MMLU, MBPP,102

and GSM8K, with a maximum gain of 6.8%. This103

method demonstrates that model compression and104

performance improvement can be achieved simul-105

taneously, providing a practical tool for optimizing106

LLMs in resource-constrained environments.107

Lightweight and Deployable Domain Expert108

Construction. The MoDE integrates the DENoise109

algorithm with a bilevel dynamic router to con-110

struct a domain expert system. MoDE offers an op-111

timization option that requires no extensive model112

modifications and can be directly integrated into113

existing architectures, achieving an average per-114

formance improvement of 1.1% across multiple115

mainstream LLMs. This provides a practical solu-116

tion for efficient deployment and enhanced domain117

adaptability of LLMs.118

2 Preliminary 119

Recent studies have revealed that large language 120

models (LLMs), despite being trained as mono- 121

lithic architectures, inherently exhibit internal struc- 122

tures resembling a Mixture-of-Experts (MoE) sys- 123

tem (Zhang et al., 2023; Dai et al., 2024). Specif- 124

ically, weights with different activation patterns 125

within layers demonstrate emergent functional pref- 126

erences for certain representation region (Zhang 127

et al., 2022). 128

Formally, let a pretrained LLM be parameter- 129

ized byW ∈ Ru×v, which operates on input fea- 130

ture matrix X ∈ Rv×d to produce hidden activa- 131

tions H = WX . Generally, all parameters W 132

participate in inference. However, due to over- 133

parameterization, it is possible to decompose W 134

into subsets {W1,W2, . . . ,WE}, where each sub- 135

set corresponds to an implicit expert Ee. The model 136

output can thus be reformulated as: 137

H =
E∑

e=1

R[x ∈ Γe] · (EeX), (1) 138

where R[·] ∈ {0, 1} is a routing function specify- 139

ing whether the input x belongs to the representa- 140

tion region Γe relevant to expert Ee. 141

Under this framework, the critical question 142

is to construct the expert. Typically, we apply 143

importance-based parameter selection methods, 144

where each parameter is assigned an importance 145

score (Han et al., 2015b). Under the common as- 146

sumption that parameters with lower importance 147

contribute less positively to model performance, 148

such parameters are prioritized for pruning. In 149

contrast, sudies such as the Lottery Ticket Hy- 150

2

Figure 2: The number of tasks achieving accuracy im-
provements within different pruning intervals by 10%
across models. Note that each task may experience per-
formance gains in multiple pruning intervals.

pothesis (Frankle and Carbin, 2018), have chal-151

lenged the importance assumption by demonstrat-152

ing that sparse sub-networks with randomly initial-153

ized weights can achieve competitive performance,154

suggesting that high importance does not necessar-155

ily equate to high contribution.156

Thus, we pose the question: Does importance157

score serve as an initial filtering signal rather than158

a final decision criterion?159

Noise Weight Hypothesis. To explore the re-160

lationship between parameter importance and161

task performance, we conduct extensive ex-162

periments across 57 tasks with pruning ratios163

of 1%, 5%, 10%, 20% and 50% on 4 mod-164

els llama-2-7b/13b-chat-hf and Gemma-7b/9b165

model. Parameter importance is measured using166

the widely adopted pruning metric |W| × ∥X∥2,167

(He et al., 2018; Ma et al., 2023; Sun et al., 2024)168

and weights are pruned from different ranked im-169

portance intervals. Figure 1 demonstrates this170

phenomenon on the MMLU Philosophy task using171

the llama-2-7b-chat-hf, with similar trends ob-172

served across diverse domains. To prove the robust-173

ness, Figure 2 shows that many tasks benefit from174

pruning weights within mid-to-low importance in-175

tervals. This may suggests that the widely used im-176

portance metrics may not serve as definitive criteria177

for parameter evaluation. Based on these observa-178

tions, we propose the Noise Weight Hypothesis,179

which posits the widespread presence of previously180

overlooked parameters—noise weights—in LLMs.181

These weights may appear active by importance182

metrics but in fact negatively impact performance.183

3 Method 184

3.1 DENoise 185

Based on the Noise Weight Hypothesis, we first de- 186

sign a Domain Expert Weight Denoising algorithm 187

(DENoise) , using importance score as intermediate 188

variable to further detect and remove noise weights 189

in hiddn layers, including attention and FFN layers. 190

Clustering-based Classification. Consider 191

a set of distinct knowledge domains D = 192

{D1, D2, . . . , Dn}, where each domain Di encap- 193

sulates specialized knowledge relevant to a specific 194

task. These domains are aggregated into a compre- 195

hensive main knowledge set D. 196

For a given task T , the algorithm selects the 197

most suitable main knowledge domain Dj by com- 198

puting the posterior probability P (D | T), which 199

quantifies the likelihood of task T belonging to 200

each domain. This process is expressed as: 201

Dj = arg max
j∈{1,...,n}

P (Dj | T), (2) 202

where Dj is the domain with the highest poste- 203

rior probability, ensuring that the task T is matched 204

with the most relevant domain. 205

Once the main domain Dj is selected, it is fur- 206

ther subdivided into smaller subdomains using K- 207

means clustering. For each dataset within Dj , fea- 208

ture representations are extracted via the embed- 209

ding layer of a Transformer model, forming a set 210

of feature vectorsFj = {Fj1 , Fj2 , . . . , Fjl}, where 211

each Fji corresponds to a data sample. K-means 212

clustering is then applied to partition Fj into k sub- 213

domains by minimizing the intra-cluster variance, 214

formalized as: 215

C∗ = argmin
C

k∑
i=1

∑
f∈Ci

∥f − µi∥2, (3) 216

where Ci ⊆ Fj denotes the set of points as- 217

signed to the i-th cluster, µi represents the centroid 218

of cluster Ci, and f ∈ Fj indicates that all data 219

points considered belong to the feature set extracted 220

from domain Dj . 221

For given any new task T̃ , its feature vector 222

FT̃ = Embedding(T̃) is extracted and compared 223

to the centroids µk of the subdomains. The task is 224

assigned to the subdomain Djk (equivalently, clus- 225

ter Ck) that minimizes the Euclidean distance: 226

k̃ = argmin
k
∥FT̃ − µk∥2. (4) 227

3

Once assigned to the subdomain Djk̃
, the task228

is further processed according to the knowledge229

characteristics. The complete procedure for opti-230

mizing the denoising threshold for domain experts231

is outlined in Algorithm 1.232

Metric Calculation on Patches. After identify-233

ing the subdomain Djk̃
, this section quantifies the234

critical information contained within it. Activation235

values serve as an effective metric for assessing236

the importance of weights and connections within237

the network because they directly measure how238

strongly weights respond to input features, reflect-239

ing their contribution to the network’s output (Han240

et al., 2015b). To perform this assessment, we be-241

gin by scaling the weight matrix W and feature242

matrix X(activation embedding vector). A scaling243

factor α reduces the dimensionality of the matrices,244

yielding a smaller matrix of size βu× βv (where245

β = 1/α). Each element in this reduced matrix246

corresponds to a patch Pην , which represents a247

subregion of the original matrix and contains con-248

densed information.249

Afterwards, to further evaluate the significance250

of each patch, we calculate the following impor-251

tance metricMην based on the lp-norm:252

Mην =
∑

(s,t)∈Pην

(|Wst| × ∥Xst∥p) . (5)253

This metric aggregates the weighted contribu-254

tions of each element within the patch, computed255

using the lp-norm. With the norm vector of the256

input feature activations, the importance of each257

weight can be determined by performing a patch-258

wise dot product.259

Domain Experts Formation. To identify and re-260

move noise weights for a given task T , we first de-261

fine a candidate set of noise weights by evaluating262

importance scores row-wise. For each row i, a spe-263

cific threshold interval [θ(i)min, θ
(i)
max] is determined,264

and all parameters whose importance scores fall265

within this interval are considered potential noise266

candidates. The candidate set θr is defined as:267

θr =

βu⋃
i=1

{
Mi:(σ) | Mi:(σ) ∈ [θ

(i)
min, θ

(i)
max]

}
,

where θ(i)r ⊆ R.
(6)268

Based on the candidate set θr, we systematically269

evaluate the impact of removing different candidate270

intervals on model performance. By measuring the271

Algorithm 1 Threshold Optimization for Domain
Experts Weight Denoising.
Input: Domain-specific dataset DT ; initial thresh-
old θinit; maximum threshold θmax; step size δθ;
pre-trained weightsW .
Output: Optimal denoising threshold θ∗.

1: Initialize θ ← θinit, θ∗ ← θinit, and
best_acc← 0.

2: Extract features: FT ← Embedding(DT).
3: Partition k subdomains:

C ← KMeansClustering(FT , k).

4: while θ ≤ θmax do
5: Compute candidate noise neurons:

θr ← ComputeNoiseNeurons(C, θ).
6: Denoise parameters: Wdenoised ←W \ θr.
7: Evaluate accuracy:

acc← Acc(Wdenoised,Dk).

8: if acc > best_acc then
9: Update best_acc← acc, θ∗ ← θ.

10: end if
11: Increment threshold: θ ← θ + δθ.
12: end while
13: return θ∗.

accuracy Acc(W \ θr) after removing each candi- 272

date interval, we determine the interval that yields 273

the best post-denoising performance. The optimal 274

denoising threshold θ∗ is selected as: 275

ET =W \ θ∗,
where θ∗ = argmax

θr⊆W
Acc (W \ θr) . (7) 276

Finally, the denoised hidden layers are aggre- 277

gated to construct the Domain Expert, ensuring 278

that critical knowledge is preserved while redun- 279

dant and noisy parameters are effectively removed. 280

281

3.2 MODE Architecture 282

To fully leverage the specialized weight config- 283

urations constructed by DENoise, we introduce 284

MODE(Mixture of Domain Expert), which em- 285

ploys a bilevel trainable router to dynamically clas- 286

sify any tasks into the most relevant domain and 287

activate the expert. 288

A Bilevel Trainable Router. We introduce a 289

bilevel trainable routerR, where each level is im- 290

plemented as a single-layer MLP, to classify tasks 291

through two hierarchical stages. First, the task em- 292

bedding FT̄ is classified into a main knowledge 293

4

Input
Domain Identification

❄ Frozen
🔥 Trainable Sample layer

❄

Weight DENoising

D
om

ain
 E

xpert M
atrices

OutputApply the results from DENoise Algorithm

🔥
R

outer

2

R
outer

1

Sub Knowledge Domain
(by clustering)

Main Knowledge Domain
(by classification)Main Domain🔥

🔥

Pre-trained LLM Hidden Layers (Attention + FFN)

Compression

Matrix Patch

Figure 3: The inference flow through our MODE. The embedded input tokens () is first processed by a bilevel
trainable (") router, where it is initially classified into the main knowledge domain by level 1 and further into a
sub knowledge domain by level 2. The input is then passed to the identified Domain Expert, which is formed by
applying the result from DENoise Algorithm, from the hidden layers of a frozen (❄) pre-trained LLM. Finally
output tokens () are processed by Domain Expert to output.

domain Db. Then, in the second stage, the task is294

further classified into a subdomain Dbk̄
within the295

selected main domain, as shown:296

Dbk̄
= Rsub,b(Rmain(FT̄)). (8)297

Here, Rmain(FT̄) maps the task embedding to a298

specific main domain Db, and Rsub,b(FT̄), condi-299

tioned on this domain, further assigns the task to a300

subdomain Dbk̄
.301

The router is trained by minimizing cross-302

entropy loss at both levels, optimizing the clas-303

sification process:304

LR = CrossEntropyLoss(ŷ, y)305

= −
n∑

q=1

yq log (P (Dq | X)) , (9)306

where y = [y1, . . . , yn] is the one-hot encoded307

true label vector with yq ∈ {0, 1}, ŷ = [P (D1 |308

X), . . . , P (Dn | X)] is the predicted probability309

distribution over the n domain classes, and P (Dq |310

X) = ŷq denotes the predicted probability of input311

X being classified into domain Dq.312

MODE Inference. The inference process in313

MODE begins with the input tokens Xin, which314

are first passed through an embedding layer into the315

embedded representation X̂ . The embedded tokens316

X̂ are then fed into the router, a trainable classifier317

designed to assign the input to the most relevant318

domain. The router R classifies the input into a319

main knowledge domain and then sub knowledge320

domain, depending on the characteristics of the321

task, expressed as:322

Dκλ
= R(X̂). (10)323

After classification, the model proceeds DENoise. 324

This step filters out irrelevant weights from the 325

pretrained LLM, retaining only those necessary 326

for the selected domain. The denoised weights, 327

denoted as Wdenoised, form the core of the Domain 328

Expert: 329

Wdenoised = DENoise(W, Dκλ
). (11) 330

These denoised expert in dynamically activated to 331

process the embedded input X̂ , ensuring that only 332

the domain-relevant parameters are used for the 333

current task. The embedded input X̂ is then for- 334

warded through the selected Domain Expert, which 335

generate the intermediate output Ŷ . Finally, the 336

intermediate output Ŷ is subjected to a linear trans- 337

formation and a softmax operation to produce the 338

final output Y , which represents the model’s predic- 339

tion for the given task. Whole inference procedure 340

is shown in Figure 3. 341

4 Experiment 342

4.1 Setup 343

Datasets. We conduct experiments across three do- 344

mains: general knowledge, code, and mathematics. 345

For general knowledge, we use MMLU (Hendrycks 346

et al., 2021). For code, we adopt MBPP (Austin 347

et al., 2021) and HumanEval (Chen et al., 2021), 348

and for mathematics, we use GSM8K (Cobbe et al., 349

2021) and MathQA (Amini et al., 2019). Validation 350

sets from MMLU, MBPP, MathQA, and GSM8K 351

are used as reference data, with final evaluations 352

on their respective test sets. For HumanEval, we 353

follow standard practice by using the MBPP vali- 354

dation set as reference and evaluating on the full 355

dataset. We adopt a 5-shot for MMLU and 0-shot 356

for all other datasets. 357

5

Table 1: Performance comparison of DENOISE and MODE with baseline on foundation models.

Method MMLU MBPP HumanEval GSM8K MathQA

acc pass@1 pass@10 pass@1 pass@10 acc acc

llama-2-7b-chat-hf

BASELINE 45.81 19.24 23.60 14.45 19.51 20.24 25.33

DENOISE 47.83 21.32 26.40 15.73 20.73 22.21 27.34
Improvement +2.02 +2.08 +2.80 +1.28 +1.22 +1.97 +2.01

MODE 47.34 20.58 25.80 14.51 19.51 20.79 26.13
Improvement +1.53 +1.34 +2.20 +0.06 ±0 +0.55 +0.80

llama-2-13b-chat-hf

BASELINE 52.34 9.68 13.00 18.66 28.05 31.77 24.86

DENOISE 53.18 11.52 16.00 19.45 29.88 34.42 27.57
Improvement +0.84 +1.84 +3.00 +0.79 +1.83 +2.65 +2.71

MODE 52.93 12.39 14.80 19.13 29.27 33.86 26.34
Improvement +0.59 +2.71 +1.80 +0.47 +1.22 +2.09 +1.48

lLama-2-70b-chat-hf

BASELINE 66.87 45.22 66.15 30.52 59.34 59.47 35.12

DENOISE 68.89 47.15 66.98 31.71 60.72 61.83 35.96
Improvement +2.02 +1.93 +0.83 +1.19 +1.38 +2.36 +0.84

MODE 68.12 45.93 66.34 31.22 60.01 60.56 35.33
Improvement +1.25 +0.71 +0.19 +0.70 +0.67 +1.09 +0.21

Gemma-7b

BASELINE 63.56 2.94 9.00 15.31 20.12 57.92 37.12

DENOISE 65.30 6.20 15.80 16.77 22.56 59.59 39.57
Improvement +1.74 +3.26 +6.80 +1.46 +2.44 +1.67 +2.45

MODE 65.05 5.85 13.90 12.93 18.29 59.29 38.79
Improvement +1.49 +2.91 +4.90 −0.38 −0.11 +1.37 +1.67

Gemma-2-9b

BASELINE 69.71 8.36 9.80 12.87 18.90 68.46 50.75

DENOISE 71.07 8.52 10.80 15.12 22.56 69.98 51.22
Improvement +1.36 +0.16 +1.00 +2.25 +3.66 +1.52 +0.47

MODE 70.90 8.28 10.40 14.33 20.73 69.45 50.97
Improvement +1.19 −0.08 +0.60 +1.46 +1.83 +0.99 +0.22

Baseline & Foundation Models. We eval-358

uate our method on five foundation models:359

llama-2-7b/13b/70b-chat and Gemma-7b/2-9b,360

covering a wide range of model sizes. Both361

LLaMA-2 and Gemma series are decoder-only362

transformer-based models optimized for dialogue363

and natural language understanding. This setup364

verifies the effectiveness of our approach across365

dense pretrained models of different scales.366

Evaluation Metrics. We report accuracy367

(acc%) for general and mathematics tasks. For368

coding tasks, we additionally use pass@1 and369

pass@10, which measure the probability that at370

least one of the top-k generated solutions is correct,371

calculated as:372

pass@k =
1

N

N∑
i=1

ci, (12)373

where ci ∈ {0, 1} indicates whether the i-th task374

has at least one correct solution in Top-k.375

4.2 Main Results 376

Our DENOISE algorithm consistently boosts per- 377

formance across datasets: MMLU, MBPP, Hu- 378

manEval, GSM8K and MathQA. When incorpo- 379

rated into the MODE architecture, it further im- 380

proves efficiency, adaptability and stability, as 381

shown in Table 1. 382

DENOISE. The application of DENOISE using 383

l2-norm and 10% de noise ratio results in consis- 384

tent performance improvements with an average 385

gain of 2.04% over the baseline models, as shown 386

in Table 1. Specifically, llama-2-7b-chat-hf’s 387

accuracy on MMLU increases by 2.02%, while its 388

performance on MBPP (pass@1) rose by 2.08%, 389

and its accuracy on GSM8K improves by 1.97%. 390

Similar patterns are observed for the other models. 391

Notably, Gemma-7b exhibits an increase of 3.26% 392

in MBPP (pass@10) and a 2.4% improvement in 393

MathQA accuracy, demonstrating DENOISE’s effi- 394

cacy across different models and tasks. 395

6

Model Improvements with DENoise Algorithm Model Improvements with MoDE

Figure 4: Comparative boxplot analysis of models using DENoise and MoDE methods.

MODE. To make further comparison, we eval-396

uate the MODE architecture on the same set397

of LLMs to examine its effectiveness. Firstly,398

applying MODE also led to noticeable perfor-399

mance gains of 1.11% in average, though the im-400

provements were generally more moderate com-401

pared to DENOISE, as shown in Table 1. In de-402

tail, llama-2-7b-chat-hf’s accuracy on MMLU403

increases by 1.53%, while its performance on404

MBPP (pass@1) improves by 1.34%, and its ac-405

curacy on GSM8K see a 0.55% rise. Similarly,406

Gemma-7b’s performance in MBPP (pass@10) in-407

creases by 2.91%, with MathQA showing a 1.67%408

gain. Secondly, the accuracy improvements under409

MODE primarily fall within the range of 0.5% to410

2.5%, with the highest to 4.9%. The results suggest411

that MODE, while less impactful than DENOISE in412

terms of absolute gains, offers a viable and sta-413

ble method for enhancing model performance with414

minimal additional computation. Moreover, as415

shown in Figure 4, both DENoise and MoDE con-416

sistently improve model accuracy, yet their dis-417

tribution patterns differ. As the expert, DENoise418

exhibits more concentrated gains across models,419

suggesting its stable performance. While MoDE420

shows greater variance and occasional performance421

dips, which may be partially attributed to the addi-422

tional routing mechanism.423

4.3 Ablation Studies424

In the ablation studies, we use the425

llama-2-7b-chat-hf model due to its sta-426

ble performance in previous results. Employing427

DENOISE, we analyze lp-norm, denoise ratios,428

layers, and patch-square configurations. Further-429

more, employing MODE, we analyze the k-means430

clustering process.431

lp-norm. We firstly evaluate the performance of432

different p-norm values on the MMLU dataset. For433

p = 2, accuracy improves to 47.83%, representing 434

a 2.02% increase over the base accuracy. For p = 4, 435

accuracy decreases to 47.27%, noting that differ- 436

ent p-norm configurations yield varying results in 437

terms of performance, with p = 2 achieving the 438

highest accuracy, as shown in Table 2.

Table 2: DENOISE Performance of Different p in lp-
norm on datasets.

p MMLU GSM8K MathQA

acc(%)
1 46.26 21.34 26.13
2 47.83 22.21 27.34
4 47.27 22.05 26.57

439
Denoising Ratio. We denoise the all model lay- 440

ers (layers 0 to 31) using a 1 × 1 patch-square 441

configuration and examine different ratios on the 442

MMLU dataset grouped into 12 clusters. With 443

a 10% denoising ratio, accuracy reaches 47.83%, 444

a 2.02% increase over the 45.81% of base. This 445

shows the 10% ratio effectively balances accuracy 446

and computational cost, as shown in Table 3. 447

Table 3: DENOISE Performance of Different Denoising
Ratio on MMLU Dataset.

Ratio MMLU Ratio MMLU

acc(%)
base 45.81 5% 47.79
1% 47.75 10% 47.83
3% 47.83 20% 45.33

Denoising Sublayers. We then apply a 5% de- 448

noising to MLP layers and Self-Attention layers, 449

from layers 0 to 31, evaluating the impact on the 450

GSM8K and MathQA, grouped into 8 clusters. 451

Results shows denoising the Self-Attention layers 452

yields the best on GSM8K, with a 3.18% improve- 453

ment. On MathQA, the combination performs best, 454

reaching a 2.01% increase, as shown in Table 4. 455

456

7

Table 4: DENOISE Performance of Denoising Different
Sublayers on GSM8K and MathQA Datasets.

Patch GSM8K MathQA

acc(%)

base 20.24 25.33

MLP 21.61 26.87

Self-Attention 23.42 25.90

Combination 22.21 27.34

Table 5: DENOISE Performance of Different Patch Size
on MBPP and HumanEval Datasets.

Patch
MBPP HumanEval

@1(%) @10(%) @1(%) @10(%)

pass@k

base 19.24 23.60 14.45 19.51

1× 1 20.80 26.00 15.73 20.73

2× 2 19.88 25.60 15.67 20.12

4× 4 18.58 24.00 14.88 20.73

16× 16 18.40 24.40 13.97 17.68

Patch-square Configuration. Besides, based457

on 10% denoising ratio, we evaluate different458

patch-square configurations on the MBPP and Hu-459

manEval, grouped into 3 clusters. For MBPP,460

the 1 × 1 patch-square achieves the best perfor-461

mance on pass@1 with a 1.56% improvement, and462

on pass@10 with a 2.40% increase. Similarly,463

on HumanEval, the 1× 1 configuration lead with464

1.28% gains for pass@1 and 1.22% for pass@10465

respectively over the baseline, as shown in Table 5.466

K-means Clustering. Finally, we examine the467

impact of different K values applied in MODE in468

the K-means clustering step on the MMLU dataset,469

grouped into 12 clusters. We vary the number of470

clusters from 6 to 16, the results show that with471

K=12, the accuracy reaches the highest value of472

47.79%, outperforming other cluster settings, as473

shown in Table 6.474

475

Table 6: MODE Performance of Different K-means on
MMLU Dataset.

K MMLU K MMLU

acc(%)
6 47.27 12 47.79

8 47.50 14 47.27

10 47.46 16 47.65

5 Related Works 476

Pruning. Based on granularity, neural network 477

pruning methods are categorized as unstructured, 478

structured, or semi-structured. Unstructured prun- 479

ing removes individual low-importance weights 480

to achieve high sparsity; structured pruning elimi- 481

nates entire structures such as neurons or channels 482

(Blalock et al., 2020; Frantar and Alistarh, 2023; 483

Wang et al., 2019); semi-structured pruning offers 484

a trade-off between flexibility and regularity (Syed 485

et al., 2023). One of the core component of pruning 486

is the design of importance metrics, which assess 487

parameter relevance using heuristics such as mag- 488

nitude, gradient-based estimates, or loss sensitivity 489

(Han et al., 2015a; Molchanov et al., 2019; Sun 490

et al., 2024). These metrics guide the removal of 491

redundant parameters but have shown limited con- 492

sistency and robustness across architectures and 493

tasks (Sutskever et al., 2013). Our work reframes 494

pruning as a mechanism not only for structural sim- 495

plification but also for enhancing model effective- 496

ness, providing a novel extension to its theoretical 497

and practical scope. 498

Mixture of Experts. Most existing Mixture- 499

of-Experts (MoE) architectures construct experts 500

by replicating feed-forward networks (FFNs) 501

within Transformer blocks, assuming specialization 502

emerges implicitly through routing during train- 503

ing (Lepikhin et al., 2020; Fedus et al., 2022; Du 504

et al., 2022). Recent works like DS-MoE (Pan 505

et al., 2023) and the Emergent Modularity hypoth- 506

esis (Zhang et al., 2023) provide empirical evi- 507

dence of latent sparsity and modularity in FFN 508

layers, while MoEfication (Zhang et al., 2022) and 509

LLaMA-MoE (Zhu et al., 2024) further explore ex- 510

pert configuration through parameter reallocation 511

and reuse without retraining. Our work explicitly 512

constructs domain-specialized experts across both 513

FFN and self-attention layers, enabling lightweight, 514

task-adaptive modularization. 515

6 Conclusion 516

Conclusion. In this work, we empirically demon- 517

strate that removing certain weights can lead to 518

performance improvements of LLMs on specific 519

tasks. Building on this observation, we propose the 520

DENoise algorithm to prune noise weights from 521

both attention and FFN layers to construct domain 522

experts. We further introduce a lightweight MoDE 523

framework that can be integrated into decoder-only 524

LLM architecture. 525

8

Limitation and Future Work. This work pri-526

marily has 3 limitations. Regarding the proposed527

Noise Neuron Hypothesis, First, our validation re-528

lies on the use of the lp-norm to estimate weight im-529

portance; incorporating additional metrics such as530

loss sensitivity, gradient-based scores, or influence531

functions could further solidify our conclusions.532

Second, although this work introduces practical533

and deployable methods derived from the hypoth-534

esis, the justification of the hypothesis itself re-535

mains largely empirical. We do not yet propose a536

generalized metric grounded in theory to precisely537

quantify noise weights. Future work will explore538

constructing refined metrics based on or beyond539

importance estimation to localize such harmful pa-540

rameters more effectively. Third, from an applica-541

tion perspective, our evaluation is limited to a set542

of representative NLP tasks; extending this frame-543

work to more diverse tasks such as open-ended544

generation, multi-modal reasoning, or real-world545

dialogue systems remains an open challenge for546

assessing the generalizability of the hypothesis.547

References548

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-549
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.550
2019. Mathqa: Towards interpretable math word551
problem solving with operation-based formalisms.552
Preprint, arXiv:1905.13319.553

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten554
Bosma, Henryk Michalewski, David Dohan, Ellen555
Jiang, Carrie Cai, Michael Terry, Quoc Le, and556
Charles Sutton. 2021. Program synthesis with large557
language models. Preprint, arXiv:2108.07732.558

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan559
Frankle, and John Guttag. 2020. What is the state of560
neural network pruning? Proceedings of Machine561
Learning and Systems, 2:129–146.562

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,563
Henrique Ponde de Oliveira Pinto, Jared Kaplan,564
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg565
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,566
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela567
Mishkin, Brooke Chan, Scott Gray, and 39 others.568
2021. Evaluating large language models trained on569
code. Preprint, arXiv:2107.03374.570

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.571
2024. A survey on deep neural network pruning: Tax-572
onomy, comparison, analysis, and recommendations.573
IEEE Transactions on Pattern Analysis and Machine574
Intelligence, 46(12):10558–10578.575

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,576
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias577

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 578
Nakano, Christopher Hesse, and John Schulman. 579
2021. Training verifiers to solve math word prob- 580
lems. Preprint, arXiv:2110.14168. 581

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, 582
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, 583
Xingkai Yu, Y Wu, and et al. 2024. Deepseek- 584
moe: Towards ultimate expert specialization in 585
mixture-of-experts language models. arXiv preprint 586
arXiv:2401.06066. 587

Nan Du, Lei Hou, Zongwei Mao, and et al. 2022. Glam: 588
Efficient scaling of language models with mixture- 589
of-experts. In International Conference on Machine 590
Learning (ICML). 591

A. Aldo Faisal, Luc P. J. Selen, and Daniel M. Wolpert. 592
2008. Noise in the nervous system. Nature Reviews 593
Neuroscience, 9(4):292–303. 594

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 595
Switch transformers: Scaling to trillion parameter 596
models with simple and efficient sparsity. Journal of 597
Machine Learning Research, 23(120):1–39. 598

Jonathan Frankle and Michael Carbin. 2018. The lottery 599
ticket hypothesis: Finding sparse, trainable neural 600
networks. arXiv preprint arXiv:1803.03635. 601

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 602
sive language models can be accurately pruned in 603
one-shot. In Proceedings of the 40th International 604
Conference on Machine Learning, volume 202 of 605
Proceedings of Machine Learning Research, pages 606
10323–10337. PMLR. 607

Song Han, Huizi Mao, and William J Dally. 2015a. 608
Deep compression: Compressing deep neural net- 609
works with pruning, trained quantization and huff- 610
man coding. In Proceedings of the International 611
Conference on Learning Representations (ICLR). 612

Song Han, Jeff Pool, John Tran, and William J. Dally. 613
2015b. Learning both weights and connections for ef- 614
ficient neural networks. Preprint, arXiv:1506.02626. 615

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, 616
and Yi Yang. 2018. Soft filter pruning for acceler- 617
ating deep convolutional neural networks. In Pro- 618
ceedings of the 27th International Joint Conference 619
on Artificial Intelligence, IJCAI’18, page 2234–2240. 620
AAAI Press. 621

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 622
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 623
2021. Measuring massive multitask language under- 624
standing. Preprint, arXiv:2009.03300. 625

G. E. Hinton and T. J. Sejnowski. 1986. Learning and 626
relearning in Boltzmann machines, page 282–317. 627
MIT Press, Cambridge, MA, USA. 628

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, 629
Dehao Chen, Orhan Firat, Yanping Huang, Maxim 630
Krikun, Noam Shazeer, and Zhifeng Chen. 2020. 631

9

https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/TPAMI.2024.3447085
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://doi.org/10.1038/nrn2258
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

Gshard: Scaling giant models with conditional com-632
putation and automatic sharding. In International633
Conference on Learning Representations.634

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,635
and Hans Peter Graf. 2016. Pruning filters for effi-636
cient convnets. ArXiv, abs/1608.08710.637

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun638
Zhou, Jingliang Xue, Xinjiang Wang, Yimin Chen,639
Wenming Yang, Qingmin Liao, and Wayne Zhang.640
2021. Group fisher pruning for practical network641
compression. In International Conference on Ma-642
chine Learning.643

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.644
Llm-pruner: on the structural pruning of large lan-645
guage models. In Proceedings of the 37th Interna-646
tional Conference on Neural Information Processing647
Systems, NIPS ’23, Red Hook, NY, USA. Curran648
Associates Inc.649

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Fro-650
sio, and Jan Kautz. 2019. Importance estimation for651
neural network pruning. In Conference on Computer652
Vision and Pattern Recognition, pages 11264–11272.653

Hao Pan, Renjie Zhang, Zhiyuan Liu, and Maosong654
Sun. 2023. Ds-moe: Expert sparsity in pretrained655
transformers. In Findings of the Association for Com-656
putational Linguistics (ACL).657

David Patterson, Joseph Gonzalez, Quoc Le, Chen658
Liang, Lucia Munguia, David Rothchild, and Jef-659
frey Dean. 2021. Carbon emissions and large neural660
network training. arXiv preprint arXiv:2104.10350.661

Abigail See, Minh-Thang Luong, and Christopher D.662
Manning. 2016. Compression of neural machine663
translation models via pruning. In Proceedings of the664
20th SIGNLL Conference on Computational Natu-665
ral Language Learning, pages 291–301, Berlin, Ger-666
many. Association for Computational Linguistics.667

Emma Strubell, Ananya Ganesh, and Andrew McCal-668
lum. 2019. Energy and policy considerations for669
deep learning in nlp. In Proceedings of the 57th An-670
nual Meeting of the Association for Computational671
Linguistics, pages 3645–3650. Association for Com-672
putational Linguistics.673

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.674
2024. A simple and effective pruning approach for675
large language models. In The Twelfth International676
Conference on Learning Representations.677

Ilya Sutskever, James Martens, George Dahl, and Ge-678
offrey Hinton. 2013. On the importance of initial-679
ization and momentum in deep learning. In Pro-680
ceedings of the 30th International Conference on681
Machine Learning, volume 28 of Proceedings of Ma-682
chine Learning Research, pages 1139–1147, Atlanta,683
Georgia, USA. PMLR.684

Aaquib Syed, Phillip Huang Guo, and Vijaykaarti Sun- 685
darapandiyan. 2023. Prune and tune: Improving 686
efficient pruning techniques for massive language 687
models. 688

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong 689
Zhang. 2019. Eigendamage: Structured pruning in 690
the kronecker-factored eigenbasis. In Proceedings 691
of the 36th International Conference on Machine 692
Learning, volume 97, pages 6566–6575. PMLR. 693

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and 694
Ping Wang. 2019. Gate decorator: global filter prun- 695
ing method for accelerating deep convolutional neu- 696
ral networks. Curran Associates Inc., Red Hook, NY, 697
USA. 698

Renjie Zhang, Qian Liu, Hao Pan, and Zhiyuan 699
Liu. 2023. Emergent modularity and task- 700
alignment in pretrained transformers. arXiv preprint 701
arXiv:2305.15450. 702

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, 703
Maosong Sun, and Jie Zhou. 2022. MoEfication: 704
Transformer feed-forward layers are mixtures of 705
experts. In Findings of the Association for Com- 706
putational Linguistics: ACL 2022, pages 877–890, 707
Dublin, Ireland. Association for Computational Lin- 708
guistics. 709

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, 710
Jingqi Tong, Conghui He, and Yu Cheng. 2024. 711
Llama-moe: Building mixture-of-experts from 712
llama with continual pre-training. arXiv preprint 713
arXiv:2406.16554. 714

10

https://api.semanticscholar.org/CorpusID:14089312
https://api.semanticscholar.org/CorpusID:14089312
https://api.semanticscholar.org/CorpusID:14089312
https://api.semanticscholar.org/CorpusID:235825363
https://api.semanticscholar.org/CorpusID:235825363
https://api.semanticscholar.org/CorpusID:235825363
https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554

A Scaling Hidden Layers into Patches715

Maintains Information in716

Self-Attention and MLP717

In Transformer models, the Self-Attention and718

MLP layers are critical for capturing global contex-719

tual information and performing non-linear trans-720

formations on feature representations. The scaling721

of hidden layers into patches might raise concerns722

about the potential loss of information, but this pro-723

cess is designed to preserve both local and global724

relationships in the model.725

Global Context Preservation in Self-Attention.726

The Self-Attention mechanism ensures that every727

token in the input sequence can attend to all other728

tokens, capturing global dependencies. This opera-729

tion is described by:730

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

(13)731

Where: Q, K, and V are the Query, Key, and732

Value matrices. dk is the dimensionality of the Key733

vectors. By scaling hidden layers into patches, each734

patch retains local interactions within the patch.735

Meanwhile, the Self-Attention mechanism ensures736

that global interactions between patches are main-737

tained. This is because the attention mechanism738

operates across all patches, allowing the model to739

propagate global information and maintain context740

across the entire sequence of patches. As a result,741

the scaled matrix retains the full global context, en-742

suring no information is lost during patch scaling.743

Patch Scaling and Information Compression.744

When the hidden layers are scaled by a factor α,745

the resulting reduced matrix of size βX × βY746

(β = 1/α) has elements that correspond to patches747

in the original matrix. Each patch Pij captures748

a compressed representation of the information749

within the original matrix. By aggregating the con-750

tributions from each element in a patch, the scaled751

matrix effectively compresses the local information,752

while Self-Attention ensures that this compressed753

representation continues to interact globally. The754

importance of each patch is calculated as:755

θij =
∑

(m,n)∈Pij

(|Wmn| × ∥Xmn∥2) (14)756

This compression allows for efficient representa-757

tion of both local and global information, preserv-758

ing the integrity of the original model.759

MLP Layer and Information Flow. Follow- 760

ing Self-Attention, the MLP layer processes the 761

globally-contextualized output. The MLP is de- 762

fined as: 763

MLP(h) = σ(W2 · ReLU(W1 · h)) (15) 764

Where: h is the output from Self-Attention. W1 765

and W2 are the weight matrices in the MLP. σ is 766

the activation function (typically ReLU). The MLP 767

performs non-linear transformations on the com- 768

pressed feature representations from the patches. 769

Since the MLP does not rely on spatial relation- 770

ships, it processes the patch-level information with- 771

out any risk of information loss. The critical feature 772

transformations in the MLP are unaffected by the 773

scaling process, ensuring that the information flow 774

remains intact. 775

B Procedure of DENOISE to Select Best θ 776

In this section, we present the procedure for select- 777

ing the optimal threshold θ in the DENoise method. 778

The goal is to assess the impact of varying θ val- 779

ues on performance across multiple datasets and 780

domains, specifically MMLU, GSM8K, MathQA, 781

and HumanEval. Each table provides a comprehen- 782

sive comparison of the DENoise performance over 783

different ranges of θ, from 50% to 100%, highlight- 784

ing its effectiveness in selecting the most relevant 785

experts in various domains. 786

C Threshold-Based Performance Analysis 787

Across Datasets 788

This appendix provides a comprehensive analysis 789

of the performance trends observed across vary- 790

ing threshold θ values for the datasets GSM8K, 791

MathQA, HumanEval, MBPP, and MMLU. Each 792

dataset, representing a distinct domain, showcases 793

unique response patterns when applying the MoDE 794

framework. As θ increases, we observe noticeable 795

fluctuations in accuracy, highlighting the dynamic 796

behavior of domain-specific subnetworks. The re- 797

sults consistently demonstrate that activating ex- 798

perts based on denoised domain-specific weights 799

yields stable improvements across tasks. This 800

analysis reinforces the scalability and adaptability 801

of MoDE, validating its ability to enhance task- 802

specific accuracy without the need for fine-tuning. 803

804805

11

Table 7: Performance comparison of DENOISE throughout all MMLU domains with different θ.
cluster_id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

mmlu_0 2047 57.79 58.72 58.96 59.26 59.99 59.94 60.67 60.23 60.77 60.92 60.92 14.58
mmlu_1 1518 35.57 34.72 34.32 35.70 35.38 35.31 35.84 35.44 36.17 35.77 36.17 10.81
mmlu_2 895 23.02 24.02 22.57 23.35 23.02 22.01 22.46 22.68 22.79 22.57 24.02 6.37
mmlu_3 1586 48.93 47.92 49.37 48.99 49.87 49.50 49.43 50.44 50.88 51.01 51.01 11.29
mmlu_4 212 27.83 28.77 28.30 25.94 28.77 26.89 27.83 26.89 27.36 26.89 28.77 1.51
mmlu_5 1477 59.58 59.04 60.39 59.51 60.12 60.80 60.93 61.61 61.61 61.75 61.75 10.52
mmlu_6 322 35.09 32.92 33.85 34.78 33.54 34.78 33.54 34.16 35.09 35.09 35.09 2.29
mmlu_7 434 27.65 25.58 29.95 26.96 26.96 27.19 28.11 29.72 27.19 29.49 29.95 3.09
mmlu_8 2016 55.21 55.36 55.46 55.51 56.15 55.56 56.35 57.04 57.19 57.44 57.44 14.36
mmlu_9 1839 46.66 47.53 46.82 46.49 47.36 47.74 47.36 48.02 48.45 48.29 48.45 13.09
mmlu_10 1174 30.92 30.15 31.26 31.09 30.49 30.15 30.83 32.03 32.28 31.86 32.28 8.36
mmlu_11 522 42.34 45.21 44.25 42.91 46.74 45.40 46.74 47.32 46.36 47.13 47.32 3.72

Table 8: Performance comparison of DENOISE throughout all GSM8K domains with different θ.
cluster_id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

gsm8k_0 240 12.92 15.00 15.83 18.75 13.75 17.08 16.67 17.50 15.83 16.67 18.75 18.20
gsm8k_1 8 0.00 12.50 12.50 37.50 25.00 12.50 12.50 37.50 0.00 12.50 37.50 0.61
gsm8k_2 225 17.78 21.78 18.22 24.00 22.67 22.67 22.22 21.78 20.44 24.00 24.00 17.06
gsm8k_3 361 18.28 16.90 19.67 20.50 19.94 23.82 21.05 23.82 21.61 23.82 23.82 27.37
gsm8k_4 113 13.27 17.70 9.73 15.04 15.93 19.47 17.70 13.27 17.70 16.81 19.47 8.57
gsm8k_5 193 12.44 10.88 12.95 13.99 15.03 17.62 20.73 18.65 17.10 19.69 20.73 14.63
gsm8k_6 6 33.33 16.67 50.00 33.33 33.33 16.67 33.33 33.33 16.67 50.00 50.00 0.45
gsm8k_7 173 16.18 14.45 17.92 23.12 17.34 19.08 17.34 19.65 18.50 19.65 23.12 13.12

Table 9: Performance comparison of DENOISE throughout all MathQA domains with different θ.
cluster_id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

mathqa_0 289 19.03 19.72 20.42 23.53 26.99 28.72 26.30 22.84 26.30 22.15 28.72 9.68
mathqa_1 318 24.53 24.84 24.21 22.96 31.45 23.58 29.87 29.25 26.42 25.79 31.45 10.65
mathqa_2 453 20.75 22.30 27.15 22.96 24.06 25.39 23.18 26.49 25.39 22.96 27.15 15.18
mathqa_3 107 24.30 27.10 28.97 20.56 28.04 27.10 28.04 20.56 22.43 20.56 28.97 3.58
mathqa_4 238 24.37 20.17 29.83 21.01 22.69 29.41 22.69 27.31 29.41 28.15 29.83 7.97
mathqa_5 269 26.77 20.45 24.91 25.65 29.37 27.14 25.65 21.56 23.79 29.00 29.37 9.01
mathqa_6 659 24.28 19.58 20.49 21.40 20.64 22.91 21.55 18.97 20.64 19.88 24.28 22.08
mathqa_7 652 20.09 21.47 21.32 24.08 22.70 22.70 25.92 24.54 23.47 22.55 25.92 21.84

Table 10: Performance comparison of DENOISE throughout all HumanEval domains with different θ.
cluster_id Metric Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

humaneval_0 pass@1 44 11.82 17.05 15.68 14.77 15.00 16.36 17.05 15.23 15.45 14.77 17.05 26.83
humaneval_1 pass@1 75 8.27 9.47 10.80 10.67 13.07 15.33 12.67 13.20 13.47 13.33 15.33 45.73
humaneval_2 pass@1 45 6.89 12.22 11.11 9.33 14.22 14.00 15.11 14.00 14.89 15.11 15.11 27.44

humaneval_0 pass@10 44 18.18 25.00 25.00 18.18 22.73 18.18 25.00 18.18 20.45 20.45 25.00 26.83
humaneval_1 pass@10 75 10.67 14.67 13.33 12.00 18.67 18.67 16.00 17.33 17.33 16.00 18.67 45.73
humaneval_2 pass@10 45 8.89 15.56 15.56 13.33 15.56 15.56 17.78 15.56 20.00 17.78 20.00 27.44

Table 11: Performance comparison of DENOISE throughout all MBPP domains with different θ.
cluster_id Metric Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

mbpp_0 pass@1 185 35.68 34.32 33.89 38.16 34.05 35.19 37.51 34.65 36.65 36.38 38.16 37.00
mbpp_1 pass@1 53 17.74 15.47 20.19 27.92 22.83 25.47 23.96 20.75 19.62 22.08 27.92 10.60
mbpp_2 pass@1 262 7.29 6.18 5.84 6.34 6.56 8.09 6.56 6.45 7.75 7.52 8.09 52.40

mbpp_0 pass@10 185 40.54 43.24 42.16 42.16 40.54 41.08 44.32 39.46 42.70 42.16 44.32 37.00
mbpp_1 pass@10 53 24.53 26.42 28.30 32.08 28.30 35.85 30.19 26.42 26.42 33.96 35.85 10.60
mbpp_2 pass@10 262 9.16 9.16 9.92 9.16 10.31 11.83 9.92 10.31 11.83 11.45 11.83 52.40

12

(a) GSM8K (b) MathQA

(c) HumanEval (d) MBPP

(e) MMLU

Figure 5: Accuracy comparison of DENOISE across different thresholds θ for various datasets including GSM8K,
MathQA, HumanEval, MBPP, and MMLU. Each subfigure (a-e) shows performance variations with respect to the θ
values, highlighting dataset-specific accuracy trends.

13

	Introduction
	Preliminary
	Method
	DENoise
	MoDE Architecture

	Experiment
	Setup
	Main Results
	Ablation Studies

	Related Works
	Conclusion
	Scaling Hidden Layers into Patches Maintains Information in Self-Attention and MLP
	Procedure of DENoise to Select Best
	Threshold-Based Performance Analysis Across Datasets

