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ABSTRACT

Self-supervised learning (SSL) holds a great deal of promise for applications in
neuroscience, due to the lack of large-scale, consistently labeled neural datasets.
However, most neural datasets contain heterogeneous populations that mix sta-
ble, predictable cells with highly stochastic, stimulus-contingent ones, which
has made it hard to identify consistent activity patterns during SSL. As a re-
sult, self-supervised pretraining has yet to show clear signs of benefits from scale
on neural data. Here, we present a novel approach to self-supervised pretrain-
ing, POYO-SSL that exploits the heterogeneity of neural data to improve pre-
training and achieve benefits of scale. Specifically, in POYO-SSL we pretrain
only on predictable (statistically regular) neurons—identified on the pretraining
split via simple higher-order statistics (skewness and kurtosis)—then we fine-tune
on the unpredictable population for downstream tasks. On the Allen Brain Ob-
servatory dataset, this strategy yields approximately 12–13% relative gains over
from-scratch training and exhibits smooth, monotonic scaling with model size.
In contrast, existing state-of-the-art baselines plateau or destabilize as model size
increases. By making predictability an explicit metric for crafting the data diet,
POYO-SSL turns heterogeneity from a liability into an asset, providing a robust,
biologically grounded recipe for scalable neural decoding and a path toward foun-
dation models of neural dynamics.

1 INTRODUCTION

Learning useful representations from neural data poses a fundamental challenge for machine learn-
ing, as datasets from varied lab settings are not only small-scale but the signals themselves are com-
plex, highly-dimensional, and only-partially observed (limitation of recording technology), while
available labels are typically too scarce and weak for effective supervision. Self-supervised learning
(SSL) offers a powerful paradigm to address this data scarcity, as it provides a way to learn from
large amounts of data with limited access to labels, thereby allowing many datasets to be combined.
This could be particularly useful for reconstructing perceptions or intentions directly from neural
activity, e.g. for Brain-Computer Interfaces (BCIs).

However, successful self-supervised learning (SSL) fundamentally relies on exploiting statistical
regularities within the data. For instance, objectives like masked modeling and sequence prediction
are effective in the language domain precisely because language is inherently predictable, governed
by robust statistical patterns and structural regularities (Harris, 1954; Tenney et al., 2019; Sinha
et al., 2021; Yu et al., 2024; Lan et al., 2019; Li & Jurafsky, 2017). Neural decoding, in contrast,
poses a unique challenge to this prerequisite of predictability. We only record a small, biased subset
of neurons from the full circuit, creating a heterogeneous sample where predictability is not uniform.
This unpredictability often correlates with cell type: inhibitory and corticothalamic neurons tend to
exhibit more regular dynamics, while excitatory pyramidal cells appear sparser and more stochastic
in isolation, partly because we lack access to the broader network signals that drive them. Training
SSL models indiscriminately on this mixed-signal data is therefore counterproductive, as the loss
becomes dominated by the unpredictable neurons, pulling the model’s focus from the relevant and
regular patterns it should be learning.

We test the Statistical Regularity Hypothesis: that self-supervised learning (SSL) efficiency scales
with the statistical regularity of the selected neural subset. This principle is motivated by the ob-
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servation that different neural populations, such as inhibitory interneurons and modulatory neurons
exhibit fundamentally distinct statistical dynamics. Our hypothesis leads to a “data diet” approach
for neuroscience SSL, where, unlike conventional methods that rely on task difficulty, we propose
that the intrinsic statistical properties of neurons should guide the learning curriculum.

To validate this, we introduce POYO-SSL, a framework that uses higher-order statistics (skewness
and kurtosis) as proxies for regularity to first pre-train on the most stable neural populations, over-
coming prior methods’ homogeneous treatment of heterogeneous populations. Our results confirm
the hypothesis: by transforming neural heterogeneity from a challenge into an asset, this approach
improves data efficiency by 1.98x and enables high-fidelity movie reconstruction directly from neu-
ral recordings, offering a principled, biologically-grounded recipe for scalable neural decoding.

Our contributions are threefold:

• We introduce a biologically-grounded pretraining paradigm that uses statistical regularity (rather
than task-based difficulty) to guide data selection, selectively learning from neurons with highly
regular responses first before training on more stochastic neurons.

• We present an end-to-end decoder architecture that transforms neural population activity into high-
fidelity visual reconstructions, operating independently of external stimulus information.

• We demonstrate that functional heterogeneity, when properly leveraged through our regularity-
based data diet, enables robust model scaling unlike conventional approaches that plateau with
increased capacity.

Terminology 1. We refer to our setup as a hybrid objective, a simple form of curriculum learning
(Bengio et al. (2009)). The primary objective is masked reconstruction on neural dynamics, while
a supervised auxiliary cross-entropy on primitive stimuli serves as an “easy” initial step to stabilize
training and prevent representational collapse. Importantly, no downstream labels are used during
this pretraining phase.

Terminology 2. We define a neuron population as predictable from a self-supervised learning (SSL)
perspective: its activity must contain sufficient statistical regularity for a model to successfully re-
construct masked portions of its signal. We empirically link this SSL-defined predictability to low
skewness and kurtosis in calcium traces. Thus, while our definition aligns with the neuroscientific
concept of stable firing patterns, it remains a fundamentally operational one, tied to the success of
the masked reconstruction task.

2 RELATED WORK

Decoding Models for Neuroscience Recent neural decoding models span diverse architectures
and learning paradigms. Transformer-based approaches such as POYO (Azabou et al., 2023) and
POYO+ (Azabou et al., 2024) enable multi-session learning but depend on full supervision, limiting
scalability to unlabeled data. Self-supervised methods like CEBRA (Schneider et al., 2023) relax
label requirements for single-session training but require labels for multi-session training. In visual
reconstruction, fMRI-based frameworks have reached high fidelity (Chen et al., 2023; Joo et al.,
2024) through masked modeling and large generative models, but rely on indirect stimulus-to-brain
mappings from fMRI’s slow hemodynamic signal. While these approaches set benchmarks for
fMRI, direct comparison is challenging due to modality differences. In contrast, our method learns
directly from neural recordings using the intrinsic structure of population dynamics without auxiliary
labels or stimulus information.

SSL in Neuroscience Most self-supervised approaches to neural data assume population homo-
geneity and ignore functional specialization. Models such as Neuro-BERT Wu et al. (2022) treat all
neurons equally, while contrastive or task-aware methods Song et al. (2023); Zhao et al. (2024) de-
pend on external supervision rather than intrinsic circuit structure. These frameworks overlook that
predictable neurons (inhibitory interneurons and modulatory pathways) differ fundamentally from
stimulus-encoding neurons in computational role and temporal dynamics. Recent work by Johnson
et al. (2022) characterized such heterogeneity through in vivo imaging, while our predictability-
based selection offers distinct computational advantages by identifying and pretraining on regulatory
neurons, enabling SSL to capture circuit-level dynamics and improving scalability beyond uniform
population models.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Data-Centric SSL and Neural Heterogeneity Our approach aligns with the emerging “data diet”
perspective in machine learning, which posits that the quality of pre-training data is as critical as its
quantity (Paul et al., 2021; Zhuang et al., 2025). However, we distinguish our framework from these
methods in a fundamental way: while standard approaches prune training samples (e.g., specific
images or text), our strategy selects neurons (feature sources). In neural recordings, heterogeneity is
intrinsic to the sensor array itself, not just the examples. We demonstrate that adding more neurons
can paradoxically lead to a “scaling collapse”—a failure mode unique to heterogeneous neural pop-
ulations. By selecting neurons based on statistical regularity, we resolve this collapse and transform
heterogeneity from a liability into an asset for scaling.

3 METHODS

3.1 DATASET AND PARTITION

We use the Allen Brain Observatory (BO) calcium imaging dataset, featuring recordings from 13
Cre driver lines, which we partition into pretraining and finetuning sets (de Vries et al., 2020). To
form the pretraining set, we identified a “predictable” subset by applying a knee-detection algorithm
(Algorithm S1) to the per-line skewness and kurtosis distributions. This a priori process selected
four lines (SST, VIP, PVALB, and NTSR1) that fell below the statistical knee—corresponding to
major inhibitory interneuron classes and one modulatory excitatory line. To prevent data leakage,
animals, sessions, and neuron IDs were kept strictly disjoint across all splits. Crucially, this design
ensures that our model is evaluated on novel biological subjects. While the visual stimulus (movie
clip) is shared across experiments, the neural population responses are animal-specific and unique to
each session. Therefore, high performance on the test set reflects the model’s ability to decode the
generalized neural code rather than memorizing stimulus-response pairs. This statistical partitioning
is empirically validated by its correspondence to neurons with regular firing patterns, aligning our
data-driven approach with established neuroscience principles. Finally, to guarantee a fair compari-
son, we explicitly verified that all models (including baselines and ablations) were evaluated on this
identical held-out test split.

3.2 CELL-PATTERN-AWARE SSL

3.2.1 DATA-EFFICIENT SELECTION CRITERIA

Pretraining

Data Size 134 sessions, 80,146 samples
Selection Criteria skewness ≤ 3.51, kurtosis ≤ 22.62

Hardware 4×V100 (KISTI cas v100nv 4)

Fine-tuning (Movie decoding, Drifting Gratings)

Selected Data 299 sessions, 1,170,931 samples
Selection Criteria skewness > 3.51, kurtosis > 22.62

Frames (movie decoding) 900
Hardware 4×V100 (KISTI cas v100nv 4)

Table 1: Computationally-Efficient Pretraining Summary of dataset scale (sessions and samples),
predictable-neuron selection criteria (skewness and kurtosis computed on per-neuron ∆F/F traces over the
full recording), and computational setup for pretraining and fine-tuning.
Notes. (1) Selected Data = number of predictable (pretraining) / unpredictable (finetuning) sesions / samples
after skewness/kurtosis filtering. (2) For movie decoding, training batches preserved temporal order, whereas
validation and test batches were randomly shuffled to evaluate generalization beyond temporal continuity.

We hypothesize that neurons showing statistical regularity are ideal for effective SSL pretrain-
ing. Within our framework, we operationally define this as predictability—the inherent structure
enabling effective masked reconstruction. To identify these neurons without labels, we leverage per-
neuron skewness and kurtosis. We refer to the selected subset as exhibiting near-Gaussian activity
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(mean skewness 1.87, kurtosis 7.32), characterized by symmetric, thin-tailed distributions suitable
for learning general features. In stark contrast, excluded neurons exhibit heavy-tailed, sparse burst-
ing (mean kurtosis 148.51), better reserved for task-specific fine-tuning. For rigorous empirical
validation of these metrics, see Appendix B.

To objectively partition the data, we applied a knee-detection algorithm (Satopaa et al. (2011)) to
find a data-driven threshold across the 13 discrete CRE lines. Specifically, we identified the knee
point on the sorted distribution of per-line mean statistics, establishing a cutoff based on cell-type
categories rather than individual neuron scores. While this approach failed for lower-order statis-
tics like event rate and Fano factor, it revealed a clear breakpoint for both skewness and kurtosis,
providing a principled basis for our split. The resulting data-driven thresholds (skewness ≤ 3.51,
kurtosis ≤ 22.62) identified a “predictable” subset comprising four CRE lines: SST, VIP, PVALB,
and NTSR1. This statistically derived group is also biologically coherent, consisting of three ma-
jor inhibitory interneuron classes and one regulatory corticothalamic excitatory line (NTSR1), all
of which are crucial for stabilizing neural circuits. This convergence of statistical and biological
criteria validates that our method effectively captures neurons showing statistically regular firing
pattern. Crucially, these thresholds were determined a priori as a single, fixed criterion to partition
the dataset, not as a tunable hyperparameter, which is why a sensitivity analysis was not performed.

3.2.2 MODEL FRAMEWORK
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Figure 1: Overall Framework of POYO-SSL. (a) Pretraining strategy using predictable calcium traces with
masked reconstruction learning (50% masking on temporal dimension). (b) Task-specific finetuning with un-
predictable traces using either skip-connection UNet decoder (complex tasks) or original POYO+ decoder (sim-
ple tasks). (c) Skip-Connection UNet Decoder architecture replacing traditional encoder skip connections with
neural embedding projections.

Predictable Neuron Pretraining with Auxiliary Classification We introduce a latent masked
modeling approach to train our model: masked and an unmasked views of the same sample are fed
independently through the encoder, the latent representation of the unmasked view is then used as
target for the latent representation of the masked variant. To avoid representational collapse Grill
et al. (2020); Chen et al. (2020), we use a supervised auxiliary loss. This auxiliary loss bootstraps
early selectivity while masking-based reconstruction shapes representations for downstream decod-
ing. The primitive labels also serve as guidance to stabilize early optimization.

Our architecture is based on the POYO+ Azabou et al. (2024) architecture: calcium traces are
tokenized into a sequence of input tokens that are then compressed, using a cross-attention
block, into a sequence of latent tokens, which we note Z1 = {z(1)1 , · · · , z(L)

1 }, where L is
the number of latent tokens and z

(i)
1 ∈ Rd is the latent embedding. Each latent token z

(i)
1
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has an associated timestamp relative to the context window. We introduce the following tem-
poral masking scheme: we causally mask a percentage of the latent tokens to form Zmasked

1 =

{z(1)1 , · · · , z(L−M)
1 , < MASKED > · · · , < MASKED >}. We selected a masking ratio of 50%

empirically, i.e. the second half of the context window is masked. We use a siamese network (see
Figure 1) to feed both Z1 and Zmasked

1 through the same self-attention blocks which yields ZL and
Zmasked
L respectively. Finally, we use ZL as the target for Zmasked

L .

During pre-training, the model is trained on a joint objective, consisting of self-supervised masked
reconstruction and fully-supervised classification of drifting grating orientations. This auxiliary
classification task stabilizes the early training dynamics before the model focuses on the complex
downstream movie decoding task.

The pre-training loss is as follows:

Losspretrain = LossL1(Z
masked
L , ZL) + λ · LossCrossEntropy(DGpredicted,DGtrue) (1)

where λ is a loss weight that we empirically found λ = 0.01 to be optimal through grid search (λ
∈ 0.001, 0.01, 0.1, with performance degrading by 7-11% for λ < 0.001 or λ > 0.1. We keep
the cross-entropy weight small so CE accelerates convergence while masking drives representation
formation. This hybrid objective operationalizes a curriculum learning strategy, where the simple
auxiliary task provides a stable foundation for the more demanding masked reconstruction objective.
Details are provided in Appendix D.

Task-Specific Fine-tuning on Unpredictable Neurons Finetuning uses unpredictable CRE-line
traces with task-specific decoders. For classification and simple regression tasks such as drifting-
grating orientation prediction, we use the POYO+ multi-task decoder, and for complex movie frame
reconstruction we employ a dedicated vision-specialized Skip-Connection U-Net decoder.

The finetuning loss is as follows:

Lossmovie = 50Lossfocal + 50LossL1 + 50LossFFT + Lossperceptual + 0.1LossSSIM (2)

LossDG = LossCrossEntropy(DGpredicted, DGtrue) (3)

Loss weights in Eq. 2 were determined through a systematic grid search over [0.1-100] using SSIM
validation score. The different loss terms in the movie reconstruction loss corresponds to special-
ized components (Focal (Lin et al. (2017)), FFT (Fast Fourier Transform, (Zhao et al. (2016))),
Perceptual (Johnson et al. (2016)), and SSIM (Wang et al. (2004))) that ensure high-fidelity image
reconstruction. See Appendix H for details on each loss term.

Skip-Connection U-Net Decoder To address the challenge of reconstructing high-resolution
movie frames, we designed a specializaed decoder, as this dense prediction task requires custom
vision modules that were not designed in the POYO+ decoder. Our new U-Net-inspired decoder
generates frames from a single neural embedding. In each upsampling stage, a direct projection of
the latent vector (e.g., to 128× 2× 2, 64× 4× 4) is concatenated with the upsampled feature map
and fused with a 1× 1 convolution. These repeated latent injections are crucial for maintaining se-
mantic information across all scales, enabling the faithful reconstruction of fine visual details from
a compact neural representation. See Appendix G for more details.

3.3 NUMERICAL ANALYSIS

3.3.1 LOSS LANDSCAPE ANALYSIS

To understand the challenge of optimizing representation learning models on neural data, we pro-
jected neural activity onto its first two principal components (PCs) and approximated the recon-
struction loss landscape. The loss at each grid point in the PC space was estimated using a k-nearest
neighbor approach (k = 5), which considered the local variance of nearby data points and a distance
penalty term. Landscapes were smoothed for visualization via a Gaussian filter (σ = 1.0) (Li et al.
(2018)).
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3.3.2 INFORMATION THEORY ANALYSIS

We used Fisher Information as a metric for data quality, where I(θ) = E
[(

∂
∂θ log p(x|θ)

)2]
quan-

tifies the amount of information each data point provides about underlying model parameters Amari
(1998), with higher values indicating better parameter estimation and convergence. For a quasi-
Gaussian signal, this can be approximated as the inverse of the signal variance (I ≈ 1/σ2). Based
on this, we defined the Effective Dataset Size (Deff ) as the raw data size weighted by its quality,
where a higher Fisher Information value corresponds to a larger effective size. This allows for a
more accurate comparison of dataset utility beyond simple data point counts (Kaplan et al. (2020)).

3.4 REPRESENTATION ANALYSIS

We quantified the properties of the learned latent spaces using several metrics, including t-SNE
for visualization, Intrinsic Dimension (ID) for efficiency (Levina & Bickel (2004)), and metrics to
assess geometric dissimilarity and structural integrity. To assess dissimilarity between latent spaces
learned by different models, we used Procrustes disparity (Dryden & Mardia (2016)) and Centered
Kernel Alignment (CKA) (Kornblith et al. (2019)). To evaluate local structure, we used a Temporal
Neighborhood Preservation score (Venna & Kaski (2001)) (see Appendix I for all definitions).

4 RESULTS

4.1 EXPERIMENTAL SETUPS AND BASELINES

To isolate the benefits of our cell-pattern-aware pre-training, we compare our main model, POYO-
SSL, against a crucial baseline:

• Supervised Baseline (From-Scratch): To rigorously quantify the performance gains from our
SSL stage, we compare against a baseline sharing an identical encoder–decoder architecture but
trained end-to-end on the downstream tasks without pre-training.

• Architecture Ablation Studies: To disentangle the contributions of encoder representations and
decoder capacity, we include three capacity-matched variants. Capacity matched means total pa-
rameters are within ±3% of our model.: (i) MLP Encoder→MLP Decoder, which maps neurons
directly to pixels through a deep fully-connected network with no spatial inductive bias; (ii) POYO
Encoder → MLP Decoder, which retains our SSL encoder but replaces the U-Net decoder with
a purely linear decoder to test whether learned representations alone can drive performance; (iii)
POYO Encoder→ U-Net Decoder without skip connections, which preserves the U-Net hierarchy
but removes lateral skip pathways to assess the importance of multiscale feature fusion.

We compare to POYO+ (Azabou et al., 2024) which is a state-of-the-art model. To benchmark
against external SSL methods, we evaluated an adapted CEBRA baseline (Schneider et al., 2023)
by training its encoder and feeding representations to our vision decoder. This yielded an SSIM of
∼0.48, confirming that contrastive latent spaces optimized for behavioral alignment do not transfer
effectively to high-fidelity pixel generation. For CEBRA, we report the best performance between
training from scratch and fine-tuning strategies. Regarding Neuro-BERT (Wu et al., 2022), the lack
of an official implementation prevented a reproducible adaptation, and thus it was excluded.

4.2 EFFECT OF CELL-PATTERN-AWARE SSL

4.2.1 CELL-PATTERN-AWARE SSL ENABLES SMOOTH LOSS LANDSCAPE

Our analysis of the masked reconstruction loss landscape elucidates a fundamental dichotomy in
the nature of the optimization problems presented by the two neural populations. Predictable neu-
rons induce a geometrically well-posed landscape characterized by a smooth, convex-like surface
(roughness σL = 14.8546), which is highly amenable to gradient-based optimization methods. In
stark contrast, unpredictable neurons give rise to a treacherous, non-convex landscape (roughness
σL = 2048.4712) plagued by a multitude of spurious local minima. Crucially, the quantitative
contrast remains striking even with the expanded FOV: despite the inclusion of steep basin walls,
the ‘unpredictable’ landscape remains ∼138× rougher than the ‘predictable’ one. This confirms
that our conclusion is robust to the choice of scale: the structural optimization gap between the two
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a b

Figure 2: Loss Landscape Topology Reveals a Dichotomy in Optimization Difficulty. Masked recon-
struction loss landscapes for predictable and unpredictable neurons, projected onto their first two principal
components (PCs) with an expanded field of view (FOV=2x). (a) The landscape from predictable neurons is
smooth and convex-like, clearly revealing high-loss boundaries that enclose data points (red dots) in a single
basin, indicating a well-posed optimization problem. (b) In contrast, the landscape from unpredictable neurons
is rugged and non-convex, characterized by numerous local minima, which presents a challenging, ill-posed
problem.

populations is massive, regardless of the field of view. This topological difference explains why the
pre-training task transforms from a simple optimization challenge to a complex, ill-posed problem,
thereby providing a rigorous geometric basis for the superior performance of the predictable-first
pre-training curriculum.

4.2.2 PREDICTABLE NEURONS CONTAINS RICHER REPRESENTATION

Metric Predictable Unpredictable Ratio (Pred./Unpred.)
Fisher Information (Data Quality) 64.51±0.55/-0.65 33.47±0.46/-0.35 1.93x
Data Quality Ratio (Efficiency) 34.41 17.39 1.98x
Effective Dataset Size 71.5 M 227.5 M -

Table 2: Information-Theoretic Analysis of Data Quality. A quantitative comparison of predictable and
unpredictable neural populations. The analysis reveals that predictable data is information-theoretically supe-
rior, providing a basis for its enhanced performance and scalability. Values are reported as mean ± 95% CI.

Our analysis revealed that predictable neural data is information-theoretically richer, which trans-
lates directly to greater data efficiency. We quantified this using Fisher Information, finding that
the predictable dataset had a value of 64.5 compared to 33.5 for the unpredictable dataset, indicating
that each predictable data point contains 1.93 times more information for model training (Table 2).
Consequently, while the raw dataset sizes were comparable, the quality-adjusted Effective Dataset
Size (Deff ) was significantly larger for the predictable population, making each of its data points
1.98 times more efficient for training.

4.2.3 CELL-PATTERN-AWARE SSL ACHIEVES HIGH PERFORMANCE

a

f g h i j

b c d e

Figure 3: End-to-end neural-to-vision decoding. (a-e) depict movie frames presented to the
mouse, (f-j) depict reconstructed frames. Our model captures subtle frame-to-frame variations (red
boxes), demonstrating true reconstruction rather than frame memorization.
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Method Pretrain Data Finetune Data Movie SSIM↑ DG Accuracy↑
POYO-SSL (Ours) Predictable Unpredictable 0.593±0.013 0.555±0.022
Baseline: Train on All N/A (From Scratch) All (Pred. + Unpred.) 0.528±0.023 0.492±0.041

Architecture Ablation Studies

MLP Enc.→MLP Dec. Predictable Unpredictable 0.449±0.022 −
POYO+ Enc.→MLP Dec. Predictable Unpredictable 0.503±0.019 −
POYO+ Enc.→UNet
Dec. without skip
connection

Predictable Unpredictable 0.466±0.047 −

CEBRA Enc.→UNet
Dec.

Predictable Unpredictable 0.481±0.010 −

Data-Selection Ablation Studies

Inhibitory-only SSL Inhibitory Excitatory 0.544±0.030 0.537±0.025
Reverse SSL Unpredictable Predictable 0.489±0.032 0.213±0.037
Mixed SSL Unpred. + partial Pred. Unpredictable 0.543±0.049 0.313±0.012
Random subset SSL Random (Size-matched) Remaining 0.532±0.044 0.254±0.011

Pretraining Objective Ablation Studies

Random Masking Loss Predictable Unpredictable 0.540±0.017 0.548±0.028
Masking Loss only Predictable Unpredictable 0.496±0.050 0.099±0.019
Large CE weight (0.1) Predictable Unpredictable 0.552±0.052 0.482±0.033
Small CE weight (0.001) Predictable Unpredictable 0.532±0.042 0.469±0.015
Cross-Entropy Loss only Predictable Unpredictable 0.506±0.057 0.452±0.026

Table 3: Performance comparison across multiple visual decoding tasks. Our proposed framework, POYO-
SSL, consistently outperforms baseline models, demonstrating the effectiveness and generalizability of cell-
pattern-aware self-supervised learning. Best results are shown in bold. Movie decoding task is denoted as
movie, drifting gratings decoding task is denoted as DG. Values are depicted as mean ± 95% CI across three
seeds (with p<0.05 (paired t-test)). Dashes indicate tasks not applicable to image-only decoders.

As shown in Table 3, our cell-pattern-aware pretraining delivers significant performance gains across
diverse downstream tasks, demonstrating the generalizability of the learned representations. On the
complex movie decoding task, our approach achieves SSIM score of 0.593 for direct neural-to-visual
reconstruction. This high fidelity reflects genuine reconstruction capabilities rather than simple pat-
tern memorization, as the model successfully captures subtle frame-to-frame variations (Figure 3).
Equally notably, on the drifting-gratings classification task, it reaches 55.5% accuracy, substantially
outperforming the from-scratch baseline (49.2%). This dual success underscores that our pretraining
strategy is effective for both high-fidelity generative tasks and classification challenges.

Ablation studies highlight the benefits of our approach, indicating that both the architecture and the
learning objective tailored to the data’s statistics are important factors. The superior performance of
temporal masking over random masking underscores the value of the objective and lends functional
support to our selection criteria. Temporal masking preserves local temporal dependencies critical
for neural dynamics (typically 50-100ms receptive fields in V1 neurons), while random masking
disrupts these patterns. This result suggests the curated neurons (“predictable” neurons) indeed pos-
sess the predictable temporal structure that a specialized task can effectively exploit. Furthermore,
data-selection ablations indicate that data quality can outweigh quantity; reversing the curriculum
to pretrain on unpredictable neurons leads to worse performance than training from scratch, sug-
gesting that pretraining on highly stochastic data may establish a less effective inductive bias for
downstream learning. Overall, our approach of selectively pretraining on neurons with regular firing
patterns leverages population heterogeneity to enable stable and scalable representation learning.

4.2.4 THE REPRESENTATIONAL ADVANTAGE OF CELL-PATTERN-AWARE SSL

Analysis of the learned representations reveals a stark contrast between the strategies (Figure 4).
Qualitatively, t-SNE visualizations show that our POYO-SSL model learns a well-structured man-
ifold that captures the data’s temporal continuity, while baseline approaches like reverse SSL and
from-scratch training yield disorganized or collapsed representations. This visual observation is
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a b

c d

Figure 4: POYO-SSL learns a more efficient and structured latent manifold. (a-c) t-SNE visualization of
latent spaces from our POYO-SSL model (a), a reverse SSL model (b), and a from-scratch model (c). Point
color reflects the temporal progression of frames. (d) Quantitative comparison of the Intrinsic Dimension (ID)
for each model.

validated by multiple quantitative metrics. Our model’s latent space is more efficient, with a signifi-
cantly lower intrinsic dimension (ID) of 4.14 compared to the from-scratch (4.97) and reverse SSL
(7.82) models. It also better preserves local temporal structure, evidenced by a higher Temporal
Neighborhood Preservation score (0.2355 vs. 0.1584 and 0.0960). Furthermore, high Procrustes
disparity (>0.98) and low Centered Kernel Alignment (CKA,≈0.13) confirm that the methods learn
fundamentally different feature spaces. Taken together, these results demonstrate that our selective
pre-training is crucial for learning a concise and structured representation of the neural code.

4.3 POYO-SSL ENABLES STABLE MODEL SCALING

a b

Figure 5: Pre-training with predictable neurons is crucial for effective model scaling. (a) Test SSIM
performance versus model size for different pre-training strategies. Only the model pretrained exclusively on
predictable neurons (red) demonstrates robust, positive scaling with model capacity (slope=0.018, p < 0.01
under bootstrap analysis). In contrast, training from scratch (gray) or including unpredictable neurons in pre-
training (cyan, yellow) leads to flat or erratic scaling (slopes ≈ 0.005–0.013). (b) Corresponding validation loss
during pre-training on the predictable set, showing a general downward trend that indicates successful learning.

A key advantage of our framework is its ability to enable stable model scaling, a critical property for
building more powerful decoders. To rigorously quantify this, we performed a bootstrap regression
analysis (N = 10, 000). While models trained from scratch (gray) and those pretrained on only un-
predictable neurons (cyan) exhibit erratic or flat scaling (slopes ≈ 0.005–0.013), our main approach
(red) unlocks consistent performance gains as model capacity increases, achieving a statistically
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significant positive slope (0.018, p < 0.01). This represents a ∼40% steeper scaling trajectory com-
pared to the from-scratch baseline. This demonstrates that a well-designed pre-training strategy is a
prerequisite for effective scaling.

Furthermore, comparing pre-training data mixtures reveals what constitutes a good pre-training set.
The model pretrained on mixed predictable and unpredictable neurons (yellow) excels at smaller
scales but fails to improve at larger capacities (slope=0.006). This suggests that the quality, not
merely the quantity, of pre-training data is the critical factor for scalability. We hypothesize the
noisy signal from unpredictable neurons acts as a bottleneck, hindering the learning of a robust,
scalable representation. Conversely, pre-training on the ”clean” signal from predictable neurons
(red) builds a superior foundation that larger models can exploit, leading to significant performance
gains. This successful scaling is corroborated by the general decrease in validation loss during the
pre-training stage, as shown in Figure 5b.

4.4 MECHANISTIC ANALYSIS OF TRANSFER

To understand the mechanism driving the successful transfer from predictable to unpredictable neu-
rons, we investigated the training dynamics at the parameter level. We hypothesized that pre-training
on predictable neurons establishes a stable “representational scaffold” that captures shared popula-
tion dynamics, which is then preserved during fine-tuning.

Our analysis of weight dynamics supports this hypothesis. We found that the pre-trained encoder
weights remain remarkably stable during fine-tuning, changing by only ∼0.18% (encoder norms
≈ 222,909). In contrast, the readout layer exhibits significant adaptation, with bias magnitudes
increasing by a factor of 12.4× (p < 0.01). This disparity suggests that the encoder provides a
smooth, pre-optimized latent manifold (as evidenced by the loss landscape in Figure 2), allowing
the readout layer to rapidly calibrate task-specific decision boundaries without destabilizing the un-
derlying representation. By separating the learning of structural dynamics (via predictable neurons)
from task-specific noise adaptation, the model effectively avoids the ill-conditioned optimization
landscape of mixed data. (See Appendix E for detailed methodology and analysis.)

5 CONCLUSION

We introduce a biologically informed SSL framework to address the functional heterogeneity of
neural circuits. By leveraging simple statistical markers (low skewness and kurtosis) to pretrain
exclusively on a “predictable” subset of neurons—comprising major inhibitory interneuron classes
and specific modulatory excitatory neurons—our method learns robust representations that capture
circuit-level dynamics. This approach leads to strong performance on multiple downstream tasks,
achieving an SSIM of 0.593 in movie decoding and superior accuracy in classification challenges.
To our knowledge, this SSIM score is the highest reported to date for direct visual reconstruc-
tion specifically from cellular-resolution calcium imaging, distinguishing our cellular-level decoding
from fMRI-based approaches.

This performance is possible because our strategy turns heterogeneity from a liability into an ad-
vantage, resolving the scaling failures of prior methods—which create ill-conditioned optimization
problems on mixed data—and ensures stable scaling by maximizing information density (1.98×
more efficient per data point). Our knee-based thresholds serve as a principled heuristic—select
near-Gaussian, low-tail cells—with ablations confirming these gains reflect data quality rather than
specific cutoffs. We emphasize that these statistical markers act as computational proxies for stabil-
ity, highlighting a functional correspondence with biological classes rather than asserting a causal
mechanism. Looking forward, generating synthetic neural traces offers a promising avenue to sim-
ulate complex heterogeneity and further validate these selection heuristics under controlled condi-
tions. Although demonstrated in mouse visual cortex, the principle of targeting statistically regular
neurons provides a general framework for neural SSL, establishing that this data selection strategy
is not merely helpful but necessary for building scalable neural foundation models, and suggests a
universal “predictable-first” curriculum potentially applicable to broader domains like NLP.
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A DESIGN CHOICES AND BASELINE SELECTION

We focus our evaluation on architectures with comparable capacity for high-dimensional visual
reconstruction. Many recent SSL methods in neuroscience are designed for different objectives.
For instance, while contrastive methods like CEBRA (Schneider et al. (2023)) are effective for
behavioral alignment, our empirical evaluation confirmed that their low-dimensional embeddings
are suboptimal for direct pixel-level generation. Similarly, masked autoencoding methods such
as Neuro-BERT (Wu et al. (2022)) were excluded due to the lack of an official implementation
and insufficient architectural capacity for high-resolution image generation. We therefore selected
POYO+ (Azabou et al. (2024)) as our primary comparative model for its flexible architecture that
can be scaled for dense prediction tasks.

To support our visual reconstruction objective (304 × 608 pixel images), we scaled the architec-
ture to use 1024-dimensional embeddings, a substantial increase from the 64 dimensions used in the
original work for classification. This architectural parity ensures a fair comparison: both our method
and the from-scratch baseline operate with identical encoder-decoder capacity. This design choice
allows us to isolate the contribution of our cell-pattern-aware SSL approach from architectural ad-
vantages, providing a rigorous evaluation of our core hypothesis.
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B JUSTIFICATION FOR DATA PARTITIONING CRITERIA

B.1 DETAILED DESCRIPTION ON CRE LINES

Cre Line Type Functional Role
EMX1 Excitatory Pan-excitatory, broad cortical excitatory neurons
SLC17A7 Excitatory Pan-excitatory, glutamatergic projection neurons
CUX2 Excitatory Upper layer excitatory, intracortical connections
RORB Excitatory Layer 4 excitatory, thalamic input recipients
SCNN1A Excitatory Layer 4 excitatory, primary sensory processing
NR5A1 Excitatory Layer 4 excitatory, sensory feature detection
RBP4 Excitatory Layer 5 excitatory, subcortical projections
FEZF2 Excitatory Deep layer excitatory, long-range projections
TLX3 Excitatory Layer 5 excitatory, corticotectal projections
NTSR1 Excitatory Layer 6 excitatory, corticothalamic feedback
VIP Inhibitory Disinhibitory interneurons, modulate inhibition
SST Inhibitory Somatostatin interneurons, lateral inhibition
PVALB Inhibitory Parvalbumin interneurons, fast spiking, timing

Table S1: Cre driver lines in the Allen Brain Observatory dataset

This table provides detailed information on the 13 Cre driver lines from the Allen Brain Observa-
tory dataset used in this study. A central premise of our work is that the heterogeneous nature of
neural populations is a critical factor for self-supervised learning. This table offers a comprehensive
overview of this heterogeneity by detailing the specific functional roles and types of the neuronal
subpopulations available in the dataset.

Each Cre Line targets a specific type of neuron based on the expression of a particular gene, allowing
for cell-type-specific measurements. These are broadly categorized into two main Types:

• Excitatory neurons: These neurons, such as Emx1 and Slc17a7, typically release neu-
rotransmitters like glutamate that increase the likelihood of a postsynaptic neuron firing.
As detailed in the Functional Role column, they are involved in a wide range of activi-
ties, from broad cortical activation to specific roles in sensory processing (e.g., Scnn1a in
Layer 4) and forming long-range projections to other brain areas (e.g., Rbp4 in Layer 5).

• Inhibitory neurons: These interneurons, such as SST and Pvalb, typically release neuro-
transmitters like GABA that decrease the likelihood of a postsynaptic neuron firing. Their
functional roles are often modulatory, involved in processes like lateral inhibition (SST),
network disinhibition (Vip), and regulating the precise timing of neural activity (Pvalb).

As described in the main text, our data-driven selection method identified four lines (SST, VIP,
PVALB, and NTSR1) from this diverse catalog as having the ’predictable’ dynamics suitable for
our pre-training objectives. This table provides the full context for that selection, detailing the
characteristics of all potential cell types considered in this work.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 VALIDATION OF SKEWNESS AND KURTOSIS AS PREDICTABILITY INDICATORS

a b

Figure S1: Statistical distributions of predictable and unpredictable neural subpopulations. Kernel
Density Estimate (KDE) plots for (a) skewness and (b) kurtosis of calcium traces. The “Predictable”
group (pink), selected for our pre-training, exhibits distributions sharply concentrated at low values
for both metrics. In contrast, the ”Unpredictable” group (cyan) shows broad, heavy-tailed distribu-
tions. This clear statistical separation validates our data-driven criteria for identifying stable neuron
populations suitable for self-supervised learning. This statistical separation captures sub-types of
neurons that may have more regulatory functions: inhibitory interneurons (SST, VIP, PVALB) and
modulatory excitatory neurons (NTSR1), which all may be more involved in network stabilization
rather than stimulus-specific responses.

Justification for Higher-Order Statistics Our central hypothesis is that neurons with different
functional roles exhibit distinct statistical signatures in their activity patterns. To create a principled
data partition for our curriculum, we sought metrics that could reliably separate these populations.
This analysis provides the empirical justification for our choice of skewness and kurtosis over sim-
pler, lower-order statistics.

Interpreting the Metrics in a Neuroscience Context In the context of calcium imaging traces,
skewness and kurtosis serve as powerful proxies for the temporal dynamics of a neuron’s activity:

• Skewness measures the asymmetry of the activity distribution. A low skewness (close
to zero) implies a symmetric, quasi-Gaussian distribution, characteristic of neurons with
stable baseline activity that fluctuates evenly. In contrast, a high positive skewness indicates
a distribution with a long right tail, the statistical fingerprint of a neuron that is mostly
quiescent but fires in sparse, high-amplitude positive bursts.

• Kurtosis measures the ”tailedness” of the distribution, or the prevalence of extreme out-
liers. Low kurtosis is characteristic of Gaussian-like activity. High kurtosis indicates a
”spiky” or leptokurtic distribution, where extreme events (large calcium transients) are far
more common than would be expected from random noise. This is a hallmark of event-
driven, stimulus-encoding neurons.

Empirical Validation of Statistical Separation The distributions shown in Figure S1 confirm
that these metrics provide a clear and robust separation between our two target populations.

• Panel (a) shows that the ‘Predictable’ group (pink) has a skewness distribution sharply
peaked at low values, consistent with symmetric activity patterns. The ‘Unpredictable’
group (cyan), however, is broadly distributed across much higher skewness values, con-
firming a burst-like firing pattern.

• Panel (b) reveals an even starker separation for kurtosis. The ‘Predictable’ group’s dis-
tribution is almost entirely concentrated at low values, indicating a near-total absence of
extreme outlier events. This provides strong evidence that these neurons exhibit highly
regular and constrained dynamics.

Functional Interpretation This clear statistical separation aligns directly with the known func-
tional roles of the underlying neuron types. The low-skew, low-kurtosis profile is the statistical
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signature of neurons engaged in network stabilization and modulation—the very neurons we iden-
tify as ‘predictable’ (SST, VIP, PVALB, NTSR1). Conversely, the high-skew, high-kurtosis profile is
the classic signature of sparse, stimulus-encoding neurons that fire selectively and powerfully. This
strong correspondence between a data-driven statistical signature and a known biological function
validates our selection criteria as a principled method for identifying ideal neuron candidates for
self-supervised pre-training.

How predictable lines were chosen. For each of the 13 CRE lines, skewness and kurtosis were
computed from its neural activity distribution before training. A single knee (NTSR1) was estimated
on the per-line statistic distribution, yielding four predictable lines used entirely for pretraining; the
remaining lines were reserved exclusively for finetuning/validation/test. This is a line-level dataset
split; no animals/sessions/neurons overlap across partitions.

CRE Line Number
of Cells

Event Rate Fano Value
Median Std Median Std

EXM1 IRES CRE 7537 1.021 0.122 103869.897 1611.701
SLC17A7 IRES2 CRE 7736 1.046 0.149 103676.897 2260.452

CUX2 CREERT2 10275 1.034 0.182 103686.898 2314.886
RORB IRES2 CRE 5009 1.055 0.291 103464.896 3461.491
SCNN1A TG3 CRE 1200 1.078 0.221 103217.894 2426.047

NR5A1 CRE 2135 1.125 0.361 102710.887 4346.653
RBP4 CRE KL100 1611 1.121 0.237 102770.890 2962.409

FEZF2 CREER 587 1.079 0.142 103497.896 2182.647
TLX3 CRE PL56 1524 1.075 0.126 103190.893 1473.551

NTSR1 CRE GN220 1239 1.041 0.0981 103566.895 1149.701
VIP IRES CRE 639 1.379 0.309 99914.863 3951.127
SST IRES CRE 573 1.183 0.240 101967.881 2844.855

PVALB IRES CRE 245 1.332 0.308 100983.849 3995.032

Table S2: Event rate and Fano value statistics for each CRE line

In this section, we provide the empirical justification for selecting skewness and kurtosis as the pri-
mary statistical indicators for identifying predictable neural subpopulations. We conducted a com-
parative statistical analysis of the calcium trace signals between the predictable and unpredictable
neuron groups, as defined by the criteria in the main text. The results are summarized in Table S2.

As shown in Table S2, first and second-order statistics, namely the mean and variance of the activity,
showed no statistically significant differences between the two populations (p=0.347 and p=0.281,
respectively). This suggests that simpler metrics related to the overall magnitude or spread of neural
activity are insufficient to distinguish between neurons with different response pattern regularities.
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CRE Line Number
of Cells

Skewness Kurtosis
Median Std Median Std

EXM1 IRES CRE 7537 5.637 6.169 88.966 887.759
SLC17A7 IRES2 CRE 7736 5.132 4.380 63.847 132.297

CUX2 CREERT2 10275 5.504 4.644 79.245 186.898
RORB IRES2 CRE 5009 6.283 5.300 88.748 443.990
SCNN1A TG3 CRE 1200 7.240 15.235 103.458 3027.682

NR5A1 CRE 2135 6.159 8.254 69.922 1286.154
RBP4 CRE KL100 1611 7.395 14.528 94.758 2377.191

FEZF2 CREER 587 5.108 3.763 55.862 96.430
TLX3 CRE PL56 1524 6.133 3.910 76.118 105.617

NTSR1 CRE GN220 1239 2.453 3.579 22.616 83.209
VIP IRES CRE 639 3.507 1.770 19.145 22.122
SST IRES CRE 573 2.075 3.007 12.932 259.785

PVALB IRES CRE 245 1.991 1.525 8.258 17.978

Table S3: Skewness and kurtosis statistics for each CRE line

In stark contrast, higher-order statistics (Table S3) revealed dramatic and highly significant differ-
ences. The predictable subpopulation exhibited low average skewness (1.87) and kurtosis (7.32),
characteristic of more symmetric and less outlier-prone signal distributions. Conversely, the un-
predictable subpopulation showed extremely high average skewness (9.84) and kurtosis (148.51),
indicating heavily right-tailed and sparse, spiky activity patterns. These differences were statisti-
cally significant to a very high degree (p < 0.001).

This analysis empirically confirms that skewness and kurtosis are exceptionally effective and reliable
indicators for differentiating neural populations based on their activity patterns, far more so than
lower-order statistics. This provides a strong validation for our methodological choice to use these
metrics as the core selection criteria within the POYO-SSL framework.

a b

Figure S2: Data-driven threshold determination for predictable neuron selection. (a) Distri-
bution of mean skewness values across CRE lines, sorted in ascending order. The knee detection
algorithm identified a natural breakpoint at skewness = 3.51 (red dashed line), corresponding to the
NTSR1 CRE line (red circle). CRE lines below this threshold exhibit stable, near-Gaussian activ-
ity patterns suitable for self-supervised pretraining. (b) Distribution of mean kurtosis values across
CRE lines, showing a similar elbow at kurtosis = 22.62 (red dashed line), again at the NTSR1 bound-
ary. The sharp increases beyond these breakpoints indicate the transition from predictable regulatory
neurons to highly variable, stimulus-contingent populations. This objective approach ensures bio-
logically grounded selection criteria rather than arbitrary thresholds.
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Algorithm S1 Find Elbow (Knee) Point by Maximum Gradient
Input: Vector of values y = [y1, y2, . . . , yn]
Output: Knee index k

Compute consecutive gradients gi ← yi+1 − yi for i = 1, . . . , n− 1
Find index k ← argmaxi gi ▷ position of largest gradient
return k ▷ knee is the point before the sharpest rise

To objectively determine the threshold values for predictable neuron selection, we employed a knee
detection algorithm on the distribution of skewness and kurtosis values across CRE lines. For each
metric, we calculated the gradient between consecutive CRE lines (sorted by their respective mean
values) and identified the point preceding the sharpest increase as the elbow point (See algorithm
S1). This approach revealed natural breakpoints at skewness ≤ 3.51 and kurtosis ≤ 22.62, corre-
sponding to the NTSR1 CRE line as the boundary case (Figure S2). CRE lines below these thresh-
olds (SST, VIP, PVALB, and NTSR1) exhibited consistently low and stable activity statistics, while
those above showed sharp increases indicative of more variable, stimulus-driven responses. This
data-driven approach ensures that our selection criteria are grounded in the natural distribution of
neural activity patterns rather than arbitrary cutoffs, providing an objective foundation for distin-
guishing predictable from unpredictable neural subpopulations.

Note: CRE line labels were only used to define the domain-level split (which lines go to pretraining
vs. finetuning) and were not used inside training losses, model selection, or evaluation.

C THEORETICAL JUSTIFICATION FOR PRIORITIZING PREDICTABLE
NEURONS IN PRE-TRAINING

To understand the mechanisms behind the improved performance of our SSL methodology, we con-
ducted a theoretical and empirical analysis comparing the properties of two representative neural
populations: ‘Predictable’ (VIP inhibitory neurons) and ‘Unpredictable’ (Scnn1a excitatory neu-
rons). This analysis reveals that the statistical and temporal characteristics of ‘Predictable’ neurons
create a more favorable learning scenario for SSL models.

C.1 ENHANCED TEMPORAL STRUCTURE AND INFORMATION CONTENT

Self-supervised learning on time-series data fundamentally relies on exploiting temporal regulari-
ties. Our analysis shows that ‘Predictable’ neurons possess a much richer and more stable temporal
structure.

Temporal Predictability As shown in the autocorrelation plot (Fig. S3d), the signal from pre-
dictable neurons maintains a stronger correlation with its recent past compared to unpredictable
neurons. This slower decay indicates that each time point contains more information about its neigh-
bors, providing a more robust signal for temporal contrastive learning tasks (Oord et al. (2018)).

Reconstruction Fidelity From an information theory perspective, signals that are easier to com-
press and reconstruct are more amenable to representation learning. We quantified this using the
Cramér-Rao Lower Bound (CRLB), a theoretical minimum for estimator variance (Kay (1993)).
The analysis (Fig. S3c) shows that the mean CRLB for predictable neurons is 0.0476, while it is
0.1443 for unpredictable neurons. This suggests that predictable neurons can be reconstructed
with 3.03 times greater theoretical efficiency, providing a more reliable learning signal with lower
intrinsic noise.

Signal Dynamics The power spectrum (Fig. S3e) reveals that predictable signals have their power
concentrated in low-frequency bands, indicative of smooth and continuous dynamics (Buzsaki &
Draguhn (2004)). In contrast, unpredictable signals have a flatter power spectrum, closer to white
noise, signifying less discernible temporal structure.
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a b c

d e f

h i j

Figure S3: Theoretical Analysis of Neural Signal Properties for Self-Supervised Learning
(SSL) Efficiency. This figure provides a comprehensive comparison between two distinct types
of neural activity: ‘Predictable’ signals derived from inhibitory VIP neurons, which exhibit quasi-
Gaussian distributions, and ‘Unpredictable’ signals from excitatory Scnn1a neurons, characterized
by sparse, skewed distributions. The analysis dissects why ‘Predictable’ neurons serve as a more
effective dataset for SSL pre-training. (a) Example calcium signal traces (∆F/F ) over 350 sec-
onds. The predictable trace (blue) shows smoother fluctuations, while the unpredictable trace (red)
is characterized by sparse, high-amplitude bursts. (b) Log-scale histograms of signal activity distri-
butions, highlighting the heavy-tailed, skewed nature of unpredictable signals compared to the more
centered predictable signals. (c) Boxplot of the theoretical reconstruction error bounds (Cramér-Rao
Lower Bound, CRLB). Predictable neurons show a significantly lower and tighter error distribution,
indicating they are more reliably encoded. (d) Average autocorrelation functions. Predictable sig-
nals exhibit a slower decay in autocorrelation, signifying more persistent temporal structure. (e)
Power spectral density (PSD) analysis. Predictable signals have more power concentrated at lower
frequencies, consistent with smoother dynamics. (f) Distribution of temporal regularity scores. (h)
Scatter plot of kurtosis versus skewness for individual neurons. Predictable neurons (blue) largely
fall within the statistical selection criteria (red dashed lines), whereas unpredictable neurons (orange)
do not. (i) Learning stability, quantified by the condition number of the data covariance matrix. The
much higher condition number for unpredictable data indicates a more ill-conditioned and unstable
learning problem. (j) A composite score predicting overall SSL pre-training efficiency, integrating
metrics from the preceding panels. Pre-training with predictable data first is predicted to be substan-
tially more efficient.
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C.2 FAVORABLE STATISTICAL DISTRIBUTIONS AND LEARNING STABILITY

Beyond temporal structure, the underlying statistical distribution of the data dramatically impacts
the stability and efficiency of the learning process, particularly for gradient-based optimization.

Distributional Properties The activity of unpredictable neurons follows a sparse, heavy-tailed
distribution, as visualized in the histogram (Fig. S3b). This is quantitatively confirmed in Fig. S3h,
where these neurons exhibit extreme skewness (mean: 10.65) and kurtosis (mean: 475.93). Such
distributions, with rare but high-amplitude events, can lead to unstable gradients and cause the model
to be overly influenced by outliers (Gurbuzbalaban et al. (2021)). In contrast, the predictable neurons
are quasi-Gaussian (mean skewness: 2.56, mean kurtosis: 12.98), providing a more well-behaved
statistical foundation for learning.

Learning Stability We analyzed the stability of the learning problem by computing the condi-
tion number of the data’s covariance matrix, which reflects the curvature of the loss landscape.
A high condition number implies a landscape with sharp, narrow valleys, making it difficult for
optimizers to converge (Nocedal & Wright (2006)). The condition number for unpredictable neu-
rons was 627.49, whereas it was only 67.15 for predictable neurons (Fig. S3i). This demonstrates
that the learning problem posed by unpredictable neurons is approximately 9.34 times more
ill-conditioned, or harder to optimize, than that of predictable neurons.

C.3 SYNTHESIS: PREDICTED SSL EFFICIENCY

Methodology for Composite Score To synthesize these multifaceted properties into a single met-
ric, we formulated a composite score for predicted SSL efficiency. This score is a weighted average
of five key factors derived from our preceding analyses: (1) Reconstruction Fidelity, based on the
inverse of the theoretical error bound (CRLB); (2) Learning Stability, derived from the inverse
of the learning problem’s condition number; (3) Temporal Regularity, measured by the signal’s
autocorrelation and consistency; (4) Information Content, based on signal entropy; and (5) Fa-
vorable Statistical Properties, rewarding low skewness and kurtosis. These factors were weighted
(0.3, 0.25, 0.2, 0.15, and 0.1, respectively) to reflect their relative importance in creating a learnable,
information-rich dataset.

Predicted Efficiency and Rationale The resulting composite score (Fig. S3j) predicts that pre-
training on a dataset of predictable neurons first is 2.85 times more efficient than starting with
unpredictable neurons. This theoretical result strongly supports our empirical findings and provides
a clear rationale for our pre-training strategy: by first learning from the stable, information-rich, and
well-conditioned ‘predictable’ neurons, the model can establish a robust foundational representation
before being fine-tuned on more complex, sparse signals.

D THEORETICAL JUSTIFICATION FOR CURRICULUM LEARNING

To provide a theoretical basis for our hybrid pre-training objective, particularly the use of a simple
auxiliary task (drifting gratings) as a warm-up, we conducted a simulation of curriculum learning
principles. We defined sample difficulty based on local variance, distance to the manifold center,
and local density, and simulated four training strategies: Easy-to-Hard, Hard-to-Easy, Random, and
Mixed.

The results, summarized in Figure S4, unequivocally support an Easy-to-Hard curriculum. This
strategy led to the highest final performance for both data types, achieving 1.43x better results for
predictable data and 1.19x for unpredictable data compared to a random ordering, while also
ensuring superior training stability. Notably, the absolute performance and stability achieved on
predictable data (0.9967 performance, 0.9998 stability) were substantially higher than on the more
volatile unpredictable data (0.6945 performance, 0.9340 stability). This highlights that while an
optimal curriculum is always beneficial, the intrinsic quality of the “easy” examples ultimately de-
termines the robustness of the learned foundation. This analysis provides a principled foundation for
our training methodology, where the simple DG task serves as the initial “easy” stage that stabilizes
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the model, and the broader predictable-first pre-training represents a macro-level application of the
same principle.

a b c

d e f

Figure S4: Theoretical Simulation of Curriculum Learning Strategies. This figure simulates the
effect of different data ordering strategies on model performance and training stability for both pre-
dictable and unpredictable neural data. (a, b, c) Learning curves and final performance comparison.
The “Easy to Hard” curriculum (green) achieves the fastest convergence and highest final perfor-
mance. (d, e, f) Training stability analysis. The “Easy to Hard” strategy maintains high stability,
while the “Hard to Easy” approach (red) suffers from significant initial instability. These results pro-
vide a strong theoretical justification for our predictable-first, curriculum-based pre-training strategy.

E DETAILED WEIGHT DYNAMICS ANALYSIS

To empirically validate the “representational scaffold” hypothesis, we analyzed the model parame-
ters before and after fine-tuning. We computed the relative L2 norm of the weight changes in the
PerceiverIO encoder versus the task-specific readout heads.

Encoder Stability. The encoder, responsible for mapping neural activity to the latent space, showed
minimal change during the fine-tuning phase on unpredictable neurons. The relative weight change
was 0.183%, indicating that the features learned from the predictable subset are robust and gener-
alizable to the broader population. The stability of encoder norms (≈222,909) suggests the model
stays within the same optimization basin found during pre-training (Garipov et al., 2018).

Readout Adaptation. Conversely, the readout layer demonstrated dramatic specialization. The
magnitude of the readout biases increased 12.4×. This confirms that transfer occurs through opti-
mization geometry (Neyshabur et al., 2020): the encoder maintains the stable manifold, while the
readout adapts to the specific statistics and noise profile of the unpredictable neurons.

F A UNIFIED THEORETICAL FRAMEWORK FOR POYO-SSL

Our empirical results, particularly the successful scaling of our model, are underpinned by a cohesive
theoretical framework derived from the principles of representation and curriculum learning. This
framework explains why the strategic use of neural heterogeneity is not merely an effective heuristic
but a principled approach to building scalable models of neural dynamics.
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The Representational Advantage of Predictable Data The success of any learning algorithm
is contingent on the quality of the data representation. Our analysis reveals that predictable neu-
rons provide a fundamentally superior substrate for representation learning. They induce a smooth,
convex-like loss landscape (Fig. 2), which makes optimization a well-posed problem. Furthermore,
the representations learned from this data are more efficient and structured, evidenced by their sig-
nificantly lower intrinsic dimension and more organized latent manifold (Fig. S3). This efficiency is
rooted in their higher information content, as quantified by Fisher Information (Table 2), allowing
the model to learn a robust representation from a smaller effective dataset size.

The Optimization Advantage of a Predictable-First Curriculum Beyond the static quality of
the data, the order of presentation is critical. Our theoretical simulations of curriculum learning
(Fig. S4) demonstrate that an “Easy-to-Hard” strategy is optimal, maximizing both final performance
and training stability. Starting with easy examples—those with clear, low-variance signals—allows
the model to establish a stable foundational representation. The predictable neurons, with their
inherent statistical regularity, serve as the ideal “easy” examples in the context of neural data.

Synthesis: The Synergy of Representation and Curriculum The remarkable success and scal-
ability of POYO-SSL can be understood as a direct result of the synergy between these two prin-
ciples. Our method does not merely use a better curriculum; it applies the optimal curriculum
to the optimal data. By starting with predictable neurons, we solve a well-posed representation
learning problem in a maximally stable manner. This establishes a robust initial model that is well-
prepared to subsequently learn the fine-grained, complex features from the unpredictable data during
fine-tuning. This unified view provides a rigorous mathematical and conceptual foundation for our
empirical scaling results (Fig. 5), explaining why POYO-SSL unlocks consistent performance gains
with increasing model capacity while other approaches stagnate or fail.

G SKIP-CONNECTION UNET DECODER ARCHITECTURE

Algorithm S2 UNet Decoder with Latent Injection
Input: Latent vector z ∈ Rd

Output: Reconstructed frame x̂ ∈ R64×128

x← reshape(z, [d, 1, 1])
for each upsampling stage i = 1, . . . , 4 do

si ← Linear(z)→ reshape([ci, hi, wi])
x← Upsample(x, scale = 2)
x← Conv2d(x)
x← concat([x, si])
x← Conv2d1×1(x)

x̂← ExtraUp(x) ▷ 322 → 64× 128

H SPECIALIZED LOSS COMPONENTS

To ensure high-fidelity image reconstruction, we employ a composite loss function with several spe-
cialized components. We adapt Focal Loss to a regression task to emphasize challenging pixels and
refine fine details (Eq. 4). α and γ are set as 1 empirically. To preserve high-frequency structure,
we introduce a frequency-domain loss using the Fast Fourier Transform (Eq. 5). Perceptual simi-
larity is further promoted through both an SSIM loss (Eq. 6) and a perceptual loss computed as the
mean–squared error (MSE) between feature maps of an ImageNet-pretrained AlexNet.

Specifically, we extract activations from the first four convolutional blocks of the AlexNet
(Krizhevsky et al. (2012)) feature extractor (’layer=3’ in the PyTorch implementation) after Ima-
geNet normalization (mean [0.485, 0.456, 0.406], standard deviation [0.229, 0.224, 0.225]) (Eq. 7).
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I REPRESENTATION ANALYSIS

For qualitative visualization, high-dimensional latent embeddings were projected into a two-
dimensional space using t-SNE (t-distributed Stochastic Neighbor Embedding). We then quantified
the global properties of these spaces using three metrics: (1) Intrinsic Dimension (ID) to measure the
efficiency of the representation, (2) Procrustes disparity, and (3) Centered Kernel Alignment (CKA)
to assess the geometric dissimilarity between latent spaces learned by different models. Finally,
to specifically quantify the preservation of local temporal structure, we implemented a Temporal
Neighborhood Preservation analysis. For each data point, we identified its k=10 nearest neighbors
in the temporal domain (by frame index) and its k=10 nearest neighbors in the t-SNE latent space
(by Euclidean distance). The similarity between these two sets of neighbors was measured using the
Jaccard index, and the score was averaged across all points in the sequence.

Lossfocal = α(1− p)γ |y − ŷ| (4)

LossFFT =
∥∥|F(y)| − |F(ŷ)|∥∥

1
(5)

LossSSIM = 1− SSIM(y, ŷ) (6)

Lossperceptual = ∥ϕ(y)− ϕ(ŷ)∥22 (7)

J TEXTCOLORBLUEDECODER ARCHITECTURE SELECTION

To validate the architectural choice of our visual decoder, we conducted a comparative analysis
between our proposed U-Net decoder and a standard Transformer-based decoder. To ensure a fair
comparison, the Transformer decoder was capacity-matched (i.e., approximately equal number of
total parameters) to our U-Net implementation.

The results revealed a significant performance gap: the Transformer decoder achieved a Movie SSIM
of ≈ 0.48, substantially lower than the 0.593 achieved by our U-Net decoder. This performance
difference highlights the importance of the spatial inductive bias inherent in convolutional architec-
tures (U-Net) for dense pixel prediction tasks. While Transformers excel at modeling long-range
dependencies, they lack the intrinsic local connectivity required for high-fidelity image reconstruc-
tion from sparse neural embeddings, particularly in the limited-data regime of biological recordings.
Consequently, we adopted the U-Net architecture as the optimal choice for our decoding framework.

K TASK-SPECIFIC NEURAL REPRESENTATION ANALYSIS

The learned representations for the two main downstream tasks exhibit fundamentally different ge-
ometries, as confirmed by a high Procrustes disparity (0.95) and low Centered Kernel Alignment
(CKA, 0.18). This demonstrates that our pretrained model does not use a rigid, one-size-fits-all
representation, but rather adapts its internal structure to the specific demands of each task. For the
drifting gratings classification task (Figure S5a), the model learns to organize its representations
into discrete, maximally separated clusters to optimize for classification. In contrast, for the movie
decoding reconstruction task (Figure S5b), it learns a continuous, non-linear manifold that effec-
tively represents the temporal flow of the visual experience. This adaptability highlights the model’s
ability to learn the true underlying structure of a given neural decoding problem.
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a b

Figure S5: Task-specific adaptation of the learned latent manifold. Visualization of the final
latent representations from our fine-tuned model on two different tasks. (a) Drifting Gratings:
For this classification task, the model learns a geometrically structured representation with distinct,
well-separated clusters corresponding to the 8 stimulus directions. (b) Movie Decoding: For this
reconstruction task, the model learns a continuous, non-linear manifold that captures the temporal
trajectory of the movie frames.

L SSL KNOWLEDGE IS DISTRIBUTED ALONG ENCODER COMPONENTS

a b c d e f

Figure S6: Encoder freezing analysis. Freezing any subset of encoder layers degrades high-
frequency detail, indicating pretrained knowledge is distributed across the entire encoder. (a)
Ground truth, (b) ours (did not freeze encoder), (c) full encoder freezing, (d) partial encoder freezing
(former layers only). (e) partial encoder freezing (middle layers only). (f) partial encoder freezing
(latter layers only).

To investigate where pretrained information is stored, we conducted ablation experiments by selec-
tively freezing encoder components during finetuning. Our results reveal that the learned represen-
tation is distributed, not localized. Partially freezing any single component led to catastrophic recon-
struction failures, whereas surprisingly, freezing the entire encoder better preserved spatial content
(Figure S6). This suggests that the pretrained representation relies on coordinated interactions across
the entire encoder and requires holistic, rather than modular, adaptation during fine-tuning.

M USE OF LARGE LANGUAGE MODELS IN MANUSCRIPT PREPARATION

We acknowledge the use of a large language model (Google’s Gemini) for language editing and
refinement during the preparation of this manuscript. The model was employed to improve gram-
mar, clarity, and conciseness. The authors meticulously reviewed and revised all model-generated
suggestions to ensure scientific accuracy and preserve the original meaning. All conceptual work,
experimental results, and scientific conclusions presented herein are entirely the work of the authors.
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