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Abstract
Recent research on Diffusion Models and Transformers has brought
significant advancements to 3D Human Pose Estimation (HPE).
Nonetheless, existing methods often fail to concurrently address
the issues of accuracy and generalization. In this paper, we propose
a Geometry-guided Diffusion Model with Masked Transformer
(Masked Gifformer) for robust multi-view 3D HPE. Within the
framework of the diffusion model, a hierarchical multi-view trans-
former-based denoiser is exploited to fit the 3D pose distribution by
systematically integrating joint and view information. To address
the long-standing problem of poor generalization, we introduce
a fully random mask mechanism without any additional learn-
able modules or parameters. Furthermore, we incorporate geomet-
ric guidance into the diffusion model to enhance the accuracy of
the model. This is achieved by optimizing the sampling process
to minimize reprojection errors through modeling a conditional
guidance distribution. Extensive experiments on two benchmarks
demonstrate that Masked Gifformer effectively achieves a trade-
off between accuracy and generalization. Specifically, our method
outperforms other probabilistic methods by > 40% and achieves
comparable results with state-of-the-art deterministic methods. In
addition, our method exhibits robustness to varying camera num-
bers, spatial arrangements, and datasets.

CCS Concepts
• Computing methodologies → Activity recognition and under-
standing.
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1 Introduction
3D Human Pose Estimation (HPE) aims to accurately localize sparse
joints on the human skeleton in 3D space through analysing the
multimedia data such as images and videos. The obtained geometric
and positional information of the human body can be beneficial
for various downstream tasks [57], including action recognition
[40, 51, 59], action prediction [3, 44, 54], action correction and
online coaching [8, 9, 42], animation [10, 25, 47], and augmented
reality/virtual reality [46, 50, 52].

Depending on the number of views, 3D HPE can be categorized
into single-view and multi-view methods. Single-view methods
[23, 24, 33, 53, 56] estimate 3D human pose from monocular images
or videos, which may suffer from depth ambiguity. Such challenge
can be alleviated to some extent when using multiple synchronized
and calibrated cameras. Therefore, more attention has been paid to
multi-view methods. Multi-view 3D HPE methods primarily follow
a two-stage paradigm: (1) Utilizing off-the-shelf 2D pose detectors
[4, 49] to locate 2D positions of joints in each view; (2) Mapping 2D
positions to 3D poses and fusing multi-view information selectively.
In this work, we focus on the latter step, known as the 2D-to-3D
lifting process, following recent processes [18, 29, 34, 58].

2D-to-3D lifting methods accurately predict 3D poses frommulti-
view 2D poses by designing effective neural networks. Many ap-
proaches [13, 27, 28, 34] leverage the powerful long-range depen-
dency and interaction modeling capabilities of Transformers [41] to
fuse multi-view geometric information, thereby minimizing repro-
jection errors. However, these methods still face several challenges.
Firstly, strictly constrained by camera numbers and spatial arrange-
ments, it is difficult to generalize well to an arbitrary number
of unseen views. Moreover, these methods are generally deter-
ministic, inferring the most probable single pose directly from the
given input, which may fall into local optima in complex scenarios.
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Probabilistic methods [1] can alleviate uncertainty by generating
multiple plausible pose hypotheses, leading to more accurate pose
estimation. They have been extensively studied in single-view 3D
HPE [2, 11, 15, 24, 33], which is an ill-posed problem due to depth
ambiguity brought on by single-view data. However, uncertain-
ties persist in multi-view scenarios from severe occlusions, self-
occlusions and noisy 2D detections. Therefore, probabilistic models
for multi-view are worthy of further investigation. Existing meth-
ods directly utilize Diffusion Models (DMs) [14, 36, 37] to generate
multiple hypotheses. Due to the lack of geometric guidance,
the high-accuracy potential remains underexplored.

To address the above issues, we propose a Geometry-guided
Diffusion Model with Masked Transformer (Masked Gifformer),
which unifies the geometry-guided conditional diffusion genera-
tive process with the masked hierarchical multi-view transformer,
facilitating accurate distribution forecasting for 3D poses while
enhancing generalization capabilities. As illustrated in Figure 1, we
use the framework of DDPM [14]. Initially, noise of varying scales
is added to the ground truth 3D poses. Subsequently, a transformer-
based denoiser is exploited to approximate the probability distri-
bution 𝑝 (𝑋 3𝐷 | 𝑋 2𝐷 ) of 3D coordinates 𝑋 3𝐷 given the detected
2D coordinates 𝑋 2𝐷 . During the inference, Masked Gifformer em-
ploys its geometry-guided diffusion process to iteratively refine
pose predictions.

Motivated by [53], we use a Hierarchical Multi-view Fusion
method which aggregates joint and view information separately.
More specifically, a Joint Transformer Block (JTB) is employed to
learn physical constraints among joints within each view. Then, a
Multi-view Transformer Block (MTB) is used to allow each joint
to independently learn the corresponding information from other
views. These two transformer blocks are trained alternately, facili-
tating comprehensive multi-view information fusion. To address
the problem of poor generalization, we introduce a fully
random mask mechanism into MTB without any additional
learnable modules or parameters. By randomly masking a por-
tion of views during training, it is possible to avoid the learned
features that are highly correlated with camera numbers and po-
sitions. Different from [34], our model even discards information
from the current view. This strategy promotes a more effective inte-
gration of features from alternative views instead of overfitting to
features from the source dataset, thus exhibiting robustness across
different datasets. The efficiency of self-attention computations in
Transformers can also be improved due to introducing sparsity.

During the inference, we sample multiple noise instances from
a Gaussian distribution as initial 3D pose hypotheses. These pose
hypotheses are then fed into the transformer-based denoiser con-
ditioned on multi-view 2D keypoints. To further enhance the ac-
curacy, we incorporate geometric knowledge into the sampling
process. Inspired by [7, 43], we model the 𝑋 3𝐷 -conditioned guid-
ance distribution 𝑝 (𝑋 2𝐷 | 𝑋 3𝐷 ) as a negative exponential form
of reprojection errors and use its gradient ∇𝑋 3𝐷 log 𝑝

(
𝑋 2𝐷 | 𝑋 3𝐷

)
to perturb the pre-trained predictions. This strategy guides the
sampling process towards minimizing reprojection errors,
thereby further enhancing the accuracy of pose estimation.
Finally, a single accurate and robust 3D pose is generated by aggre-
gating all of hypotheses for practice use.

In summary, our main contributions are as follows:

• Wepropose aGeometry-guidedDiffusionModel withMasked
Transformer (Masked Gifformer) for robust multi-view 3D
HPE. This method combines the capabilities of Transformers
for high-quality multi-view information fusion and the prob-
abilistic nature of Diffusion Models for generating multiple
robust 3D pose hypotheses.

• We introduce a fully randommask mechanism into the multi-
view transformer block, enhancing its strong robustness to
camera numbers, spatial arrangements and datasets without
adding any learnable modules or parameters.

• We incorporate geometric information into the sampling
process of diffusion models, guiding it towards minimizing
reprojection errors.

• Extensive experiments on two popular 3D HPE benchmarks
demonstrate the effectiveness of Masked Gifformer. It not
only achieves state-of-the-art results in precision but also
exhibits strong generalization capabilities across different
camera views, spatial placements, and datasets.

2 Related Works
Transformer-based 3D HPE. With the superior capability of
Transformers [41] in modeling long-range dependencies, numer-
ous Transformer-based single-view [22, 23, 53] and multi-view
[13, 27, 28, 34] 3D HPE methods have emerged. In multi-view set-
tings, researchers have employed epipolar geometry for informa-
tion fusion [13, 27] to minimize reprojection errors. Specifically,
He et al. [13] extracted multiple features along the epipolar line in
the source view and then fused them with features from the refer-
ence view. To fully exploit the semantic information in the source
view, Ma et al. [27] proposed the concept of epipolar field, merging
more information near the epipolar line while maintaining epipolar
constraints. However, these methods cannot generalize well to an
arbitrary number of unseen views as constrained by camera num-
bers and spatial arrangements. To address this issue, Shuai et al.
[34] introduced a random mask mechanism within Transformers,
enabling them to adaptively handle varying numbers of views and
video lengths. Nevertheless, this mechanism does not guarantee
generalization to different datasets. Jiang et al. [18] improved cross-
dataset generalization by modelling camera distributions. However,
this method employed 2D heatmaps as feature inputs and used com-
putationally intensive voxel networks during pose reconstruction,
making it impractical for real-time applications.

Diffusion-based 3D HPE. The aforementioned Transformer-
based methods often infer the most probable single pose from
the given input, falling under deterministic methods. They may be
trapped in local optima, especially in complex scenarios. Probabilis-
tic methods achieve more accurate pose estimation by generating
multiple plausible pose hypotheses. Due to the inherent probabilis-
tic nature of DMs, numerous diffusion-based single-view 3D HPE
methods have emerged [2, 11, 15, 24, 33] to mitigate the uncertainty
brought by depth ambiguity. Shan et al. [33] directly applied DMs
to single-view 3D HPE. Cai et al. [2] introduced a disentanglement
strategy in the forward process of the diffusion model to integrate
the explicit human body prior. However, high-precision potential
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Figure 1: Overview of Masked Gifformer. During training, a transformer-based denoiser is supervised to learn 𝑝 (𝑋 3𝐷 | 𝑋 2𝐷 )
within the framework of diffusion models. JTB and MTB are trained alternately to fuse joint and viewpoint information
hierarchically. With the proposed fully random mask mechanism embedded within MTB, our model can generalize to varying
camera numbers, spatial arrangements and datasets. During the inference, by modeling the conditional guidance distribution
𝑝 (𝑋 2𝐷 | 𝑋 3𝐷 ), multiple 3D pose hypotheses are sampled towards minimizing reprojection errors.

needs further exploration as these methods lack the guidance of geo-
metric information. In multi-view scenarios, 3D HPE still faces un-
certainties arising from severe occlusions or self-occlusions, noisy
2D detections, etc. Bartol et al. [1] proposed a multi-view triangula-
tion stochastic framework, generating multiple pose hypotheses to
overcome occlusions. Research on diffusion-based multi-view 3D
HPE is limited, which warrants further investigation.

Summary. Both Transformers and DMs demonstrate significant
potential in 3D HPE. To benefit from high-quality multi-view infor-
mation fusion and multiple high-precision 3D pose hypotheses gen-
eration, we explore an approach that integrates Transformers and
DMs. We introduce a fully randommask mechanism to enhance the
generalization capabilities across varying camera numbers, spatial
arrangements, and cross-datasets in a lightweight manner. Addi-
tionally, we incorporate geometric information into the sampling
process of the diffusion model to guide it towards minimizing re-
projection errors.

3 Method
We consider the problem of estimating 3D positions of the human
body when multi-view cameras are precisely calibrated.

Formally, given 2D joints𝑋 2𝐷 =
{
𝑥2𝐷
𝑖

∈ R𝐽 ×2 | 𝑖 = 1 . . . 𝑁
}
, our

goal is to predict 3D positions 𝑋 3𝐷 =
{
𝑥3𝐷
𝑖

∈ R𝐽 ×3 | 𝑖 = 1 . . . 𝑁
}

in the world coordinate system. 𝑁 and 𝐽 represent the number of
cameras and joints, respectively. When cameras are calibrated with
precisely known intrinsic and extrinsic parameters 𝑌 , deterministic
methods leverage Transformers [13, 27, 28] denoted as 𝐹 to fuse
multi-view geometric information, resulting in 𝑋 3𝐷 = 𝐹 (𝑋 2𝐷 , 𝑌 ).

However, due to occlusions or self-occlusions, some joints may
not be visible in the givenmultiple views, resulting in non-uniqueness
of the human pose. The noisy 2D joints further exacerbates the
uncertainty of HPE. Therefore, it is necessary to use probabilis-
tic methods to generate multiple (𝐻 ) hypotheses of human poses
{𝑋 3𝐷
𝑖

}𝐻
𝑖=1 and find the most probable one.

Combining the probabilistic nature of DMs with multi-view fu-
sion capabilities of Transformers, we propose Masked Gifformer

for robust multi-view 3D HPE. As shown in Figure 1, we train
a transformer-based denoiser to fit the probability distribution
𝑝 (𝑋 3𝐷 | 𝑋 2𝐷 ) within the framework of diffusion models. With
the proposed fully random mask strategy, our model is robust to
varying camera numbers, spatial arrangements and datasets. Dur-
ing the inference, bymodeling the conditional guidance distribution
𝑝 (𝑋 2𝐷 | 𝑋 3𝐷 ), multiple 3D pose hypotheses are sampled towards
minimizing reprojection errors. Finally, a single accurate and robust
3D pose is obtained by aggregating all of hypotheses.

3.1 Preliminaries of Diffusion Models
DMs [6, 14, 36, 38, 39] have been demonstrated to possess promising
capabilities in modelling complex data distributions. A Denoising
Diffusion Probabilistic Model (DDPM) [14] is one of them, which
encompasses forward and reverse processes.

Specifically, in the forward process, DDPM incrementally intro-
duces Gaussian noise within 𝑇 steps to perturb the input {𝑥𝑡 }𝑇𝑡=0.
Such noising process forms a Markov chain and satisfies:

𝑞 (𝑥𝑡 | 𝑥𝑡−1) = N
(
𝑥𝑡 ;

√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I

)
. (1)

Here, {𝛽𝑡 }𝑇𝑡=1 ∈ (0, 1) is a monotonically increasing set of noise
scales with diffusion steps 𝑇 . I represents the identity matrix, and
N (𝑥 ; 𝜇, 𝜎) denotes the Gaussian distribution generating 𝑥 with
mean 𝜇 and covariance 𝜎 . Let 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =

∏𝑡
𝑖=1 𝛼𝑖 , then

noisy samples 𝑥𝑡 can be obtained in a single step:

𝑥𝑡 ∼ 𝑞 (𝑥𝑡 | 𝑥0) = N
(
𝑥𝑡 ;

√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 ) I

)
. (2)

If 𝛼𝑡 → 0, the distribution of 𝑥𝑇 should closely approximate the
standard Gaussian distribution, i.e., 𝑞 (𝑥𝑇 ) = N(0, I).

In the reverse process, DDPM learns the mapping from a simple
normal distribution to the true data distribution. If {𝛽𝑡 }𝑇𝑡=1 is suf-
ficiently small, 𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ) still follows a Gaussian distribution.
Fixing the covariance as a constant, a neural network D𝜃 (𝑥𝑡 , 𝑡) is
trained to predict the mean of the Gaussian distribution, that is:

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ) = N
(
𝑥𝑡−1;

√
𝛼𝑡D𝜃 (𝑥𝑡 , 𝑡) , (1 − 𝛼𝑡 ) I

)
, (3)



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Xinyi Zhang, Qinpeng Cui, Qiqi Bao, Wenming Yang, & Qingmin Liao

where 𝜃 represents learnable parameters. Starting from the random
pose 𝑥𝑇 ∼ N(0, I), 𝑥0 conforming to the true distribution can be
generated through iterative sampling:

𝑥𝑡−1 ∼ N
(
𝑥𝑡−1;

√
𝛼𝑡−1D𝜃 (𝑥𝑡 , 𝑡) , (1 − 𝛼𝑡−1) I

)
. (4)

3.2 Diffusion-Based Multi-View 3D HPE
In this section, we utilize DMs to model the probability distribution
of 3D human poses across multiple views, and generate multiple
pose hypotheses leveraging its probabilistic nature. Based on the
diffusion framework [14] discussed in Sec.3.1, we first add noise
to the ground truth 3D poses, and then train a denoiser D𝜃 on a
training set to fit the true data distribution. Note that given the
2D joint coordinates 𝑋 2𝐷 , we model the conditional probability
distribution 𝑝𝜃 (𝑋 3𝐷 |𝑋 2𝐷 ). Therefore, unlike the forward process
(Eq.(1)) which is independent of 𝑋 2𝐷 , the reverse process depends
on the input 2D joint coordinates 𝑋 2𝐷 , i.e.,

𝑝𝜃

(
𝑋 3𝐷
𝑡−1 |𝑋

3𝐷
𝑡 , 𝑋 2𝐷

)
=N

(
𝑋 3𝐷
𝑡−1;

√
𝛼𝑡D𝜃

(
𝑋 3𝐷
𝑡 , 𝑡, 𝑋 2𝐷

)
, (1−𝛼𝑡 )I

)
. (5)

DenoiserD𝜃 . Due to the promising information interaction and
global aggregation capabilities of Transformers [41], we implement
the denoiser D𝜃 using Transformers. As illustrated in Figure 2,
previous work [13, 27, 28, 34, 55] proposed hybrid multi-view fu-
sion methods, using a single type of transformer block to integrate
joint information across all views. Inspired by [53], we employ a
hierarchical multi-view fusion method, using two distinct types of
transformer blocks to focus on physical constraints among joints
and the correlation across different views. Specifically, we first
use a Joint Transformer Block (JTB) to learn the physical correla-
tions between joints within each view. Subsequently, a Multi-view
Transformer Block (MTB) is employed to enable each joint to indi-
vidually learn corresponding information from other views. These
two types of transformer blocks are alternately trained, achieving
comprehensive multi-view information fusion.

Fully random mask mechanism. However, the aforemen-
tioned naive architecture imposes strict limitations on camera num-
bers and spatial arrangements, making it challenging to generalize
well to an arbitrary number of unseen views. To address this issue,
[34] proposed a randommask mechanism, which randomly masked
the attention matrix except for the elements on the diagonal at the
rate of 𝑀 . However, experimental results in Table 6 demonstrate
that such random mask mechanism exhibits poor generalization
across datasets. Therefore, we propose a fully random mask mech-
anism as depicted in Figure 3(b), which even randomly discards
information from the current viewpoint. This fully random mask
mechanism offers the following advantages:

• By randomly masking a portion of views during training,
it is possible to avoid the learned features that are highly
correlated with camera numbers and positions. Therefore,
our model demonstrates robust generalization to varying
camera numbers and spatial arrangements.

• By discarding information from the current view, a more
effective integration of features from alternative views is
learned instead of overfitting to features from the source
dataset, thus enhancing robustness across different datasets.

• By introducing sparsity, it can improve the efficiency of the
self-attention computations in Transformers.

(a) Hybrid multi-view fusion

(b) Hierarchical multi-view fusion

Figure 2: Different multi-view fusion methods. (a) Hybrid
multi-view fusion [13, 27, 28, 34, 55]: fusing all joint infor-
mation across all views by a single type of transformers. (b)
Hierarchical multi-view fusion (Ours): fusing joint and view
information separately by two distinct types of transformers.

(a) Random mask (b) Fully random mask

Figure 3: Different random mask mechanisms. (a) Random
mask mechanism [34]: randomly masking the attention ma-
trix except for the elements on the diagonal. (b) Fully random
mask mechanism (Ours): randomly masking the attention
matrix including the elements from the same view. This
mechanism ensures our model generalizes well to varying
camera numbers, spatial arrangements, and datasets.

Incorporating the proposed fully random mask mechanism into
the MTB, the detailed structure of the denoiser is showed in Figure
4. The Masked Multi-head Self-attention (MMSA) is calculated by:

MMSA(X) = Softmax
(
QK𝑇 ×M

√
𝐷

)
V, (6)

where the query Q, the key K, and the value V are obtained from
the linear projections of the input X. M is a fully random mask. 𝐷
is the dimension of feature.
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Figure 4: Detailed structure of the transformer-based de-
noiser D𝜃 . JTB learns physical constraints between joints
within each view. MTB enables each joint to individually
learn corresponding information from other views. JTB and
MTB are stacked for 16 loops and alternately trained, achiev-
ing comprehensive multi-view information fusion.

Training loss. During training, denoiser D𝜃 is supervised by
denoising loss:

L = 𝐸𝑡∼[1,𝑇 ],𝑋 3𝐷
𝑡 ∼𝑞(𝑋 3𝐷

𝑡 |𝑋 3𝐷
0 ,𝑋 2𝐷 )

D (
𝑋 3𝐷
𝑡 , 𝑡, 𝑋 2𝐷

)
−𝑋 3𝐷

0

2

2
, (7)

where the expectation is taken over all diffusion time 𝑡 , correspond-
ing to diffused samples 𝑋 3𝐷

𝑡 ∼ 𝑞
(
𝑋 3𝐷
𝑡 | 𝑋 3𝐷

0 , 𝑋 2𝐷
)
.

Multi-Hypothesis Generation and Aggregation. During the
inference, given a new set of 2D joints coordinates from multi-view,
Eq.(4) is rewritten as:

𝑋 3𝐷
𝑡−1 ∼ N

(
𝑋 3𝐷
𝑡−1;

√
𝛼𝑡−1D𝜃

(
𝑋 3𝐷
𝑡 , 𝑡, 𝑋 2𝐷

)
, (1 − 𝛼𝑡−1) I

)
. (8)

Starting from 𝐻 random poses sampled from the Gaussian distri-
bution, samples {𝑋 3𝐷

0𝑖 }𝐻
𝑖=1 conforming to the true distribution can

be generated by the iterative sampling shown in Eq.(8). Following
[33], the reverse process iterates 𝐾 times to enhance the differences
between hypotheses.

Since a single 3D pose is still required for practical use, we use
the joint-wise reprojection-based multi-hypothesis aggregation
method [33], which selects the optimal hypothesis at the joint level
based on reprojection errors (3D→ 2D).

3.3 Geometry-Guided Sampling
As discussed in Sec.3.2, DMs can directly map 2D poses to the
3D poses via the supervised denoiser. However, deep networks
often exhibit poor performance in precise quantity regression and
are prone to overfitting [21, 43]. Inspired by [43], we incorporate
geometric information into the sampling process, significantly en-
hancing the accuracy of Masked Gifformer while maintaining its
generalization capability. Focusing on the consistency between 2D
screen coordinates and 3D world coordinates, we use reprojection
errors to guide DDPM sampling iterations (Eq.(8)).

Reprojection errors. Given the 2D pose 𝑋 2𝐷 and the predicted
3D pose 𝑋 3𝐷 , we compute errors between the projection of the
predicted 3D world coordinates onto the 2D image plane and their

true projection [12], i.e.,

𝑒reproj =
𝑁∑︁ 𝐽∑︁

| |𝑋 2𝐷 − 1
𝜆
𝐾 ·𝑇 · 𝑋 3𝐷 | |22 . (9)

𝐾 =
{
𝑘𝑖 ∈ R3×3 | 𝑖 = 1 . . . 𝑁

}
represents camera intrinsic matrices.

𝑇 =

{
𝑇𝑖 =

[
𝑅𝑖 𝑡𝑖

0𝑇 1

]
| 𝑖 = 1 . . . 𝑁

}
. 𝑅𝑖 ∈ SO(3) and 𝑡𝑖 ∈ R3 are

the rotationmatrix and translation vector, respectively.𝐾 ·𝑇 projects
3D points 𝑋 3𝐷 from world coordinates to 2D points 𝑋 2𝐷 in the
screen coordinates with 𝐾 ·𝑇 ·𝑋 3𝐷 ∼ 𝜆

[
𝑋 2𝐷 ; 1

]
, where ∼ indicates

homogeneous equivalence. A smaller reprojection error indicates
that the predicted 3D pose is more consistent geometrically with
the 2D pose, enhancing the accuracy and reliability of predictions.

Reprojection-guided sampling. Following the classifier dif-
fusion guidance [7], we guide the sampling towards minimizing
reprojection errors, thereby satisfying the geometric consistency
constraint from 3D to 2D.

Specifically, we model 𝑋 3𝐷 -conditioned guidance distribution
𝑝 (𝑋 2𝐷 | 𝑋 3𝐷 ) as a negative exponential form of reprojection errors:

𝑝

(
𝑋 2𝐷 | 𝑋 3𝐷

)
∝ exp

(
−𝑒reproj

)
. (10)

During each sampling iteration, classifier-guidance perturbs the
predicted mean with a gradient of the conditioned guidance distri-
bution 𝑝 (𝑋 2𝐷 | 𝑋 3𝐷 ), i.e.,

D̂𝜃

(
𝑋 3𝐷 , 𝑡, 𝑋 2𝐷

)
= D𝜃

(
𝑋 3𝐷 , 𝑡, 𝑋 2𝐷

)
+ 𝑠∇𝑋 3𝐷 log𝑝

(
𝑋 2𝐷 | 𝑋 3𝐷

)
(11)

where 𝑠 controls the strength of the guidance. Finally, the perturbed
mean D̂𝜃

(
𝑋 3𝐷 , 𝑡, 𝑋 2𝐷

)
replaces D𝜃

(
𝑋 3𝐷 , 𝑡, 𝑋 2𝐷

)
in Eq.(5) and

Eq.(8), thereby achieving the reprojection-guided sampling.

4 Experiments
4.1 Datasets and Metrics
Experiments are conducted on widely used 3D HPE benchmark
datasets, including Human 3.6M [16] and CMU Panoptic [19, 20, 35].

Human3.6M is one of the largest motion capture datasets. It
consists of videos captured from 11 professional actors and actresses
performing 15 distinct activities (e.g., walking), with 4 calibrated
and synchronized high-speed motion cameras placed at the corners
of a rectangular room. Human3.6M dataset not only provides cali-
brated camera intrinsic and extrinsic parameters but also accurate
3D joint positions. Following [18, 33, 34], our model is trained on 5
subjects (S1, S5, S6, S7, and S8) and tested on S9 and S11.

CMU Panoptic stands out as a large-scale dataset that utilizes
a larger number of cameras. It consists of 480 VGA cameras and
31 HD cameras installed on a hemispherical structure, capturing
various activities performed by single or multiple individuals, such
as dancing. Given our focus on single-person HPE, we only use HD
videos from individual subjects, following [1, 48]. In accordance
with [1, 18], we partition the dataset into four subsets (CMU1 ∼
CMU4), with each subset varying in camera numbers and arrange-
ments. CMU Panoptic also provides calibrated camera parameters
and 3D joint coordinates.

Metrics. Mean Per Joint Position Error (MPJPE) is used to eval-
uate the accuracy of 3D HPE. A lower MPJPE indicates higher
accuracy in predicted joint positions relative to the ground truth.
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Table 1: Evaluation results on Human3.6M for the state-of-the-art deterministic and probabilistic methods. No additional
training data setup. ★: using temporal information. 𝐻 , 𝐾 : the number of hypotheses and iterations. GS: geometric-guided
sampling proposed by us. Best in bold.

Methods Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Mean

Deterministic Methods (Multi-view)

Qiu et al. [31] 28.9 32.5 26.6 28.1 28.3 29.3 28.0 36.8 42.0 30.5 35.6 30.0 28.33 30.0 30.5 31.2
Remelli et al.[32] 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6 36.4 31.7 31.2 29.9 26.9 33.7 30.4 30.2
Jiang et al. [18] 24.0 25.4 26.6 30.4 32.1 20.1 20.5 36.5 40.1 29.5 27.4 27.6 20.8 24.1 22.0 27.8
He et al. [13] 25.7 27.7 23.7 24.8 26.9 31.4 24.9 26.5 28.8 31.7 28.2 26.4 23.6 28.3 23.5 26.9
Zhou et al. [58] (★) 24.8 27.7 24.3 24.9 27.7 29.8 24.5 25.3 30.5 33.4 28.2 24.0 28.4 24.7 24.3 26.8
Shuai et al. [34] 23.8 26.0 23.9 25.0 28.2 29.7 23.6 25.5 30.1 37.3 26.6 24.5 27.4 23.1 23.4 26.5
Ma et al. [27] 24.4 26.4 23.4 21.1 25.2 23.2 24.7 33.8 29.8 26.4 26.8 24.2 23.2 26.1 23.3 25.8
Ma et al. [28] 21.8 26.5 21.0 22.4 23.7 23.1 23.2 27.9 30.7 24.6 26.7 23.3 21.2 25.3 22.6 24.4
Ours (𝐻 = 1, 𝐾 = 1) 22.5 24.3 23.8 23.1 26.7 25.1 22.0 25.5 28.3 30.3 24.8 23.1 26.7 22.4 22.6 24.7

Probabilistic Methods (Single-view)

Wehrbein et al. [45] (𝐻 = 200) 38.5 42.5 39.9 41.7 46.5 51.6 39.9 40.8 49.5 56.8 45.3 46.4 46.8 37.8 40.4 44.3
Li et al. [23] (𝐻 = 3,★) 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
Cai et al. [2] (𝐻 = 20, 𝐾 = 10,★) 36.4 39.5 34.9 37.6 40.1 45.9 37.8 37.8 51.5 52.2 40.8 38.3 38.3 27.0 27.0 39.0
Gong et al. [11] (𝐻 = 5, 𝐾 = 50,★) 33.2 36.6 33.0 35.6 37.6 45.1 35.7 35.5 46.4 49.9 37.3 35.6 36.5 24.4 24.1 36.9
Ci et al. [5] (𝐻 = 200) 31.7 35.4 31.7 32.3 36.4 42.4 32.7 31.5 41.2 52.7 36.5 34.0 36.2 29.5 30.2 35.6
Shan et al. [33] (𝐻 = 20, 𝐾 = 10,★) 33.0 34.8 31.7 33.1 37.5 43.7 34.8 33.6 45.7 47.8 37.0 35.0 35.0 24.3 24.1 35.4
[33]+GS (𝐻 = 20, 𝐾 = 10,★) 31.8 33.2 30.0 31.9 34.5 40.9 34.0 31.8 43.1 46.5 35.1 33.2 33.3 23.0 23.0 33.7

Probabilistic Methods (Multi-view)

Bartol et al. [1] (𝐻 = 200, 𝐾 = 500) 27.5 28.4 29.3 27.5 30.1 28.1 27.9 30.8 32.9 32.5 30.8 29.4 28.5 30.5 30.1 29.1
Ours (𝐻 = 20, 𝐾 = 10) 15.7 17.4 17.5 16.0 18.9 18.9 15.2 16.2 21.5 22.0 17.8 15.6 18.0 14.7 16.0 17.4

Table 2: Evaluation results on CMU Panoptic (CMU3 with
four cameras). Best in bold.

Methods MPJPE, mm

Deterministic Methods

Jiang et al. [18] 24.2
Iskakov et al. Algebraic [17] 21.3
Moliner et al. [29] 17.2
Iskakov et al. Volumetric [17] 13.7
Ours (𝐻 = 1, 𝐾 = 1) 16.8

Probabilistic Methods

Bartol et al. [1] 25.4
Ours (𝐻 = 20, 𝐾 = 10) 11.2

4.2 Implementation Details
To ensure fair comparison with previous studies, we use CPN [4] to
extract 2D poses for the Human3.6M dataset and a more powerful
2D pose detector [49] for the CMU Panoptic dataset. The proposed
method is implemented in PyTorch [30] using the AdamWoptimizer
[26], with momentum parameters 𝛽1 = 0.9 and 𝛽2 = 0.999, and
weight decay of 0.1. Our model is trained for 100 epochs with
an initial learning rate of 6𝑒−5, decayed by a factor of 0.993 after
the 10th epoch. During training, the number of hypotheses and
iterations are set to𝐻 = 1 and𝐾 = 1, respectively. During inference,
𝐻 = 20 and 𝐾 = 10. The maximum diffusion time step𝑇 is 1000. To
avoid spurious local minima, we adopt geometry-guided sampling

starting from the second diffusion step. The guidance strength 𝑠 in
Eq.(11) can be set manually. In our paper, 𝑠 = 1.0. All experiments
were conducted on a single NVIDIA GeForce RTX 3090 GPU.

4.3 Comparison with State-of-the-art Methods
Results on Human3.6M. As shown in Table 1 (Top), we compare
Masked Gifformer with the state-of-the-art deterministic multi-
view 3D HPE methods on Human3.6M. Following [1], the table
only displays methods trained and tested on Human3.6M without
additional training data (thus excluding [17]). For fairness, we set
𝐻 = 1 to generate a single prediction. Although Masked Gifformer
is designed to generate multiple 3D pose hypotheses, it achieves
24.7mm under the single hypothesis scenario, outperforming most
deterministic methods and reaching performance comparable to
the state-of-the-art [28]. Additionally, we compare Masked Gif-
former with multi-view probabilistic methods, as shown in Table 1
(Bottom). When the number of hypotheses 𝐻 increases to 20, our
method reduces the MPJPE from 24.7mm to 17.4mm. This demon-
strates that generating multiple plausible pose hypotheses can alle-
viate the uncertainty still present in multi-view scenarios, thereby
achieving more accurate pose estimation. Our results outperform
[1] (𝐻 = 200) by a large margin with 11.7mm, even when using
fewer hypotheses. To further validate the generality of our proposed
Geometry-guided Sampling (GS), we apply it to the single-view
probabilistic method [33]. As shown in Table 1 (Middle), with the
help of GS, MPJPE of [33] decreased by 1.7mm. This indicates that
incorporating geometric information during the sampling process
can further enhance the accuracy of generated hypotheses.
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Table 3: Generalization performance on Human3.6M for different camera numbers and spatial placements. Best in bold.

Methods Training on 2-view Training on 4-view
2-view 2-view (unseen) 3-view 4-view 2-view 3-view 4-view

Jiang et al. [18] 29.5 - 42.4 39.2 32.6 29.3 27.8
Shuai et al. [34] 35.1 46.1 41.5 39.0 - - 27.5
Ours 21.0 27.3 28.4 26.8 20.0 18.9 17.4

Table 4: Generalization performance from CMU Panoptic to
Human3.6M. Best in bold.

Methods
Training set CMU1 CMU2 CMU3 CMU4

Iskakov et al. [17] - - 34.0 -
Bartol et al. [1] 33.5 33.4 31.0 32.5
Jiang et al. [18] 30.8 29.1 29.2 31.1
Ours 22.2 22.9 23.6 25.7

Results on CMU Panoptic. Table 2 compares our method
with others on CMU Panoptic. Under a single hypothesis scenario
(𝐻 = 1), Masked Gifformer surpasses the majority of deterministic
methods. When 𝐻 increases to 20, MPJPE of our method drops to
11.2mm, also outperforming [1]. This is attributed to the incomplete
views across most CMU Panoptic cameras, resulting in significant
occlusions and missing body parts. Our method can provide more
feasible poses, thus being more robust to occluded scenarios.

4.4 Generalization Performance
In addition to strong multi-view pose fitting capability, another
ability of Masked Gifformer is that it can generalize well to varying
cameras numbers, spatial arrangements, and even different datasets,
which has been a primary limitation of previous methods.

Generalization performance on different camera numbers
and spatial placements. The generalization results of Masked Gif-
former and competitive methods onHuman3.6M are shown in Table
3. Masked Gifformer is trained with 2 or 4 views and tested with
varying numbers of views. From a horizontal analysis perspective,
our method can successfully generalize to any number of cameras
with minimal generalization loss (< 7.4𝑚𝑚). We observe that the
more cameras used during training, the smaller the generalization
gap. Specifically, themaximum generalization gap reduces to 2.6𝑚𝑚
when trained with 4 views. Moreover, our method can generalize
to different spatial arrangements (Table 3 (Left)). From a vertical
analysis perspective, our method exhibits stronger generalization
than [18] and [34] without sacrificing fitting abilities.

Generalization performance on different datasets. To test
the cross-dataset generalization capability of Masked Gifformer, we
follow [1, 18] to divide the CMU Panoptic dataset into four subsets,
denoted as CMU1 ∼ CMU4. Table 4 presents generalization results
from four CMU Panoptic subsets to Human3.6M. From a horizontal
comparison, our method successfully achieves cross-dataset gener-
alization regardless of the training set. From a vertical comparison,
our method demonstrates stronger generalization capabilities, sur-
passing [1, 17, 18]. For instance, when trained on CMU3 but tested
on Human3.6M, MPJPE of [17], [1] and [18] are 34.0𝑚𝑚, 31.0𝑚𝑚,
and 29.2𝑚𝑚, respectively. In contrast, our method achieves 23.6𝑚𝑚,
indicating a notable improvement in cross-dataset generalization.

Table 5: Ablation study on the components of our framework.
We add each feature in turn and test on Human3.6M using
different training datasets.

Fully random mask - - ✓ - ✓
Geometry-guided sampling - - - ✓ ✓
Multi-hypothesis - ✓ ✓ ✓ ✓

Train Test

Human3.6M Human3.6M 23.2 24.7 22.7 18.2 17.4
CMU3 Human3.6M 37.9 36.9 29.1 30.2 23.6

4.5 Ablation Study
Effectiveness of each component. We evaluate the effectiveness
of our method by incrementally adding its components. Table 5
presents evaluation results on Human3.6M, including self-fitting
results and cross-dataset generalization results. We begin with a
naive combination of DMs and Transformers (1st column), and
then utilize the inherent probabilistic nature of DMs to generate
multiple pose hypotheses (2nd column). When 𝐻 increases to 20,
MPJPE on Human3.6M decrease by 1.5𝑚𝑚 and 1𝑚𝑚 when trained
on Human3.6M and CMU3 respectively. This result indicates that
probabilistic methods can mitigate uncertainties in 3D HPE by gen-
erating multiple hypotheses. On one hand, we introduce the fully
random mask mechanism into Transformer (3rd column). Under
the multi-hypothesis setting, our method significantly improves the
generalization performance (36.9𝑚𝑚 → 29.1𝑚𝑚) without sacrific-
ing the fitting ability. This result indicates that fully random mask
mechanism can substantially enhance the generalization across dif-
ferent datasets. On the other hand, we incorporate geometry-guided
sampling into the diffusion model (4th column). MPJPE decreases
to 18.2𝑚𝑚 when multiple hypothesis are used. This result indicates
that introducing geometric information into the sampling process
can guide it towards minimizing reprojection errors, thereby achiev-
ing higher precision. Finally, combining the fully random mask and
geometry-guided sampling (5th column) balances accuracy and
generalization, achieving 17.4𝑚𝑚 for the base dataset and 23.6𝑚𝑚
for the cross dataset. These results also show the synergistic effect
of the fully random mask and geometry-guided sampling.

Analysis on fully random mask mechanism. Fully random
mask is designed to enhance the generalization capability. To val-
idate its effectiveness, we train all models on Human3.6M with 4
views and set mask rates𝑀 to 0, 0.2, 0.5, 0.8 and 1.0. As𝑀 increases,
more features from different views are discarded during training.
𝑀 = 0 indicates that features from all views are involved in the
fusion process. During inference, we evaluate Masked Gifformer
under vaying mask rates by using test samples with different num-
bers of views, as shown in Table 6 (3rd column). Masked Gifformer
generalizes well to any number of views when𝑀 ∈ (0, 1), achieving
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Table 6: Generalization capability of different attention
masks with varying mask rate 𝑀 . Geometry-guided sam-
pling is removed for a fair comparison. In the third column,
all the models are trained on Human3.6M with 4 views and
tested with 2,3 and 4 views. In the last column, all the models
are trained on CMU3 and tested on Human3.6M. Best in bold.

Methods 𝑀
Number of Views 𝑁 CMU3 → H36M2 3 4

w/o mask 0 141.2 84.7 23.2 36.9
Shuai et al. [34] 0.2 27.5 25.2 22.9 38.4

Ours 27.4 24.9 22.8 35.7
Shuai et al. [34] 0.5 26.4 24.9 22.7 37.2

Ours 26.0 24.6 22.7 29.1
Shuai et al. [34] 0.8 28.5 26.7 24.4 33.0

Ours 27.2 25.7 23.9 34.0
Shuai et al. [34] 1.0 65.7 64.5 65.4 29.6

Ours 123.6 100.1 22.9 34.6

Table 7: Ablation study on sampling process.

Unconditional Gaussian Uniform Ours

MPJPE (mm) ↓ 22.7 20.2 19.1 17.4

optimal performance with𝑀 = 0.5. Furthermore, we compare our
fully random mask with the random mask in [34]. On one hand,
our method exhibits a lower generalization gap when adapting to
different numbers of views. When𝑀 = 0.5, although both methods
achieve 22.7𝑚𝑚 when testing with 4 views, MPJPE of our method
for 2 and 3 views is only 26.0𝑚𝑚 and 24.6𝑚𝑚, respectively, which
is 0.4𝑚𝑚 and 0.3𝑚𝑚 lower than [34]. The greater advantage of the
fully random mask is manifested in its cross-dataset generaliza-
tion capability. We train all models on CMU3 and test them on Hu-
man3.6M. Trained on CMU3 and tested on Human3.6M, our method
improves from 36.9𝑚𝑚 to 29.1𝑚𝑚, surpassing [34] by 8.1𝑚𝑚 (Table
6, last column). Therefore, with the proposed fully random mask
mechanism, our model demonstrates strong robustness to varying
camera numbers, spatial arrangements and cross-datasets.

Analysis on geometry-guided sampling process.We further
analyze the proposed geometry-guided sampling by exploring alter-
native methods such as uniform sampling and gaussian sampling,
as shown in Table 7. Compared to unconditional sampling, both
gaussian-guided sampling and uniform-guided sampling reduce
the MPJPE to some extent, but not as effectively as our proposed
geometry-guided sampling (22.7𝑚𝑚 → 17.4𝑚𝑚).

Analysis on JTB and MTB. JTB learns the spatial structure of
joints while MTB captures multi-view information. In JTB, each
joint is treated as a token, outputting𝑋 ∈ R𝐽 ×𝑁×𝐶 (𝐶 is the number
of hidden dimensions). Then, MTB integrates view information into
the learned representations. Unlike previous methods, we separate
different joints along the view dimension, treating the views of
each joint as a single token 𝑝 ∈ R1×𝑁×𝐶 . We model different joints
in parallel before concatenating them. This can reduce dimensions
from 𝐽 × 𝐶 to 𝐶 , enabling to handle more views. We conduct an
ablation study in Table 8. The difference between the last two
columns is that our method alternately learns JTB and MTB. These
results clearly demonstrate the effectiveness of JTB and MTB.

Table 8: Ablation study on JTB and MTB.

JTB only MTB only JTB+MTB Ours

MPJPE (mm) ↓ 38.0 181.4 19.0 17.4

Shan et al. [33] [33]+GS (Ours) Bartol et al. [1] Ours

(a) Qualitative results of related methods on Human3.6M
2 views 3 views 4 views Ground-truth

(b) Qualitative results of various views on Human3.6M
CMU1 CMU2 CMU3 CMU4

(c) Qualitative results on CMU Panoptic

Figure 5: Qualitative results. Red line: predicted 3D pose. Blue
line: ground truth 3D poses. Note that (b) shows the results
trained on 4 views and then generalized to other views.

4.6 Qualitative Evaluation
Qualitative results are shown in Figure 5. Consistent with quan-
titative results, Figure 5(a) demonstrates superior qualitative per-
formance of our model compared to [33] and [1] on Human3.6M.
Figure 5(b) shows evaluation results when generalizing to different
numbers of views on Human3.6M. Figure 5(c) presents visualiza-
tion results when our model is trained on different subsets of CMU
Panoptic. These results highlight the effectiveness of our model
across various datasets and its excellent robustness to varying cam-
era numbers and spatial arrangements.

5 Conclusion
This paper presents Masked Gifformer, a novel diffusion model
based on transformers for robust multi-view 3D HPE. During train-
ing, a transformer-based denoiser is supervised to fit 3D pose dis-
tribution by fusing joint and view information hierarchically. With
the proposed fully random mask mechanism, Masked Gifformer
is robust to varying camera numbers, spatial arrangements and
datasets. During the inference, by modeling the conditional guid-
ance distribution, multiple 3D pose hypotheses are sampled to-
wards minimizing reprojection errors. Experimental results on two
benchmarks show that our method effectively achieves a trade-off
between accuracy and generalization.
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