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Abstract

While large reasoning models demonstrate strong performance on complex tasks,
they lack the ability to adjust reasoning token usage based on task difficulty. This
often leads to the “overthinking” problem—excessive and unnecessary reasoning—
which, although potentially mitigated by human intervention to control the token
budget, still fundamentally contradicts the goal of achieving fully autonomous Al
In this work, we propose Adaptive Reasoning Model (ARM), a reasoning model
capable of adaptively selecting appropriate reasoning formats based on the task at
hand. These formats include three efficient ones—Direct Answer, Short CoT, and
Code—as well as a more elaborate format, Long CoT. To train ARM, we introduce
Ada-GRPO, an adaptation of Group Relative Policy Optimization (GRPO), which
addresses the format collapse issue in traditional GRPO. Ada-GRPO enables ARM
to achieve high token efficiency, reducing tokens by an average of ~ 30%, and
up to ~ 70%, while maintaining performance comparable to the model that relies
solely on Long CoT. Furthermore, not only does it improve inference efficiency
through reduced token generation, but it also brings a ~ 2x speedup in training.
In addition to the default Adaptive Mode, ARM supports two additional reasoning
modes: 1) Instruction-Guided Mode, which allows users to explicitly specify the
reasoning format via special tokens—ideal when the appropriate format is known
for a batch of tasks. 2) Consensus-Guided Mode, which aggregates the outputs
of the three efficient formats and resorts to Long CoT in case of disagreement,
prioritizing performance with higher token usage.

1 Introduction

The emergence of large reasoning models (LRMs) such as OpenAl-ol [19] and DeepSeek-R1 [11] has
led to unprecedented breakthroughs in problem-solving capabilities through test-time scaling [3; 57].
These models are designed to solve tasks using Long Chain-of-Thought (Long CoT), generating more
tokens to achieve better performance. However, because they are primarily trained on tasks requiring
intensive reasoning, LRMs tend to apply Long CoT uniformly across all tasks, resulting in the so-
called “overthinking” problem [4; 42]. This issue refers to the excessive use of tokens for reasoning,
which yields no performance gains and may introduce noise that misleads the model [52; 7].

While some efforts aim to reduce token usage in LRMs, they often rely on clear estimations of the
token budget per task [1; 46] or require specialized, length-constrained model training [16]. In reality,
such estimations are not always accurate, and a more desirable solution is for models to adaptively
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Figure 1: (a) Comparison of reasoning behaviors across different models on easy and hard tasks. The
General Model fails on harder tasks without elaborate reasoning. The Reasoning Model applies Long
CoT across all tasks, causing the “overthinking” phenomenon. In contrast, our proposed ARM adapts
its reasoning formats based on task difficulty, answering easy questions efficiently while adopting
Long CoT for hard tasks. (b) Accuracy versus token cost for Qwen2.5 under different training
strategies. “SFT”, “+GRPO”, and “+Ada-GRPO” refer to models trained with SFT, SFT+GRPO, and
SFT+Ada-GRPO, respectively. “+Ada-GRPO” consistently outperforms the expected trade-off line
between “SFT” and “+GRPO,” demonstrating ARM’s superior effectiveness-efficiency balance.

control their token usage based on task complexity without human intervention. For example, for the
first easy question in Figure 1a, answering directly is the ideal choice, whereas for the second, hard
question, the use of Long CoT is precisely what is needed. Thus, Long CoT is not a “silver bullet”;
selecting an appropriate reasoning format is essential to balance efficiency and effectiveness.

In this work, we propose Adaptive Reasoning Model (ARM), a reasoning model capable of adaptively
selecting reasoning formats based on task difficulty, balancing both performance and computational
efficiency. ARM supports four reasoning formats: three efficient ones—Direct Answer, Short CoT,
and Code—and one elaborate format, Long CoT. In addition to its adaptive selection mechanism
(Adaptive Mode), ARM also supports an Instruction-Guided Mode, which allows explicit control over
the reasoning format via special tokens, and a Consensus-Guided Mode, which aggregates the outputs
of the three efficient formats and resorts to Long CoT in case of disagreement.

To train ARM, we adopt a two-stage training framework. In Stage 1, we apply supervised fine-tuning
(SFT) to equip the language model with a foundational understanding of four reasoning formats. In
Stage 2, we introduce Ada-GRPO, an adaptation of Group Relative Policy Optimization (GRPO) [38],
which encourages efficient format selection while preserving accuracy as the primary objective.
Ada-GRPO is designed to address two key issues: /) The uniform distribution of reasoning formats
regardless of task difficulty observed during the SFT stage; 2) The format collapse problem in GRPO,
where Long CoT gradually dominates as training progresses, leading to the diminished use of other,
more efficient formats. Extensive evaluations show that ARM trained with Ada-GRPO achieves
comparable performance while using ~ 30% fewer tokens than GRPO (as shown in Figure 1b), across
both in-domain and out-of-domain tasks in commonsense, mathematical, and symbolic reasoning.
Furthermore, by leveraging the three more efficient reasoning formats in the roll-out stage, Ada-GRPO
achieves approximately a 2 training speedup compared to GRPO.

Our additional analysis further reveals that: /) Adaptive Mode achieves a superior balance be-
tween effectiveness and token efficiency by adaptively selecting suitable reasoning formats, while
Instruction-Guided Mode performs well when the specified format is suitable for the task, and
Consensus-Guided Mode prioritizes performance at the cost of higher token usage. 2) The choice of
backbone model has limited impact on ARM’s performance when using base or instruction-tuned
models, which yield similar results; however, using the DeepSeek-R1-Distill backbone improves
performance on hard tasks due to the advanced reasoning capability distilled from the strong teacher
DeepSeek-R1, but leads to worse performance on easy tasks despite increased token cost. 3) Length-
penalty-based strategies for improving LRM efficiency suffer from performance degradation as the
token budget decreases, whereas ARM maintains stable performance.

In summary, our contributions are three-fold: /) We propose ARM, a reasoning model that balances
effectiveness and efficiency by adaptively selecting task-appropriate reasoning formats. Compared to



the model that relies solely on Long CoT, ARM achieves comparable performance while significantly
reducing token cost, saving an average of ~ 30% and up to ~ 70%. 2) In addition to the default Adap-
tive Mode, ARM also supports Instruction-Guided Mode, which performs well when the reasoning
format is appropriately specified, and Consensus-Guided Mode, which maximizes performance at the
cost of higher token usage. 3) We introduce Ada-GRPO, an adaptation of GRPO that addresses the
format collapse problem and achieves a ~ 2x training speedup without compromising performance.

2 Related Work

2.1 Reinforcement Learning for Improving Reasoning

Reinforcement Learning (RL) has demonstrated significant potential in enhancing the problem-
solving abilities of large language models (LLMs) across various domains [33; 47; 20]. Recently,
Reinforcement Learning with Verifiable Rewards (RLVR) has gained substantial attention for ad-
vancing LLM capabilities [21; 11; 25], resulting in the development of large reasoning models
(LRMs) [53] such as OpenAl-ol [19] and DeepSeek-R1 [11]. Based on simple rule-based rewards,
RLVR algorithms such as Group Relative Policy Optimization (GRPO) [38] enable models to use
Long Chain-of-Thought (Long CoT) [56; 18]. This facilitates deep reasoning behaviors, such as
searching, backtracking, and verifying through test-time scaling [3; 57]. However, these models also
suffer from significant computational overhead due to extended outputs across all tasks, leading to
inefficiency associated with the “overthinking” phenomenon [4; 35; 42]. Verbose and redundant
outputs can obscure logical clarity and hinder the model’s ability to solve problems effectively [52; 7].

2.2 Efficiency in Large Language Models

Recently, many studies have focused on improving reasoning efficiency in LLMs. Some prompt-
guided methods [12; 13; 54; 22] explicitly instruct LLMs to generate concise reasoning outputs by
controlling input properties such as task difficulty and response length. Other approaches [14; 5; 39]
explore training LLMs to reason in latent space, generating the direct answer without the need for
detailed language tokens. Several techniques have also been proposed to reduce inference costs
by controlling or pruning output length, either by injecting multiple reasoning formats during the
pre-training stage [41] or by applying length penalties during the RL stage [45; 2; 1; 16]. Many
of these methods aim to strike a trade-off between token budget and reasoning performance by
shortening output lengths, often relying on clear estimations of the token budget for each task or
requiring specialized, length-constrained model training. However, in reality, such estimations are not
always accurate, and what we ultimately expect is for models to adaptively regulate their token usage
based on the complexity of the task at hand. Therefore, in this work, we propose a novel training
framework that enables models to adaptively select suitable reasoning formats for given tasks by
themselves, optimizing both performance and computational efficiency.

3 Method

We propose Adaptive Reasoning Model (ARM), a reasoning model designed to optimize effectiveness
and efficiency by adaptively selecting reasoning formats. Specifically, ARM is trained in two stages:
1) Stage 1: Supervised Fine-tuning (SFT) for Reasoning Formats Understanding: In this stage,
we use 10.8K diverse questions, each annotated with solutions in four distinct reasoning formats, to
fine-tune the model and build a foundational understanding of different reasoning strategies. 2) Stage
2: Reinforcement Learning (RL) for Encouraging Efficient Format Selection: We adopt an
adapted version of the GRPO algorithm, named Ada-GRPO, to train the model to be capable of
selecting more efficient reasoning formats over solely Long CoT, while maintaining accuracy.

3.1 Stage 1: SFT for Reasoning Formats Understanding

In this stage, we leverage SFT as a cold start to introduce the model to various reasoning formats
it can utilize to solve problems.? These formats include three efficient reasoning formats Direct

3In preliminary experiments, models without SFT failed to distinguish between the four reasoning formats,
like producing mixed outputs, wrapping a Short CoT response using the special tokens intended for Long CoT.



Answer, Short CoT, and Code, as well as the elaborate reasoning format Long CoT. We use special
tokens (e.g., <Code></Code>) to embrace thinking rationale. Specifically, /) Direct Answer: This
format provides a direct answer without any reasoning chain, making it the most efficient in terms
of token usage. 2) Short CoT: This format begins with a short reasoning and then provides an
answer, which has been proved effective in mathematical problems [49]. 3) Code: This format
adopts code-based reasoning, which has proven effective across a variety of tasks due to its structured
process [50; 51; 24]. 4) Long CoT: This format involves a more detailed, iterative reasoning process,
thus incurs higher token usage. It is suited for tasks requiring advanced reasoning capabilities, such
as self-reflection and alternative generation, where those more efficient formats fall short [31; 11; 56].

3.2 Stage 2: RL for Encouraging Efficient Format Selection

After SFT, the model learns to respond using various reasoning formats but lacks the ability to
adaptively switch between them based on the task (see Section 4.3 for details). To address this, we
propose Adaptive GRPO (Ada-GRPQ), which enables the model to dynamically select appropriate
reasoning formats according to the task difficulty through a format diversity reward mechanism.

GRPO In traditional GRPO [38], the model samples a group of outputs O = {01, 09, - , 0c } for
each question ¢, where G denotes the group size. For each o;, a binary reward r; is computed using a
rule-based reward function that checks whether the prediction pred matches the ground truth gt:

Ty = ]]-passed(gt,p'red)- (1)

However, since traditional GRPO solely optimizes for accuracy, it leads, in our setting, to overuse
of the highest-accuracy format while discouraging exploration of alternative reasoning formats.
Specifically, if Long CoT achieves higher accuracy than other formats, models trained with GRPO
tend to increasingly reinforce it, leading to an over-reliance on Long CoT and reduced exploration
of more efficient alternatives. We refer to this phenomenon as Format Collapse, which ultimately
hinders the model’s ability to develop adaptiveness. We further analyze this in Section 4.3.

Ada-GRPO We propose Ada-GRPO to address the format collapse issue. Specifically, Ada-GRPO
amplifies the reward r; for less frequently sampled reasoning formats, preventing their disappearance
and ensuring adequate learning. Formally, we scale the reward r; to r} by:

ri=ai(t) i, @
0u(t) = s - decani(1). ®
decay;(t) = % +0.5- (1 - %) . <1 + cos (7? . %)) ) “

where F(0;) denotes the number of times the reasoning format corresponding to o; appears within its
group O, and ¢ represents the training step. «;(t) is a format diversity scaling factor that gradually
decreases from % at the beginning of training (¢ = 0) to 1 at the end of training (¢ = T").

We introduce «;(t) to extend GRPO into Ada-GRPO, enabling models to adaptively select reasoning
formats. Specifically, cv;(t) consists of two components: /) Format Diversity Scaling Factor %

To prevent premature convergence on the highest-accuracy format (i.e., format collapse to Long CoT),
we upweight rewards for less frequent formats to encourage exploration. 2) Decay Factor decay; (t):
To avoid long-term misalignment caused by over-rewarding rare formats, this term gradually reduces
the influence of diversity over time. For example, % might make the model favor a lower-accuracy
format like Short CoT over Long CoT simply because it appears less frequently and thus receives a
higher reward. While such exploration is beneficial early in training, it can hinder convergence later.
The decay mechanism mitigates this by promoting diversity initially, then shifting focus to accuracy

again as training progresses. Refer to Appendix A for details of the decay factor.
Then the group advantage /Lk for all tokens in each output is computed based on the group of
reshaped rewards v’ = {r{,75, - ,r5}:

r; —mean({ry,r5, - ,75})

Ak = A ) ©)
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Finally, we optimize the model by maximizing the following objective (see Appendix A for details):
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4 Experiment

4.1 Experimental Setup

Model To assess the effectiveness of our method across different model sizes, we select Qwen2.5-
Base-3B/7B/14B [55] as backbone models. We further examine models of the same family but
fine-tuned on different datasets, specifically the Instruct [55] and DeepSeek-R1-Distill variants [11],
which exhibit varying levels of base reasoning capabilities. A detailed analysis is given in Section 5.3.

Training Datasets Srage I: We use AQuA-Rat [26] as the SFT dataset, as its answers can be
naturally transformed into four distinct reasoning formats. In addition to the Direct Answer and
Short CoT rationales provided with the dataset, we utilize GPT-40 [30] and DeepSeek-R1 [11] to
supplement the Code and Long CoT rationales, respectively. To ensure the quality of the generated
rationales, we filter out those that lead to incorrect answers, resulting in a training set containing
3.0K multiple-choice and 7.8K open-form questions, each with four reasoning formats. Appendix B
provides further details on the generation and filtering process. Stage 2: To prevent data leakage,
we employ three additional datasets exclusively for the RL stage.* These datasets cover a range of
difficulty levels, from relatively simple commonsense reasoning tasks to more complex mathematical
reasoning tasks, including CommonsenseQA (CSQA) [44], GSMS8K [6], and MATH [15], collectively
comprising 19.8K verifiable question-answer pairs. Please refer to Appendix C for details of the
datasets we use and Appendix D for implementation details.

Baselines In addition to backbone models, we compare ARM with models trained using alternative
algorithms that may enable adaptive reasoning capabilities. Specifically, Qwen2.5gpr refers to the
backbone models trained on the AQuA-Rat dataset used in Stage 1. In this setting, we explore
whether language models can master adaptive reasoning through a straightforward SFT strategy.
For Qwen2.5gp1.GrPO, We examine whether SFT models, further trained with GRPO, can better
understand different reasoning formats and whether this approach empowers them to select appropriate
reasoning formats based on rule-based rewards.

4.2 Evaluation

Evaluation Datasets To assess the models’ reasoning capabilities, we select a range of evaluation
datasets, including both in-domain and out-of-domain samples. These datasets span commonsense,
mathematical, and symbolic reasoning tasks. For commonsense reasoning, we include Common-
senseQA (CSQA)[44] and OpenBookQA (OBQA)[29], which are easier tasks based on intuitive
knowledge. For mathematical reasoning, we utilize SVAMP [34], GSMS8K [6], MATH [15], and
AIME’25 [9] to assess models’ ability to solve complex mathematical problems that require advanced
reasoning and strict logical thinking. For symbolic reasoning, we turn to Big-Bench-Hard (BBH) [43],
a benchmark for evaluating models’ structured reasoning ability to manipulate symbols according
to formal rules. For further analysis, we group the evaluation datasets into three difficulty levels:
commonsense tasks as easy; mathematical and symbolic tasks as medium; and AIME’25 as hard
given its competition-level difficulty.

Inference During inference, we set the temperature to 0.7 and top-p to 1.0. For all evaluation
datasets, we use accuracy as the metric. In addition to pass@1, to reduce bias and uncertainty
associated with single generation outputs and to enhance the robustness of the results [57], we further
use majority @k (maj@k), which measures the correctness of the majority vote from % independently

“In preliminary experiments, we observed that using the same training data in both stages causes the model
to recite answers rather than reasoning during the RL stage, resulting in poor generalization.



Table 1: Performance of various models across evaluation datasets. “#Tokens” refers to the token cost
for each model on each dataset. For each model, k = 1 corresponds to pass@1, and & = 8 corresponds
to maj@8. When k = 8, the token cost is averaged over a single output to facilitate clear comparison.
“+” denotes in-domain tasks, while “}” denotes out-of-domain tasks. “A” represents the difference
between ARM and Qwen2.5spr.Grpo, Calculated by subtracting the accuracy of Qwen2.5sgr.GrPO
from that of ARM, with the token usage expressed as the ratio of tokens saved by ARM compared to
Qwen2.5srr+GRPO, With all settings based on k£ = § to ensure a stable comparison.

Accuracy (1) #Tokens ()
Models Easy Medium Hard Ave Easy Medium Hard Avg
k CSQAT OBQA: GSM8Ki MATHi SVAMP; BBHi AIME'25% CSQAt OBQAf GSM8Ki MATHi SVAMP; BBH:i AIME'25f

GPT-40 1] 859 942 95.9 75.9 913 847 100 768 192 165 287 663 156 278 984 389
ol-preview 1| 855 956 94.2 92.6 927 918 400 846| 573 492 456 1863 489 940 7919 1819
o4-mini-high 1| 847 960 96.9 97.7 940 922 967  940| 502 289 339 1332 301 755 9850 1910
DeepSeek-V3 1| 824 960 96.5 91.8 937 858 367 833| 231 213 236 887 160 400 2992 732
DeepSeek-R1 1| 833 948 96.4 97.1 9.0 850 700 889 918 736 664 2339 589 1030 9609 2270
DS-RI-Distill-1.5B 1| 476 486 79.4 84.6 867 535 200  60.1| 987 1540 841 3875 606 3005 13118 3425
DS-R1-Distill-7B 1| 649 774 90.0 93.6 903 721 400 755| 792 928 574 3093 315 1448 12427 2797
DS-RI-Distill-14B 1| 806  93.2 94.0 95.5 927 804 500 838 816 750 825 2682 726 1292 11004 2585
DS-RI-Distill-32B 1| 832 946 93.5 93.0 920 8.3 567  856| 674 698 438 2161 283 999 11276 2361
Quen2.53B 1| 665 658 66.9 377 713 384 0 495 97 120 150 419 76 232 1393 355
: 8| 755 774 80.9 50.8 837 471 0 593| 96 100 149 424 85 240 1544 377
Qwen2.5-3Bger 1| 728 724 357 20.9 623 374 0 431 99 108 145 229 126 311 694 245
50T IBSKT 8| 755 774 56.0 27.6 747 435 0 507| 97 103 132 231 108 309 537 217
Quen2.5-3B 1| 797 790 88.7 66.6 920 526 67  665| 425 501 788 1586 630 994 3027 1136
TIUSITHGRPO gl 803 80.0 91.4 74.0 947 562 6.7 69.0| 429 506 802 1590 638 996 3247 1172
ARM-3B 1| 798 780 838 62.9 89.7 500 67 644 118 156 346 1013 264 436 2958 756
7 8| 80.1  78.0 90.8 72.8 950 538 67  682| 123 169 359 1036 246 430 3083 778

A -0.2 -2.0 -0.6 -1.2 +0.3 -2.4 0 0.8 -71.3% -66.6% -55.2% -34.8% -61.4% -56.8% =516 -33.69
Quen2.5.7B 1| 767 786 81.6 50.1 810 517 33 604 64 83 156 376 99 182 767 247
- 8| 820 864 89.9 64.7 89.7 620 33 683 66 74 156 370 92 183 881 260
Qwen2.5-7Bs 1| 808 812 54.4 304 760 482 0 53.0| 136 150 184 348 126 245 1239 347
-T/BsET 8| 839 846 79.4 24 880  56.0 0 620 141 137 185 361 141 274 1023 323
Quen2.57B 1| 831 822 92.8 79.4 937 643 167 732| 491 651 739 1410 587 1133 3196 1173
OTIUSFIHGRPO gl 837 84.6 94.8 84.9 953  69.3 200  76.1| 496 625 745 1415 586 1135 3145 1164
ARMTB 1| 861 844 89.2 73.9 920 614 167 720| 136 159 305 889 218 401 3253 766
8| 857 858 93.7 82.6 953 679 200 759 134 154 297 893 218 413 3392 786

A 2.0 +1.2 -1.1 -2.3 0 -14 0 -0.2 73.0% 75.4% 60.1% 36.9% 62.8¢ 63.6% +7.9% 32.5%
Quwen2.5-14B 1] 799 838 84.9 52.7 847 568 33 637 56 60 132 335 71 139 611 201
= 8| 838 902 923 68.4 91.7 674 33 710 55 60 131 325 81 131 735 217
Quwen2.5-14B 1| 81.8 880 62.6 374 840 535 0 582 155 140 161 276 152 254 527 238
: SFT 8| 850 914 86.4 48.8 91.7 644 33 673 149 141 165 288 140 247 493 232
Qwen2.5-14Bsrmamo 1| 834 930 94.8 81.7 937 705 200 77.0| 558 531 693 1805 565 945 4031 1304
- SFTHGRPO g 858 94.2 96.1 87.1 953 770 200  794| 552 537 696 1810 565 943 3723 1261
ARM-14B 1] 853 918 925 79.1 933 666 200 755| 146 128 294 903 212 420 3871 853
8| 856 918 96.3 86.4 957 721 233 787 145 134 293 910 189 415 3996 869

A -0.2 -2.4 +0.2 -0.7 +0.4 -4.9 +3.3 -0.7 73.7% 75.0% 57.9% 19.7% 66.59 56.0% +7.3% 31.1%

sampled outputs. For inference on the three backbone models, we use an example with a short-cot-
based answer within the prompt to guide the model toward specific answer formats while preserving
its original reasoning capabilities as much as possible.

4.3 Main Results

Alongside our baselines, we include several state-of-the-art general models, including GPT-40 [30]
and DeepSeek-V3 [27], as well as reasoning models ol-preview [31], 04-mini-high [32], and
DeepSeek-R1 [11], along with several DeepSeek-R1-Distill-Qwen (DS-R1-Distill) models ranging
from 1.5B to 32B [11]. We report our results in Table 1, and we have the following findings:

Current reasoning models struggle with the “overthinking” problem, with smaller distilled
models being more affected. We observe that all current reasoning models consume more than 500
tokens on easy commonsense tasks but do not always achieve corresponding improvements. For
example, although DeepSeek-R1 and DS-R1-Distill-7B use nearly 4x and 10x more tokens than
their backbone models, DeepSeek-V3 and Qwen2.5-7B, they do not show significant improvement
and even experience performance degradation, highlighting the “overthinking” problem. Additionally,
we find that when comparing different sizes of DS-R1-Distill, smaller models often require more
tokens while delivering worse performance.

SFT only teaches models about formats, yet does not teach how to choose the appropriate
formats based on the task. We observe that SFT models, across three sizes, show improvement on
easy commonsense tasks but experience performance drops on medium and hard tasks. To investigate
the cause, we conduct a deeper analysis of the reasoning formats selected during inference. Figure 2
visualizes how models allocate the four reasoning formats across three difficulty levels. Specifically,
we find that for models trained with SFT, their outputs are distributed almost uniformly across the
reasoning formats, with the majority in Direct Answer and the least in Long CoT, regardless of task
difficulty. As shown in Figure 2, the inappropriate selection of Direct Answer, which yields extremely
low accuracy (35.2%) on medium tasks and significantly hinders the model’s reasoning capabilities,
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Figure 2: Format distribution by task difficulty with Qwen2.5-7B. The hatched areas indicate the
percentage of correct answers that were generated using the selected reasoning format.

Table 2: Accuracy (Acc.) and token usage (Tok.) for the three reasoning modes supported by
ARM-7B. In the Consensus-Guided Mode, the percentage of Long CoT usage indicates how often the
model resorts to Long CoT when simpler reasoning formats fail to reach a consensus.

Easy Medium Hard A
ARM-TB Ve
CSQAT OBQAf GSMS8Kf MATH} SVAMP: BBHi AIME’25%
Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok.
Adaptive 86.1 136 84.4 159 89.2 305 739 889 92.0 218 61.4 401 16.7 3253 72.0 766

Instpire: 84.1 10 81.8 10 229 11 231 13 67.0 11 447 21 0 12 462 13
Instsporscor 81.3 33 774 35 85.0 124 709 633 86.7 66 49.7 101 10.0 2010 659 428
Instcose 84.4 140 81.6 147 842 285 659 559 883 182 57.9 344 10.0 1821 67.5 497
Instzong cor 84.0 259 87.4 294 91.8 426 77.2 1220 943 340 66.9 660 20.0 4130 74.5 1047

Consensus 85.8 228 87.0 260 929 777 784 2281 95.7 433 66.4 1039 20.0 7973 75.2 1856
Long CoT Usage  12.9% 21.4% 79.8% 79.2% 36.3% 56.3% 100% 55.1%

finally leads to a decline in overall performance. This suggests that while SFT teaches models various
formats, it fails to help them adaptively select appropriate ones based on the task, leading to an
inability to choose more advanced formats as problem complexity increases.

GRPO does improve reasoning capabilities, but it tends to rely on Long CoT to solve all tasks.
We observe that models trained with GRPO achieve significant improvements across all tasks, yet the
token cost remains substantial, especially for the two easier tasks. Further analysis reveals that Long
CoT is predominantly used in the inference stage, as shown in Figure 2. This behavior stems from
the nature of GRPO (i.e., format collapse discussed in Section 3.2), where models converge to the
format with the highest accuracy (i.e., Long CoT) early in training (~10 steps in our experiment). As
a result, GRPO also fails to teach models how to select a more efficient reasoning format based on
the task. We provide more details of format collapse in Appendix E.

ARM is able to adaptively select reasoning formats based on task difficulty, while achieving
comparable accuracy across all tasks compared to GRPO and using significantly fewer tokens.
As shown in Table 1, across three different model sizes, all ARMs experience an average performance
drop of less than 1% compared to models trained with GRPO, yet they save more than 30% of the
tokens. Specifically, ARM demonstrates a clear advantage on easy tasks, saving over 70% of tokens
while maintaining comparable accuracy. This advantage extends to medium tasks as well. For the
more challenging AIME’25 task, ARM adapts to the task difficulty by increasingly selecting Long
CoT, thereby avoiding performance degradation on harder tasks, with ARM-14B even surpassing its
counterpart Qwen2.5-14Bspr,crpo- Figure 2 further confirms that ARM is able to gradually adopt
more advanced reasoning formats and discards simpler ones as task difficulty increases. Moreover,
as shown in Figure 1b, the line connecting “SFT” and “+GRPO” illustrates the expected trade-off,
while “+Ada-GRPO” consistently lies above it, indicating a better balance between effectiveness and
efficiency of ARM. Additionally, ARM-7B achieves comparable performance to DS-R1-Distill-7B
while using only 27.8% of the tokens on average. For a broader view of generalization across
additional benchmarks, please refer to Appendix F.

4.4 Reasoning Mode Switching

ARM is capable of autonomously selecting appropriate reasoning formats (Adaptive Mode), while
also supporting explicit guidance to reason in specified formats (Instruction-Guided Mode) or through
consensus between different reasoning formats (Consensus-Guided Mode). Specifically, /) Adaptive
Mode: In this mode, ARM autonomously selects the reasoning format for each task, which is also the
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Figure 3: Accuracy comparison between ARM’s
Adaptive and Instruction-Guided modes. The
figure shows average accuracy across evaluation
datasets, with Direct Answer applied only to
commonsense and symbolic tasks, as it does not
appear in mathematical tasks in Adaptive mode.
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Figure 4: Relative accuracy and token usage
of different models compared to their backbone
models on CSQA. “L1” denotes L1-Exact [1],
and “TP” denotes THINKPRUNE [16]. “7-
Accuracy” and “7-#Tokens” are reported relative
to each model’s backbone after RL training.

default reasoning mode if not specified in this paper. 2) Instruction-Guided Mode: In this mode,
a specific token (e.g., <Long CoT>) is provided as the first input, forcing ARM to reason in the
specified format. 3) Consensus-Guided Mode: In this mode, ARM first generates answers using the
three simpler reasoning formats (i.e., Direct Answer, Short CoT, and Code) and checks for consensus
among them. If all formats agree, the consensus answer is adopted as the final result. Otherwise,
ARM defaults to Long CoT for the final answer, treating the task as sufficiently complex.

To evaluate the performance and effectiveness of the proposed reasoning modes, we conduct exper-
iments across various evaluation datasets. Table 2 presents the results for ARM-7B. Specifically:
1) Adaptive Mode strikes a superior balance between high accuracy and efficient token us-
age across all datasets, demonstrating its ability to adaptively select the reasoning formats.
2) Instruction-Guided Mode offers a clear advantage when the assigned reasoning format is
appropriate. For example, Direct Answer is sufficient for commonsense tasks, while Code, due
to its structured nature, performs better on symbolic reasoning tasks compared to Direct Answer
and Short CoT. Furthermore, Inst;,n, cor achieves better performance (74.5%) than the same-sized
model trained on GRPO (73.2% in Table 1). This demonstrates that Ada-GRPO does not hinder the
model’s Long CoT reasoning capabilities. We further validate this by analyzing the reflective words
used by ARM-7B and Qwen2.5-7Bggrigrro in Appendix G. 3) Consensus-Guided Mode, on the
other hand, is performance-oriented, requiring more tokens to achieve better performance.
This mode leverages consensus across multiple formats to mitigate bias and uncertainty present in
any single format, offering greater reliability, particularly for reasoning tasks that demand advanced
cognitive capabilities, where simpler formats may fall short. This is evidenced by the fact that Long
CoT is less likely to be used for easy tasks, but is highly likely to be selected for medium tasks and
even used 100% of the time for the most difficult AIME’25 task.

5 Analysis

5.1 Effectiveness of Adaptive Format Selection

To verify that ARM’s format selection indeed adapts to the task at hand rather than relying on random
selection, we compare ARM’s Adaptive Mode with Instruction-Guided Mode. In Instruction-
Guided Mode, the reasoning format is fixed and manually specified, providing a strong baseline to
test whether adaptive selection offers real benefits over using a uniform format across tasks. We
report the accuracy of both modes in Figure 3. We observe that the accuracy of the reasoning formats
selected in Adaptive Mode is higher than that in Instruction-Guided Mode. Specifically, Adaptive
Mode improves accuracy by 4.7% on Direct Answer, by 2.7% on both Short CoT and Code, and even
yields a slight improvement on Long CoT. These results confirm that ARM is not randomly switching
formats but is instead learning to select an appropriate one for each task. Further ablation results on
reasoning formats are presented in Appendix H.

5.2 Comparison of Ada-GRPO and GRPO

We find that, compared to GRPO, ARM trained with Ada-GRPO achieves comparable performance on
the evaluation dataset while achieving approximately a ~ 2x speedup in training time. To understand
the source of this efficiency, we compare the training dynamics of Ada-GRPO and GRPO across
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Figure 5: Performance on the training set across different model sizes trained with Ada-GRPO and
GRPO. Except for the implementation of the algorithm, all hyperparameters are kept the same.
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Figure 6: ARMSs’ performance across different backbones. Base and instruction-tuned models perform
similarly, while DS-R1-Distill improves on medium and hard tasks but struggles on easy ones.

different model sizes, focusing on accuracy, response length, and training time, as shown in Figure 5.
The results highlight the following advantages of Ada-GRPO: /) Comparable Accuracy. Although
Ada-GRPO initially lags behind GRPO in accuracy due to suboptimal reasoning format selection in
the early training steps, both methods converge to similar final accuracy across all model sizes. This
demonstrates that Ada-GRPO does not compromise final performance. 2) Half Response Length.
While GRPO uses Long CoT uniformly across all tasks, Ada-GRPO adaptively selects reasoning
formats based on task difficulty. Due to the length efficiency of Direct Answer, Short CoT, and
Code, Ada-GRPO ultimately reduces the average response length to roughly half that of GRPO.
3) Half Training Time Cost. Since the majority of training time is spent on response generation
during the roll-out stage, reducing response length directly translates into lower time cost. As a
result, Ada-GRPO achieves approximately a ~ 2x speedup compared to GRPO. Overall, Ada-GRPO
maintains strong performance while significantly reducing computational overhead, underscoring its
efficiency and reliability for training.

5.3 Comparison of Backbone Models

Beyond the base model, we further analyze the impact of different backbone models, including
instruction-tuned and DS-R1-Distill variants. Figure 6 reports accuracy and token usage across
easy, medium, and hard tasks. We observe that base and instruction-tuned models have a highly
similar performance. This suggests that RL effectively bridges the gap left by instruction tuning,
enabling base models to achieve comparable performance, consistent with findings from previous
work [20]. In contrast, the DS-R1-Distill variant performs notably better on medium and hard tasks,
benefiting from distilled knowledge from the stronger DeepSeek-R1 model, though at the expense of
increased token cost. However, it performs significantly worse on easy tasks, even with excessive
token usage, resulting from the overthinking phenomenon. Additional discussion and case studies
on the overthinking phenomenon are presented in Appendix I, and a complementary analysis of
LLaMA-based backbones is included in Appendix J.

5.4 Comparison of ARM and Length-Penalty-Based Strategies

To examine whether previously proposed length-penalty-based strategies—proven effective in com-
plex reasoning—remain effective for easier tasks, we evaluate two representative methods, L1 [1]
and THINKPRUNE [16], on the CSQA dataset. Since both methods are based on the DS-R1-Distill
model, we ensure a fair comparison by also evaluating the version of ARM trained on the same
backbone. We report the relative accuracy and token usage of all three models compared to their
respective backbone models in Figure 4. When using the minimum allowed lengths specified in the
official settings of L1 and THINKPRUNE, both methods exhibit performance drops. In contrast, ARM
maintains strong performance while using relatively fewer tokens, demonstrating its ability to balance
reasoning efficiency and effectiveness. Please see Appendix K for further discussion and details.



6 Conclusion

In this work, we propose Adaptive Reasoning Model (ARM), which adaptively selects reasoning
formats based on task difficulty. ARM is trained with Ada-GRPO, a GRPO variant that addresses
format collapse via a format diversity reward and achieves a ~ 2X training speedup. Experiments
show that ARM maintains performance comparable to the GRPO-trained model relying solely on
Long CoT, while significantly improving token efficiency. Beyond the default Adaptive Mode, ARM
also supports Instruction-Guided Mode, which excels when the format is appropriately specified, and
Consensus-Guided Mode, which maximizes performance at higher token usage. By adopting the
adaptive reasoning format selection strategy, ARM effectively mitigates the overthinking problem and
offers a novel, efficient approach to reducing unnecessary reasoning overhead.
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Appendix

A Details of Ada-GRPO

A.1 Training Objective

Following GRPO [38], given a query ¢ and a set of responses O = {01, 09, . .., 0¢ } sampled from
the old policy 7,14, We optimize the policy model 7 using the Ada-GRPO objective:
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where 7.¢ denotes the reference model, and the KL divergence term KL serves as a constraint to
prevent the updated policy from deviating excessively from the reference. The advantage estimate
Aj i is computed based on a group of rewards {ri,ry, - ,rg} associated with the responses in O,
as defined in equation 5.

A.2 Decay Factor

In Ada-GRPO, the decay factor decay;(t) is introduced to reg-
ulate the influence of the format diversity scaling factor during
training. Without decay, the model may continue to overly
reward less frequent reasoning formats even after sufficient
exploration, misaligning with our objective. To evaluate the
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effectiveness of the decay mechanism, we track the test set per-
formance across three in-domain datasets (CSQA, GSM8K, and
MATH) using checkpoints saved every 25 training steps for mod-
els trained with and without decay. As shown in Figure 7, models
trained without decay exhibit larger performance fluctuations in
test accuracy, indicating unstable exploration. In contrast, the
decay mechanism stabilizes training, resulting in smoother and
more consistent improvements in accuracy during the middle
and later training stages.
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Figure 7: Test set accuracy with
and without the decay mechanism.

We use gpt-40-2024-11-20 to generate Code reasoning rationales. Following previous work [50], we
ask the model to return the output as a dictionary containing all intermediate and final outputs, which

is beneficial for emulating the generated program’s execution.

For the following questions and answers,
solves the question. The function should
field ’answer’: <answer>, as well as the
decisions. Ensure that both the function
CODE>...</CODE>,
<0UTPUT>...</0QUTPUT>.

{examples}

Question:
{question}

Answer:

{rational}

#### {ground_truth}

generate a function that

return a dictionary with the
values for intermediate
and its call are wrapped in <
and that the emulation of its execution is wrapped in
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Table 3: Dataset in each training stage. [ Direct (11.0)
Dataset Answer Format  Size Short CoT (100.3)
[ Code (244.6)

[ Long CoT (1151.1)

Stage 1: Supervised Finetuning

Multiple-Choice ~ 3.0K

AQuA-Rat Open-Form 7.8K
10.8K
Stage 2: Reinforcement Learning 500 1000 1500
- - #Tokens
CSQA Multiple-Choice  4.9K
GSMSK Open-Form 7.4K Figure 8: Token count distribution across reason-
MATH Open-Form 7.5K ing formats in the SFT dataset AQuA-Rat, with
19.8K brackets indicating average counts.

We use Deepseek-R1 to generate Long CoT rationales.

Put the answer in format "<ANSWER>...</ANSWER>".

{question}

B.2 Filter Out Rationales

For Code rationales, we utilize a Python interpreter to execute each generated code snippet. We
apply the following filters: /) execution failure, 2) missing answer key, 3) inconsistencies between
intermediate steps and execution results, and 4) mismatches between the predicted and ground-truth
answers. For Long CoT rationales, we filter out those with incorrect answers. Token count distribution
across reasoning formats in the SFT dataset can be seen in Figure 8.

C Examples in Training
The question-answer format and size of the datasets in each training stage can be found in Table 3.

C.1 Examples in SFT Stage

We provide four reasoning formats for the SFT dataset AQuA-Rat [26], including Direct Answer,
Short CoT, Code, Long CoT. Here is an example.

Question:

You collect baseball cards. Suppose you start out with 15. Maria takes
half of one more than the number of baseball cards you have. Since

you’re nice, you give Peter 1 baseball card. Since his father makes

baseball cards, Paul decides to triple your baseball cards. How many

baseball cards do you have at the end?

Direct Answer:
18

Code:

def calculate_baseball_cards():
# Initial number of baseball cards
initial_cards = 15

# Maria takes half of one more than the number of baseball cards
maria_takes = (initial_cards + 1) / 2

cards_after_maria = initial_cards - maria_takes

# Peter takes 1 baseball card
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cards_after_peter = cards_after_maria - 1

# Paul triples the number of baseball cards
final_cards = cards_after_peter x* 3

return {
‘maria_takes’: maria_takes,
cards_after_maria’: cards_after_maria,
’cards_after_peter ’: cards_after_peter,
’answer ’: final_cards

}
>>> calculate_baseball_cards ()

output = {
‘maria_takes’: 8.0,
’cards_after_maria’: 7.0,
’cards_after_peter’: 6.0
’answer ’>: 18.0

>

}

Short CoT:

Start with 15 baseball cards. Maria takes half of one more than the

number of baseball cards you have. So Maria takes half of 15 + 1 which
is 8, so you’re left with 15 - 8 = 7. Peter takes 1 baseball card

from you: 7 - 1 = 6 baseball cards. Paul triples the number of

baseball cards you have: 6 * 3 = 18 baseball cards. So you have 18 at

the end. The answer is 18.

Long CoT:

Okay, let me try to work through this problem step by step. So, the

question is about collecting baseball cards, and there are a series of
steps that happen. Let me read it again to make sure I understand

each part.

Alright, starting with 15 cards. Then Maria takes half of one more
than the number I have. Wait, that phrasing is a bit tricky. So Maria
takes half of (one more than my current number of cards). Let me parse
that. If I have N cards, Maria takes (N +1)/27 Hmm. Let me double-
check. The problem says: "Maria takes half of one more than the number
of baseball cards you have." So, the expression would be ( (number
you have + 1 ) ) / 2. Right. So that’s (current cards +1) divided by
two. Then after that, I give Peter 1 card. Then Paul triples my cards.
So, let’s break it down step by step.

Starting with 15 cards. Let’s note each step:

1. Initial cards: 15.

2. Maria takes half of one more than what I have. So, first, calculate
one more than my current count: 15 +1 =16. Then she takes half of

that. So 16 /2 =8. So Maria takes 8 cards. Wait, but when she takes

them, does that mean my total decreases by 87 Yes, I think so. Because
she’s taking them from me. So subtract 8 from my current count.

So after Maria takes them: 15 -8 =7. Now I have 7 cards left.

Wait a minute, wait. Wait, when Maria takes half of one more than the

number I have, which is (15+1)/2=8. So she’s taking 8 cards. So yes,

subtract 8 from my current 15. That leaves me with 7.

Then, the next step: since I’m nice, I give Peter 1 baseball card. So
subtract 1 more. 7 -1 =6.

16




Then Paul decides to triple my baseball cards. So multiply my current
count by 3. 6 *3 =18.

So the answer should be 18. Let me go through the steps again to check

Original: 15.

After Maria: (15 +1)/2 =8. So 15-8=7.
After giving Peter 1: 7-1=6.

After Paul triples: 6%x3=18.

Yes, that seems right. Did I misinterpret any step? Let’s double-check
each part.

"Maria takes half of one more than the number of baseball cards you
have." So when Maria takes, it’s (my current cards +1)/2. So when I
have 15, that’s (15+1)/2=8. She takes 8, so I have 7 left. Correct.

Then giving Peter 1: 7-1=6. Then Paul triples to 18. Yep. That seems
correct. So the final answer is 18.

C.2 Examples in RL Stage

The RL dataset includes CSQA [44], GSM8K [6], and MATH [15], with examples provided below.

<CommonsenseQA >

What is the base of a vase called?

(A) transistor (B)vessel (C)box (D)pie (E)seabase
ground truth: B

<GSM8K >

Natalia sold clips to 48 of her friends in April, and then she sold
half as many clips in May. How many clips did Natalia sell altogether
in April and May?

ground truth: 72

<MATH>

Rationalize the denominator: $\frac{1}{\sqrt{2}-1}$. Express your
answer in simplest form.

ground truth: $\boxed{\sqrt{2}+1}$

D Implementation Details

Our training is performed using 8 NVIDIA A800 GPUs. The following settings are also applied to
other baselines for fair comparisons.

D.1 Stage 1: SFT

We utilize the open-source training framework LLAMAFACTORY [58] to perform SFT. The training
is conducted with a batch size of 128 and a learning rate of 2e-4. We adopt a cosine learning rate
scheduler with a 10% warm-up period over 6 epochs. To enhance training efficiency, we employ
parameter-efficient training via Low-rank adaptation (LoRA) [17] and DeepSpeed training with the
ZeRO-3 optimization stage [36]. As a validation set, we sample 10% of the training data and keep
the checkpoint with the lowest perplexity on the validation set for testing and the second stage.
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Table 4: Effect of training with AIME-only data on reasoning format distribution.

CSQA OBQA
Long CoT  Other Formats Long CoT  Other Formats
Training with AIME only 79.4% 20.6% 83.0% 17.0%

7B Models

Table 5: Comparison of accuracy and token usage between different training recipes.

CSQA OBQA
Acc. Tok. Acc. Tok.

Training with AIME only 78.6 401 822 426
ARM Recipe 86.1 136 844 159

7B Models

D.2 Stage2: RL

We utilize the open-source training framework VeRL [40] to perform RL. During training, we use a
batch size of 1024 and generate 8 rollouts per prompt (G = 8), with a maximum rollout length of
4096 tokens. The model is trained with a mini-batch size of 180, a KL loss coefficient of 1e-3, and a
total of 9 training epochs. The default sampling temperature is set to 1.0.

E Effect of Training Data Bias on Format Collapse

Since training data may implicitly favor certain reasoning formats, it is important to examine whether
such bias can induce format collapse. To this end, we analyze an ARM trained solely on the
AIME dataset (1983-2024), which primarily favors Long CoT solutions due to its competition-level
complexity. We present the result in Table 4. We evaluate this model on two simpler tasks—CSQA
and OBQA—and observe that the model overwhelmingly selects Long CoT (~80%) even when
simpler formats would suffice. This confirms that training on a biased dataset can indeed lead to
over-reliance on a single reasoning format.

To mitigate this, ARM is trained on a diverse mixture of datasets across a wide range of difficulties.
As shown in Table 5, the full ARM recipe achieves both higher accuracy and significantly reduced
token usage on the tasks, demonstrating that our approach effectively prevents format collapse and
encourages adaptive reasoning behavior across domains.

F Generalization to Additional Benchmarks

As shown in Section 4.2, our existing evaluation spans across in- and out-of-domain commonsense,
mathematical, and symbolic reasoning. To further investigate the generalizability of ARM, we extend
the evaluation to two additional benchmarks: /) GPQA [37], a challenging QA dataset designed to
test compositional reasoning, and 2) StrategyQA [8], a benchmark of yes/no questions that require
implicit multi-hop reasoning.

As shown in Table 6, ARM achieves comparable accuracy to the GRPO baseline while significantly
reducing token cost by an average of 50%, and up to 65% in StrategyQA, consistent with our
main findings discussed in Section 4.3. This demonstrates that ARM’s adaptive reasoning behavior
generalizes well to more tasks.

G Details of Reflective Words

To evaluate models’ Long CoT reasoning capabilities, we focus on their use of specific reflective
words that signal backtracking and verifying during the reasoning process. Following prior work [28],

CLIT3

we consider a curated list of 17 reflective words: [“re-check”, “re-evaluate”, “re-examine”, “re-think”,

LI T3 LLINNT3 LEINNT3 ELINT3

“recheck”, “reevaluate”, “‘reexamine”, “reevaluation”, “rethink”, “check again”, “think again”, “try

CLINT3 CEINT3

again”, “verify”, “wait”, “yet”, “double-check”, “double check’]. We adopt two evaluation metrics:

18



Table 6: Comparison between the GRPO baseline and ARM on GPQA and StrategyQA benchmarks.

GPQA-Main GPQA-Diamond StrategyQA
Acc. Tok. Acc. Tok. Acc. Tok.

Qwen2.5-7Bsprigrro 35.0 2324 374 2604 72.9 646
ARM-7B 34.8 1306 36.9 1536 73.8 229
A -02 —-438% -05 —41.0% +0.9 —64.6%

Models

Table 7: Definitions and results of reflection-related ratios on AIME’25.

Ratio Name Formula Qwen2.5-7Bspri.grro  ARM-7B
reflection_ratio N/(;f 93.8 95.0
Nrept

correct_ratio_in_reflection_texts 14.2 13.9

ref

reflection_ratio, measuring the proportion of outputs containing at least one reflective word,
and correct_ratio_in_reflection_texts, assessing the correctness within reflective outputs.
The formulas for these metrics are summarized in Table 7, where A/ denotes the total number of
responses, N,..s the number of responses containing reflective words, and N,y the number of
correct reflective responses.

Given its competition-level difficulty, we conduct our analysis on AIME’25 using ARM-7B and
Qwen2.5-7BsrrsGrro. For ARM-7B, we use the Instruction-Guided Mode (Instz o, co7) to specifically
assess its Long CoT reasoning. The results, averaged over 8 runs, are reported in Table 7. As
shown, both models exhibit a high frequency of reflective word usage, with reflection_ratio
exceeding 93%, indicating that reflection behavior is well-integrated during Long CoT reasoning.
The correct_ratio_in_reflection_texts remains comparable for both models, and relatively
low due to the high complexity of the AIME’25 tasks. These results demonstrate that Ada-GRPO
does not hinder the model’s Long CoT reasoning capabilities.

H Ablation Study on Reasoning Formats

To further investigate whether defining other reasoning formats would help, we add an additional
reasoning format: function-calling, implemented via code execution. Specifically, during inference,
when the model selects the Code reasoning format, we run the generated code using an interpreter
to obtain an answer. If execution fails, the model falls back to simulating the output of the code,
consistent with prior work [23].

As shown in Table 8, incorporating the function-calling format yields improvements, suggesting that
more fine-grained formats can provide benefits. However, we also note that incorporating additional
reasoning formats demands extra resources to implement the pipeline. For example, parallel function
calls during training can lead to high memory consumption, and decreasing the number of processes
may prolong the training time. Furthermore, formats like function-calling would introduce additional
inference-time latency (e.g., due to runtime execution). Therefore, we adopt the current four reasoning
formats for their widespread use and practicality, and leave the exploration of more reasoning formats
to future work.

In addition to adding reasoning formats, we further examine the effect of removing specific reasoning
formats on performance and token efficiency. Specifically, during inference, we remove Direct
Answer on CSQA, Short CoT on GSMS8K, and Long CoT on AIME’25. The results are summarized
in Table 9. On CSQA, removing Direct Answer increases token usage by +29.4% with negligible
accuracy gain, showing it is crucial for efficiently handling simple tasks. In contrast, on AIME’25,
removing Long CoT leads to a significant accuracy drop (-8.4), confirming its importance for complex
reasoning. Overall, these results validate the necessity of the predefined reasoning formats in enabling
adaptive reasoning.
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Table 8: Accuracy across benchmarks when adding a function-calling reasoning format to ARM.

7B Models Easy Medium Hard Ave,
CSQA OBQA GSM8K MATH SVAMP BBH AIME’25
vanilla ARM  86.1 84.4 89.2 73.9 92.0 61.4 16.7 72.0
ARM + function-calling  86.1 84.5 90.3 74.3 92.8 62.1 16.7 72.4
A 0.0 +0.1 +1.1 +0.4 +0.8 +0.7 0.0 +0.4
Table 9: Effect of removing reasoning formats from ARM.
7B Models CSQA GSMS8K AIME’25
Acc. Tok. Acc. Tok. Acc. Tok.
vanilla ARM  86.1 136 89.2 305 16.7 3253
after removing  86.2 176 89.5 385 83 2137
A +0.1 +29.4% +0.3 +26.2% -84 —34.3%
I Details of the Overthinking Phenomenon
Overthinking refers to the phenomenon where
LLMs apply unnecessarily complex reasoning to —— SFT+GRPO  —=-~ ARM

: : minichi 3 (a) CSQA (b) BBH-TempSeq
simple tasks, leading to diminishing returns in 180 %00 300 300 ebo
performance [42]. As demonstrated in Table 1 \?90 60

. . . . . < A
and 2, using Long CoT, despite incurring higher % 10
computation costs, significantly enhances model & 80 2
.. Q
performance on tasks requiring complex mathe- 2 79
matical reasoning, such as MATH. However, as 200 400 600 800 1000 800 1200 1600 2000
#Tokens #Tokens

mentioned in Section 4.3 and 5.3, longer responses
do not consistently lead to better performance for
all task types. In this section, we analyze the over-
thinking phenomenon in depth, focusing on how
overly complex reasoning formats can hurt perfor-

Figure 9: Overthinking in 7B model performance
across two representative datasets. We remove
the extreme data points and ensure that sufficient
data points fall within the intervals.

mance when applied to certain tasks.

I.1 Analysis

We analyze the evaluation datasets and illustrate the “overthinking” phenomenon using two represen-
tative datasets: CSQA and TemporalSequences in BBH Benchmark. From Figure 9 (note that the
horizontal axis scales differ between SFT+GRPO and ARM.), we observe that SFT+GRPO, which
relies heavily on Long CoT, shows a significant drop in accuracy as the model generates lengthy
responses. It indicates that the model starts generating excessive information that does not contribute
to task resolution. In contrast, ARM achieves better performance with fewer tokens for simpler tasks.
This analysis reinforces the idea that longer reasoning does not equate to better performance [7; 42],
and the optimal reasoning format depends on task type. ARM provides a more flexible, task-specific
solution to avoid overthinking, ultimately improving performance. Please refer to Appendix 1.3 for a
detailed example of how Long CoT errs in CSQA, while a simpler reasoning format with lower token
usage successfully solves the problem.

I.2 Data Examples

<BBH-Temporal
Today, Ashley
have gone?

We know that:
the deli from

from 1pm to 3pm.

3pm to 6pm.

Sequences >
went to the

Ashley woke
liam to 1pm.
Kimberly

bookstore.
up at 5am.

Emily saw
saw Ashley
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Jason saw Ashley buying lunch at
Ashley driving to the water park
stretching at a yoga studio from



The bookstore was closed after 6pm. Between what times could Ashley
have gone to the bookstore?

(A) 1pm to 3pm

(B) 1lam to 1pm

(C) 3pm to 6pm

(D) 5am to 1lam

ground truth: D

1.3 An Example of Overthinking in CSQA

Where does a maid empty a trash can?
(A)bus stop (B)corner (C)hockey game (D)motel (E)alley

Long CoT used by +SFT+GRPO:

<LONG_COT>

Okay, let’s see. The question is where a maid would empty a trash can.
Hmm, pick one of the options given. Let’s break down the terms.

First, a maid is someone who works in a hotel or other environment,
such as cleaning. Their job might involve domestic duties for a
specific kind of client, perhaps upper class, but specific job would
involve handling various items. So having cleaning duties like trash
removal.

Now, traditionally, maid service might be focused on particular areas-
probably the rooms in a hotel, apartment, or maybe an individual
client if they work as an in-home maid. So for that_RESULTS, would
probably be... Alright. Let’s look at the choices:

(A) Bus stop. Seems like they shouldn’t dispose of anything there. A
bus stop would have trash cans, but personally I doubt a maid would
dump trash in a bus station. That’s probably not part of their
responsibilities.

(B) Corner. Hmm. A literal street corner, perhaps maybe a public
restroom? Or other outdoor spot? But where tomorrow’s trash can? I can
’t imagine a location in caring for trash outside normal public areas.
Maybe mega cities and sanitation handling upgrades, but again not a
typical everyday task for a maid.

(C) Hockey Game. Hmm. Trash removal at a hockey game... Never heard of
a maid working at a hockey game. Probably no. The grounds might be
cleaned by different personnel, like stadium employees, most likely
more specialized. Hell, playerName duplication, maybe the trash cans
outside the arena get cleaned? That probably exclude maid’s work issue
So probably can be discounted.

(D) Motel. Hmm. Maybe the version of this? Or hotels. Wait, motel is
final answer. But wait, official work responsibility. The main point
here is where professional maid service has responsibilities. For
example, in hotels-motel rooms (though maybe not modern motels, which
had more community facilities?) The specific task is they probably
need to take trash cans to the disposal area-usually outside the room
in compilations. So perhaps dump it into a proper receptacle. That
would happen in backend trash can disposal, but Solutions associated
with cleaning, not directly in guest areas.

(E) Alley. Hmm. Alley avoids touristy trash? Wait, perhaps like
backstage scenario. Or alleyways can be garbage collection areas. But
how typical? Probably the communities are serviced by regular
collection with professionals. For same reasons as airliner (1like
trash in the alley). The main thing is that probably would move trash
to the nearest dumpster, possibly in an alley. Though not a public
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area of the house. Though again, problem is which alley. It’s not
nearly as common would be this responsibility. Probably more 1likely
that a maid would take the trash to a dumpster outside. So option E
probably can be considered.

Wait, not sure, but none of the options are obvious, but Zeeland E.
Because the equipment is usually moved from rooms to a centralized
dumpster. Probably near the alley. Although may not be the primary
course of action. However, this is what might be discussed. Because
depending on the structure. For example, perhaps motel rooms need to
dispose garbage in dumpster , making alley collection possible.

But options like motel and motel would probably be the right answer.
But museum? Not typical. So perhaps neither of the answers given. Wait
, maybe E.

</LONG_COT>

<ANSWER >

E

</ANSWER >

Short CoT used by ARM:

<SHORT_COT>

A maid works in a motel. A maid may empty a trash can in a motel.
The answer is D

</SHORT_COT >

<ANSWER >

D

</ANSWER >

J Experiment on LLaMA Baseline

Based on the superior performance of the Qwen model and its inherent adaptability to reinforcement
learning [55; 48], we adopt Qwen as the backbone model in our experiments. To examine the
generality of our method, we further train models on LLaMA-3.2-3B [10] and report the results in
Table 10. Consistent with our main findings, ARM achieves comparable performance to the GRPO
baseline while using fewer tokens across diverse task domains and complexity levels, demonstrating
that our method can generalize to different backbone models.

We also note that token reduction is less pronounced on LLaMA than on Qwen (e.g., 15.7% vs. 55.2%
on GSMB8K). Upon closer analysis, we find this is caused by repetitive outputs on occasion produced
by the LLaMA-based model—a phenomenon also observed in prior work [48]—which may lead
to longer response lengths. This discrepancy may stem from differences in model architecture or
pretraining data, and we leave further investigation to future work.

Table 10: Comparison of the GRPO baseline and ARM on LLaMA-3.2-3B [10] across CSQA,
GSMSK, and AIME’25. ARM achieves similar accuracy while reducing token usage.

LLaMA3235 CSQA GSMSK AIME 25
k Acc. Tok. Acc. Tok. Acc. Tok.
1 764 347 875 677 33 4616
GRPO Baseline ¢ 76'e 350 903 662 33 4375
aey | 762 158 861 546 33 3534
8 765 162 898 558 33 3713
A 03 -537% 05 -157% 0 -151%
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Table 11: Performance of L1-Exact under different specified token budgets across benchmarks.
“Spec.” indicates the user-specified reasoning budget in tokens.

CSQA AIME MATH AMC olympiad_bench
Spec. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok.

512 458 328 33 623 71.0 590 470 641 317 608
1024 46.6 589 6.7 1291 77.2 1182 458 1283 372 1184
2048 46.0 2004 133 1935 79.6 1751 554 1950 39.7 1813
3600 46.1 4747 267 3696 81.8 3478 723 3525 437 3460

Table 12: Comparison between L1 and ARM across multiple benchmarks.

Easy Medium Hard
7B Models Avg.

’ CSQA OBQA GSM8K MATH SVAMP BBH AIME’25

k Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok.

L1 1 624 232 692 341 89.8 273 859 943 89.7 231 64.6 628 30.0 3949 702 942

8 656 234 748 345 929 272 886 944 913 231 699 628 333 3964 73.8 945

ARM 1 663 237 686 316 90.1 311 856 945 90.7 251 656 617 400 5413 724 1156

8 672 234 696 322 939 306 93.1 933 933 242 71.8 623 40.0 5858 75.6 1217

K Further Discussion on Length-Penalty Strategies

K.1 Implementations

To ensure fair comparisons, we follow the official settings of L1 [1] and THINKPRUNE [16], adopting
their specified minimum allowed lengths when evaluating on easy tasks. We set the temperature to 0.6
and top-p to 0.95, consistent with both papers. Specifically, we use L1-Qwen-1.5B-Exact’ at 512
tokens for L1 and DeepSeek-R1-Distill-Quen-1.5B-thinkprune-iter2k® for THINKPRUNE.

K.2 Inaccurate Estimation of Length-Penalty Strategies

We provide an in-depth analysis of L1 here, which applies a length penalty strategy during training.
At inference time, users are required to explicitly specify token budgets in the instructions for the
task. We follow the official setting and additionally extend the evaluation to the CSQA benchmark.
Results are presented in Table 11. We clarify our claims as follows:

Users’ inaccurate token estimation hurts performance, since the length penalty strategy assumes
prior knowledge of the task to predefine the appropriate reasoning length. If the user’s estimation
is not accurate enough, the performance degradation is significant: /) Underestimated budgets
hurt performance on complex tasks. On harder benchmarks like AIME, performance is severely
degraded under low budgets: only 3.3% at 512 tokens, improving gradually to 26.7% at 3600 tokens.
Such under-estimation of required reasoning length severely limits performance on challenging
benchmarks. 2) Large budgets waste resources on simple tasks. On easier benchmarks like CSQA,
enforcing large reasoning budgets leads to token usage increases with minimal, or even detrimental,
gains. For example, CSQA accuracy rises marginally from 45.8% at 512 tokens to 46.1% at 3600
tokens. In contrast, ARM learns to allocate longer reasoning only when necessary, avoiding both
under- and overestimation.

K.3 Further Comparison with L1

We further conduct a comparison between ARM-7B and L1-Qwen-7B-Exact’. For fairness, we
align the backbone model by using DS-R1-Distill for both models. During L1 inference, we set token
budgets to match ARM’s average token usage on each dataset for fair comparison.

>https://huggingface.co/131ab/L1-Qwen-1.5B-Exact
Shttps://huggingface.co/Shiyu-Lab/DeepSeek-R 1-Distill-Qwen- 1.5B-thinkprune-iter2k
https://huggingface.co/131ab/L1-Qwen-7B-Exact

23



As shown in Table 12, ARM consistently outperforms L1 with similar token usage, demonstrating the
advantage of adaptive reasoning over length constraints. Notably, L1 requires human intervention
to set the token budget manually, and an inaccurate assignment of the token budget would bring
a performance drop (As detailed in Appendix K.2). In contrast, ARM autonomously adjusts its
reasoning length based on task complexity through format selection, enabling better efficiency-
performance trade-offs without manual token tuning.

L Limitations

Dependency on Predefined Reasoning Formats In this work, we focus on four commonly
used reasoning formats that generalize well across a wide range of reasoning tasks. However, we
acknowledge that certain tasks may benefit from more specialized or nuanced reasoning strategies
beyond this predefined set. Our reliance on predefined formats is primarily due to the limited
capabilities of current models, which may struggle to autonomously identify or switch between
diverse reasoning formats, let alone new reasoning formats. As a result, we define the formats in
advance and introduce them through SFT to help the model establish a clear understanding of each
reasoning type. We believe that as model capabilities continue to improve, future work can explore
enabling models to autonomously select or even invent new reasoning formats without relying on
predefined structures.

Lack of Hard Task Data in Training Unlike some length-penalty-based strategies, our training
setup does not include hard datasets such as prior AIME tasks, which may place our model at a
disadvantage on hard tasks compared to methods like L1 [1] and THINKPRUNE [16] that incorporate
such data. Nevertheless, ARM still shows clear improvements on base models and maintains stable
performance on R1-distilled models on AIME’25, demonstrating its potential on hard tasks. We
expect that incorporating harder data into training would further enhance performance. However, due
to the high computational cost of reinforcement learning—and the current version of ARM being
an early exploration aimed at evaluating generalization across tasks while improving token cost
efficiency—we leave this extension to future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contributions are detailed in Section 1. See Section 4 and Section 5
for more experimental evidence and analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix L.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain our settings as well as the hyperparameters in Section 4, Ap-
pendix D, and Appendix K for all our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26



Answer: [Yes]
Justification: We will release our data and code to facilitate reproduction and future research.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explain our settings as well as the hyperparameters. Details are summarized
in Section 4, Appendix D, and Appendix K for all our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use some strategies such as “majority @k” to reduce bias and uncertainty
to enhance the robustness of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details are provided in Section 5.2 and Appendix D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research involves publicly available datasets and standard models, posing
no significant misuse risks, thus no specific safeguards were necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the owners of all code, models and data used in this work. All

relevant papers are cited, and we have adhered to the licenses and terms of use associated
with these assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the detailed documentation alongside the new assets for repro-
ducibility.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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