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Abstract

We analyze the dynamics of large batch stochastic gradient descent with momentum
(SGD+M) on the least squares problem when both the number of samples and
dimensions are large. In this setting, we show that the dynamics of SGD+M
converge to a deterministic discrete Volterra equation as dimension increases,
which we analyze. We identify a stability measurement, the implicit conditioning
ratio (ICR), which regulates the ability of SGD+M to accelerate the algorithm.
When the batch size exceeds this ICR, SGD+M converges linearly at a rate of
O(1/

p
), matching optimal full-batch momentum (in particular performing as

well as a full-batch but with a fraction of the size). For batch sizes smaller than the
ICR, in contrast, SGD+M has rates that scale like a multiple of the single batch
SGD rate. We give explicit choices for the learning rate and momentum parameter
in terms of the Hessian spectra that achieve this performance.

Stochastic learning algorithms are the methods of choice for optimization of high-dimensional
problems. Often stochastic learning algorithms incorporate momentum into their stochastic gradients
to improve practical performance. Perhaps the simplest, stochastic gradient descent with momentum
(SGD+M) adds a fixed multiple of the backward difference of iterates to its stochastic gradient
estimator, see Section 1 for details. In the influential work of [33], the authors empirically show
augmenting stochastic gradient descent (SGD) with momentum significantly improves training
performance of deep neural networks. Despite the wide usage of these stochastic momentum methods
in machine learning practice, our understanding of its behaviour is not well–understood.

It has been hypothesized that stochastic-based momentum algorithms improve training because
they are employed on a large batch of a data set [15]; thereby emulating the speed-up one sees
in full-batch settings. For many learning problems, the “large batch” setting is often paired with
high-dimensional problems, meaning there are many samples (and likely also many features to have
interesting behavior). While we know of no theoretical work that can fully justify these claims for
standard SGD+M, there have been some recent progress [6, 7]. For variations of SGD+M and SGD
with Nesterov momentum [24] there has been some success in proving accelerated rates [3, 13, 18].
One reason it has been challenging is that the typical approaches for analyzing SGD+M do not
distinguish large and small batch sizes. We address this problem in this paper and we introduce a
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Figure 1: Concentration of SGD+M on a Gaussian

random least squares problem such that the ratio
d/n is fixed to be 2; 30 runs of SGD+M and the 80th
percentile confidence intervals recorded (shaded re-
gion) for each n. The parameters for SGD+M are
� = 0.5, � = 0.4, ⇣ = 0.5, see Section 1.1. The
random least squares problem becomes non-random in
the large limit and all runs of SGD+M converge to a
deterministic function  (t) (red) given by our Volterra
equation (1).

stability measurement that exactly captures the transition of SGD+M to an accelerated method. We
comment that in the high–dimensional, vanishing batch fraction setting (the mini-batch size is o(n),
where n is the number of samples), there is work proving in various simplified settings that SGD+M
produces the same iterates as SGD with a larger learning rate, up to a vanishing error [26].

Figure 2: Convergence rate as batch size

changes on a Gaussian random least squares
problem with ratio r

def
= d

n
varying. Here  =

(1+
q

1
r
)2/(1�

q
1
r
)2 and ̄ = 1/(1�

q
1
r
)2.

When ⇣ goes above a specific value (see
Proposition 5), the convergence rate freezes at
1/
p
. Otherwise the rate behaves like C/

with a constant C = ⇣/(1� ⇣) and we get no
speed up from SGD+M.

In this paper, we study the dynamics of mini-batch
SGD+M (with constant learning rate) on a least
squares problem when the number of samples n and
features d are large (see Section 1 for details). We
assume the targets are generated using a linear (gener-
ative) model. We are motivated by the setting where
the mini-batch size � is proportionate to the number
of samples n and so we define the ratio ⇣ def

= �/n,
which we refer to as the batch fraction. We provide
a non-asymptotic comparison for the behavior of the
training loss under SGD+M to a deterministic func-
tion  , whose accuracy improves when the number
of samples and features are large while the batch frac-
tion is strictly positive (see Figure 1). This function
 solves a discrete Volterra equation:

 (t+ 1) = F (t+ 1) +
tX

k=0

 (k)K(t� k). (1)

The forcing term F (t) and kernel K(t) are explicit
functions that depend on the hyperparameters and
the full Hessian spectra (see Section 2 and Ap-
pendix A). They transparently reveal that the dynam-
ics of SGD+M and of SGD are truly non-equivalent
in that there is no mapping of the hyperparameters which leads them to have the same training
dynamics. We also note that a similar equation appears in the vanishing batch setting [27], although
in that setting it is a Volterra integral equation, which can be recovered from (1) by sending ⇣ ! 0.

An advantage of the exact loss trajectory is that we give a rigorous definition of the large batch and
small batch regimes which reflect a transition in the convergence behavior of SGD+M. To do this we
introduce the condition number , the average condition number ̄, and the implicit conditioning

ratio (ICR) defined as

̄
def
=

1
n

P
j2[n] �

2
j

�
2
min

<
�
2
max

�
2
min

def
=  and ICR def

=
̄
p

. (2)

Here �2
j

are the eigenvalues of the Hessian of the least squares problem with �2
max and �2

min the
largest and smallest (non-zero) eigenvalues. We refer to the large batch regime where ⇣ � ICR
and the small batch regime where ⇣  ICR. In the large batch regime (2), SGD+M matches the
performance of the heavy-ball algorithm: the convergence is linear with rate given by O(1/

p
). In

the small batch regime, the performance matches that of SGD, i.e. the convergence rate is O(⇣/).
We give matching lower bounds, and we provide momentum and learning rate choices that achieve
the claimed performance. In addition we show there is a saturating batch fraction (see Figure 2),
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after which increasing the batch fraction does not improve the rate. It explicitly occurs when ⇣ =
ICR. Moreover this saturating batch fraction occurs before full batch, i.e. ⇣ = 1.

Related work. Recent works have established convergence guarantees for SGD+M in both strongly
convex and non-strongly convex setting [9, 31], including almost sure convergence [10]. In the
work of [25], they used stochastic differential equations (SDEs) to obtain convergence of SGD+M.
Specializing to the setting of minimizing quadratics, the authors of [19] demonstrated that the iterates
of SGD+M converge linearly (but not in L2) under an exactness assumption.

Determining batch size has been an important issue in determining the convergence rate of SGD
and SGD+M. There are instances where (small batch size) SGD+M does not necessarily achieve
better performances than small batch size SGD (see [15, 27, 35]). As for mini-batch SGD without
momentum, [20] showed that there is a saturating batch size (roughly /) above which increasing
the batch size no longer improves the rate. In [8], the authors implemented an adaptive (increasing)
batch size schedule and they used it to show linear convergence for SGD. For generalization, [32]
empirically showed that for SGD and SGD+M, instead of decaying the learning rate, one can increase
the batch size during training to obtain a similar learning curve.

SGD+M has been proven to be useful in practical applications as well, including machine learning.
[33] demonstrated that SGD+M shows an empirical advantage in training deep and recurrent neural
networks (DNNs and RNNs respectively). Many authors have proposed that learning rate warmup
enables us to scale training efficiently to larger batch sizes ([11, 22, 32]).

1 Setting

We consider the least squares problem when the number of samples (n) and features (d) are large:

argmin
x2Rd

n
f(x) =

nX

i=1

fi(x)
def
=

1

2

nX

i=1

(aix� bi)
2
o
, with b

def
= Aex+ ⌘, (3)

where A 2 Rn⇥d is a data matrix whose i-th row is denoted by ai 2 Rd, ex 2 Rd is the signal vector,
and ⌘ 2 Rn is a source of noise. The target b = Aex+ ⌘ comes from a generative model corrupted
by noise. We let �2

1 � · · · � �
2
n
� 0 be the eigenvalues of the matrix AA

T with �2
max and �2

min the
largest and smallest (nonzero) eigenvalues.

We apply SGD with momentum (SGD+M) with mini-batches to the finite sum, quadratic problem (3).
Let x0 2 Rd be randomly selected following 1.1 and x1 be generated from SGD without momentum,
i.e., x1 = x0 � �

P
i2B0

rfi(x0). SGD+M iterates by selecting uniformly at random a subset
Bk ✓ {1, 2, · · · , n} of cardinality � and makes the update

xk+1 = xk � �

X

i2Bk

rfi(xk) +�(xk � xk�1)

= xk � �A
T
Pk(Axk � b) +�(xk � xk�1), where Pk

def
=
X

i2Bk

eieTi ,
(4)

with Pk a random orthogonal projection matrix and ei the i-th standard basis vector. Here � > 0 is
the learning rate parameter, � is the momentum parameter, and the function fi is the i-th element of
the sum in (3).

When the stochastic gradient in (4) is replaced with the full-gradient rf(x), the resulting algorithm
with learning rate and momentum optimally chosen yields the celebrated algorithm, heavy-ball
momentum (a.k.a. Polyak momentum) [29]. The optimal learning rate and momentum parameters
are explicitly given by

� =
4

(
p
�2
max +

p
�
2
min)

2
and � =

 p
�2
max �

p
�
2
minp

�2
max +

p
�
2
min

!2

. (5)

It is well-known that heavy-ball is an optimal algorithm on the least squares problem in that it
converges linearly at a rate of O(1/

p
) (see [28]).

In this paper, we adhere whenever possible to the following notation. We denote vectors in lowercase
boldface (x) and matrices in upper boldface (A). The entries of a vector (or matrix) are denoted by
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Figure 3: SGD+M vs. Theory on even/odd MNIST. MNIST (60, 000 ⇥ 28 ⇥ 28 images) [16] is
reshaped into a single matrix of dimension 60, 000⇥ 784 (preconditioned to have centered rows of
norm-1), representing 60,000 samples of 10 digits. The target b satisfies bi = 0.5 if the i

th sample is
an odd digit and bi = �0.5 otherwise. SGD+M was run 10 times with (� = 0.8, � = 0.001, ⇣ = 0.5)
and the empirical Volterra was run once with (R = 11, 000, R̃ = 5300). The 10th to 90th percentile
interval is displayed for the loss values of 10 runs of SGD+M. While MNIST data set does not satisfy
our eigenvalue assumption on the data matrix, the solution to the Volterra equation on MNIST data
set captures the dynamics of SGD+M. See App. D for more details.

subscripts. Unless otherwise specified, the norm k · k2 is taken to be the standard Euclidean norm if it
is applied to a vector and the operator 2-norm if it is applied to a matrix.

1.1 Random least squares problem

To perform our analysis we make the following explicit assumptions on the signal ex, the noise ⌘, and
the data matrix A.

Assumption 1.1 (Initialization, signal, and noise). The initial vector x0 2 Rd
is chosen so that

x0 � ex is independent of the matrix A. The noise vector ⌘ 2 Rn
is centered and has i.i.d. entries,

independent of A. The signal and noise are normalized so that

Ekx0 � exk22 = R
d

n
, and E[k⌘k22] = eR.

Next we state assumptions on the data matrix A as well as its eigenvalue and eigenvector distribution.
Each row ai 2 Rd⇥1 is centered and is normalized so that Ekaik

2
2 = 1 for all i. We suggest

as a central example the Gaussian random least squares setup where each entry of A is sampled
independently from a standard normal distribution with variance 1

d
.

Assumption 1.2 (Orthogonal invariance). Let A be a random n⇥ d matrix. Suppose these random

matrices satisfy a left orthogonal invariance condition: Let O 2 Rn⇥n
be an orthogonal matrix.

Then the matrix A is orthogonally left invariant in the sense that

OA
law
= A. (6)

This assumption implies that the left singular vectors of A are uniformly distributed on the sphere
which is the strongest form of eigenvector delocalization; many distributions of random matrices
including some sparse ones (such as random regular graph adjacency matrices) are known to have
some form of eigenvector delocalization. The classic example of a random matrix which has left
orthogonal invariance is the sample covariance matrix, Z

p
⌃, for an i.i.d. Gaussian matrix Z and

any covariance matrix ⌃. Numerical simulations suggest that (6) can be weakened in that the theory
herein can be applied to other ensembles without this orthogonal invariance property. See Figure 3.

2 Deterministic Dynamical Equivalent of SGD+M

With these assumptions, we can give an explicit representation of the loss values on a least squares
problem at the iterates generated by SGD+M algorithm. We show in this section (see Theorem 1):
for any T > 0,

sup
0tT

|f(xt)�  (t)| ! 0 in probability,
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where  solves (1). We begin by discussing the forcing and the noise terms of  (t) and their
relationship to SGD+M.

Forcing term: problem instance information. The forcing term represents the mean (with respect
to expectation over the mini-batches) behavior of SGD+M. In fact, the forcing term is the loss f
under full-batch gradient descent with momentum � but with learning rate �⇣. For a small learning
rate �, the forcing term F (t) in (1) governs the dynamics of  (t).

Let wt

def
= Axt � b and observe that 1/2kwtk

2
2 is the loss f(xt). One way to get the dynamics of f

is by deriving a recurrence for w2
t,j

(for each j 2 [n]) which we get from the updates of SGD+M. The

recurrence is as followed: define X̃t,j

def
= (w2

t,j
w

2
t�1,j wt,jwt�1,j)T and there exists a matrix Mj

(see Appendix A.2) so that
X̃t+1,j = MjX̃t,j + (Error). (7)

The forcing term at iteration t is given by applying a linear recurrence Mj operator t � 1 times
on a vector containing initialization information at each j 2 [n] and then summed up for the first
coordinate. It is clear that the maximum of the eigenvalues of the operator Mj is essential to analyze
the convergence behavior of F (t). We denote �1,j = � and �i,j , i = 2, 3, the eigenvalues of Mj

and note that �  maxi=2,3 |�i,j | (see (39) for an explicit formula of �i,j that depends only on �,
�, and eigenvalues of AA

T ). Let �2,j be the eigenvalue of Mj with the biggest modulus and let

�2,max
def
= max

j

|�2,j |. (8)

From this, an equation for the forcing term F (t) can be made explicit in terms of �i,j , see Thm. 1
below and Appendix A. We can conclude that F (t) = O(�t2,max).

Kernel term: noise from the algorithm. The convolution term in (1) is due to the inherent
stochasticity of SGD+M. More specifically, it is given by

�
2
⇣(1� ⇣)

tX

k=0

H2(t� k) (k), where ⌦j

def
= 1� �⇣�

2
j
+�,

and H2(t)
def
=

1

n

nX

j=1

2�4
j

⌦2
j
� 4�

⇣
��t+1 +

1

2
�
t+1
2,j +

1

2
�
t+1
3,j

⌘
.

(9)

The presence of  (training loss) is due to the fact that the noise generated by the k-th stochastic
gradient is proportional to  (k) (training loss), and the function H2(t� k) represents the progress of
the algorithm in sending this extra noise to 0. Observe (9) scales quadratically in the learning rate �.
Hence for large learning rates, (9) dominates the decay behaviour of  . Further details discussed in
Section 3.1.

We now state the main result:
Theorem 1 (Concentration of SGD+M). Suppose Assumptions 1.1 and 1.2 hold with the learning

rate � <
1+�
⇣�2

max
and the batch size satisfies �/n = ⇣ for some ⇣ > 0. Let the constant T 2 N. Then

there exists C > 0 such that for any c > 0, there exists D > 0 satisfying

Pr


sup

0tT,t2N
|f(xt)�  (t)| > n

�C

�
 Dn

�c
, (10)

for sufficiently large n 2 N. The function  is the solution to the Volterra equation

 (t+ 1) =
R

2
h1(t+ 1) +

eR
2
h0(t+ 1)

| {z }
forcing

+
tX

k=0

�
2
⇣(1� ⇣)H2(t� k) (k)

| {z }
noise

,  (0) = f(x0), (11)

where for k = 0, 1, i = 2, 3, and j 2 [n], i,j
def

= �i,j⌦j/(�i,j +�), and

hk(t) =
1

n

nX

j=1

2(�2
j
)k

⌦2
j
� 4�

✓
���⇣(�2

j
) ·�t +

1

2
(2,j ��)2 · (�2,j)

t +
1

2
(3,j ��)2 · (�3,j)

t

◆
.

5



For a more detailed description on h0, h1, H2 as well as the proof of Theorem 1 and Corollary 1, see
Appendix A. The expression of  highlights how the algorithm, learning rate, batch size, momentum,
and noise levels interact with each other to produce different dynamics. Note that the learning
rate assumption will be necessary for the solution to the Volterra equation to be convergent, see
Proposition 2. When � ! 0, we obtain the Volterra equation for SGD with mini-batching.

Corollary 1 (Concentration of SGD, no momentum). Under the same setting as Theorem 1 and when

� = 0, the function values f(xt) converge to  (t) as in (10) where now the limit  is a solution to

the Volterra equation

 (t+ 1) =
R

2
h1(t+ 1) +

eR
2
h0(t+ 1) +

tX

k=0

�
2
⇣(1� ⇣)h2(t� k) (k). (12)

where for k = 0, 1, 2,

hk(t) =
1

n

nX

j=1

�
2k
j
(1� �⇣�

2
j
)2t.

Remark. Note that H2(t) reduces to h2(t) in � = 0 case. Also when the limit ⇣ ! 0 and when we
scale time by t/⇣, we have that (1� �⇣�

2
j
)2t/⇣ ! e

�2��2
j t. This coincides with the result from [27,

Theorem 1]. Indeed, this shows not only how our dynamics of SGD+M includes the no momentum
case (i.e. SGD), but also how the dynamics of SGD+M differ from SGD.

3 Convolution Volterra analysis

In this section, we outline how to utilize the Volterra equation (11) to produce a complexity analysis
of SGD+M. For additional details and proofs in this section, see Appendix C.

We begin by establishing sufficient conditions for the convergence of the solution to the Volterra
equation (11). Our Volterra equation can be seen as the renewal equation ([4]). Let us translate (11)
into the form of the renewal equation as follows:

 (t+ 1) = F (t+ 1) + (K ⇤  )(t), (13)

where (f ⇤ g)(t) =
P1

k=0 f(t � k)g(k). Let the kernel norm be kKk =
P1

t=0 K(t). By [4,
Proposition 7.4], we see that kKk < 1 is necessary for our solution to the Volterra equation to be
convergent. Indeed, we have the following result.

Proposition 1. If the norm kKk < 1, the algorithm is convergent in that

 (1)
def

= lim
t!1

 (t) =
eR
2 (max{1� d

n
, 0})

1� kKk
. (14)

Note that the noise factor eR and the matrix dimension ratio d/n appear in the limit. Proposition 1
formulates the limit behaviour of the objective function in both the over-determined and the under-
determined case of least squares. When under-determined, the ratio d/n � 1 and the limiting  (1)
is 0; otherwise the limit loss value is strictly positive. The result (14) only makes sense when the
noise term K satisfies ||K|| < 1; the next proposition illustrates the conditions on the learning rate
and the trace of the eigenvalues of AA

T such that the kernel norm is less than 1.

Proposition 2 (Convergence threshold). Under the learning rate condition � <
1+�
⇣�2

max
and trace

condition
(1�⇣)�
1�� ·

1
n
tr(AA

T ) < 1, the kernel norm kKk < 1 , i.e.,
P1

t=0 K(t) < 1.

The learning rate condition quantifies an upper bound of good learning rates by the largest eigenvalue
of the covariance matrix �2

max, batch size ⇣, and the momentum parameter �. The trace condition

illustrates a constraint on the growth of �2
max. Moreover, for a full batch gradient descent model

(⇣ = 1), the trace condition can be dropped and we get the classical learning rate condition for
gradient descent.
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Figure 4: Different convergence rate regions: problem constrained regime versus algorithmi-

cally constrained regime for Gaussian random least squares problem with (n = 2000⇥ d = 1000).
Plots are functions of momentum (x-axis) and learning rate (y-axis). Analytic expression for �2,max

(see (8), (39)) – convergence rate of forcing term F (t) – given in (top row, column 1) represents the
problem constrained region. (top row, column 2) plots 1/(Malthusian exponent) ((15), for details see
Appendix D); black region is where the Malthusian exponent ⌅ does not exist. This represents the
algorithmically constrained region. Finally, (top row, column 3 and bottom row) plots convergence
rate of SGD+M = max{�2,max,⌅�1

}, (see (16)), for various batch fractions. When the Malthusian
exponent does not exist (black), �2,max takes over the convergence rate of SGD+M; otherwise the
noise in the algorithm (i.e. Malthusian exponent ⌅) dominates. Optimal parameters that maximize
�2,max denoted by Polyak parameters (orange circle, (17)) and the optimal parameters for SGD+M
(orange dot); below red line is the problem constrained region; otherwise the algorithmic constrained
region. When batch fractions ⇣ = 0.85 and ⇣ = 0.7 (top row and bottom row, column 1) (i.e.,
large batch), the SGD+M convergence rate is the deterministic momentum rate of 1/

p
. As the

batch fraction decreases (⇣ = 0.25), the convergence rate becomes that of SGD and the optimal
parameters of SGD+M and Polyak parameters are quite far from each other. The Malthusian exponent
(algorithmically constrained region) starts to control the SGD+M rate as batch fraction ! 0.

3.1 The Malthusian exponent and complexity

The rate of convergence of  is essentially the worse of two terms – the forcing term F (t) and a
discrete time convolution

P
t

k=0  (k)K(t � k) which depends on the kernel K. Intuitively, the
forcing term captures the behavior of the expected value of SGD+M and the discrete time convolution
captures the slowdown in training due to noise created by the algorithm. Note that F (t) is always
a lower bound for  (t), but it can be that  (t) is exponentially (in t) larger than F (t) owing to the
convolution term. This occurs when something called the Malthusian exponent, denoted ⌅, of the
convolution Volterra equation exists. The Malthusian exponent ⌅ is given as the unique solution to

�
2
⇣(1� ⇣)

1X

t=0

⌅t
H2(t) = 1, if the solution exists. (15)

The Malthusian exponent enters into the complexity analysis in the following way:
Theorem 2 (Asymptotic rates). The inverse of the Malthusian exponent always satisfies ⌅�1

>

�2,max for finite n. Moreover, for some C > 0, the convergence rate for SGD+M is

 (t)� (1)  Cmax{�2,max,⌅
�1

}
t

and lim
t!1

( (t)� (1))1/t = max{�2,max,⌅
�1

}. (16)

Thus to understand the rates of convergence, it is necessary to understand the Malthusian exponent as
a function of � and �.
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3.2 Two regimes for the Malthusian exponent

On the one hand, the Malthusian exponent ⌅ comes from the stochasticity of the algorithm itself. On
the other hand, �2,max(�,�, ⇣) is determined completely by the problem instance information — the
eigenspectrum of AA

T . (Note we want to emphasize the dependence of �2,max on learning rate,
momentum, and batch fraction.) Let �2

max and �2
min denote the maximum and minimum nonzero

eigenvalues of AA
T , respectively. For a fixed batch size, the optimal parameters (��,��) of �2,max

are

�� =
1

⇣

✓
2p

�2
max +

p
�
2
min

◆2

and �� =

✓p
�2
max �

p
�
2
minp

�2
max +

p
�
2
min

◆2

. (17)

In the full batch setting, i.e. ⇣ = 1, these optimal parameters �� and �� for �2,max are exactly
the Polyak momentum parameters (5). Moreover, in this setting, there is no stochasticity so the
Malthusian exponent disappears and the convergence rate (16) is �2,max. We observe from (17) that
for all fixed batch sizes, the optimal momentum parameter, ��, is independent of batch size. The
only dependence on batch size appears in the learning rate. At first it appears that for small batch
fractions, one can take large learning rates, but in that case, the inverse of the Malthusian exponent
⌅�1 dominates the convergence rate of SGD+M (16) and you cannot take � and � to be as in (17)
(See Figure 4).

We will define two subsets of parameter space, the problem constrained regime and the algorithmically

constrained regime (or stochastically constrained regime). The problem constrained regime is for
some tolerance " > 0

problem constrained regime def
= {(�,�) : 1�

p

⌅ < (1�
q
�
�1
2,max)(1� ")}. (18)

The remainder we call the algorithmically constrained regime. To explain the tolerance: for finite
n, it transpires that we always have ⌅�1

> �2,max, but it could be vanishingly close to �2,max as a
function of n. Hence we introduce the tolerance to give the correct qualitative behavior in finite n.

Proposition 3. If the learning rate �  min( 1+�
⇣�2

max
,
(1�

p
�)2

⇣�
2
min

), with the trace condition

8(1�⇣)�
1�� ·

1
n
tr(AT

A) < 1, then (�,�) is in the problem constrained regime with " = 1/2.

Therefore by (16), we have that

 (t)�  (1)  D

 
4�2,max

(1 +
p
�2,max)2

!t

for some D > 0; (19)

we note that the expression in the parenthesis is 1� 1
2 (1� �2,max) +O((1� �2,max)2).

In the problem constrained regime, it is worthwhile to note that the overall convergence rate is
the same as full batch momentum with adjusted learning rate, i.e., the batch size does not play an
important role as long as we are in the problem constrained regime:
Proposition 4 (Concentration of SGD + M, full batch). Suppose ⇣ = 1 and Assumptions 1.1 and 1.2

hold with the learning rate � <
1+�
�2
max

. If we let x
full

t
denote the iterates of full-batch gradient descent

with momentum (GD+M), then

sup
0tT

��f
�
x

full

t

�
�  full(t)

�� Pr
����!
n!1

0, where  full(t+ 1) =
R

2
h1(t+ 1) +

R̃

2
h0(t+ 1). (20)

The functions h1 and h0 are defined in Theorem 1 with ⇣ = 1. In particular, let �full denote the

learning rate for full batch GD+M, and �, ⇣ < 1 for the learning rate and batch fraction in SGD+M

with corresponding  in Theorem 1. Then when �full = �⇣ is satisfied,  and  full share the same

convergence rate in the problem constrained regime.

4 Performance of SGD+M: implicit conditioning ratio (ICR)

Recall from (2) the definition of condition number, average condition number, and the implicit
conditioning ratio

̄
def
=

1
n

P
j2[n] �

2
j

�
2
min

<
�
2
max

�
2
min

def
=  and ICR def

=
̄
p

. (21)
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Figure 5: For each value of the batch fraction,
⇣, we run SGD+M for 50 iterations on (normal-
ized) MNIST data set using a random features set-
up with Gaussian weight matrix W 2 R784⇥d

(see App. D for details) and targets odd/even. We
record the function value of the last iterate. The
momentum and learning rate parameters are set to
be near-optimal (22). Gray dot is the computed
ICR value. At the predicted ⇣ = ICR (gray dot),
there is a change in the behavior of the last iter-
ate. For ⇣  ICR, the value of the last iterate
monotonically decreases until it hits the ICR. For
⇣ � ICR, we see no improvement in the value of
the last iterate. This agrees with the theory that the
convergence rate does not change.

Moreover recall that we refer to the large batch regime where ⇣ � ICR and the small batch regime
where ⇣  ICR.

We begin by giving a rate guarantee that holds in the problem constrained regime, for a specific
choice of � and �.
Proposition 5 (Good momentum parameters). Suppose the learning rate and momentum satisfy

� =
(1�

p
�)2

⇣�
2
min

and � = max

( 
1� C

̄

1 + C
̄

!
,

 
1� 1p

2

1 + 1p
2

!)2

, where C
def

= ⇣/(8(1� ⇣)). (22)

Then �2,max = � and for some C > 0, the convergence rate for SGD+M is

 (t)�  (1)  C ·�t = C ·max

( 
1� C

̄

1 + C
̄

!
,

 
1� 1p

2

1 + 1p
2

!)2t

. (23)

Remark 1. We note that for all � satisfying
(1�

p
�)2

⇣�
2
min


(1+

p
�)2

2⇣�2
max

with the learning rate � as in

(22), we have that �2,max = �. By minimizing the � (i.e., by finding the fastest convergence rate),

we get the formula for the momentum parameter in (22).

The exact tradeoff in convergence rates (23) occurs when

C

̄
=

1
p
2

, or ⇣ =

8p
2

ICR

1 + 8p
2

ICR
. (24)

As ⇣  1, this condition is only nontrivial when ICR ⌧ 1, in which case ⇣ = 8p
2

ICR, up to vanishing
errors. This is illustrated on the MNIST data set in Figure 5.

Large batch (⇣ � ICR). In this regime SGD+M’s performance matches the performance of the
heavy-ball algorithm with the Polyak momentum parameters (up to absolute constants). More
specifically with the choices of � and � in Proposition 5, the linear rate of convergence of SGD+M
is 1� cp


for an absolute c. Note that ⇣ does not appear in the rate, and in particular there is no gain

in convergence rate by increasing the batch fraction.

Small batch (⇣  ICR). In the small batch regime, the value of C is relatively small and the first
term is dominant in (23), and so the linear rate of convergence of SGD+M is 1� c⇣


for some absolute

constant c > 0. In this regime, there is a benefit in increasing the batch fraction, and the rate increases
linearly with the fraction. We note that on expanding the choice of constants in small ⇣ the choices
made in Proposition 5 are

� ⇡ 1�
⇣

8
and � ⇡

⇣

2562�2
min

.

This rate can also be achieved by taking � = 0, i.e. mini-batch SGD with no momentum. Moreover,
it is not possible to beat this by using momentum; we show the following lower bound:
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Proposition 6. If ⇣  min{ 1
2 , ICR} then there is an absolute constant C > 0 so that for convergent

(�,�) (those satisfying Proposition 2),
p
�2,max � 1� C⇣


.

This is a lower bound on the rate of convergence by Theorem 2.

A parallel argument of Proposition 5 holds for SGD without momentum.
Proposition 7 (Good learning rate for SGD without momentum). Suppose the learning rate �

satisfies

� = max
n 1

⇣�2
max

,
1

8(1� ⇣) · 1
n
tr(ATA)

o
. (25)

Then �2,max = (1��⇣�min)2 and for some C > 0, the convergence rate for SGD without momentum

is

 (t)�  (1)  C · �
t

2,max = C ·max

⇢
1�

C

̄
, 1�

1



�2t

, (26)

where C
def

= ⇣/(8(1� ⇣)).

For details on the proof of Proposition 7, see Appendix C. The exact tradeoff in convergence rates
occurs when

1

⇣�2
max

=
1

8(1� ⇣) · 1
n
tr(ATA)

, or ⇣ =
8⇥ dICR

1 + 8⇥ dICR
, where dICR def

=
̄


. (27)

As ⇣  1, this condition is only nontrivial when dICR ⌧ 1, in which case ⇣ = 8 ⇥ dICR, up to
vanishing errors. When we are in the large batch setting (⇣ & dICR), the linear rate of convergence of
SGD is 1� c⇣

̄
for some absolute constant c > 0.

On the other hand, when in the small batch regime, i.e., ⇣ . dICR, the convergence rate is fixed by
1� 1


. Note that ⇣ does not appear in the convergence rate, so there is no loss in convergencec rate

by decreasing the batch fraction.

As a result, SGD converges more slowly in the large batch setting than in the small batch setting (see
[14]).

5 Conclusion and future work

We have shown that the SGD+M method on a least squares problem demonstrates deterministic
behavior in the large n and d limit. We described the dynamics of this algorithm through a dis-
crete Volterra equation and for a fixed batch fraction. Moreover we characterized a dichotomy of
convergence regimes depending on the learning rate and momentum parameters. Furthermore, we
proved that SGD+M shows a distinguishable improvement over SGD in the large batch regime and
we provided parameters which achieve acceleration. Our theory is also supported by numerical
experiments on the isotropic features model and MNIST data set (see Appendix D for details).

While our analysis focuses on SGD+M algorithm applied to the least squares problems with orthogo-
nal invariant data matrix, Figure 3 suggests that the Volterra prediction might hold in even greater
generality. Removing these conditions, we leave as future work. Another direction of future work
consists in finding the deterministic dynamics for generalization errors.
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show and we make sure there are corresponding proofs all the theorems in the main
text. The abstract indicates explicitly that we are working in the high-dimensional least-
squares problem.
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only apply to the least squares problem in Section 1.
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the potential negative societal impacts in the appendix. We do not anticipate any ethical
or societal issues. The results presented in this paper concern the analysis of existing
methods.
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describe how we generated each of our figures.
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were chosen)? [Yes] In Appendix D, we give a description of how to generate all the
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using/curating? [N/A] The data set (MNIST [16]) is open source.
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