
Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

CHAMELEON: A FLEXIBLE DATA-MIXING FRAME-
WORK FOR LANGUAGE MODEL PRETRAINING AND
FINETUNING

Wanyun Xie, Francesco Tonin, Volkan Cevher
Laboratory for Information and Inference Systems
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

ABSTRACT

Training data mixtures greatly impact the generalization performance of large
language models. Existing domain reweighting methods often rely on costly weight
computations and require retraining when new data is introduced. To this end,
we introduce a flexible and efficient data mixing framework, CHAMELEON, that
employs leverage scores to quantify domain importance within a learned embedding
space. We first construct a domain affinity matrix over domain embeddings. The
induced leverage scores determine a mixture that upweights domains sharing
common representations in embedding space. This formulation allows direct
transfer to new data by computing the new domain embeddings. In experiments,
we demonstrate improvements over three key scenarios: (i) our computed weights
improve performance on pretraining domains with a fraction of the compute of
existing methods; (ii) CHAMELEON can adapt to data changes without proxy
retraining, boosting few-shot reasoning accuracies when transferred to new data;
(iii) our method enables efficient domain reweighting in finetuning, consistently
improving test perplexity on all finetuning domains over uniform mixture.

1 INTRODUCTION

Pretraining large language models (LLMs) relies heavily on vast and diverse datasets, encompassing
sources such as academic papers, books, and code repositories (Brown et al., 2020; Dubey et al.,
2024). The composition of these datasets significantly influences the generalization capabilities and
downstream performance of LLMs.

Domain reweighting, which involves adjusting the relative contributions of different domains in
the training dataset, has emerged as a critical aspect of LLM training (Gao et al., 2020; Du et al.,
2022). However, obtaining optimal domain weights is a challenging problem due to factors such
as data quality, diversity, inter-domain overlap, and task-specific complexities (Shen et al., 2023;
Longpre et al., 2024).

Early domain reweighting methods relied on manual selection, often favoring high-quality sources
like Wikipedia and academic texts (Brown et al., 2020; Gao et al., 2020). While intuitive, these
approaches are neither optimal nor scalable.

Recent work explores computational strategies for optimizing domain mixtures, such as DoReMi (Xie
et al., 2023) and DoGE (Fan et al., 2024b), which use a small proxy model to derive domain weights
for training a larger base model. Though effective, these methods are computationally expensive and
have limited practical applicability.

We contend that an ideal data-mixing method should (i) improve universal generalization, the
fundamental goal of domain reweighting; (ii) adapt to domain modifications – data naturally evolves
between preparation and LLM training, making frequent recalibration impractical; (iii) handle
different training stages such as pertaining and fine-tuning. Most existing methods are limited to
pretraining scenarios and do not consider either domain changes or the fine-tuning stage where
domain specificity often plays a larger role.

1

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

In this work, we introduce CHAMELEON, a novel and efficient framework for data mixing that
addresses these challenges. Our method computes domain weights directly from learned embeddings
using kernel ridge leverage scores (KRLS), which quantify the importance of each domain based on
its contribution to the overall embedding space.

Unlike existing approaches, CHAMELEON reduces the data-mixing compute and eliminates the need
for frequent retraining of proxy models when domains change. Instead, it constructs a domain affinity
matrix to capture relationships between domains and computes leverage scores that guide domain
reweighting. Our data-centric approach enables seamless adaptation to new data and flexibility across
both pretraining and fine-tuning stages.

Specifically, our contributions are summarized as follows:

• We propose CHAMELEON, an efficient data-mixing framework that leverages KRLS to quan-
tify domain representativeness from embedded data. Inverse KRLS-based domain weights
emphasize general knowledge for pertaining. We empirically demonstrate that CHAMELEON
matches DoReMi and DoGE in pretraining performance at a fraction of their cost.

• As a data-centric method, CHAMELEON can flexibly adapt to changes in domain
composition without retraining proxy models, enhancing its practicality in real scenarios.
It outperforms baselines at 1% of the retraining cost, even as domains double.

• We extend domain reweighting to fine-tuning, where KRLS-based weights emphasize
domain-specific uniqueness. Empirical results show consistent perplexity improvements
across all domains on both natural language and code datasets.

From a practical standpoint, CHAMELEON significantly lowers the computational burden associated
with domain reweighting, making advanced LLM training pipelines more accessible to researchers
with limited resources.

Indeed, our KRLS-based scores are computationally inexpensive, hyperparameter-robust, and con-
verge quickly. This efficiency is particularly advantageous when incorporating new data, where our
method can be applied directly without re-running the entire proxy pipeline. By bridging the gap
between pretraining and fine-tuning, our method provides a unified and agile framework for efficient
as well as effective data mixing across all stages of LM training.

2 RELATED WORK

Domain Reweighting. Domain reweighting improves LLM pretraining by balancing data contribu-
tions from different sources. In this setting, online adaptation strategies require frequent recalibration
and monitoring (Albalak et al., 2023; Jiang et al., 2024; Fan et al., 2024a).

Two closely related approaches are DoReMi (Xie et al., 2023) and DoGE (Fan et al., 2024b). DoReMi
trains both a reference and a proxy model using Group DRO (Sagawa* et al., 2020) to mitigate excess
domain loss, while DoGE tracks domain-specific gradients during proxy training.

Both methods are inefficient: DoReMi depends on the reference model’s quality and requires training
two models, while DoGE incurs high gradient tracking costs. Their domain weights fluctuate
significantly during training (Figure 2).

In this setting, our work develops an offline method that achieves uniformly strong performance
across domains without relying on downstream task knowledge. Other offline methods, such as Data
Mixing Laws (Ye et al., 2024) and RegMix that–in contrast to ours–requires access to the downstream
tasks (Liu et al., 2024), use multiple proxy models to search for optimal data mixtures, revealing that
domain weights transfer across model sizes.

Additionally, studies on data and model scaling laws provide further insights into domain weighting
strategies (Kang et al., 2024b; Ye et al., 2024). However, they critically rely on the scaling strategy
and do not have an easy way of adapting to domain expansion.

Kernel Ridge Leverage Scores (KRLS). The notion of statistical leverage score Gareth et al. (2013)
is used in best-rank approximation to define an importance score for the rows in a matrix by their

2

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Table 1: Data-mixing methods capabilities comparison.

DoReMi DoGE CHAMELEON

Generalization ✓ ✓ ✓
Downstream ✓ ✓ ✓
New data ✗ ✗ ✓
Finetuning ✗ ✗ ✓

influence on the optimal low-rank approximation Mahoney & Drineas (2009), with approximation
error guarantees for sampling Li et al. (2013).

Ridge leverage scores are also proposed with additional regularization term Cohen et al. (2015; 2017);
Rudi et al. (2018). Leverage scores are extended to the kernel setting in Bach (2013), namely kernel
ridge leverage scores.

KRLS sampling is extensively used to accelerate kernel methods Alaoui & Mahoney (2015); Musco
& Musco (2017); Rudi et al. (2017; 2018). Inverse KRLS have been related to Christoffel functions
Pauwels et al. (2018), which in machine learning are used for, e.g., landmark sampling Fanuel et al.
(2022), density estimation Pauwels et al. (2018), and outlier detection Lasserre & Pauwels (2019);
Beckermann et al. (2021); Ducharlet et al. (2024).

3 DATA MIXING VIA CHAMELEON

Setup. We consider a dataset D = {D1, . . . , Dk} consisting of k distinct domains, each represented
by its metadata (e.g., source, topic). Our objective is to determine a domain weight vector α ∈ ∆k,
where ∆k is the probability simplex, enhancing the performance of LMs. Following prior work (Xie
et al., 2023; Fan et al., 2024b), we adopt a two-stage strategy: (1) training a small proxy model to
infer domain weights and (2) training a large base model using the computed weights. Note that
many studies have empirically shown that domain weights transfer across different model sizes (Xie
et al., 2023; Fan et al., 2024b; Liu et al., 2024).

We approach the data mixture problem from a data-centric perspective. Unlike prior works such as
DoReMi Xie et al. (2023) and DoGE Fan et al. (2024b), which derive domain weights based on the
optimization process of a proxy model, we focus instead on the intrinsic properties of the data itself.

To characterize domain characteristics, we extract embeddings from hidden layers of the proxy model.
These embeddings encapsulate rich semantic and structural information about the input data in a
continuous, high-dimensional space. As a result, the embeddings not only represent the individual
domains but also capture their inter-domain relationships.

Figure 1 ➀ presents a two-dimensional UMAP (McInnes et al., 2018) projection of mid-layer
embeddings derived from the SlimPajama dataset using a proxy language model. The visualization
highlights the following key characteristics: (i) semantic distinctiveness: similar domains cluster
closely, while unique domains stand apart; (ii) centrality and coverage: broad domains like "CC"
and "C4" create dominant regions, covering shared semantic space, while more specific domains like
"Arxiv" are more distinct.

Our observations lead to two central questions:

1. How can we precisely quantify domain characteristics?

2. How can such properties inform domain reweighting?

We tackle these questions in the sequel.

3.1 QUANTIFYING DOMAIN CHARACTERISTICS

We first introduce domain embeddings capturing domain-level characteristics, representing each
domain Di as the embedding vector xi ∈ Rp, with p being the embedding dimension. This embedding
is computed by averaging the LM embeddings of data points in the domain:

3

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

0 10

−5

0

5

10 42 −17−15−14 6 3 −5

−17 27 12 15 −21−16 1

−15 12 24 19 −20−13 −6

−14 15 19 22 −22−17 −2

6 −21−20−22 46 31 −19

3 −16−13−17 31 29 −17

−5 1 −6 −2 −19−17 49

Arxi
v
Boo

k CC C4

Gith
ub
Stac

k
W

iki
.00

.03

.05

.08

.10

K
R

L
S
S
λ

Pretraining
Domain Weights: αPT

i = softmax(S−1
λ)

Transfer to New Data
Domain Weights: αND

i = softmax(S−1
λ)

Finetuning
Domain Weights: αFT

i = softmax(Sλ)

Learn Domain Embeddings

1

Compute Domain Affinity

2

Compute KRLS Scores

3

Train base LMs

4

Figure 1: Pipeline of domain reweighting via CHAMELEON. The given data is first embedded
through the proxy model, previously trained on a corpus D with uniform weights. Domain embed-
dings are then determined by averaging the embeddings for each domain. The domain affinity matrix
ΩD is computed as the pairwise inner products between domain embeddings. Finally, (KRLS) is
applied to ΩD to obtain score Sλ indicating the degree of inter-domain independency. A resampling
non-uniform distribution α is obtained by softmax normalizing the scores. Finally, the target base
language model is trained with the obtained data mixture, where the inverse KRLS S−1

λ is used
during pretraining of initial or new data to promote general knowledge learning and the KRLS Sλ is
used during finetuning to emphasize task-specific knowledge.

xi =
1

|Di|
∑
a∈Di

h
(L)
θp

(a),

where h
(L)
θp

(a) denotes the L-th layer embedding of the proxy model hθp . In practice, using a
sufficiently large, randomly sampled batch Bi ⊆ Di provides a robust approximation of the domain
embedding and is used in experiments. The proxy is trained on D with uniform domain weights, i.e.,
αi = 1/k, following Xie et al. (2023); Fan et al. (2024b). We define the resulting domain embedding
matrix as X = [x1, . . . , xk]

⊤ ∈ Rk×p.

To quantify properties across domains, we exploit Kernel Ridge Leverage Scores (KRLS) (Alaoui &
Mahoney, 2015). KRLS measure the contribution of each domain to the overall embedding space.
First, we define a kernel function κ(xi, xj) = x⊤

i xj , which captures the similarity between domains
Di and Dj . Using this kernel, we construct the domain affinity matrix:

ΩD = [κ(xi, xj)]
k
i,j=1 = XX⊤.

The domain affinity matrix ΩD captures pairwise relationships between domains, with higher values
indicating a higher degree of semantic similarity. Note that we employ the linear kernel as the LM
itself already introduces significant non-linearity. An example domain affinity matrix is visualized
in Figure 1 ➁. While ΩD captures inter-domain relationships, it does not directly provide a measure
of individual domain importance for data mixing.

To address this, we propose to employ KRLS defined on ΩD to quantify the influence of each domain
within the overall embedding space. We compute the scores as defined below.
Definition 3.1 (Domain KRLS). For a given regularization parameter λ > 0, the KRLS for domain
Di is defined as:

Sλ(Di) = [ΩD(ΩD + kλI)−1]ii, (KRLS)
where I is the k × k identity matrix.

The KRLS Sλ(Di) quantifies the importance of domain Di in embedding space. Specifically,
these scores correspond to the diagonal entries of the hat matrix ΩD(ΩD + kλI)−1 of Kernel
Ridge Regression (KRR) Hastie et al. (2005). They are proportional to the weights assigned to
each domain in the dual KRR estimator, and they depend only on the inputs xi and constant λ
independently of specific target values Calandriello et al. (2016); Chen & Yang (2021). Inputs with
higher KRLS indicate higher contribution to the KRR estimator, i.e., they are more unique in the

4

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Algorithm 1 Domain Weighting via CHAMELEON.

1: Input: Training data from k domains D = {D1, . . . , Dk}, regularization parameter λ, embed-
ding layer index L.

2: if Pretraining then
3: Train proxy hθp(a) with uniform weights αi =

1
k .

4: end if
5: Extract domain embeddings: xi =

1
|Di|

∑
a∈Di

h
(L)
θp

(a) for each domain Di.
6: Construct the feature matrix: X = [x⊤

1 , . . . , x
⊤
k].

7: Compute the domain affinity matrix: ΩD = XX⊤.
8: Compute KRLS Sλ(Di) for each domain Di using ΩD.
9: if Pretraining then

10: Domain weights αPT
i =

exp(S−1
λ (Di))∑k

j=1 exp(S−1
λ (Dj))

.

11: else if Fine-Tuning then
12: Domain weights αFT

i = exp(Sλ(Di))∑k
j=1 exp(Sλ(Dj))

.

13: end if
14: Output: Domain weights αPT or αFT.

kernel representation. More discussions on the KRLS and the role of regularization are provided in
Appendix A.1 and A.2, respectively.

In data mixing, a high KRLS value for domain Di indicates that its embedding xi cannot be well-
approximated as a combination of embeddings from other domains, implying that Di is relatively
distinct or unique in its characteristics. Conversely, a low KRLS value suggests that Di is highly
well-represented, as it can be readily reconstructed from other domain embeddings, representing
broader or more widely shared characteristics across domains.

3.2 INCORPORATING KRLS INTO LM TRAINING

An essential question is thus: Which domains should be prioritized: the general ones with higher
degree of dependency with others or independent ones with more unique characteristics? Prior work
suggests that data mixing strategies should adapt to different training phases (Ma et al., 2023; Feng
et al., 2024). Therefore, we address this by considering pretraining and fine-tuning separately, as their
objectives differ fundamentally (Parthasarathy et al., 2024).

Pretraining. The goal of pretraining is to equip the base LM with general knowledge across
domains, where Feng et al. (2024) suggest that the pretaining should focus more on data with wider
scope compared with finetuning. This requires emphasizing data contributing to broadly shared
semantic structures. To achieve this, we determine domain weights using the inverse of KRLS:

αPT
i =

exp
(
S−1
λ (Di)

)∑k
j=1 exp

(
S−1
λ (Dj)

) .
The inverse of KRLS relates to Christoffel functions Pauwels et al. (2018), with high values indicating
dense, well-represented data regions; more remarks are provided in Appendix A.2.

Importantly, the domain weights obtained by CHAMELEON focus on the intrinsic properties of the
data and our method does not affect the proxy model’s training process. This allows to compute
importance weights αND

i of new domains directly without requiring retraining of the proxy model
by applying it to the new data. The proxy is used to obtain the new domain embeddings, from
which the new (KRLS) score is calculated. In contrast, existing data mixture methods couple domain
reweighting with the proxy model’s optimization, necessitating costly retraining whenever domains
are added. This dependency not only increases computational overhead but also contradicts the goal
of improving efficiency in large-scale dynamic training pipelines.

Finetuning. The pretrained model is already equipped with general knowledge, and the finetuning
objective shifts to specialization for specific tasks or domains Kang et al. (2024a); Yang et al. (2024).

5

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Here, distinct and unique data are more valuable to highlight domain-specific characteristics. Thus,
we use KRLS directly to define domain importance:

αFT
i =

exp (Sλ(Di))∑k
j=1 exp (Sλ(Dj))

.

Note that the key difference between finetuning and pretraining in the data mixture problem is that,
during finetuning, we do not need to train a separate proxy model. Instead, we directly use the
pre-trained model for finetuning. This allows us to extract the embeddings from the pre-trained model
for the relevant domains, which are then used to compute the domain weights.

Algorithm and complexity analysis. The overall domain reweighting process is summarized
in Algorithm 1. Our phase-specific strategy ensures that it well adapts to the differing demands of
pretraining and fine-tuning. Obtaining embeddings xi requires a single forward pass for each sample
a ∈ Di through the proxy; inference is fast as the proxy is a small model. Given the typically small
number of domains k, the KRLS computation in Definition 3.1 is cheap. Our approach is therefore
efficient and contrasts with prior methods requiring domain-specific iterative optimization (Xie et al.,
2023; Fan et al., 2024b).

4 EXPERIMENTS

We show CHAMELEON improves the model’s performance through data mixture with less computa-
tional costs (Section 4.1). In addition, CHAMELEON is scalable and can be applied to larger datasets
without the need to retrain a proxy model (Section 4.2). Moreover, it can easily applied to fine-tuning
tasks (Section 4.3).

4.1 UNIVERSAL GENERALIZATION

Considering universal generalization, the main goal is to improve the general performance of the
model across domains in the training set and also in various downstream tasks. For the performance
on the in-distribution data, we measure the perplexity across all domains. For downstream tasks, we
follow RegMix (Liu et al., 2024) selecting 13 tasks that cover various realistic scenarios.

Training setup. We experiment on the
SlimPajama-627B dataset (Soboleva et al.,
2023) consisting of 7 data domains. We
choose Uniform with uniform domain
weights, DoReMi, and DoGE as our base-
lines, which are downstream task agnostic
offline methods same as CHAMELEON. We
include RegMix as an additional reference, as
it instead leverages prior knowledge of down-
stream tasks. Specifically, RegMix optimizes
domain weights using the validation loss of
the domain most correlated with downstream
performance, identified as “CC” in their work
Liu et al. (2024).

Arxi
v

Boo
k CC C4

Gith
ub

Stac
kE

xc
ha

ng
e

W
iki

pe
dia

.00

.05

.10

.15

.20

.25

D
om

ai
n

W
ei

gh
t

DoReMi

DoGE

CHAMELEON

Following DoGE (Fan et al., 2024b), we use a small 82M decoder-only transformer (Vaswani et al.,
2017) as the auxiliary models for CHAMELEON, DoReMi, and DoGE. Auxiliary models for both
DoGE and DoReMi are trained for 10k iterations, and the proxy model of CHAMELEON is only
trained for 2k steps and we use 4k samples for embedding computation per domain. Detailed training
setup is demonstrated in Appendix B.2. Domain weight obtained through different methods is
reported in Section 4.1. Through training small auxiliary models, domain weights are obtained
to train larger base models with the size of 684M. Note that we employ the simple, linear kernel
κ(xi, xj) = x⊤

i xj , which does not need further kernel hyperparameter tuning.

6

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Table 2: Universal generalization - perplexity. Per-domain test perplexity for the universal general-
ization compared with the uniform baseline, DoReMi, DoGE, and RegMix with 684M parameter
models. Note that, unlike other methods, RegMix knows the target downstream tasks for optimization.
We report the compute (in FLOPs) required to arrive at the data mixture. CHAMELEON boosts
generalization at a fraction of the computational cost.

Domain Uniform DoReMi DoGE CHAMELEON RegMix
Arxiv 8.16 9.16 9.07 8.31 11.35
Book 42.55 46.48 40.30 39.23 41.52
CC 45.26 40.62 38.99 40.11 37.32
C4 49.00 43.92 40.65 42.59 43.85
Github 3.99 4.10 4.09 4.20 4.99
Stackexchange 7.99 8.35 7.39 7.94 10.63
Wikipedia 12.42 10.78 15.74 13.90 20.88

Average PPL (↓) 24.20 23.34 22.32 22.31 24.36
Domains Over Unif. - 3/7 4/7 4/7 3/7
FLOPs 0 1.34× 1018 6.68× 1017 1.36× 1017 1.20× 1018

(10×) (5×) (1×) (9×)

Table 3: Universal generalization - reasoning. Accuracy of downstream tasks in the same settings
as Table 2.

Benchmark Uniform DoReMi DoGE CHAMELEON RegMix
ARC-E 36.8 37.6 38.0 37.8 39.1
COPA 55.7 59.3 62.3 61.9 63.0
HellaSwag 26.5 27.0 27.2 27.1 27.0
Lambada 13.5 13.6 14.7 15.1 16.5
LogiQA 21.7 21.9 22.4 22.6 21.4
MultiRC 57.2 55.7 57.3 57.2 56.6
OpenBook 14.1 13.3 14.6 14.4 14.7
PiQA 59.2 59.5 60.0 60.5 57.6
QQP 36.8 36.8 36.8 39.2 37.1
RACE 26.1 25.3 26.4 26.5 27.3
SciQ 61.8 62.5 64.9 64.3 64.1
Social IQA 35.0 35.5 35.7 35.7 35.6
WinoGrande 50.5 51.3 52.0 52.1 50.9

Average (↑) 37.9 38.4 39.4 39.6 39.3

Perplexity. Table 2 shows per-domain perplexity on the held-out test dataset for 684M base models.
CHAMELEON outperforms Uniform and DoReMi, achieving similar performance to DoGE but with
significantly lower computational cost. Specifically, DoReMi trains two auxiliary models, while
DoGE computes k = 7 gradients per iteration with roughly 1.7× wall-clock time per iteration, both
of which are costly. In contrast, CHAMELEON achieves competitive results with just 2k steps of
training, and its inference cost is minimal compared to the training. As a result, the total FLOPs of
CHAMELEON, including both training and inference for embeddings, is only 10% of DoReMi and
20% of DoGE.

Evaluation on downstream tasks. We apply our method on realistic downstream tasks. We follow
RegMix (Liu et al., 2024) selecting 13 tasks that cover various realistic tasks: ARC-E (Clark et al.,
2018), COPA (Sarlin et al., 2020), HellaSwag Zellers et al. (2019), Lambada (Paperno et al., 2016),
LogiQA (Liu et al., 2020), MultiRC (Khashabi et al., 2018), OpenBookQA (Mihaylov et al., 2018),
PiQA (Bisk et al., 2020), QQP (Wang, 2018), RACE (Lai et al., 2017), SciQ (Welbl et al., 2017),
Social IQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021). The reported accuracy in
Table 3 is the average from 0-shot to 5-shot evaluations following (Liu et al., 2024), scored using the
lm-eval-harness evaluation framework (Gao et al., 2024).

7

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Arxi
v
Boo

k CC C4

Gith
ub

Stac
ke

xc
ha

ng
e

W
iki

pe
dia

.0

.1

.2

.3

D
om

ai
n

W
ei

gh
t

DoReMi

2k
5k
10k

Arxi
v
Boo

k CC C4

Gith
ub

Stac
ke

xc
ha

ng
e

W
iki

pe
dia

.0

.1

.2

.3

DoGE

2k
5k
10k

Arxi
v
Boo

k CC C4

Gith
ub

Stac
ke

xc
ha

ng
e

W
iki

pe
dia

.0

.1

.2

.3

CHAMELEON

2k
5k
10k

Figure 2: KRLS scores converge quickly. Domain weights for multiple methods at varying iteration
number during proxy training. The domain weights require longer to converge for DoReMi and DoGE,
necessitating more iterations to obtain stable weights. In contrast, CHAMELEON converges quickly.

These benchmarks cover a diverse range of tasks, enabling a comprehensive evaluation of the
real-world impact of CHAMELEON. For each benchmark, we use normalized accuracy as the
evaluation metric if provided by lm-eval-harness else we use regular accuracy. Notably, CHAMELEON
also shows competitive performance across all downstream tasks even compared with RegMix, a
task-aware method.

Stability and Practicality. We show that domain weights obtained by CHAMELEON remain stable
across different training steps of the proxy model, whereas DoReMi and DoGE are sensitive or
converge slowly as shown in Figure 2. Additionally, our method is robust to variations in proxy
model size, the hyperparameter λ, and the number of samples computing embeddings, as detailed in
Appendix B.5. Furthermore, experiments with 1.2B models in Appendix B.4 shows that CHAMELEON
achieves even greater improvements on larger models. This stability significantly reduces the need
for extensive hyperparameter tuning, making CHAMELEON more practical and resource-efficient for
real-world applications.

4.2 SCALABLE TO PILE

It is common for new data to be introduced during the official training of large base models, particu-
larly when training on diverse and evolving datasets. However, existing methods including DoReMi,
DoGE and RegMix require retraining a new proxy model from scratch whenever domains are added
or removed, making them both inefficient and inconvenient for dynamic data environments. This
process not only incurs significant computational costs but also delays the adaptation to changes in
domain composition. How can we develop a scalable method to reliably compute domain weights
when domain composition changes?

CHAMELEON has such scalability. Unlike DoReMi and DoGE, CHAMELEON’s algorithm does not
alter the proxy model’s optimization, instead it focuses more on the intrinsic data characteristics,
where the trained proxy model can already capture domain features, even for new unseen data.

To test its scalability, we employ the proxy model trained on Slimpajama in Section 4.1 to Pile dataset
(Gao et al., 2020) directly. Both SlimPajama and Pile are large-scale datasets used for pretraining
LMs, with overlapping data sources such as books, scientific texts, web content, and codebases. The
Pile dataset includes more domains than Slimpajama and its data is more diverse. Note that the
original Pile dataset includes 22 domains but only 17 are now available due to copyright issues.

To obtain domain weights of Pile, we input 4k samples per domain of Pile to the proxy model trained
on Slimpajama in Section 4.1 and infer embeddings for computing domain weights through (KRLS).
The computed domain weights are reported in Table 15, where we use the domain weights reported
in their respective papers for DoReMi and RegMix. We use Human as baseline that is selected
manually as in the Pile paper Gao et al. (2020). As in Section 4.1, we report per-domain perplexity
in Table 4 and downstream accuracy in Table 5.

8

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

CHAMELEON outperforms DoReMi, DoGE and even RegMix in both cases. Importantly, FLOPs
of CHAMELEON is marginal compared with DoReMi and DoGE (only 1% of training a new proxy
model from scratch) since we can reuse the previous proxy model and our extra FLOPs only include
inference cost for extracting embeddings, while DoReMi DoGE, and RegMix require retraining
the proxy models. Note that as the number of domains increases, DoGE computes k = 17 gradients
per iteration, resulting in approximately 2.5× wall-clock time per iteration on this dataset.

Table 4: Transfer to new domains - perplexity. Per-domain test perplexity when adapting to new
data. The Human baseline is Gao et al. (2020). When domain composition changes, the other methods
need to retrain proxy models from scratch and re-run domain weight optimization, while we can
directly compute the KRLS of the new domains by extending the proxy model trained on previous
data. We report the extra compute (in FLOPs) required to adapt the data mixture to the Pile.

Domain Human DoReMi DoGE CHAMELEON RegMix
Arxiv 9.76 14.11 10.78 9.73 16.19
Dm_mathematics 5.52 6.27 4.52 5.31 19.26
Enron_emails 12.82 9.96 9.39 7.77 12.06
Europarl 34.69 24.77 11.62 28.18 131.80
Freelaw 14.12 16.20 17.99 15.04 18.66
Github 5.92 5.84 4.90 6.16 9.95
Gutenberg_pg_19 39.36 38.36 39.57 33.28 34.43
Hackernews 35.94 29.68 29.87 27.02 29.80
Nih_exporter 22.93 25.89 26.81 24.12 28.69
Philpapers 47.59 36.43 44.56 34.63 51.71
Pile_cc 43.19 32.85 58.17 34.90 32.30
Pubmed_abstracts 17.87 24.19 25.62 21.87 23.20
Pubmed_central 9.76 9.43 8.10 7.36 13.80
Stackexchange 10.41 11.48 11.79 11.25 18.96
Ubuntu_irc 36.12 32.10 23.20 29.34 20.71
Uspto_backgrounds 17.22 21.19 20.08 18.25 22.05
Wikipedia_en 28.70 25.95 40.42 24.68 29.32

Average PPL (↓) 23.05 21.45 22.79 19.94 30.17
Domains Over Human - 9/17 10/17 11/17 4/17
Extra FLOPs 0 1.34× 1018 6.68× 1017 4.62× 1015 3.5× 1018

(290×) (145×) (1×) (758×)

Table 5: Transfer to new domains - reasoning. Accuracy of downstream tasks in the same settings
as Table 4.

Benchmark Human DoReMi DoGE CHAMELEON RegMix
ARC-E 37.5 39.3 35.3 39.2 39.5
COPA 56.8 61.5 54.7 60.9 61.2
HellaSwag 26.7 27.3 26.1 27.4 27.3
Lambada 12.5 15.8 9.3 15.9 15.4
LogiQA 22.5 21.2 22.1 23.8 21.9
MultiRC 56.7 56.5 57.2 57.3 56.2
OpenBook 13.3 13.1 13.1 14.2 14.5
PiQA 57.8 59.3 55.9 59.7 60.4
QQP 37.5 36.8 36.8 37.2 37.6
RACE 25.8 27.2 24.9 26.8 27.2
SciQ 64.1 65.7 58.1 66.0 67.1
Social IQA 35.0 36.0 34.2 36.6 36.3
WinoGrande 50.7 51.2 49.8 50.9 49.9

Average (↑) 38.2 39.3 36.7 39.7 39.6

9

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

4.3 FINETUNING

Besides pertaining, CHAMELEON interestingly allows data-mixture optimization during finetuning.
We take advantage of the existing pretrained model and can extract embeddings on finetuning data
directly for domain weight computation. As discussed in Section 3.2, the goals of pretraining and
fine-tuning are distinct, with pretraining aiming for broad generalization and fine-tuning focusing
on specialization. Therefore, we directly use leverage scores for computing domain weights, as
described in Section 3.2.

We fine-tune a pretrained model trained on the Pile (from Section 4.2) for 10k steps on two separate
datasets: (i) Wiki40b (Guo et al., 2020), which includes multiple languages, for which we select 7
Latin languages, and (ii) Stack-decup (Kocetkov et al., 2022), which covers various programming
languages, from which we use 7. The results are shown in Table 6 and Table 7. CHAMELEON
outperforms the uniform weights baseline across all domains in both tasks, showing our data mixture
can greatly benefit finetuning. Remarkably, our weight computation is computationally cheap in
finetuning, as we simply need forward passes through the pretrained model to compute domain
embeddings and we can then directly apply (KRLS).

Additionally, we present fine-tuning results using αPT instead of αFT in Appendix B.8 for reference.
The results demonstrate that fine-tuning with KRLS-based domain weights outperforms using their
inverse. This indicates that data-mixing strategies should be tailored to different training phases.

Table 6: Finetuning on Wiki40b. Per-domain
test perplexity vs. the uniform baseline for
finetuning on the 7 languages in Wiki40b.
CHAMELEON improves across all domains.

Domain Uniform CHAMELEON

French 6.86 6.51
German 10.12 8.78
Italian 13.29 12.42
Spanish 8.41 8.04
Portuguese 8.00 7.78
Dutch 13.98 12.30
Polish 5.07 4.21

Average PPL (↓) 9.43 8.58
Domains over - 7/7

Table 7: Finetuning on Stack. Per-domain test
perplexity vs. the uniform baseline for finetun-
ing on the 7 programming languages in Stack.
CHAMELEON improves across all domains.

Domain Uniform CHAMELEON

Python 19.98 16.53
Java 19.27 15.53
C 28.24 22.58
C++ 25.16 21.09
Go 30.25 19.26
Ruby 21.78 17.83
PHP 9.45 7.43

Average PPL (↓) 22.02 17.18
Domains over - 7/7

5 CONCLUSION

We introduce CHAMELEON, a novel and efficient framework for data mixing that leverages KRLS to
quantify the representativeness of data domains. We demonstrate that inverse KRLS-based domain
weights effectively identify highly important domains for pretraining LMs. CHAMELEON can adapt
to new domains without retraining proxy models, outperforming baselines in downstream tasks.
Given that it is computationally inexpensive and stable, CHAMELEON lowers the overall cost of
the expensive LLM pretraining pipeline, which can be useful both in industry and within academic
budgets. We also extend domain reweighting to fine-tuning with KRLS-based weights, demonstrating
consistent improvements.

This work highlights the need to tailor data-mixing strategies to different training phases. In future
work, we aim to extend our approach to online settings for dynamic optimization during training.
Additionally, we will extend to target specific downstream tasks by modifying the identity matrix
within the KRLS to emphasize relevant domains, enhancing our method’s flexibility for specific
downstream tasks.

10

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

REFERENCES

Ahmed El Alaoui and Michael W. Mahoney. Fast Randomized Kernel Methods With Statistical
Guarantees, 2015. arXiv:1411.0306.

Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing
for language model pre-training. In R0-FoMo: Robustness of Few-shot and Zero-shot Learning in
Large Foundation Models Workshop, 2023.

Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on Learning
Theory, pp. 185–209. PMLR, 2013.

Bernhard Beckermann, Mihai Putinar, Edward B. Saff, and Nikos Stylianopoulos. Perturbations of
christoffel–darboux kernels: Detection of outliers. Foundations of Computational Mathematics, 21
(1):71–124, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In AAAI Conference on Artificial Intelligence, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems (NeurIPS), volume 33,
pp. 1877–1901, 2020.

Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Analysis of nyström method with
sequential ridge leverage score sampling. In Uncertainty in Artificial Intelligence Conference,
2016.

Yifan Chen and Yun Yang. Fast statistical leverage score approximation in kernel ridge regression.
In International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 2935–2943.
PMLR, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Michael B Cohen, Cameron Musco, and Christopher Musco. Ridge leverage scores for low-rank
approximation. arXiv preprint arXiv:1511.07263, 6, 2015.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxima-
tion via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1758–1777. SIAM, 2017.

Stefano De Marchi, Alvise Sommariva, and Marco Vianello. Multivariate christoffel functions and
hyperinterpolation. Dolomites Research Notes on Approximation, 7(Special Issue), 2014.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning (ICML), pp.
5547–5569. PMLR, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kévin Ducharlet, Louise Travé-Massuyès, Jean-Bernard Lasserre, Marie-Véronique Le Lann, and
Youssef Miloudi. Leveraging the christoffel function for outlier detection in data streams. Interna-
tional Journal of Data Science and Analytics, 2024.

Charles F Dunkl and Yuan Xu. Orthogonal polynomials of several variables, volume 155. Cambridge
University Press, 2014.

Simin Fan, David Grangier, and Pierre Ablin. Dynamic gradient alignment for online data mixing.
arXiv preprint arXiv:2410.02498, 2024a.

11

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. DOGE: Domain reweighting with generalization
estimation. In International Conference on Machine Learning (ICML), 2024b.

Michaël Fanuel, Joachim Schreurs, and Johan AK Suykens. Nyström landmark sampling and
regularized christoffel functions. Machine Learning, 111(6):2213–2254, 2022.

Steven Feng, Shrimai Prabhumoye, Kezhi Kong, Dan Su, Mostofa Patwary, Mohammad Shoeybi,
and Bryan Catanzaro. Maximize your data’s potential: Enhancing llm accuracy with two-phase
pretraining. arXiv preprint arXiv:2412.15285, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 2024.

James Gareth, Witten Daniela, Hastie Trevor, and Tibshirani Robert. An introduction to statistical
learning: with applications in R. Spinger, 2013.

Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami Al-Rfou. Wiki-40b: Multilingual language
model dataset. In Proceedings of the Twelfth Language Resources and Evaluation Conference,
2020.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of statistical
learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–85,
2005.

Yiding Jiang, Allan Zhou, Zhili Feng, Sadhika Malladi, and J Zico Kolter. Adaptive data optimization:
Dynamic sample selection with scaling laws. arXiv preprint arXiv:2410.11820, 2024.

Feiyang Kang, Hoang Anh Just, Yifan Sun, Himanshu Jahagirdar, Yuanzhi Zhang, Rongxing Du,
Anit Kumar Sahu, and Ruoxi Jia. Get more for less: Principled data selection for warming up
fine-tuning in LLMs. In International Conference on Learning Representations (ICLR), 2024a.

Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, and Ruoxi Jia.
Autoscale: Automatic prediction of compute-optimal data composition for training llms. arXiv
preprint arXiv:2407.20177, 2024b.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface: A challenge set for reading comprehension over multiple sentences. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2018.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of permissively
licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Jean B. Lasserre and Edouard Pauwels. The empirical christoffel function with applications in data
analysis. Advances in Computational Mathematics, 45(3):1439–1468, 2019.

Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pp. 127–136, 2013.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

12

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing
Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training. arXiv
preprint arXiv:2407.01492, 2024.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer‘s guide to
training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In Proceed-
ings of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 3245–3276. Association for Computational
Linguistics, 2024.

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li. At
which training stage does code data help llms reasoning? arXiv preprint arXiv:2309.16298, 2023.

Michael W. Mahoney and Petros Drineas. CUR matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. In Advances
in Neural Information Processing Systems (NeurIPS), volume 30. Curran Associates, Inc., 2017.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and Arsalan Shahid. The
ultimate guide to fine-tuning llms from basics to breakthroughs: An exhaustive review of tech-
nologies, research, best practices, applied research challenges and opportunities. arXiv preprint
arXiv:2408.13296, 2024.

Edouard Pauwels, Francis Bach, and Jean-Philippe Vert. Relating leverage scores and density using
regularized christoffel functions. In Advances in Neural Information Processing Systems (NeurIPS),
volume 31, 2018.

Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel
method. In Advances in Neural Information Processing Systems (NeurIPS), volume 30. Curran
Associates, Inc., 2017.

Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo Rosasco. On fast leverage score
sampling and optimal learning. In Advances in Neural Information Processing Systems (NeurIPS),
volume 31. Curran Associates, Inc., 2018.

Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations (ICLR), 2020. URL
https://openreview.net/forum?id=ryxGuJrFvS.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
Learning feature matching with graph neural networks. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In
Conference on Learning Theory, pp. 416–426. Springer, 2001.

13

https://openreview.net/forum?id=ryxGuJrFvS

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, et al. Slimpajama-dc: Understanding data
combinations for llm training. arXiv preprint arXiv:2309.10818, 2023.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan
Dey. SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023. URL
https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural
Networks, 10(5):988–999, 1999.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V.
Le, Tengyu Ma, and Adams Wei Yu. DoReMi: Optimizing data mixtures speeds up language
model pretraining. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Yu Yang, Siddhartha Mishra, Jeffrey N Chiang, and Baharan Mirzasoleiman. SmallToLarge (S2L):
Scalable Data Selection for Fine-tuning Large Language Models by Summarizing Training Tra-
jectories of Small Models. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing
laws: Optimizing data mixtures by predicting language modeling performance. arXiv preprint
arXiv:2403.16952, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine
really finish your sentence? In Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 4791–4800, 2019.

14

https://huggingface.co/datasets/cerebras/SlimPajama-627B

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

A ADDITIONAL DISCUSSIONS ON THE KRLS

A.1 DETAILS OF LEVERAGE SCORES

In this work, we employ KRLS to assign scores to data domains, and we focus on the leverage scores
as a measure of domain importance, both in pretraining and finetuning language models. The KRLS
Alaoui & Mahoney (2015) is a kernelized-version of the ridge leverage scores, which are used to
quantify the importance of the rows in a matrix for the best-rank approximation with approximation
error guarantees Mahoney & Drineas (2009); Li et al. (2013). The KRLS for the i-th domain is
defined as

Si =
(
ΩD(ΩD + kλI)−1

)
ii
, (1)

with kernel matrix ΩDij = κ(xi, xj) and regularization constant λ > 0. In our data-centric approach,
we rank domains based on the degree of inter-domain dependency. To better see this, we establish the
equivalence of RLS computed in the feature space induced by the finite-dimensional feature map
ϕ and KRLS when employing the corresponding kernel κ(xi, xj) = ϕ(xi)

⊤ϕ(xj), where we use
ϕ(x) = x in Section 3.1. This result provides insights into the behavior of the employed KRLS for
domain reweighting. Let the set of k domain embeddings {xi}ki=1, where xi ∈ Rp. Let ϕ : Rp → Rd

be a finite-dimensional feature map with associated p.s.d. kernel κ(xi, xj) = ϕ(xi)
Tϕ(xj) by kernel

trick Vapnik (1999), and Φ(X) ∈ Rk×d be the matrix whose rows are the feature mappings ϕ(xi)
⊤.

The ridge regression hat matrix in feature space is Hϕ
λ = Φ(X)(Φ(X)TΦ(X) + λI)−1Φ(X)T ,

with ridge leverage scores diag(Hϕ
λ). In kernel ridge regression, the kernel ridge hat matrix is

Hκ = ΩD(ΩD + λI)−1 and the kernel ridge leverage scores are given by diag(Hκ).
Lemma A.1. With kernel κ(x, y) = ϕ(x)Tϕ(y), where ϕ : Rd → Rp is a finite-dimensional feature
map, the RLS in feature space induced by ϕ and the KRLS are s.t. diag(Hϕ

λ) = diag(Hκ).

Proof. With the kernel κ(x, y) = ϕ(x)Tϕ(y), we have ΩD = Φ(X)Φ(X)T . Substituting into Hκ:

Hκ = (Φ(X)Φ(X)T)(Φ(X)Φ(X)T + λI)−1.

We utilize the following matrix identity: for matrices A ∈ Rm×n and B ∈ Rn×m and a scalar λ ̸= 0,

A(BA+ λI)−1 = (AB + λI)−1A.

This identity can be verified by multiplying both sides by (BA+λI) from the right, then by (AB+λI)
from the left, which yields the same result on both sides.

Let A = Φ(X) and B = Φ(X)T . Then:

Φ(X)(Φ(X)TΦ(X) + λI)−1 = (Φ(X)Φ(X)T + λI)−1Φ(X).

Therefore,

Hϕ
λ = Φ(X)(Φ(X)TΦ(X) + λI)−1Φ(X)T = (Φ(X)Φ(X)T + λI)−1Φ(X)Φ(X)T = Hκ.

Thus, the diagonal elements, and hence the leverage scores, are equivalent: diag(Hϕ
λ) = diag(Hκ).

The above lemma establishes the equivalence of the ridge leverage scores computed in the feature
space induced by the finite-dimensional feature map ϕ and the KRLS when employing the correspond-
ing kernel κ(xi, xj) = ϕ(xi)

⊤ϕ(xj). It is possible to relate the RLS to the ridgless solution, where
the regularized solution converges to the least-norm solution as λ → 0. Let the eigendecomposition
of ΩD = UΣU⊤, then the KRLS of domain i, i = 1, . . . , k can be written as

Sλ(Di) =

k∑
j=1

σj

σj + λ
U2
ij ,

where σj is the j-th eigenvalue of ΩD. Therefore, the KRLS is a weighted version of the standard
statistical leverage Gareth et al. (2013), i.e.,

∑k
j=1 U

2
ij , with weights depending on the regularization

and the eigenspectrum of ΩD. We now recall the relationship between the least-norm solution of a
system of equations to the (ridgless) statistical leverage score ℓi = ϕ(xi)

⊤(Φ(X)⊤Φ(X))+ϕ(xi)
Mahoney & Drineas (2009).

15

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Lemma A.2. The least-norm solution characterizes ℓi as follows:

ℓi = min
Φ(X)⊤y=ϕ(xi)

∥y∥22 . (2)

The leverage score of domain i measures how important it is in composing the row space of Φ(X).
If a row (domain) has a component orthogonal to all other rows (domains), its leverage score is 1.
In data mixture, (2) seeks a linear combination of features that best approximates the embedding xi

of the i-th domain. Intuitively, ℓi is highest when xi is linearly independent from the other domain
embeddings. In our approach, we use the KRLS to assign scores to data domains both in pretraining
and finetuning language models. High scores indicate data domains that are difficult to approximate
with a linear combination of other domains, and are thus more unique. On the other hand, low
scores indicate data domains that show higher degree of dependency with other domains, identifying
more common data characteristics. During pretraining, we rank domains with lower KRLS as more
important, as they are more common and thus more useful for learning general-purpose language
representations. During finetuning to a specific task, we upweight domains with higher KRLS, as
they are more unique and therefore better suited for learning task-specific representations.

A.2 DISCUSSIONS

We now discuss additional theoretical insights and properties of our methodology.

Role of regularization. Adding λI to ΩD in (1) reduces the influence of the small principal
components, resulting in proportionately lower sampling probability. A large λ soft-thresholds the
low part of the spectrum of ΩD and amplifies the contribution of the top eigenvectors of the kernel
matrix, focusing on the most dominant domains. In practice, due to the relatively small number of
domains, we observe that our algorithm is robust to the choice of λ, where small regularization is
sufficient and larger values do not significantly alter the computed domain weights.

Adaptability to larger models. Our approach can robustly transfer domain weights obtained from
a small proxy model hθp to a larger target model hθt thanks to its use of domain affinities. Specifically,
our method computes domain weights based on the kernel matrix ΩD, which captures pairwise inner
products between domain embeddings. While the absolute embeddings xi may vary between the
proxy and target model, their inner products show a higher degree of consistency across model sizes.
For instance, if the proxy learns that the “github” and “stackexchange” domains are semantically
close, a larger, more powerful model typically also maintains this proximity in embedding space.
Consequently, the pairwise similarities encoded in ΩD, and therefore the resulting KRLS scores (1)
and domain weights, are robust across different model scales. Empirical evidence is presented in
Table 14.

Relation with Christoffel functions. In machine learning literature, the Christoffel function is
a key concept that characterizes the local density of the data distribution in feature space Pauwels
et al. (2018). Christoffel functions are known in orthogonal polynomials Dunkl & Xu (2014) and
approximation theory De Marchi et al. (2014). They are extended to machine learning Pauwels
et al. (2018), where it makes the connection between inverse leverage scores and the kernelized
Christoffel function. In machine learning, they are mainly used for landmark sampling Fanuel et al.
(2022), density estimation Pauwels et al. (2018), and outlier detection Lasserre & Pauwels (2019);
Beckermann et al. (2021); Ducharlet et al. (2024). Given samples {zi}nj=1, the kernelized Christoffel
function is defined as the following regularized minimization over a reproducing kernel Hilbert space
(RKHS) H with associated kernel κH:

Cλ,η(z) = inf
g∈H

n∑
j=1

ηj
n
g(zi)

2 + λ ∥g∥2H s.t. g(z) = 1, (3)

where λ > 0 is a regularization constant, ∥g∥H denotes the RKHS norm of g, and ηj > 0. The
Christoffel function is linked to the ridge leverage scores (RLS) (Alaoui & Mahoney, 2015; Cohen
et al., 2017; Rudi et al., 2018), which quantify the influence of each sample on the learned model.
Specifically, the Christoffel function at a point is proportional to the inverse of its RLS. High RLS
values indicate data points that are difficult to represent as linear combinations of other points in the

16

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

feature space. Conversely, a high Christoffel function value (and thus a low RLS) suggests a data
point lies in a region of high data density and can be better expressed in terms of other points. In our
work, focusing on domains with high degree of linear dependency, i.e., high Christoffel function, is
shown to enable improved generalization and transfer learning capabilities. The following lemma
details the closed-form expression for the regularized kernelized Christoffel function at each sample.
Lemma A.3 (Pauwels et al. (2018)). The regularized kernelized Christoffel function takes the
following value at sample j, for j = 1, . . . , n:

Cλ,η(zj) =
ηj
n

(
K

(
K + nλ diag(η)−1

)−1
)−1

jj
, (4)

where K ∈ Rn×n is the kernel matrix with entries Kij = κH(zi, zj), and diag(η) =
diag(η1, . . . , ηn) is a diagonal matrix with entries ηj on the diagonal.

This is derived from the representer theorem applied to (3) Schölkopf et al. (2001); Pauwels et al.
(2018). Lemma A.3 reveals the connection between the Christoffel function and the KRLS (1). The
Christoffel function Cλ,1(zj) is therefore inversely proportional to KRLS of sample zj with η = 1.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL FIGURES FOR FIGURE 1

0 10

−5

0

5

10

UMAP1

U
M

A
P2

Wiki. Book CC C4 Arxiv Github Stack.

Figure 3: Domains in embedding space. 2D
UMAP visualization of embeddings of SlimPa-
jama learned by the proxy model. Semantically
similar domains occupy similar regions in em-
bedding space, creating high-density clusters.

Arxi
v

Boo
k CC C4

Gith
ub

Stac
ke

xc
ha

ng
e

W
iki

pe
dia

Arxi
v

Boo
k

CC

C4

Gith
ub

Stac
ke

xc
ha

ng
e

W
iki

pe
dia

42.2 −16.9−14.5−14.5 5.6 2.9 −4.9

−16.9 26.7 12 14.6 −21.2−16.1 0.9

−14.5 12 23.9 18.7 −20.3−13.3−6.4

−14.5 14.6 18.7 22.1 −21.8−16.7−2.3

5.6 −21.2−20.3−21.8 45.7 31.1 −19

2.9 −16.1−13.3−16.7 31.1 29 −16.9

−4.9 0.9 −6.4 −2.3 −19 −16.9 48.6 −20

0

20

40

R
el

at
io

ns
hi

p
St

re
ng

th
Figure 4: Domain affinity matrix. Domain
affinity matrix ΩD for SlimPajama. The ma-
trix shows the relationship strength between do-
mains.

B.2 EXPERIMENTAL SETUP

We follow the experimental setup of DoGE (Fan et al., 2024b), using a small 82M decoder-only
Transformer (Vaswani et al., 2017) as the auxiliary model for CHAMELEON, DoReMi, and DoGE.
Additionally, we use a 684M model as the base model for pretraining. Moreover, we set the batch size
128, the cosine learning rate scheduler, weight decay 0.01, and gradient clipping 1.0 for all models.
For the training on Slimpajama, Wiki40b, and Stack datasets, we set batch size 128. We increase the
batch size to 512 on the Pile dataset since it is more noisy and has a larger number of domains.

In CHAMELEON, a temperature factor τ in the softmax normalization for domain weights is addition-
ally applicable: αi = exp(zi/τ)/

∑k
j=1 exp(zj/τ), where z = S−1

λ (D) for pretraining and z = Sλ(D)
for fine-tuning. In our experiments, we typically set τPT ∈ [5, 10] and τFT ∈ [0.2, 0.5].

For the ablation study of CHAMELEON, we also evaluate proxy models with other sizes (60M, 124M,
and 210M). The model architectures and their corresponding learning rates are reported in Table 8.

17

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

For the setup of RegMix on the Slimpajama dataset, we follow its original setup (Liu et al., 2024)
and train 200 1M proxy models with 1k steps to fit a regression model.

Table 8: Architecture hyperparameters for various model scales.

Layers Attention heads Embed dim Hidden dim Max. learning rate (min.)

60M 3 6 768 3072 5× 10−4 (1× 10−4)
82M 6 12 768 3072 5× 10−4 (1× 10−4)
124M 12 12 768 3072 5× 10−4 (1× 10−4)
210M 24 16 768 3072 5× 10−4 (1× 10−4)
684M 36 24 1200 4800 1.5× 10−4 (5× 10−5)

B.3 DOMAIN WEIGHTS ON SLIMPAJAMA

We report our final domain weights for base model training in Table 9. Specifically, DoReMi and
DoGE use domain weights through training proxy models with 10k steps. CHAMELEON use the
model with 2k steps. For RegMix, we follow its paper (Liu et al., 2024) using “CC” as the target
domain and train 200 1M proxy models to get the domain weights.

Table 9: Final domain weights.

Domain DoReMi DoGE CHAMELEON RegMix

Arxiv 0.057 0.041 0.083 0.001
Book 0.002 0.078 0.164 0.025
CC 0.237 0.268 0.202 0.924
C4 0.237 0.283 0.247 0.024

Github 0.130 0.059 0.082 0.019
Stackexchange 0.101 0.230 0.149 0.006

Wikipedia 0.236 0.041 0.073 0.001

B.4 EVALUATE UNIVERSAL GENERALIZATION WITH 1.2B MODELS

Prior works (Xie et al., 2023; Fan et al., 2024b; Liu et al., 2024) have shown that domain weights
transfer well across model scales. To further validate this, we train 1.2B models on SlimPajama (see
Tables 10 and 11) We find that weights from an 82M proxy model effectively transfer to both 684M
and 1.2B models. Notably, CHAMELEON achieves even greater improvements on larger models,
highlighting its scalability.

Table 10: Universal generalization with 1.2B model - perplexity.

Domain Uniform DoReMi DoGE Chameleon RegMix

Arxiv 6.30 7.09 7.07 6.33 10.61
Book 28.25 32.66 27.83 24.63 27.55
CC 31.19 29.96 28.11 26.95 24.70
C4 34.74 33.05 31.06 29.58 31.94

Github 2.91 3.03 3.07 2.94 4.08
Stackexchange 6.01 6.44 5.80 5.76 9.54

Wikipedia 8.65 7.93 10.88 9.03 20.08

Average PPL (↓) 16.86 17.17 16.26 15.03 18.36

18

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Table 11: Universal generalization with 1.2B model - reasoning.

Task Uniform DoReMi DoGE Chameleon RegMix

ARC-E 39.4 41.2 41.9 42.4 43.0
COPA 64.0 66.0 63.0 61.0 66.0
HellaSwag 27.5 27.7 28.2 28.4 27.6
Lambada 17.9 17.3 18.7 21.6 20.7
LogiQA 22.0 24.0 22.0 21.2 20.7
MultiRC 57.2 57.2 57.2 57.2 56.9
OpenBookQA 15.0 13.6 13.8 16.4 17.4
PIQA 61.5 61.9 61.8 63.8 58.7
QQP 36.8 36.8 36.9 36.9 36.8
RACE 26.0 26.7 27.8 29.1 28.4
SciQ 69.7 68.3 69.0 72.6 72.0
SocialIQA 36.2 36.5 35.9 37.2 36.1
WinoGrande 52.8 49.6 48.9 51.5 50.0

Average (↑) 40.5 40.5 40.4 41.5 41.1

B.5 STABLE DOMAIN WEIGHTS OF CHAMELEON

Table 12 corresponds to Figure 2 and reports the specific domain weights obtained by the proxy model
with the different number of steps. CHAMELEON is more stable and converges faster than DoReMi
and DoGE. In addition, we report perplexity using domain weights derived from a proxy model
trained for 2k steps for DoReMi and DoGE in Table 13. This further demonstrates that DoReMi and
DoGE converge slower than CHAMELEON.

Furthermore, Table 14 demonstrates that CHAMELEON is also very stable across different model
sizes, λ values, and number of samples for embedding computations.

Table 12: Domain weights at different steps.

Domain DoReMi DOGE CHAMELEON
1k 2k 5k 10k 1k 2k 5k 10k 1k 2k 5k 10k

Arxiv 0.251 0.172 0.095 0.057 0.116 0.092 0.060 0.041 0.088 0.083 0.072 0.096
Book 0.003 0.008 0.004 0.002 0.139 0.131 0.102 0.078 0.149 0.164 0.174 0.158
CC 0.080 0.114 0.153 0.237 0.177 0.209 0.247 0.268 0.174 0.202 0.188 0.195
C4 0.080 0.115 0.154 0.237 0.176 0.210 0.259 0.283 0.281 0.247 0.220 0.251

Github 0.215 0.138 0.241 0.130 0.121 0.101 0.074 0.059 0.096 0.082 0.094 0.083
Stackexchange 0.095 0.146 0.118 0.101 0.155 0.167 0.200 0.230 0.137 0.149 0.137 0.136

Wikipedia 0.276 0.308 0.235 0.236 0.116 0.090 0.058 0.041 0.074 0.073 0.082 0.080

Table 13: Perplexity using domain weights derived from a proxy model trained for 2k steps.

Domain DoReMi DoGE CHAMELEON

Arxiv 8.08 8.49 8.31
Book 52.07 40.38 39.23
CC 48.69 41.31 40.11
C4 52.98 44.54 42.59

Github 3.99 4.05 4.20
Stackexchange 7.98 7.81 7.94

Wikipedia 10.57 13.98 13.90

Average PPL (↓) 26.34 23.01 22.31

19

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Table 14: Domain weights across different model sizes, λ values, and number of samples.

Domain Model Sizes λ Values Number of Samples
60M 82M 124M 210M λ = 1 λ = 10 λ = 100 2k 4k 8k

Arxiv 0.084 0.083 0.087 0.093 0.080 0.083 0.087 0.079 0.083 0.081
Book 0.158 0.164 0.157 0.165 0.159 0.164 0.173 0.165 0.164 0.170
CC 0.170 0.202 0.169 0.170 0.178 0.202 0.201 0.193 0.202 0.209
C4 0.271 0.247 0.288 0.259 0.243 0.247 0.258 0.253 0.247 0.241

Github 0.073 0.082 0.072 0.089 0.097 0.082 0.057 0.079 0.082 0.066
Stackexchange 0.152 0.149 0.153 0.145 0.152 0.149 0.128 0.138 0.149 0.143

Wikipedia 0.072 0.073 0.074 0.078 0.081 0.073 0.095 0.093 0.073 0.090

B.6 DOMAIN WEIGHTS ON PILE

We report the domain weights we use on the Pile dataset in Table 15. Note that CHAMELEON and
DoGE are from our own experiments, Human is suggested in Gao et al. (2020), DoReMi uses the
same as Xie et al. (2023), and RegMix uses weights from Liu et al. (2024).

Table 15: Domain weights on Pile.

Domain Human DoReMi DoGE RegMix CHAMELEON

Arxiv 0.134 0.004 0.0608 0.001 0.0386
Dm_mathematics 0.025 0.002 0.0280 0.000 0.0538
Enron_emails 0.004 0.009 0.0239 0.002 0.0085
Europarl 0.005 0.008 0.0407 0.000 0.0048
Freelaw 0.049 0.005 0.0293 0.001 0.0147
Github 0.054 0.022 0.0693 0.000 0.0099
Gutenberg_pg_19 0.025 0.009 0.0283 0.002 0.0115
Hackernews 0.010 0.016 0.3949 0.012 0.0637
Nih_exporter 0.007 0.008 0.180 0.001 0.0424
Philpapers 0.003 0.034 0.0266 0.000 0.0226
Pile_cc 0.142 0.743 0.0348 0.870 0.4519
Pubmed_abstracts 0.107 0.014 0.0398 0.024 0.0104
Pubmed_central 0.136 0.006 0.0251 0.003 0.1207
Stackexchange 0.118 0.019 0.0266 0.000 0.0226
Ubuntu_irc 0.009 0.011 0.0474 0.064 0.0123
Uspto_backgrounds 0.053 0.004 0.0366 0.002 0.0212
Wikipedia_en 0.117 0.086 0.0425 0.016 0.1075

B.7 DOMAIN WEIGHTS FOR FINETUNING

We report the αFT on Wiki40b and Stack datasets separately below, which corresponds to Section 4.3.

Table 16: Wiki40b Domain Weights.

Domain CHAMELEON

French 0.115
German 0.163
Italian 0.127
Spanish 0.109
Portuguese 0.090
Dutch 0.140
Polish 0.257

Table 17: Stack Dataset Training Weights.

Domain CHAMELEON

Python 0.125
Java 0.129
C 0.102
C++ 0.088
Go 0.241
Ruby 0.118
PHP 0.197

20

Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

B.8 PPL OF FINETUNING.

We report the results of fine-tuning with αPT in Table 18 and Table 19 for reference. It is clear to
see that fine-tuning with KRLS-based domain weights is better than the one with the inverse of
KRLS-based weights.

Table 18: Per-domain perplexity compared with the Uniform baseline for fine-tuning with 684M
parameter models on the 7 languages in the Wiki40b dataset.

Domain Uniform CHAMELEON (αFT) CHAMELEON (αPT)

French 6.86 6.51 7.14
German 10.12 8.78 10.85
Italian 13.29 12.42 14.42
Spanish 8.41 8.04 8.70
Portuguese 8.00 7.78 8.14
Dutch 13.98 12.30 15.05
Polish 5.07 4.21 5.31

Average PPL (↓) 9.43 8.58 9.94

Table 19: Per-domain perplexity compared with the Uniform baseline for fine-tuning with 684M
parameter models on the 7 languages in the Stack dataset.

Domain Uniform CHAMELEON (αFT) CHAMELEON (αPT)

Python 19.98 16.53 20.11
Java 19.27 15.53 19.32
C 28.24 22.58 25.02
C++ 25.16 21.09 23.83
Go 30.25 19.26 28.66
Ruby 21.78 17.83 21.75
PHP 9.45 7.43 9.47

Average PPL (↓) 22.02 17.18 21.17

21

	Introduction
	Related Work
	Data Mixing via Chameleon
	Quantifying domain characteristics
	Incorporating KRLS into LM Training

	Experiments
	Universal Generalization
	Scalable to Pile
	Finetuning

	Conclusion
	Additional discussions on the KRLS
	Details of leverage scores
	Discussions

	Additional experiments
	Additional figures for fig:pipeline
	Experimental setup
	Domain weights on Slimpajama
	Evaluate universal generalization with 1.2B models
	Stable domain weights of Chameleon
	Domain weights on Pile
	Domain weights for finetuning
	PPL of finetuning.

