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Abstract

Despite Generative AI’s rapid growth (e.g., ChatGPT, GPT-4, Dalle-2, etc.), generated
data from these models may have an inherent bias. This bias can propagate to downstream tasks
e.g., classification, and data augmentation that utilize data from generative AI models. This thesis
empirically evaluates model bias in different deep generative models like Variational Autoencoder
and Pixel CNN++. Further, we resample generated data using importance sampling to reduce bias
in the generated images based on a recently proposed method for bias-reduction using
probabilistic classifiers. The approach is developed in the context of image generation and we
demonstrate that importance sampling can produce better quality samples with lower bias. Next,
we improve downstream classification by developing a semi-supervised learning pipeline where
we use importance-sampled data as unlabeled examples within a classifier. Specifically, we use a
loss function called as the semantic-loss function that was proposed to add constraints on
unlabeled data to improve the performance of classification using limited labeled examples.
Through the use of importance-sampled images, we essentially add constraints on data instances
that are more informative for the classifier, thus resulting in the classifier learning a better

decision boundary using fewer labeled examples.
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Chapter 1

Introduction

Generative learning using deep neural networks [41] has gained significant attention over the last
several years. Specifically, in generative learning, the goal is to model the data distribution, and
thus, in theory, generative models can generate unlimited samples that can be used in downstream
tasks such as classification. Deep generative models (DGMs) have been successful in generating
realistic images [11], videos [20], text [5], audio [43] etc.

In the last decade, several types of DGMs have been developed. Prominent among those
include Variational Auto Encoders (VAEs) [22], Generative Adversarial Networks (GANs) [11],
Autoregressive models (ARMs) [38] and normalizing flow models (NFMs) [8]. All of these
models use different approaches to model the data distribution. Specifically, VAEs learn a latent
variable model using deep network layers to encode and decode the latent vectors. GANs use a
likelihood-free approach where the idea is to train a generator-discriminator pair in an adversarial
manner with the generator learning better representations of the data to generate samples for the
discriminator and the discriminator learning to discriminate between real and generated samples.
ARMs generate sequential data based on autoregessions that was widely used for predictions in
time-series models. ARMs can compute the likelihood in a tractable manner since they assume
the autoregressive property. On the other hand, VAEs cannot compute the likelihood tractably but
rather use variational inference to approximate the likelihood using deep encoders and decoder

layers. This allows VAEs to learn complex feature representations. In NFMs, the idea is to



combine the properties of both VAEs and ARMs. Specifically, NFMs can compute the likelihood
in a tractable manner and at the same time, they can also learn complex feature representations
like VAEs. This is done by using simple density functions with tractable likelihoods and then
mapping them to more complex probability distributions using the data samples.

Regardless of the type of generative model, it is infeasible for the model to learn the data
distribution exactly [36]. That is, each type of generative model makes underlying assumptions
about the data that may or may not be always valid. For instance, in VAEs, to make variational
inference feasible through the neural network layers, we assume that the latent vectors that
represent the underlying characteristics of the data are normally distributed [22]. In general, if the
data distribution is simple enough, then clearly, we can sample directly from the distribution and
may not need complex approaches such as DGMs. Therefore, there is a need to improve the
quality of samples that are generated from DGMs. In particular, one way to quantify the quality
of samples generated by a DGM is based on the bias in the model’s distribution. This type of bias
can result in problems such as mode-collapse [37, 29, 33] where the DGM samples from a single
mode of a multi-modal distribution and this results in generating samples that are very similar. A
recently proposed approach by Grover et al. [13] addressed this problem and tried to reduce the
bias of the samples generated by a DGM. Specifically, here, the main idea is to use an approach
called importance sampling [25] to generate weighted samples instead of unweighted samples.
The importance weights encode the importance of the generated samples with respect to the true
distribution. For example, as shown in Fig. 1.1, if the goal is to generate samples from a complex
distribution that is hard to sample, in importance sampling, we instead generate samples from a
simpler distribution called the proposal distribution and weight these samples based on a ratio of
probabilities. Specifically, for each sample, we divide the probability of the sample original
distribution with its probability in the proposal distribution. This ratio acts as the importance
weight for a sample. In [13], using the idea of importance sampling, we draw samples from the
DGM and weight it based on the data distribution which is the true distribution from which we

want to draw samples from.
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Figure 1.1: Sampling Importance Resampling, adopted from [24]

Unfortunately, to compute importance weights, we need to compute the ratio between the
probability of a sample in the true distribution and its probability in the proposal distribution.
This is infeasible in DGMs since we do not know how to compute this probability in a tractable
manner, i.e., the data distribution is assumed to be a complex unknown distribution. In [39], a
clever trick was proposed to weigh samples based on a calibrated probabilistic classifier [31, 14].
That is, this classifier is trained to compute the importance weights for samples that are generated
from a DGM. While this approach seems generally applicable to any DGM, depending on the
type of samples that are generated by the DGM, the trained probabilistic classifier could obtain
very different results. Thus, the quality of the importance weights depends on how well we can
train the probabilistic classifier.

In this thesis, we train a calibrated probabilistic classifier to perform importance sampling
for images generated from VAEs and ARMs. Specifically, we use the well-known CIFAR10
image dataset [23] to train the generative models. We use convolutional VAEs as our VAE model
for image generation and for ARMs, we use the most well-known image generation model called
PixelCNN++ [38]. We implement sample importance resampling (SIR) [26, 9] as suggested in
[13] to resample from the distribution learned by the probabilistic classifier for the generated
samples. However, in [13], it was suggested that SIR can be implemented using a standard
Multinomial roulette sampling method. in our experiments, we observed that for the weights that
were generated, this approach failed to scale and yielded poor results. Therefore, we implemented

a novel SIR where we approximate the Multinomial distribution over importance weights which



are probability ratios (computed from the probabilistic classifier) using a Gumbel-softmax
distribution [19, 27]. This allows us to resample images from the importance distribution more
efficiently. To empirically compare the quality of the the generated images with and without
importance sampling, we use different standard metrics such as the inception score [37], the
Fretchet distance [17] and the kernel inception distance [4].

Next, we develop a novel approach to use the generated images to improve downstream
classification. Specifically, in [44], a loss function called the semantic loss was proposed to add
symbolic knowledge to deep network training. Here, we add exactly-one constraints (as specified
in [44]) over generated images. Specifically, the idea is that we want each generated image to
belong to exactly one class (among all possible classes). Thus, as in semi-supervised learning, we
can now treat the generated images as unlabeled data and add a limited number of labeled
examples to train the classifier. The semantic loss function learns to separate the labeled examples
and at the same time assign classes to the unlabeled examples. Thus, assuming that the unlabeled
examples has information about the classes, this will result in a more general classifier even using
limited labeled examples. Further, by adding constraints on informative generated images, we can
learn a more effective classifier. Using our SIR approach, we resample the generated images
which are the most informative for the classifier. We evaluate our approach by comparing the
performance of classification on CIFAR10 using limited labeled and a large number of generated
images. Our results show that utilizing the importance sampling, we are able to learn a more
accurate classifier trained on the semantic loss funtion as compared to using the generated images
directly.

To summarize, our contributions in this thesis are as follows.

* We empirically evaluate the approach proposed in [13] to understand how well importance

weights can be estimated for VAEs and PixelCNN using the CIFAR-10 dataset.

* We implement the Gumbel-softmax sampling to efficiently perform SIR based on the

importance weight distribution from a calibrated probabilistic classifier.



* We apply the semantic loss function proposed in [44] to add constraints over images
generated (and resampled) from generative models such that the unlabeled generated data

can augment labeled examples within a semi-supervised classifier.

* We develop an open-source implementation in Pytorch that integrates the semantic loss

function with importance sampling for generative models for image datasets.
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