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ABSTRACT

A neural network with ReLU activations may be viewed as a composition of piece-
wise linear functions. For such networks, the number of distinct linear regions ex-
pressed over the input domain has the potential to scale exponentially with depth,
but it is not expected to do so when the initial parameters are chosen randomly.
Therefore, randomly initialized models are often unnecessarily large, even when
approximating simple functions. To address this issue, we introduce a novel train-
ing strategy: we first reparameterize the network weights in a manner that forces
the network to exhibit a number of linear regions exponential in depth. Training
first on our derived parameters provides an initial solution that can later be refined
by directly updating the underlying model weights. This approach allows us to
learn approximations of convex, one-dimensional functions that are several orders
of magnitude more accurate than their randomly initialized counterparts. We fur-
ther demonstrate how to extend our approach to multidimensional and non-convex
functions, with similar benefits observed.

1 INTRODUCTION

Beyond complementary advances in areas like hardware, storage, and networking, the success of
neural networks is primarily due to their ability to efficiently capture and represent nonlinear func-
tions (Gibou et al., 2019). In a neural network, the goal of an activation function is to introduce
nonlinearity between the network’s layers so that the network does not simplify to a single linear
function. The rectified linear unit (ReLU) has a unique interpretation in this regard. Since it either
deactivates a neuron or acts as an identity, the resulting transformation on each individual input re-
mains linear. However, each possible configuration of active and inactive neurons can produce a
unique linear transformation over a particular region of input space. The number of these activa-
tion patterns and their corresponding linear regions provides a way to measure the expressivity of a
ReLU network1 and can theoretically scale exponentially with the depth of the network (Montufar
et al., 2014a; Serra et al., 2018). Hence deep architectures may outperform shallow ones.

Surprisingly, though, a sophisticated theory of how to best encode functions into ReLU networks is
lacking, and in practice, adding depth is often observed to help less than one might expect from this
exponential intuition. Lacking more advanced theory, practitioners typically use random parameter
initialization and gradient descent, the drawbacks of which often lead to extremely inefficient solu-
tions. Hanin & Rolnick (2019) show a rather disappointing bound pertaining to randomly initialized
networks: they prove that the average number of linear regions formed upon initialization is entirely
independent of the configuration of the neurons, so depth is not properly utilized. They observed
that gradient descent has a difficult time creating new activation regions and that their bounds ap-
proximately held after training. As we will discuss later, the number of linear regions is not actually
a model property that gradient descent can directly optimize. Gradient descent is also prone to re-
dundancy; Frankle & Carbin (2019) show how around 95% of weights may ultimately be eliminated
from a network without significantly degrading accuracy.

The present work aims to begin eliminating these inefficiencies, starting in a simple one-dimensional
setting. Drawing inspiration from existing theoretical ReLU constructions, our novel contributions

1See Appendix A.2 for definitions of terms like linear regions, activation patterns, and activation regions.
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include a special reparameterization of a ReLU network that forces it to maintain an exponential
number of activation patterns over the input domain. We then demonstrate a novel pretraining strat-
egy, which trains these derived parameters before manipulating the underlying matrix weights. This
allows the network to discover solutions that are more accurate and unlikely to be found other-
wise. Our technique directly rectifies the issues raised by Hanin & Rolnick (2019). Firstly, we
initialize immediately with an exponential number of linear regions, which would not be expected
to happen otherwise. Secondly, we are not reliant on gradient descent to “discover” new regions;
we only need to maintain the existing ones, which is already guaranteed by the reparameterization
during the pretraining stage. Additionally, this pretraining step can avoid areas of the loss landscape
where unassisted gradient descent might make short-sighted optimizations that eliminate activation
regions. Our results demonstrate that minimizing the reliance of network training on unassisted
gradient descent can reliably produce error values orders of magnitude lower than a traditionally-
trained network of equal size. Although preliminary numerical demonstrations in this theoretical
study pertain to relatively low-dimensional functions, the paper concludes with our views on ex-
tending these theoretical exponential benefits for ReLU networks to arbitrary smooth functions with
arbitrary dimensionality, which would have significant practical utility.

2 RELATED WORK

This work is primarily concerned with a novel training methodology, but it also possesses a signif-
icant approximation theoretic component. In one dimension, where we initially focus, our work is
a generalization of the approximation to x2 we review in this section. The reparameterization we
employ modifies this method to become trainable to represent other convex one-dimensional func-
tions, and then converts that result back into a matrix representation. The goal of this method is not
to re-express the full set of neural network weights, but to constrain them into efficient patterns.

2.1 FUNCTION APPROXIMATION

Figure 1: (Top to bottom) Composed triangle waves; using
collections of the above function to approximate x2; deriva-
tives of the above approximations.

Infinitely wide neural networks are
known to be universal function ap-
proximators, even with only one hid-
den layer (Hornik et al., 1989; Cy-
benko, 1989). Infinitely deep net-
works of fixed width are universal ap-
proximators as well (Lu et al., 2017;
Hanin, 2019). In finite cases, one
may study trade-offs between width
and depth to assess a network’s abil-
ity to approximate (learn) a function.

Notably, there exist functions that
can be represented with a sub-
exponential number of neurons in a
deep architecture, yet which require
an exponential number of neurons
in a wide and shallow architecture.
For example, Telgarsky (2015) shows
that deep neural networks with ReLU
activations on a one-dimensional in-
put are able to generate symmetric
triangle waves with an exponential
number of linear segments (shown in
Figure 1 as the ReLU network T (x)).
This network functions as follows: each layer takes a one-dimensional input on [0, 1], and outputs a
one-dimensional signal also on [0, 1]. The function they produce in isolation is a single symmetric
triangle. Together in a network, each layer inputs its output to the next, performing function com-
position. Since each layer converts lines from 0 to 1 into triangles, it doubles the number of linear
segments in its input signal, exponentially scaling with depth.
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The same effect can be achieved with non-symmetric triangle waves (Huchette et al., 2023) (or any
shape that sufficiently “folds” the input space (Montufar et al., 2014b)). Our reparameterization
strategy focuses on non-symmetric triangle waves. The location on (0, 1) of a triangular function’s
peak acts as an alternative parameterization of the function, instead of its weight matrix representa-
tion. Unlike the raw weights of a depth d ReLU network, any values chosen for the triangle peak
parameters will result in the creation of 2d linear regions. Furthermore, this parameterization is
trainable. By using the peak location to set the raw weights of a layer, the gradients can backprop-
agate through the raw weights to update the triangle peaks, effectively confining the network to a
subspace of weights that generates many linear regions.

The dilated triangular waveforms produced in this manner are not particularly useful on their own.
Their oscillations quickly become excessively rapid, and their derviatives do not exist everywhere
(especially in the infinite depth limit). But these problems can be rectified by taking a sum over the
layers of a network. Yarotsky (2017) and Liang & Srikant (2016) construct y = x2 on [0, 1] with
exponential accuracy using symmetric triangle waves. To produce their approximation, one begins
with f0(x) = x, then computes f1(x) = f0(x)− T (x)/4, f2(x) = f1(x)− T (T (x))/16, f3(x) =
f2(x)− T (T (T (x)))/64, and so forth, as pictured in Figure 1. As these successive approximations
are computed, Figure 1 plots their convergence to x2, as well as the convergence of the derivative to
2x. Our reparameterization generalizes this approximation to use non-symmetric triangle waves to
approximate a wider class of convex, differentiable, one-dimensional functions.

The x2 approximation is used by other theoretical works as a building block to guarantee exponential
convergence rates in more complex systems. Perekrestenko et al. (2018) construct a multiplication
gate via the identity (x+ y)2 = x2+ y2+2xy. The squared terms can all be moved to one side, ex-
pressing the product xy as a linear combination of squared terms. They then further assemble these
multiplication gates into an interpolating polynomial, which can have an exponentially decreasing
error when the interpolation points are chosen to be the Chebyshev nodes. Polynomial interpo-
lation does not scale well into high dimensions, so this and papers with similar approaches will
usually come with restrictions that limit function complexity: Wang et al. (2018) requires low input
dimension, Montanelli et al. (2020) uses band limiting, and Chen et al. (2019) approximates low-
dimensional manifolds. These works all make use of a fixed representation of x2. If our networks
were substituted in for the x2 approximation, these works would provide theoretical guarantees
about the capabilities of the resulting model. Even though the approximation rates will not scale
well with input dimension, they serve as a bound that can be improved upon. In Section 5 we further
elaborate on how to use our networks to represent higher-dimensional or non-convex functions.

Other works focus on showing how ReLU networks can encode and subsequently surpass traditional
approximation methods (Lu et al., 2021; Daubechies et al., 2022), including spline-type methods
(Eckle & Schmidt-Hieber, 2019). Interestingly, certain fundamental themes from above like com-
position, triangles, or squaring are still present. Another interesting comparison of the present work
is to Ivanova & Kubat (1995), which uses decision trees as a means to initialize sigmoid neural
networks for classification. Similar to the spirit of our work, which restricts parameterizations
of ReLU networks, Elbrächter et al. (2019) explores theoretical aspects of the conditionining of
ReLU network training and provides constructive results for a parameterization space that is well-
conditioned. Chen & Ge (2024) present a creative approach where they explore reparameterizing
the direction of weight vectors using hyperspherical coordinates to improve training dynamics. Un-
like their reparameterization, ours will restrict the network’s expressivity in order to prevent it from
learning inefficient weight patterns. Lastly, Park et al. (2021) approaches the problem of linear
region maximization from an information theory perspective and uses a loss penalty rather than a
reparameterization to increase the number of linear regions.

2.2 NEURAL NETWORK INITIALIZATION

Our work seeks to improve network initialization by making use of explicit theoretical constructs.
This stands in sharp contrast the current standard approach, which treats neurons homogeneously.
Two popular initialization methods implemented in PyTorch are the Kaiming (He et al., 2015) and
Xavier initialization (Glorot & Bengio, 2010). They use weight values that are sampled from dis-
tributions defined by the input and output dimension of each layer. Aside from sub-optimal ap-
proximation power associated with random weights, a common issue is that the initial weights and
biases in a ReLU network can cause every neuron in a particular layer to output a negative value.
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The ReLU activation then sets the output of that layer to 0, blocking any gradient updates. This is
referred to as the dying ReLU phenomenon (Qi et al., 2024; Nag et al., 2023). Worryingly, as depth
goes to infinity, the dying ReLU phenomenon becomes increasingly likely (Lu et al., 2020). Sev-
eral papers propose solutions: Shin & Karniadakis (2020) use a data-dependent initialization, while
Singh & Sreejith (2021) introduce an alternate weight distribution called RAAI that can reduce
the likelihood of the issue and increase training speed. We observed during our experiments that
RAAI greatly reduces, but does not eliminate the likelihood of dying ReLU. Our approach enforces
a specific network structure that does not collapse in this manner.

3 INITIALIZATION AND PRETRAINING CONSTRUCTION

We begin by discussing how to deliberately architect the weights of a 4-neuron-wide, depth d ReLU
network to induce a number of linear segments exponential in d. As alluded to in Section 2.1, our
initialization algorithm is simply to associate a nonsymmetric triangle function with each layer, and
then to randomize the location of each triangle’s peak in (0, 1); any choice produces 2d regions. This
yields a reparameterization of the ReLU network in terms of the triangle peak locations, ai, rather
than in terms of the network’s weights. The pretraining step of our algorithm then involves learning
and updating these parameters. This is done by setting individual neuron weights in accordance
with the procedures described in this section, and then backpropagating the gradients to update the
triangle peak parameters. Pseudocode for our entire algorithm is provided in Appendix A.1.

To illustrate how we set weights, we first describe the mathematical functions that arise in our
analysis. Triangle functions are defined as

Ti(x) =

{
x
ai

0 ≤ x ≤ ai
1− x−ai

1−ai
ai ≤ x ≤ 1

where 0 < ai < 1. This produces a triangular shape with a peak at x = ai and with both endpoints
satisfying y = 0. Each layer considered in isolation would compute these if directly fed the input
signal. Ti(x)’s derivatives are the piecewise linear functions:

T ′
i (x) =

{
1
ai

0 < x < ai
1

1−ai
ai < x < 1

(1)

In a deep network, the layers feed into each other, composing their respective triangle functions:

Wi(x) =⃝i
j=0Tj(x) = Ti(Ti−1(...T0(x))) (2)

These triangle waves will have 2i linear regions, doubling with each layer. The output of the network
in pretraining will be a weighted sum over the triangle waves formed at each layer. Assuming the
network to be infinitely deep, we have

F (x) =

∞∑
i=0

siWi(x) (3)

where si are scaling coefficients on each of the composed triangular waveforms Wi.

To encode these functions into the weights of a ReLU network, we begin with triangle functions
(see the right subnetwork in Figure 2). Its maximum output is 1 at the peak location a ∈ (0, 1).
Neuron t1 simply preserves the input signal. Meanwhile, t2 is negatively biased, deactivating it for
inputs less than a. Subtracting t2 from t1 changes the slope at the point where t2 begins outputting
a nonzero signal. The weight −1/(a − a2) = −(1/a + 1/(1 − a)) is picked to completely negate
t1’s positive influence, and then produce a negative slope. When these components are combined
into a deep network, the individual triangles they form will be composed with those earlier in the
network, but the two neurons will still behave analogously. Considering the output waveform of t1
and t2 neurons over the entire input domain [0, 1] and at arbitrary depth, we have that t1 neurons are
always active, outputting complete triangle waves. In contrast, t2 neurons are deactivated for small
inputs, so they output an alternating sequence of triangles and inactive regions (see Figure 3).
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Figure 2: On the right is a network representation of a triangle function. The middle shows that
triangle function as a hidden layer of a network. The one-dimensional input and output of a triangle
function is converted into shared weights. A full pretraining network is assembled on the left.

Figure 3: Each colored line shows the output signal of a neu-
ron with respect to the input to the network. Colors match
the corresponding neurons in Figure 2.

Naively using the output of one trian-
gle generator (from Figure 2) as input
to the next would form a 1× 2× 1×
2× 1... shape, but this is unnecessar-
ily deep. We can replicate the one-
dimensional function composition in
the hidden layers on the left side of
Figure 2 by using weight sharing in-
stead. Any outgoing weight from t1
or t2 is shared; every neuron taking
in a triangle wave as input does so
by combining t1 and t2 in the same
proportion. In this way, we can avoid
having to use the extra intermediate
neurons. This is evident in Figure 3
where the waves output by t1 and t2
neurons posses identical slopes in re-
gions where both neurons are active.

There are two other neurons in the
pretraining network’s layers, each
with a specific role. The accumulation neuron (marked as “sum” in Figure 2) maintains a weighted
sum of all previous triangle waves through each layer. This is similar to a residual connection (He
et al., 2016), except that no other neurons take the sum as input (its output is convex, and therefore
not rapidly oscillating, and detrimental to making more linear regions). If the sum neuron were
naively implemented, it would multiply the t1 and t2 weights by the sum coefficients. Based on
Theorem 3.1, these coefficients will be exponentially decaying, so learning these weights directly
may cause conditioning issues. Instead, all weights in each layer are multiplied by the ratios be-
tween successive scaling coefficients, so that the outputs of t1 and t2 neurons decay in amplitude
in each layer. A conventional bias will have no connections to prior layers, so it will be unable to
adjust to the rescaling neuron outputs without having to learn exponentially small values. Therefore,
a fourth neuron is configured to output a constant signal, so the weight other neurons place on this
output can replace their bias. The bias neuron will connect to the previous layer’s bias neuron so
that the constant signal can scale down gradually with each layer. We handle this scaling explicitly,
rather than relying on regularizers like batch norm (Ioffe & Szegedy, 2015) or layer norm (Lei Ba
et al., 2016), partially in order to preserve the mathematical transparency of our model, and partially
because this solution arises naturally from our derivations.

3.1 DIFFERENTIABLE MODEL OUTPUT

Given the rapid oscillations of the triangle waves formed at each layer, the network will output a
fractal with many choices of scaling parameters. This would be poorly predictive of unseen data
points generated from a smooth curve. Our main mathematical result addresses this issue by forcing
differentiability of the network output. To achieve differentiability, it turns out that for this class of
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functions, the peak locations of the triangle waves uniquely determine the scales with which to sum
them. For a broader mathematical discussion, as well as sufficient conditions for differentiability in
the limit, see the appendix.

Theorem 3.1. F (x) is continuously differentiable on [0, 1] only if the scaling coefficients si are
selected based on the triangle peaks ai according to:

si+1 = si(1− ai+1)ai+2 (4)

4 ONE-DIMENSIONAL EXPERIMENTS

The goal of deep learning is to train a network to approximate a (generally unknown) nonlinear func-
tion. Accordingly, in this section, we implement our method to learn several convex one-dimensional
curves. These nonlinear functions are known—so that we can measure error—and we remark and
demonstrate results on more difficult functions in Section 5, Section 6, and Appendix A.9. The aim
of these experiments is twofold: (1) we would like to determine how to learn the most effective
function representations possible, and (2) to explore how the utilization of an increased number of
linear regions can affect a network’s ability to capture underlying nonlinearity in its training data.
To demonstrate that our networks can learn function representations that better utilize depth, we
benchmark against PyTorch’s (Paszke et al., 2019) default settings (nn.linear() uses Kaiming
initialization), as well as the RAAI distribution from Singh & Sreejith (2021), and produce errors
that are orders of magnitude lower than both. For our experimental networks, we use a common set
of initialization points where the triangle peaks and scaling parameters are chosen according to our
main theorem (Equation 3.1). We compare the effect of reparameterized pretraining against skip-
ping immediately to standard gradient descent (from a reparameterized initialization as in Section
3). We also compare training the scaling parameters freely during pretraining, instead of choosing
them to achieve differentiability. The intent of both comparisons is to see if pretraining and further
differentiability constraints facilitate smoother navigation of the loss landscape. Lastly, we conduct
a second round of tests to determine if pretrained networks display an enhanced predictive capacity
on unseen data points, as might be expected if they can leverage greater nonlinearity in their outputs.

4.1 EXPERIMENTAL SETUP

All models are trained using Adam (Kingma & Ba, 2017) as the optimizer with a learning rate of
0.001 for 1,000 epochs to ensure convergence (see Appendix for a brief analysis of different learning
rates). Each network is four neurons wide with five hidden layers, along with a one-dimensional
input and output. The loss function used is the mean squared error, and the average and minimum
loss are recorded for 30 models of each type. The networks unique to this paper share a common set
of starting locations using the construction in Section 3, so that the effects of each training regimen
are directly comparable. As in related papers (Perekrestenko et al., 2018; Daubechies et al., 2022),
we focus for the moment on one-dimensional examples, which are sufficient to demonstrate our
proposed theory and methodology. The four curves we approximate are x3, x11, tanh(3x), and a
quarter period of a sine wave. The curves are chosen to capture a variety of convex one-dimensional
functions. To approximate the sine and the hyperbolic tangent, the triangle waves are added to the
line y = x. For the other approximations, the waves are subtracted. This requires the first scaling
factor to be a0 ∗ a1 instead of (1− a0) ∗ a1. The first set of data is 500 evenly spaced points on the
interval [0, 1] for each of the curves. This is chosen to be very dense deliberately, to try to evoke the
most accurate representations from each network. We determine from these tests that pretraining
with differentiability enforced produces the best results, so we compare it to standard networks in
our second set of experiments. We use a second set of data consisting of only 10 points, with a test
set of 10 points spaced in between so as to be as far away from learned data as possible. The goal of
this set of experiments is to compare the predictive capacities of the networks on unseen data.

4.2 NUMERICAL RESULTS

Our first set of results are shown in Tables 1 and 2, wherein we observe several important trends.
First, the worst performing networks are the Default Networks that rely on randomized (Kaiming)

6
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Table 1: Minimum and mean (30 samples) MSE error approximating y = x3 and x11.

Training Type Min x3 Min x11 Mean x3 Mean x11

Default Network (Kaiming) 2.11× 10−5 2.19× 10−5 7.20× 10−2 2.82× 10−2

RAAI Distribution 2.14× 10−5 4.40× 10−5 3.97× 10−2 4.12× 10−2

Pretraining Skipped 7.63× 10−7 1.86× 10−5 3.89× 10−5 3.56× 10−4

Differentiability Not Enforced 1.64× 10−7 3.20× 10−6 1.02× 10−5 3.73× 10−5

Differentiability Enforced 7.86× 10−8 8.86× 10−7 5.27× 10−7 7.87× 10−6

Table 2: Minimum and mean (30 samples) MSE error approximating y = sin(x) and y = tanh(3x).

Training Type Min sin(x) Min tanh(3x) Mean sin(x) Mean tanh(3x)

Default Network (Kaiming) 4.50× 10−5 5.75× 10−5 1.15× 10−1 1.96× 10−1

RAAI Distribution 3.59× 10−5 1.09× 10−5 3.63× 10−2 2.31× 10−2

Pretraining Skipped 1.96× 10−7 1.07× 10−6 1.93× 10−5 8.38× 10−5

Differentiability Not Enforced 4.41× 10−8 1.49× 10−7 1.47× 10−5 3.81× 10−4

Differentiability Enforced 5.06× 10−8 6.82× 10−8 2.21× 10−7 8.42× 10−7

initialization. Even the networks that forgo pretraining benefit from initializing with many activation
regions. When pretraining constraints are used, they are able to steer gradient descent to the best so-
lutions, resulting in reductions in minimum error of three orders of magnitude over default networks.
Pretraining with differentiability enforced also closes the gap between the minimum and mean errors
compared to other setups. This indicates that these loss landscapes are indeed the most reliable to
traverse. Enforcing differentiability during pretraining can impart a bias towards smoother solutions
during subsequent unassisted gradient descent.

The last trend to observe is the poor average performance of default networks. In a typical run of
these experiments, around half of the default networks collapse. RAAI is able to eliminate most, but
not all of the dying ReLU instances due to its probabilistic nature, so it, too, has high mean error.

Our second set of results is shown in Table 3 and in Figure 4. Here the most important impact
of utilizing exponentially many linear regions is demonstrated. Not only can more accurate repre-

Figure 4: Comparison between standard Kaiming initialization/gradient descent and pretraining with
differentiablity enforced. Using more linear regions allows the curve to better predict the test points.
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Table 3: Minimum errors on unseen points from training on sparse data.

Training Type Min x3 Min x11 Min sin(x) Min tanh(3x)

Default Network (Kaiming) 2.41× 10−4 2.14× 10−3 2.27× 10−5 1.60× 10−4

Differentiable Pretraining 5.65× 10−6 6.53× 10−4 7.92× 10−7 5.09× 10−6

sentations of training data be learned, but more linear regions allow the network to better capture
underlying nonlinearity to enhance its predictive power in regression tasks. This result is especially
significant because it indicates that even in cases where there are fewer data points than linear re-
gions, having the additional regions can still provide performance advantages.

4.3 GRADIENT DESCENT DOES NOT DIRECTLY OPTIMIZE EFFICIENCY

Figure 5: Approximation produced with standard method-
ologies (shown before ReLU is applied). The neuron colors
here are arbitrary; they do not correspond to Figure 2.

Figure 5 shows the interior of a de-
fault network. The layers here are
shown before applying ReLU. The
default networks fail to make efficient
use of ReLU to produce linear re-
gions, even falling short of 1 bend per
neuron, which can easily be attained
by forming a linear spline (1 hidden
layer) that interpolates some of the
data points. Examining the figure, the
first two layers are wasted. No neu-
ron’s activation pattern crosses y =
0, so ReLU is never used. Layer 3
could be formed directly from the in-
put signal. Deeper in the network,
more neurons remain either strictly
positive or negative. Those that in-
tersect y = 0 are monotonic, only
able to introduce one bend at a time.
The core issue is that while more
bends leads to better accuracy, net-
works that have few bends are not locally connected in parameter space to those that have many.
This is problematic since gradients can only carry information about the effects of infinitesimal pa-
rameter modifications. If a bend exists, gradient descent can reposition it. But for a neuron that
always outputs a strictly positive value (such as the red in layer 2), bends cannot be introduced by
infinitesimal weight or bias adjustments. Therefore, bend-related information will be absent from
its gradients. Gradient descent will only compel a network to bend by happenstance; indirectly re-
lated local factors must guide a neuron to begin outputting negative values. Occasionally, these local
incentives are totally absent, and the network outputs a bend-free line of best fit.

4.4 EFFECT OF REPARAMETERIZED INITIALIZATION VS PRETRAINING

Figure 6 compares the top performing reparameterized models for x3 with and without pretraining.
We observe that without the guidance of the pretraining, gradient descent usually loses the triangle
generating structure around layer 4 or 5, devolving into noisy patterns and resulting in higher errors.
Pretraining maintains structure at greater depths. This behavior of gradient descent we observe is
problematic since theoretical works often rely on specific constructions within networks to prove
their results. Gradient descent greedily abandons any such structure during its optimization in favor
of models that can be worse in the long term. A theoretical result that shows a certain representation
exists in the set of neural networks will thus have a hard time actually learning it without a subse-
quent plan to control training. This phenomenon highlights the need for theoretical work to derive
more expressive training controls, which can give better guidance for the optimization of functions
of greater dimension or complexity.
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Figure 6: Pretraining (right) results in better structural retention in deeper layers.

5 EXTENSION TO NON-CONVEX FUNCTIONS AND HIGHER DIMENSIONS

Figure 7: Approximation of y = x3 − x by difference of
pretrained components, achieving a loss of 4 × 10−7. A
standard 8× 5 network yielded a larger loss of 8× 10−6.

The results presented so far are lim-
ited to one-dimensional convex func-
tions, but these are not limitations of
our method. Our constructed net-
works can be applied to approximate
higher-dimensional functions by us-
ing these networks as activation func-
tions in a larger network (see Figure
9 in the Appendix for a schematic).
For instance, in two dimensions, we
take two or more copies of our net-
work and estimate a target function as
a linear combination of the networks’
outputs. Because the weights of the
linear combination are randomized,
each copy of the network will tend to
learn different lower-dimensional as-
pects of the target function, whereby
the combination can accurately cap-
ture the higher-dimensional function.

The same approach can address non-
convex functions since many non-convex functions (including every continuous function with a
bounded second derivative (Hessian)) can be expressed as the difference of two convex functions
(see Zhang et al. (2018), which also describes how every ReLU network can be decomposed into a
difference of two piecewise linear convex functions). We do not claim that two copies of our network
are sufficient for learning every pathological function, but preliminary results in this section are
surprisingly promising. In fact, we highly encourage reviewing Appendix A.9, which demonstrates
our method on real-world datasets and problems with up to eight input dimensions.

We note that the approach in this section bears similarity to the recently popularized Kolmogorov-
Arnold Networks (KAN) (Liu et al., 2024), which use spline functions as activations of a network
where every weight is 1. This is based on the Kolomogorov-Arnold representation theorem (Kol-
mogorov, 1957; Arnold, 1957; 1959), which gives a guarantee that every continuous multivari-
ate function can be represented by a neural network-like structure with one-dimensional activation
functions. But by restricting the activation functions to splines, the KAN abandons its theoretical
guarantees. Using our networks as activations, however, maintains the theoretical ability to perform
polynomial interpolation since they retain the ability to approximate x2, and the multiplication gate
discussed in Section 2.1 is based on a linear combination of squared terms.

Figures 7 and 8 show learning the non-convex function y = x3−x and the two-dimensional function
z = r3 on [−1, 1], each by using two of our convex function blocks. Rather than directly using our

9
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Figure 8: Approximations of z =
√
x2 + y2

3
using an 8 × 5 regular network (left) and a union

of two of our pretrained components (right). Losses are 1.5 × 10−4 and 3.5 × 10−6, respectively,
demonstrating a nearly two orders of magnitude improvement using our techniques.

networks as activation functions, we instead encode each of their layers as a block diagonal structure
in one combined matrix (which has the same effect). Two slight modifications are made to each of
the component networks to better interact with ReLU. First, two neurons are used for the sum so that
a negative component may be maintained in the case of x3 − x, which would otherwise be zeroed
out by ReLU. Second, the triangular functions are generated upside-down, preventing ReLU from
zeroing the function outside of the approximation region.

For both x3 − x and r3, we substantially outperform standard initialization and training procedures.
Especially striking is the increased number of linear regions in Figure 8. Visible in Figure 7 is the
gradient descent-induced destructuring discussed in Section 4.4. This likely occurs due to the block
diagonal structure of the larger weight matrices, which results in many zeros for the second pass of
gradient descent to fill in unassisted. This could be addressed either by limiting training only to the
block diagonal entries, or by deriving a more advanced pretraining method that makes use of the
full matrix. Note that since x3 − x is twice differentiable we can write it as (x3 − x+ 3x2)− 3x2,
a difference of functions convex on [−1, 1] obtained by finding a parabola based on trying to make
the derivative of x3 − x monotone. Note that this is not a unique decomposition.

6 CONCLUDING REMARKS

This paper focused on exploiting the potential computational complexity advantages neural net-
works offer for the problem of efficiently learning nonlinear functions; in particular, compelling
ReLU networks to approximate functions with exponential accuracy as network depth is linearly
increased. Our results showed improvements of one to several orders of magnitude in using our
initialization and pretraining strategy to train ReLU networks to learn various nonlinear functions,
including non-convex and multi-dimensional functions. This finding is particularly powerful since
random initialization and gradient descent are not likely to produce an efficient solution on their
own, even if it can be proven to exist in the set of sufficiently sized ReLU networks. Although we
proposed one preliminary strategy for extending our network for higher-dimensional functions, this
strategy has limitations, such as leaving many weights to be filled in by gradient descent (which it
generally does not do effectively). We anticipate continuing investigating strategies for improving
the generalizability of our work, which we believe is critically important since it offers the possibility
of an exponentially more accurate drop-in replacement of linear layers in any architecture. We note
that there are other metrics for evaluating a neural network’s expressivity (e.g., Raghu et al. (2017)),
which would be interesting to measure for our networks in future work. Overall, we are hopeful
that future works by our group and others will help illuminate a complete theory for harnessing the
potential exponential power of depth in ReLU and other classes of neural networks.

10
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A APPENDIX
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Figure 9: Extending our results into a larger network. ReLU should not be used in the layers between
the blocks, as creating nonconvex functions this way will tend to make a lot of negative values.

A.1 INITIALIZATION AND TRAINING ALGORITHM

The initialization step of our algorithm is to generate a vector A = [a0, a1, ...an]
T , where each ai

is randomized in (0, 1). Given this A, the pretraining step of our algorithm sets the weights of the
input (I), hidden (Hi, 1 ≤ i ≤ n− 1), and output (O) layers of the network as follows:

I(x) =

xxx
0

+

 0
0
−a0
1



Hi(x) =

1 Si/ai −Si/(ai − a2i ) 0
0 Si/ai −Si/(ai − a2i ) 0
0 Si/ai −Si/(ai − a2i ) −Siai+1

0 0 0 Si

×ReLU(Hi−1(x))

O(x) =
[
1 Sn/an −Sn/(an − a2n) 0

]
×ReLU(Hn−1(x))

where Si can either be chosen independently, or chosen based on A. In the latter case, Equation 3.1
gives Si = si/si−1 = (1− ai)ai+1. This assignment of I , H , and O is used in each iteration of the
pretraining algorithm.

Algorithm 1 Initialization and Pretraining
A← Random((0, 1)n)
while Epochs > 0 do

Network← Set Weights(A) ▷ Set weights as above each iteration
Loss← (Network(x)− y)2

Network-Gradient← Derivative(Loss, Network) ▷ Regular Backpropagation
A-Gradient← Derivative(Network, A) ▷ Backpropagate through weight setting
Gradient← Network-Gradient× A-Gradient
A← A− ϵ× Gradient ▷ Update A, Not the network

end while

The network weights can then be initialized once more based on the learned vector A, to then update
the weights via regular gradient descent. In our experiments, both phases of training (pretraining
and gradient descent) ran for 1000 epochs. Full pseudocode is listed in Algorithm 1.
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A.2 TERMINOLOGY

Before presenting further formal mathematical details of our method, we first briefly review a
few pieces of basic ReLU network terminology used in the paper. The reader is referred to the
Chmielewski-Anders (2020) for an excellent alternative presentation of these terms.

An activation pattern is a boolean mask that tracks which neurons in a network have their output
zeroed by ReLU activations. The activation regions of a ReLU network are connected (and can be
shown to be convex) sets of inputs on which the activation pattern is constant. Since the action of the
ReLU activation function is constant, the network output over an activation region is equivalent to the
case where there is no activation function and the associated zeroed neurons are absent; therefore, the
network output behaves linearly over the inputs in the activation region. Relatedly, a linear region
is a set of inputs on which the network output behaves linearly with respect to its inputs. It may
consist of multiple neighboring activation regions. Another important concept is the boundary of a
neuron, as described in Rolnick & Kording (2020): the set of inputs for which the neuron outputs
0, independently of ReLU. The boundary of a neuron is precisely the boundary of the activation
regions it adds to the network. Chen & Ge (2024) refers to this set as the characteristic activation
boundary since these are the boundaries of the activation regions.

We note that although works like ours are theoretical papers that leverage these concepts, studying
these ideas can lead to interesting applied learning research. For instance, Rolnick & Kording (2020)
leverages theoretical works like those cited in our related work discussion for an exciting privacy
application: it is proven that a ReLU network’s output can often be provably used to reverse engineer
the architecture of a ReLU network, up to isomorphism.

A.3 MATHEMATICAL RESULTS

For convenience, we first restate the functions defined in the main body of the paper.

Ti(x) =

{
x
ai

0 ≤ x ≤ ai
1− x−ai

1−ai
ai ≤ x ≤ 1

T ′
i (x) =

{
1
ai

0 < x < ai
1

1−ai
ai < x < 1

Wi(x) =⃝i
j=0Tj(x) = Ti(Ti−1(...T0(x)))

F (x) =

∞∑
i=0

siWi(x)

The goal of this section will be to show how to select the si based on ai in a manner where the
derivative F ′(x) is defined and continuous on all of [0, 1]. We begin by assuming that

F ′(x) =

∞∑
i=0

siW
′
i (x)

We will see that the resulting choice of si ensures uniform convergence of the derivative terms,
so that the derivative of the infinite sum is indeed infinite sum of the derivatives. Fortunately, the
left and right derivatives F ′

+(x) and F ′
−(x) already exist everywhere, since each bend in each Wi

(where the full derivative of F is undefined) is assigned the slope of the line segment to its left or
right respectively. The si scaling values will have to be chosen appropriately so that F ′

+(x) and
F ′
−(x) are equal for all bend points.

Notationally, we will denote the sorted x-locations of the peaks and valleys of Wi(x) by the
lists Pi = {x : Wi(x) = 1} and Vi = {x : Wi(x) = 0}. We will use the list Bi to refer-
ence the locations of all non-differentiable points, which we refer to as bends. Bi := Pi ∪ Vi.
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fi(x) =
∑i−1

n=0 snWn(x) will denote finite depth approximations up to but not including layer i. The
error function Ei(x) =

∑∞
n=i snWn(x) = F (x)− fi(x) will represent the error between the finite

approximation and the infinite depth network. This odd split around layer i makes the proofs cleaner.

1

T1(x)

a1

W1(x) = T1(T0(x)) 

T0(x)

a0

Figure 10: Triangle functions T0 and T1, and the
triangle wave resulting from their composition.
Note how T1 is reflected in W1.

Figure 10 highlights some important prop-
erties about composing triangle functions.
Peaks alternate with valleys. Peak loca-
tions in one layer become valleys in the
next. Valleys in one layer remain valleys
in all future layers since 0 is a fixed point
of each Ti. To produce Wi, each line seg-
ment of Wi−1 becomes a dilated copy of
Ti. Each triangle function has two distinct
slopes 1/ai and −1/(1 − ai) which are
dilated by the chain rule during the com-
position. On negative slopes of Wi−1, the
input to layer i is reversed, so those copies
of Ti are reflected. Due to the reflection,
the slopes of Wi on each side of a peak or
valley are proportional. Alternatively, one
could consider that on each side of a peak
in Wi−1, there is a neighborhood of points
that are greater than ai, and are composed
with the same line segment of Ti that has
slope −1/(1 − ai). Either way, it’s important
to note that the slopes on each side of a
bend scale identically during each composi-
tion.

Before we begin reasoning about F ′(x), it can simplify the analysis to only consider the derivative
of the error function E′(x).

Lemma A.1. for x ∈ Pi, F ′(x) is defined if and only if E′
i(x) is defined.

Proof. All of Wn(x) for n < i are differentiable at x ∈ Pi since x will lie in the interior of a linear
region of Wn. Therefore, f ′

i(x) =
∑i−1

n=0 snW
′
n(x) exists at these points. Since E′

i + f ′
i = F ′,

F ′(x) is defined if and only if E′
i(x) is defined.

Thanks to the previous lemma, we only need to work with Ei. Here we compute the right derivative
(Ei)

′
+(x) of the error function at a point x. The left derivative will only be different by a constant

factor.

Lemma A.2. For all x ∈ Pi, E′
+(x) and E′

−(x) are proportional to

si −
1

1− ai+1

(
si+1 +

∞∑
n=i+2

sn

n∏
k=i+2

1

ak

)
. (5)

Proof. Let xk be some point in Pi, and let k be its index in any list it appears in. To calculate the
value of E′

+(xk) =
∑∞

n=i sn(Wn)
′
+(xk), we will have to find the slope of the linear intervals to the

immediate right of xk for all Wi. We will use Rx to represent W ′
i+(xk). The first term in the sum

will be Rxsi. Since the derivatives of composed functions will multiply from the chain rule, so the
value of the next term is W ′

i+1(xk) = T ′
i+1(Wi(xk))Rx. Ti+1 has two linear segments, giving two

slope possibilities to multiply by. The correct one to choose is −1/(1 − ai+1) because it’s ‘active’
around xk (xk is a peak of Wi, so Wi(xk) > ai+1 for x ∈ (Bi+1[k − 1], Bi+1[k + 1])). This gives
W ′

i+1(xk) = −Rx
si+1

(1−ai+1)
. Note that the second term has the opposite sign as the first.

For all remaining terms, since xk was in Pi, it is in Vj for j > i. For x ∈ (Bj+1[k−1], Bj+1[k+1]),
Wj(x) < aj+1 and the chain rule applies the slope 1/aj+1. Since this slope is positive, every
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remaining term continues to have the opposite sign as the first term. Summing up all the terms
with the coefficients si, and factoring out Rx will yield the desired formula. Note that this same
derivation applies to the left sided derivatives as well because the ‘active’ slopes of Ti+1(Wi) are all
the same whether a bend in Wi is approached from the left or the right. The initial slope constant
Lx will just be different.

Lemma A.3. If E′
+(x) = E′

−(x), E
′(x) must be equal to 0.

Proof. Let S represent Equation 5, and R and L be the constants of proportionality for the direc-
tional derivatives. If E′

+ = E′
−, then RxS = LxS for all x ∈ Pi. Since Wi is comprised of

alternating positive and negatively sloped line segments, Rx and Lx have opposite signs. The only
way to satisfy the equation then is if S = 0. Consequently, E′(x) = 0 for all x ∈ Pi.

The following lemma shows that to calculate the derivative at of F (x) for any bend point x, one
needs only to compute the derivative of the finite approximation fi (which excludes Wi). This will
be useful later for proving other results.

Lemma A.4. For all x ∈ Pi:

F ′(x) = f ′
i(x) =

i−1∑
j=0

sjW
′
j(x) (6)

Proof. From the previous lemma we have E′(x) = 0 whenever the directional derivatives are equal.
F (x) =

∑i−1
j=0 sjWj(x) +E(x). The first i− 1 terms are differentiable at the points Pi since those

points lie between the discontinuities in Bi−1. Therefore F ′(x) is defined and can be calculated
using the finite sum. A visualization of this lemma is provided in Figure 11.

We now prove our main theorem, which shows that there is a way to sum the triangular waveforms
Wi so that the resulting approximation converges to a continuously differentiable function. The idea
of the proof is that much of the formula for E′(x) will be shared between two successive generations
of peaks. Once they are both valleys, they will be treated the same by the remaining compositions,
so the sizes of their remaining discontinuities will need to be proportional.

Theorem (3.1). F ′(x) is defined on [0, 1] only if the scaling coefficients are selected based on ai
according to:

si+1 = si(1− ai+1)ai+2

Proof. Rewriting Equation 5 (which is equal to 0) for layers i and i+ 1 in the following way:

si(1− ai+1) = si+1 +
1

ai+2

(
si+2 +

∞∑
n=i+3

sn

n∏
k=i+3

1

ak

)

si+1(1− ai+2) = si+2 +

∞∑
n=i+3

sn

n∏
k=i+3

1

ak

allows for a substitution to eliminate the infinite sum

si(1− ai+1) = si+1 +
1− ai+2

ai+2
si+1

Collecting all the terms gives

si+1 =
si(1− ai+1)

1 + 1−ai+2

ai+2

which simplifies to the desired result.
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Figure 11: The derivatives of the first few stages of approximation. Notice that each time a constant
segment “splits”, the two neighboring segments adjacent to the split monotonically converge back
to the original value (marked with a colored point corresponding to the step it’s from)

A.4 SUFFICIENCY FOR DIFFERENTIABILITY

This form of the scaling equation derived in the previous section is rather interesting. Since the
ratio of two successive scaling terms is (1− ai+1)ai+2, factors of both ai and 1− ai are present in
si. This has a few implications, firstly if any ai is 0 or 1, subsequent scales will all be 0, essentially
freezing the corresponding neural network at a finite depth. Secondly, having both ai and 1 − ai
will cancel whichever slope multiplier Ti contributes to Wi at each point x, leaving behind the other
term, which is less than 1.

If we ensure each ai is bounded away from 0 or 1 by being drawn from the an interval such that
c < ai < 1 − c for some 0 < c < 0.5, then the maximum value of W ′

i is always upper bounded
by (1 − c)i, which is sufficient for uniform convergence. This condition also means that the bends
points (and thus the activation regions of the corresponding neural network) will become dense in
[0, 1], as each region is partitioned (at worst) in a c : 1− c ratio.

Lastly, we can show that bounds on ai and our choice of scaling values are sufficient for the existence
of F ′ on the bend points, in addition to being necessary for the existence of the derivative on the
bend points, our choice of scaling is sufficient when ai are bounded away from 0 or 1.
Theorem A.5. on bend points x, F ′(x) exists if we can find c > 0 such that c ≤ ai ≤ 1− c for all
i and choose all si according to Equation 3.1.

Proof. We begin by considering Equation 5 for layer i (it equals 0 by Theorem A.3).

si =
1

1− ai+1

(
si+1 +

∞∑
n=i+2

sn

n∏
k=i+2

1

ak

)
We will prove our result by substituting Equation 3.1 into this formula, and then verifying that
the resulting equation is valid. First we would like to rewrite each occurrence of s in terms of si.
Equation 3.1 gives a recurrence relation. Converting it to an non-recursive representation we have:

sn = si

 n∏
j=i+1

1− aj

( n+1∏
k=i+2

ak

)
(7)

When we substitute this into Equation 5, three things happen: each term is divisible by si so si
cancels out, every factor in the product except the last cancels, and 1− ai+1 cancels. This leaves

1 = ai+2 + (1− ai+2)ai+3 + (1− ai+2)(1− ai+3)ai+4 + ... =

∞∑
n=i+2

an

n−1∏
m=i+2

(1− am) (8)

This equation has a meaningful interpretation that is important to the argument. 1 is the full size
of the initial derivative discontinuity at a point in Pi, and each term on the other side represents
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proportionally how much the discontinuity is closed for each triangle wave that is added. Every
time a wave is added, it subtracts the first term appearing on the right hand side. The following
argument shows that each term of the sum on the right accounts for a fraction (equal to ai) of the
remaining discontinuity, guaranteeing its disappearance in the limit. Inductively we can show:

1−
j∑

n=i+2

an

n−1∏
m=i+2

(1− am) =

j∏
m=i+2

(1− am) (9)

In words this means that as the first term appearing on the right in Equation 8 is repeatedly sub-
tracted, that term is always equal to an times the left side. As a base case, we have (1 − ai+2) =
(1− ai+2). Assuming the above equation holds for all previous values of j

1−
j+1∑

n=i+2

an

n−1∏
m=i+2

(1− am)) = 1−
j∑

n=i+2

an

n−1∏
m=i+2

(1− am))− aj+1

j∏
m=i+2

(1− am)) =

using the inductive hypothesis to make the substitution

j∏
m=i+2

(1− am))− aj+1

j∏
m=i+2

(1− am)) =

j+1∏
m=i+2

(1− am))

Since all c < ai < 1 − c, the size of the discontinuity at the points Pi is upper bounded by the
exponentially decaying series (1− c)n, which approaches zero.

A.5 ERROR DECAY

Lemma A.6. The ratio si+2/si is at most 0.25.

Proof. by applying Equation 3.1 twice, we have

si+2 = si(1− ai+1)(1− ai + 2)ai+2ai+3

To maximize si+2 we choose ai+1 = 0 and ai+3 = 1. The quantity ai+2 − a2i+2 is a parabola with
a maximum of 0.25 at ai+2 = 0.5.

Since each Wi takes values between 0 and 1, its contribution to F is bounded by si. Since the si
decay exponentially, one could construct a geometric series to bound the error of the approximation
and arrive at an exponential rate of decay.

A.6 SECOND DERIVATIVES

Here we show that any function represented by one of these networks that is not y = x2 does not
have a continuous second derivative, as it will not be defined at the bend locations. To show this we
will sample a discrete series of ∆y/∆x values from F ′(x) and show that the limits of these series
on the right and left are not the same (unless all ai = 0.5), which implies that F ′′(x) does not exist
(see Figure 12 below). First we will produce the series of ∆x. Let x be the location of a peak of Wi,
and let ln and rn be its immediate neighbors in Bi+n.

Lemma A.7. If c < ai < 1 − c for all i, we have limn→∞ rn = limn→∞ ln = x. Furthermore,
rn, ln ̸= x for any finite i.

Proof. Let R and L denote the magnitude of W ′
i on the left and right of x. x is a peak location

of Wi, so the right side slope is negative and the left is positive. Solving for the location of
Ti+1(Wi(x)) = 1 on each side will give l1 = x− (1− ai+1)/L and r1 = x+ (1− ai+1)/R.

On each subsequent iteration i + n (n ≥ 2), x is a valley point and the ∆x intervals get multiplied
by ai+n. Since x is a valley point the right slope is positive and the left is negative. The slope
magnitudes are given by 1

x−ln
and 1

rn−x since Wi+n ranges from 0 to 1 over these spans. Solving
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for the new peaks again will give ln+1 = x − ai+1(x − ln) and rn+1 = x + ai+1(rn − x). The
resulting non-recursive formulas are:

x− ln =
1− ai+1

L

n∏
m=2

ai+m and rn − x =
1− ai+1

R

n∏
m=2

ai+m (10)

The right hand sides will never be equal to zero with a finite number of terms since a parameters are
bounded away from 0 and 1 by c.

(x , f '0(x)) (x , F '(x))

(r1 , f '1(r1))

(x , F '(x))

(r1, F '(r1))

(x , F '(x))

(r1, F '(r1))

(r2 , f '2(r2)) (r2, F '(r2))

(r3 , f '3(r3))

Figure 12: An illustration of attempting to calculate the second derivative. The points in the series
approaching x from the right are marked. We rely on the fact that at bend points, the first derivative
converges back to the value it had at a finite point in the approximation. a0 ̸= 0.5 and all other
parameters are set to 0.5, which will cause the left and right sets of points to lie on lines with
different slopes.

Next we derive the values of ∆y to complete the proof.

Theorem A.8. F (x) cannot be twice differentiable unless F (x) = x2.

Proof. The points ln and rn are all peak locations, Equation 6 gives their derivative values as
f ′
i+n(rn). In our argument for sufficiency, we reasoned about the sizes of the discontinuities in
f ′ at x. Since ln and rn always lie on the linear intervals surrounding x as n → ∞, we can get the
value of f ′

i(x)− f ′
i+n(rn) using Equation 9 with the initial discontinuity size set to Rsi rather than

1. Focusing on the right hand side we get:

f ′
i(x)− f ′

i+n(rn) = R ∗ si
n∏

m=2

(1− ai+m)

taking ∆y/∆x gives a series:
R2si

(1− ai+1)

n∏
m=i+2

1− am
am

The issue which arises is that the derivation on the left is identical, except for a replacement of R2 by
L2. The only way for these formulas to agree then is for R2 = L2 which implies ai = 1−ai = 0.5.
Since this argument applies at any layer, then all a parameters must be 0.5 (which approximates
y = x2).

A.7 MONOTONICITY AND CONTINUITY OF DERIVATIVES

Each of the f ′
i are composed of constant value segments, we will show that those values are mono-

tonically decreasing (this can be seen in Figure11). This can extend into the limit to show that F ′ is
monotone decreasing and that F is concave.

Lemma A.9. The function F (x) is concave when all si are chosen according to Equation 3.1.

Proof. To establish this we will introduce the list Y ′
i = [F ′(Vi[0]), f

′
i(Vi[n]), F

′(Vi+1[2
i]] for

0 ≤ n ≤ 2i, which tracks the values of F ′ at the ith set of valley points. All but the first and last
points will have been peaks at some point in their history, so Equation 6 gives the value of those
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derivatives as f ′
i .

We establish two inductive invariants. One is that the y-values in the list Yi remain sorted in
descending order. The other is that Y ′

i [n] ≥ f ′
i(x) ≥ Y ′

i [n + 1] for Vi[n] < x < Vi[n + 1],
indicating that the constant value segments of fi lie in between the limits in the list Yi. Together,
these two facts imply that each iteration of the approximation fi is concave. Which then be used to
prove that their limit F is also concave.

As the base case f0 is a line with derivative 0, V0 contains its two endpoints. Y ′
0 is positive for

the left endpoint (negative for right) since on the far edges F ′ is a sum of a series of positive (or
negative) slopes, Therefore both the points in Y ′ are in descending sorted order. The second part of
the invariant is true since 0 is in between those values.

Consider an arbitrary interval (Vi[n], Vi[n + 1]) of fi, this entire interval is between two valley
points, so f ′

i (which hasn’t added Wi yet) is some constant value, which we know from the second
inductive hypothesis is in between Y ′

i [n] and Y ′
i [n + 1]. The point x ∈ Pi ∩ (Vi[n], Vi[n + 1])

will have F ′(x) = f ′
i(x), and it will become a member of Vi+1. This means we will have

Yi+1[2n] > Yi+1[2n+ 1] > Yi+1[2n+ 2], maintaining sorted order of Y ′.

Adding siWi takes fi to fi + 1 splitting each constant valued interval in two about the points
Pi, increasing the left side, and decreasing the right side. Recalling from the derivation
of Equation 5 all terms but the first in the sum have the same sign, so the limiting values
in Y ′

i are approached monotonically. Using the first inductive hypothesis, we have on the
left interval Y ′

i [n] = Y ′
i+1[2n] > f ′

i+1 > f ′
i = Y ′

i+1[2n + 1] and on the right we have
f ′
i = Y ′

i+1[2n+ 1] > fi+1 > Y ′
i [n+ 1] = Y ′

i [2n+ 2]. And so each constant interval fi+1 remains
bounded by the limits in Y ′

i+1.

We will now show by contradiction that the limit F of the sequence of concave fi is also concave.
Assume that F is non-concave. Then there exist points a, b, and c such that F (b) lies strictly below
the line connecting the points (a, F (a)) and (c, F (c)). Lets say it’s below the line by an amount
ϵ. Since at each point fi converges to F , we can find ia such that fia(a) − F (a) < ϵ/2, etc...,
we take i = max(ia, ib, ic). Since fi(a) and fi(c) are no more than ϵ/2 lower than their limiting
values, the entire line connecting (a, fi(a)) and (c, fi(c)) is no more than ϵ/2 lower than the line
between (a, F (a)) and (c, F (c)). fi(b) is also no more than ϵ/2 higher than F (b), thus fi(b) must
still lie below the line between (a, fi(a)) and (c, fi(c)), making fi non-concave and producing a
contradiction.

Lastly we briefly sketch out why F ′ is continuous. It relies on some of our earlier reasoning. Mono-
tonicity of the derivative makes continuity easy to show, because when x1 within δ of x2 has f(x1)
within ϵ of f(x2), so do all intermediate values of x. We can establish continuity of F ′ at bend
points x easily by using Equation 9. We can pick an i so that the constant value segments of f ′

i are
within ϵ of F ′(x) and then use the next iteration of bend points (since the constant intervals split,
but the new segments near xn converge monotonically towards it) to find δ. In the case of continuity
for non bend points x, they sit inside a constant-valued interval of fi for each i. We can choose i
such that

∑∞
n=i(1− c)n < ϵ/2 because this series constrains how far derivative values can move in

the limit, and then use the constant interval x is situated in to find δ.

A.8 LEARNING RATES

All results in the main body of the paper used a constant learning rate of 10−3. In this appendix,
we considered an ablation study on the learning rate for the task of learning y = x3. As seen in
Figure 13, the learning rate we selected was approximately optimal for both our method as well
as default network training. We note that for this ablation study, a constant 1000 epochs were
run, which explains why both methods perform worse as the learning rate becomes minuscule. At
small learning rates, what is really measured is how close of a guess the initialization is to the target
function. Our networks are preforming better here simply because they are always outputting convex
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Figure 13: Learning y = x3 at various learning rates for 1000 epochs. The figure shows the log
losses of the best model of 30 for networks trained according to the methods in this paper versus
random initialization and gradient descent (“Default Network”). For high learning rates, neither
learns because the steps are too large. For low learning rates (below 10−5), the steps are too small,
and our networks are likely deriving an implicit advantage from being forcibly initialized to a convex
function. Both methods are able to converge for learning rates in between 10−4 and 10−2; one could
run for more epochs to see a similar advantage of our method for smaller learning rates, if desired.

functions. But this only accounts for losses on the order of 10−4, which indicates that in the more
reasonable learning rate ranges, our pretraining is performing a meaningful function and enabling
order-of-magnitude improvements over default network training.

A.9 REAL-WORLD DATA AND CLASSIFICATION PROBLEMS

Here we present a few preliminary results on extending our pretraining technique to classification
problems and real-world datasets. The classification problem we chose is the classic two spirals
dataset, and we selected the UCI dataset “Concrete Compressive Strength” (Yeh, 1998) for our real-
world regression task. The concrete dataset has 8 numerical features that can be used to predict the
compressive strength of a concrete sample.

The networks are set up as described before, with our 4-neuron-wide networks acting as 1D to 1D
activation functions inside randomly initialized standard linear layers. In these experiments, we use
one “hidden layer” of our networks (which we choose to have depth 5 in our tests). The geometric
interpretation of this is that we are setting up one-dimensional convex functions oriented in random
directions on the input space, and then taking a linear combination of them as the network output.
In the case of classification, the loss function is simply swapped for cross entropy.

After our pretraining phase, there are two choices of how to conduct the second phase of training
(training matrix entries directly). All the parameters could be freed from constraints (“dense”),
or the smaller 4-neuron subnetworks could be kept isolated from each other (but otherwise have
their parameters freed). In the case where the 4-neuron networks remain in isolation, the weight
matrices of the hidden layers will have a block diagonal structure (block size 4—the width of each
subnetwork). Thus, we consider two fair (same number of free parameters) comparisons in this
subsection: (1) dense versions of our and Kaiming-initialized networks, and (2) block diagonal
versions of our and Kaiming-initialized networks. As discussed below and in the figure captions, we
find that while the dense variant of our method ties or is slightly worse than a regular fully-connected
network of the same dimensions, in the block diagonal case, our experimental networks significantly
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outperform their Kaiming-initialized counterparts. This makes sense in light of the experiments from
the main body, where we can effectively shape the output of 4-neuron-wide networks better than
random initializations, but where ensembles of our networks (see approximation of x3−x in Figure
7) get filled in with noise by gradient descent during the second training stage. This again highlights
the need for more mathematical developments to provide a better extension into higher-dimensional
nonconvex functions.

Figure 14: Train/test loss plots for Kaiming-initialized (“ordinary”) fully-connected networks and
our method (“experimental”). Our method has two steps: pretriaining on triangle peaks, followed
by the optimization of the raw matrix weights. The switch-off is at epoch 500, hence the associated
visible change in the loss curves. The block diagonal variants of the networks (right) are generally
worse at the task (test losses 30.1 (ours) and 40.8 (Kaiming)) than the dense variants (losses of 22.3
(ours) and 21.2 (Kaiming)). Our experimental networks outperform by up to an order of magnitude
in the block diagonal case. We used 32 of our convex blocks (i.e., all weight matrices are size 128,
including for standard comparison networks).

Figure 15: Class predictions of block diagonal networks on a standard two-spiral dataset; ours (left)
and Kaiming-initialized (right). While the cross-entropy losses are comparable for the dense-matrix
variants of both networks, when a block diagonal structure is imposed, Kaiming initialization fails
to learn the spiral. Note that the colors of the network class predictions are inverted for visibility.
Cross-entropy losses are 0.0032 and 0.63 respectively. We used 16 of our convex blocks, so all
weight matrices are 64 by 64.

Nonetheless, while we believe there is much room for future work to improve higher-dimensional
results, Figures 14 and 15 already show impressive results using our current approach. In the case
of the concrete problem (Figure 14), our experimental network outperforms a standard Kaiming-
initialized network when block diagonality is enforced. In the case of the two-spiral classification
task (Figure 15), our network is able to learn an accurate decision boundary (left subfigure), whereas
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a standard network constrained to be block diagonal fails to learn (right subfigure). When dense
weight matrices are trained, our networks are almost able to tie with the standard initializations,
although convergence can take longer. These results suggest that our method might be quite powerful
when its parameter budget is spent on greater width and depth of convex function blocks (as in Figure
9) instead of filling in dense matrices.

Our two-step training approach adds some practical challenges, such as deciding when to switch
parameterizations for optimal convergence time. Additionally, since the optimization variables are
different, the optimizer will have to restart any momentum or adaptive learning rates when the switch
is made, which can sometimes cause loss to temporarily spike. We lowered the learning rate on the
second step to avoid this. Further interesting optimizations of our approach (e.g., training another
network to inform our algorithm when to switch parameterizations) are imagined as future work.

POTENTIAL BROADER IMPACT

This paper presents work whose goal is to enable more efficient neural networks. While the present
work is largely theoretical, future advances in this line of research could enable the use of much
smaller networks in many practical applications, which could substantially mitigate the rapidly
growing issue of energy usage in large learning systems.
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