

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VIDEONSA: NATIVE SPARSE ATTENTION SCALES VIDEO UNDERSTANDING

Anonymous authors

Paper under double-blind review

ABSTRACT

Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. **Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video.** Compared to token-compression and training-free sparse baselines, VideoNSA achieves **competitive** performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.

1 INTRODUCTION

Key moments of a video can occur at any time, exemplified by soccer where game deciding moments typically span seconds of a 90 minute game. Within those game deciding moments split second actions define the outcome: an assist, a missed tackle, the movement of the keeper. Multimodal large language models (MLLMs)(Team, 2025; Team et al., 2025b;a) have achieved substantial progress in vision-language perception and reasoning, but still cannot match humans ability to extract and reason about salient moments in videos. While humans naturally sample color visuals around 60hz, (Kalloniatis & Luu, 2007) across large contexts, existing VLMs often sample a single frame per second. Intuitively, increasing the context for these models by sampling more frames improves accuracy (Cai et al., 2024; Wu et al., 2024), particularly for long videos and complex reasoning tasks. However, this approach pays for improvement with additional tokens, increasing computational complexity and pushing against fundamental limits of model context.

To address these challenges, many approaches (Wang et al., 2024; Li et al., 2024b; Jin et al., 2024; Wang et al., 2025a; Yang et al., 2024) adopt token compression to reduce redundancy and increase informative context. However, when applied to complex reasoning tasks, these compression-based models perform worse compared to full-token methods (Song et al., 2025a). Moreover, compression strategies often limit generalization through reduced perception and reasoning capacity (Wen et al., 2025). In contrast, sparse attention mechanisms preserve tokens, but focus the models capabilities on relevant dependencies between tokens. Numerous sparse attention methods have already been employed in large language models (LLMs), but most are inadequate for video complexity (detailed in Appendix A). Therefore, we present VideoNSA, which adopts Native Sparse Attention (Yuan et al., 2025b), a learnable hardware-aware sparse attention mechanism proven to be effective in long-context modeling. VideoNSA is the first learnable and hardware-aware sparse attention framework tailored for video understanding, effectively scaling to ultra-long vision-text context. We apply the learnable sparse attention to video token sequences, while preserving grouped-query attention for text tokens. Following this pattern, our experiments show that using only 3.6% of the attention budget on 128K context length while improving performance on various tasks

We further conduct massive experiments and analyses of VideoNSA , revealing several important findings: (1) VideoNSA extrapolates effectively to contexts beyond its training length, and the optimal balance between temporal density and spatial resolution is highly task dependent.

(2) VideoNSA is also sensitive by attention scaling, with results remaining strongest near the training configuration. (3) The gating distribution evolves dynamically across layers, and the selection and sliding-window branches gradually lose importance in deeper layers. (4) The compression branch emerges as the main computational bottleneck. (5) Moreover, the learned sparse attention weights remain beneficial even under dense attention settings. (6) Learnable sparse attention induces distinctive attention sink behaviors across branches, with very few sinks in the selection branch and periodic sink formation in the compression branch.

In particular, our paper makes the following contributions:

- We propose VideoNSA, a hardware-aware native sparse attention mechanism, and systematically investigate its effectiveness for video understanding, scaling up to a 128K vision context length.
- We introduce hybrid sparse attention in VideoNSA, enabling flexible allocation of information and attention budgets to achieve optimal performance across diverse task.
- We dynamically combine global and local attention through three complementary branches, which effectively reduce attention sinks in long vision contexts.

2 VIDEONSA

2.1 PRELIMINARIES

Native sparse attention. Existing training-free sparse attention methods are rarely hardware aligned, and typically don't increase training efficiency. Native Sparse Attention (Yuan et al., 2025b) (NSA) avoids computing attention between all key-value pairs $(\mathbf{K}_t, \mathbf{V}_t)$, instead, for each query \mathbf{q}_t , NSA dynamically constructs an information-dense KV cache subset. NSA combines three complementary cache branches with a learnable gate g_t^c adaptively weighting each branch yielding \mathbf{o}_t :

$$\mathbf{o}_t = \sum_{c \in \{\text{cmp, slc, win}\}} g_t^c \cdot \text{Attn}(\mathbf{q}_t, \tilde{\mathbf{K}}_t^c, \tilde{\mathbf{V}}_t^c). \quad (1)$$

Token Compression (CMP) branch aggregates sequential blocks of keys into more coarse-grained, single block-level representations $\tilde{\mathbf{K}}_t^{\text{cmp}}$ via a learnable MLP φ :

$$\tilde{\mathbf{K}}_t^{\text{cmp}} = \{\varphi(\mathbf{K}_{[id+1:id+m]}) \mid 0 \leq i < \lfloor \frac{t-m}{d} \rfloor\}, \quad (2)$$

where m is the block length, d is the stride.

Token Selection (SLC) branch preserves the most salient key-value blocks by computing importance scores p_t^{slc} and selecting the indices of the top- n blocks:

$$I_t = \{i \mid \text{rank}(p_t^{\text{slc}}[i]) \leq n\}. \quad (3)$$

The final set of selected keys is formed by concatenating these top-ranked blocks:

$$\tilde{\mathbf{K}}_t^{\text{slc}} = \text{Cat}(\{\mathbf{K}_{[im'+1:(i+1)m']} \mid i \in I_t\}), \quad (4)$$

where I_t is the set of selected indices, n is the number of blocks to retain.

Sliding Window (SWA) branch simply applies the standard sliding window attention, which retains the fixed w most recent key-value pairs:

$$\tilde{\mathbf{K}}_t^{\text{swa}} = \mathbf{K}_{t-w+1:t}, \quad \tilde{\mathbf{V}}_t^{\text{swa}} = \mathbf{V}_{t-w+1:t}. \quad (5)$$

Grouped query attention. In Multi-Head Attention (MHA), each query head has dedicated key-value (KV) projections, which makes the KV cache scale with the number of heads and increases inference cost. Grouped-Query Attention (GQA) (Ainslie et al., 2023) mitigates this by letting multiple query heads share fewer KV heads. For each input $\{x_i\}_{i=1}^L$, GQA partitions the h query heads into g groups ($1 \leq g \leq h$). At a given timestep t , the output $o_t^{(s)}$ for the s -th query head with group index $m(s) = \lceil sg/h \rceil$ is computed by applying attention to the shared keys and values as:

$$o_t^{(s)} = \text{Attention}(q_t^{(s)}, K_{\leq t}^{(m(s))}, V_{\leq t}^{(m(s))}) = \text{softmax} \left(\frac{(q_t^{(s)})^\top K_{\leq t}^{(m(s))}}{\sqrt{d_k}} \right) V_{\leq t}^{(m(s))}, \quad (6)$$

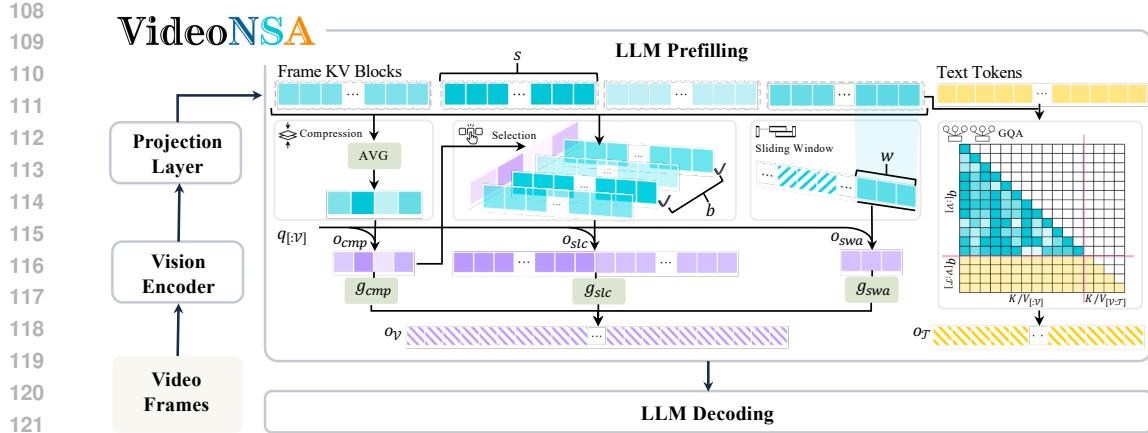


Figure 1: Overview of VideoNSA. Video frames are encoded into frame-level KV blocks. VideoNSA utilizes three sparse attention branches during prefilling stage: **compression branch** reduces redundancy via token averaging, **selection branch** identifies top-k important tokens, and **sliding window branch** enforces local temporal coverage. The outputs are combined through dynamic gating before integration with text tokens for LLM decoding.

where $q_i^{(s)} = x_i W_q^{(s)}$, $k_i^{(m(s))} = x_i W_k^{(m(s))}$, $v_i^{(m(s))} = x_i W_v^{(m(s))}$. The outputs o_t from all heads are concatenated by $o_t = [o_t^{(1)}, o_t^{(2)}, \dots, o_t^{(h)}]$. VideoNSA utilizes Qwen2.5-VL-7B (Bai et al., 2025) as the backbone, with Qwen2.5-7B (Qwen et al., 2025) as the LLM decoder, which employs GQA for efficient KV cache utilization using 28 query heads and 4 shared key/value heads.

2.2 ARCHITECTURE

Existing token compression methods (Yang et al., 2025d; Zhang et al., 2025c; Hyun et al., 2025; Zhang et al., 2025h) suffer from irreversible information loss on complex tasks and don't address computational and latency bottlenecks in LLM video understanding. From the perspective of attention as a message passing in a Graph Neural Network (Joshi, 2025; Pappone, 2025), it's clear this bottleneck is fundamental. Standard attention propagates information between nodes (tokens) through edges (attention weights), with each token being updated by aggregating features from its neighbors, weighted by attention scores. Training-free sparse attention often imposes a static adjacency matrix whose fixed subgraph connectivity restricts information flow. Conversely, NSA (Yuan et al., 2025b) provides data-dependent sparsity that preserves edges necessary for a particular task.

We build VideoNSA upon Qwen2.5-VL-7B (Qwen et al., 2025), which incorporates a vision encoder and adopts Qwen2.5-7B (Bai et al., 2025) as the LLM. As illustrated in Figure 1, VideoNSA introduces a hybrid attention mechanism in the LLM across different modalities. At each layer l , we split the input tokens $\mathbf{X}^{(l-1)}$ into vision tokens $\mathbf{X}_V^{(l-1)}$ and text tokens $\mathbf{X}_T^{(l-1)}$ according to their position IDs. For vision tokens, VideoNSA applies NSA (Yuan et al., 2025b) with a dedicated gate g_t^c on each head. We set the block size s equal to the token number per frame, and obtain the block-level representation by averaging all tokens within the block. The vision attention output o_V is dynamically weighted by the compression, selection, and sliding window branches as:

$$o_V^{(l)} = \sum_{c \in \{cmp, slc, win\}} g_t^c \text{Attn}(q_t, \tilde{\mathbf{K}}_t^c, \tilde{\mathbf{V}}_t^c),$$

where g_t^c is implemented as a two-layer MLP with a sigmoid activation.

The text attention output $o_T^{(l)}$ is computed using standard GQA (Ainslie et al., 2023) to preserve instruction following capabilities. We obtain the final output $\mathbf{o}^{(l)}$ of the layer l by concatenating:

$$\mathbf{o}^{(l)} = [o_V^{(l)}; o_T^{(l)}].$$

162 Table 1: Results on long video understanding, temporal reasoning and spatial understanding tasks.
 163 LVB, LTS for LongVideoBench (Wu et al., 2024) and LongTimeScope (Zohar et al., 2025).
 164

165 Model	166 Long-form Video				167 Temporal	168 Spatial
	169 LVB	170 $MLVU_{test}$	171 TimeScope	172 LTS		
173 LLaVA-OneVision-7B (Li et al., 2024a)	174 56.3	175 –	176 –	177 –	178 <u>25.5</u>	179 32.4
179 LLaVA-Video-7B (Zhang et al., 2024c)	180 58.2	181 –	182 74.1	183 34.0	184 –	185 35.6
185 VideoLLaMA3-8B (Zhang et al., 2025a)	186 59.8	187 47.7	188 69.5	189 –	190 –	191 –
190 InternVL2.5-8B (Chen et al., 2024c)	191 <u>60.0</u>	192 –	193 55.8	194 –	195 –	196 –
196 Video-XL-2 (Qin et al., 2025b)	197 61.0	198 52.2	199 –	200 –	201 –	202 –
203 Qwen2.5-VL-7B (Qwen et al., 2025)	204 58.7	205 51.2	206 81.0	207 40.7	208 22.6	209 29.7
210 Qwen2.5-VL-7B-AWQ (Team, 2024)	211 59.0	212 46.0	213 –	214 –	215 –	216 35.0
217 Qwen2.5-VL-7B-SFT	218 57.8	219 51.2	220 76.8	221 40.2	222 21.7	223 30.5
<i>Token Compression Methods</i>						
224 + FastV (Chen et al., 2024a)	225 57.3	226 41.8	227 46.5	228 35.6	229 21.6	230 32.0
231 + VScan (Zhang et al., 2025b)	232 58.7	233 48.1	234 80.3	235 31.1	236 19.1	237 34.4
238 + VisionZip (Yang et al., 2025c)	239 52.4	240 33.1	241 43.5	242 40.4	243 23.6	244 32.1
<i>Sparse Attention Methods</i>						
246 + Tri-Shape (Li et al., 2024c)	247 59.5	248 49.2	249 82.7	250 28.4	251 22.1	252 34.9
254 + MInference (Jiang et al., 2024)	255 59.2	256 49.2	257 82.7	258 44.4	259 23.0	260 36.5
263 + FlexPrefill (Lai et al., 2025)	264 58.4	265 46.0	266 83.0	267 39.1	268 23.7	269 34.0
272 + XAttention (Xu et al., 2025a)	273 59.1	274 50.2	275 <u>83.1</u>	276 <u>41.1</u>	277 21.4	278 36.6
VideoNSA		60.0	51.8	83.7	44.4	26.5
						36.1

185 2.3 TRAINING RECIPE

187 We conduct end-to-end training to adapt vision features for data-dependent sparse connectivity in the
 188 language model. The training dataset of VideoNSA is constructed from LLaVA-Video-178K (Zhang
 189 et al., 2024d) by filtering for question answer pairs at 4 fps and retaining videos with 350–550
 190 frames, for a subset of 216K pairs. To emphasize sparse attention for temporal redundancy, we
 191 constrain the maximum pixels per frame to 50,176, and the maximum context length per training
 192 instance to 36K tokens. In VideoNSA, block size s is set to 64, block b is set to 32, and sliding
 193 window size w is set to 256. We trained using SWIFT (Zhao et al., 2024), adapting the NSA (Yuan
 194 et al., 2025b) implementation from FLA (Yang & Zhang, 2024) and (Pai et al., 2025b). The complete
 195 training process requires 4600 H100 GPU hours. More training details including hyper-parameters
 196 selection can be found in Appendix B.

197 3 EXPERIMENTS

200 3.1 EFFECTIVENESS ON VIDEO UNDERSTANDING

201 **Baselines** Our primary baseline is Qwen2.5-VL-7B (Qwen et al., 2025) with dense FlashAttention
 202 (Dao, 2023). We compare VideoNSA against several strong baselines, including the quanti-
 203 zation model AWQ (Team, 2024), training-free token compression models (Yang et al., 2025c;
 204 Zhang et al., 2025b; Chen et al., 2024a), and training-free sparse attention methods (Jiang et al.,
 205 2024; Xu et al., 2025a; Lai et al., 2025; Li et al., 2024c). All methods employ their official config-
 206 uration without additional training and using Qwen2.5-VL-7B (Qwen et al., 2025) as a base. For
 207 token compression baselines, we use the token kept ratio and sampling fps from the original pa-
 208 pers that yield the best accuracy, while for sparse attention baselines, we use the same configura-
 209 tion as VideoNSA. In addition, we fine-tune Qwen2.5-VL-7B (Qwen et al., 2025) using the same train-
 210 ing dataset as VideoNSA to serve as a competitive baseline. We also include models with different
 211 backbones for a broad comparison.

212 We evaluate VideoNSA across three domains including **long video understanding**, **tem-
 213 poral reasoning**, and **spatial understanding** using LMMs-Eval (Zhang et al., 2024a) and
 214 VLMEvalKit (Duan et al., 2024). Table 1 indicates that sparse attention methods consistently outper-
 215 form token compression approaches. We empirically evaluate the effectiveness of VideoNSA based
 216 on several popular long video understanding benchmarks, including **LongVideoBench** (Wu et al.,

216
217
218
Table 2: Ablation study on branch selection across different tasks. LVB, LTS for
LongVideoBench (Wu et al., 2024) and LongTimeScope (Zohar et al., 2025).

219	Branch			Long Video Understanding			Temporal Reasoning		Spatial Understanding	
	CMP	SLC	SWD	LVB	MLVU _{test}	TimeScope	LTS	Tomato	VSIBench	
222	✓			48.1	43.9	41.5	25.1	23.3	29.2	
223		✓		48.4	47.7	63.7	37.1	24.0	27.6	
224			✓	49.1	40.2	59.3	29.8	24.0	29.8	
225	✓	✓		49.4	42.7	57.3	32.4	23.5	29.4	
226	✓		✓	49.3	42.4	65.2	34.4	23.0	29.1	
227		✓	✓	48.8	43.4	57.3	31.6	24.5	30.3	
228	✓	✓	✓	60.0	51.8	83.7	44.4	26.5	36.1	

230
231 2024), **MLVU** (Zhou et al., 2024), **TimeScope** (Zohar et al., 2025) and **LongTimeScope** (Zohar
232 et al., 2025). VideoNSA achieves competitive results, narrowing the gap with state-of-the-art meth-
233 ods. We observe that VideoNSA shows clear advantages on tasks involving order-sensitive tem-
234 poral reasoning and ultra-long video settings (**10 hours** in LongTimeScope (Zohar et al., 2025)).
235 To evaluate the visual temporal reasoning capability of VideoNSA, we evaluate VideoNSA on
236 **Tomato** (Shangguan et al., 2024), a benchmark spanning six reasoning types and three video sce-
237 narios. VideoNSA attains the highest accuracy on Tomato (Shangguan et al., 2024), substantially
238 outperforming compression-based methods, underscoring their limitations in fine-grained temporal
239 inference. **VSIBench** (Yang et al., 2025a) focuses on spatial reasoning allowing us to test whether
240 efficient models can preserve local fidelity while achieving efficiency. VideoNSA matches the
241 strongest sparse attention baselines and significantly surpasses token compression methods in spa-
242 tial understanding, confirming that it preserves spatial fidelity. All detailed evaluation settings and
243 subset results can be found in Appendix C, Appendix D, Appendix E, and Appendix F.

244
3.2 ABLATION STUDY

245 To further analyze the components of VideoNSA, we visualize attention pattern in each branch in
246 Appendix H and assess the effectiveness of different branches. Table 2 shows that single-branch
247 models suffer significant degradation, and even two-branch combinations remain inferior to the
248 full VideoNSA, highlighting the necessity of integrating all three branches with dynamic gating.
249 Detailed results of different branch combination can be found in Appendix I.

251
4 SCALING ANALYSIS AND FINDINGS253
254 **Finding 1.** Do learned sparse attention weights remain beneficial in dense attention settings?255
Table 3: Ablation study on transferring sparse attention weights to dense attention across tasks.

257	Model	Long Video Understanding				Temporal Reasoning		Spatial Understanding	
		LongVideoBench	MLVU _{Test}	TimeScope	LongTimeScope	Tomato	VSIBench		
259	Qwen2.5-VL-7B	58.7	51.2	81.0	40.7	22.6	29.7		
260	Dense-SFT	57.8 (-1.5%)	51.2 (+0.0%)	76.8 (-5.2%)	40.2 (-1.2%)	21.7 (-4.0%)	30.6 (+2.1%)		
261	Dense-NSA	56.1 (-4.4%)	51.6 (+0.8%)	83.0 (+2.5%)	40.9 (+0.5%)	23.4 (+3.5%)	33.1 (+10.7%)		
	VideoNSA	59.4 (+1.1%)	51.8 (+1.2%)	82.7 (+2.1%)	44.4 (+9.1%)	26.2 (+15.9%)	36.1 (+20.3%)		

262 We further examine whether the learned QKV weights of VideoNSA can improve performance in
263 dense attention inference. Table 3 reports the relative performance change over the Qwen2.5-VL-
264 7B (Qwen et al., 2025). Due to the limited quality of the training data, our fine-tuned Qwen2.5-
265 VL-7B (Dense-SFT) exhibits slight performance drops on most benchmarks. We observe that the
266 transferred model (Dense-NSA) allows the dense variant to recover and surpass the baseline on
267 several benchmarks suggesting that sparse-trained weights provides inductive bias towards more
268 effective attention distributions. However, the effect remains limited on LongVideoBench (Wu et al.,
269 2024). VideoNSA significantly outperforms Dense-NSA on most tasks, highlighting the importance
of runtime sparsity and dynamic gating.

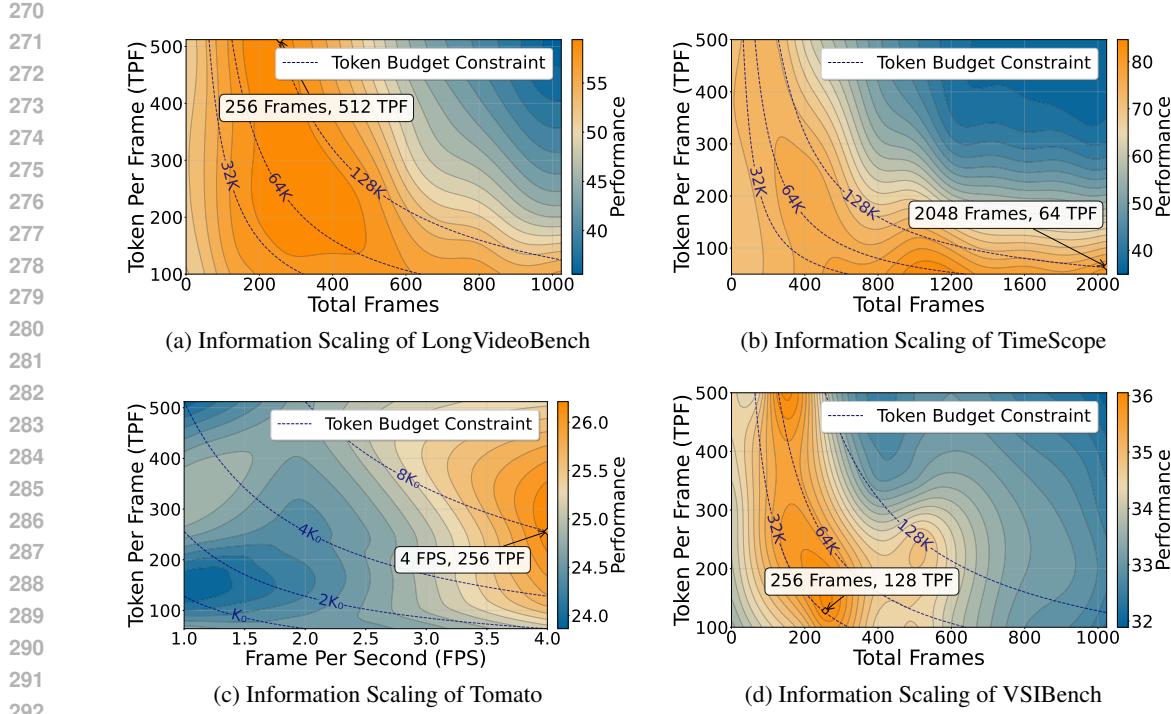


Figure 2: Scaling Performance of VideoNSA under Different Context Allocation Strategies. We highlight the Token Budget Constraint to indicate settings with equal context length, and annotate the best-performing configuration under each benchmark. Since videos in Tomato (Shangguan et al., 2024), we vary FPS instead of total frames, with $\text{FPS} \times \text{TPF} = 128$ denoted as K_0 .

Finding 2. How far can VideoNSA scale in context length?

The effective vision context length L is jointly determined by the number of vision tokens per frame T and the total number of input frames F . VideoNSA is trained with a maximum context length of $L = 36K$ tokens, corresponding to $T = 64$ tokens per frame. We conduct an information budget study under a fixed context length, by varying tokens per frame and frame rate. We then scale up the context length beyond the training budget, evaluating up to the maximum 128K tokens supported by the language model. As observed in Figure 2, the model consistently achieves higher performance when scaled to longer contexts beyond its training length across benchmarks. However, the ideal allocation of same token budget is highly task-dependent. LongVideoBench (Wu et al., 2024) favors allocating more tokens per frame, while Tomato (Shangguan et al., 2024) and TimeScope (Zohar et al., 2025) benefit more from increasing the number of frames, emphasizing temporal coverage. VSIBench (Yang et al., 2025a) shows mixed preferences depending on context length, reflecting a balance between spatial and temporal sampling. Additional results on information scaling are reported in Appendix J.

Finding 3. How to allocate the attention budget?

We define the *Attention Budget* as the total number of key-value pairs visible to each query, denoted by K_{vis} . It is composed of a global sparse component and a local sliding-window component as: $K_{\text{attn}} = b \times s + w$, where b and s denote the number and size of global blocks, and w is the sliding-window width. With context length L , compared to causal dense attention with $\frac{L(L-1)}{2}$ edges, the fraction of attention used γ is

$$\gamma = \frac{L(cS + w)}{\frac{L(L-1)}{2}} = \frac{2(cS + w)}{L - 1},$$

To determine the optimal attention allocation, we first fix the total sequence length L , the attention budget K_{vis} , and the block size $S = 64$, while systematically varying the local attention ratio

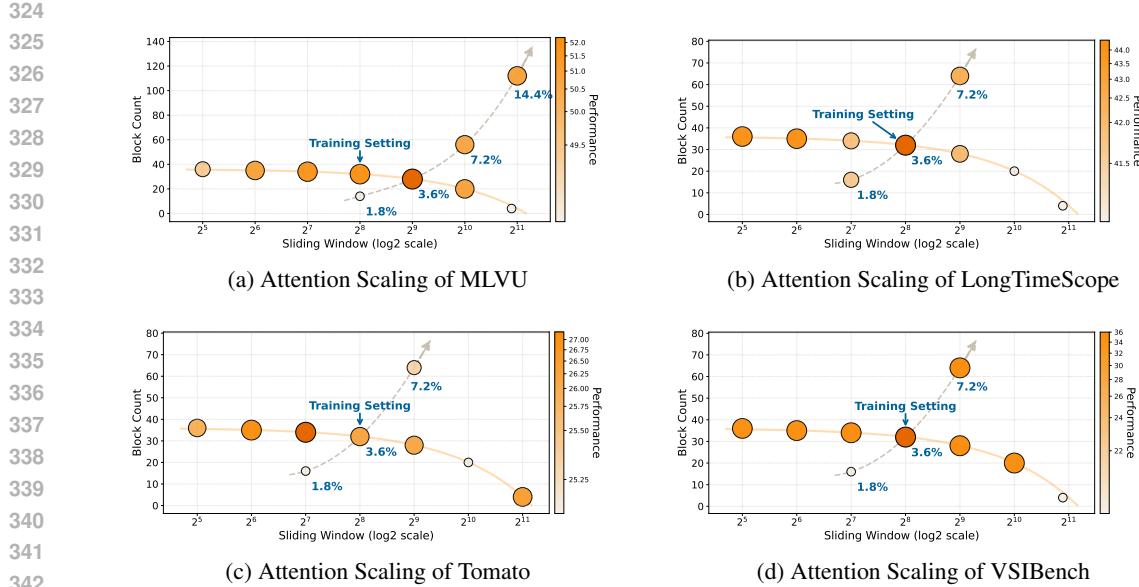


Figure 3: Scaling Performance of VideoNSA under Different Attention Allocation Strategies. Scatter points from small to large and from light to dark indicate increasing performance. We annotate the point corresponding to the same attention allocation strategy as used during training and connect configurations with equal attention budgets using solid orange lines. We further scale the best configuration using dashed lines. Percentages show attention relative to full attention.

$\alpha = \frac{w}{K_{\text{attn}}}$. We then employ the optimal allocation ratio α^* for attention budget scaling. As shown in Figure 3, scatter points denote different allocation strategies, with their size and color reflecting performance. We highlight the point corresponding to the training configuration, connect equal-budget settings with solid orange lines, and extend the best-performing configuration with dashed lines, where the annotated values indicate the fraction of attention used γ . Results show that model performance is highly sensitive to attention allocation. Although the optimal ratio between global and local attention varies across tasks, configurations close to the training allocation generally yield better results. Under the same budget, fine-tuning around the training setting often improves performance, whereas simply enlarging the overall budget does not consistently bring further gains. Moreover, across most benchmarks, increasing global attention (enlarging the block count) tends to outperform increasing local attention (enlarging the sliding window). Remarkably, VideoNSA achieves leading performance using only 3.6% of the full attention budget. More results are in Appendix L.

Finding 4. What roles do compression, selection, and sliding-window gates play in VideoNSA?

We analyze the gating distribution of VideoNSA across Tomato (Shangguan et al., 2024), VSIBench (Yang et al., 2025a), and LongVideoBench (Wu et al., 2024), and aggregate the average routing gate weights over 100 examples from each. As illustrated in Figure 4, where shaded bars denote the interquartile range and horizontal lines represent mean values, each head in VideoNSA exhibits distinct and diverse preferences across branches throughout its full depth. The diversity allows different layers to specialize in distinct modes of the context-dependent information flow. The compression branch maintains relatively high average weights across most layers, underscoring its primary role in reducing redundancy while preserving salient features. The selection and sliding window gates fluctuate more strongly, occasionally surpassing the compression branch in early and middle layers. However, their contributions diminish in the final layers (e.g., L22–L26), demonstrating that the focus shifts towards aggregating high-level features. We also note strange behavior in the last layer, where all three branches are fully active despite selection and sliding window being inactive in the layers before. Full gate values distribution in Appendix N.

We further dive into the inter-head gate similarity of each layer in Figure 5. In the middle layers, both selection and sliding window gates exhibit pronounced increases in inter-head similarity. This indicates that multiple mid-layer heads converge to highly consistent gating behaviors when the model

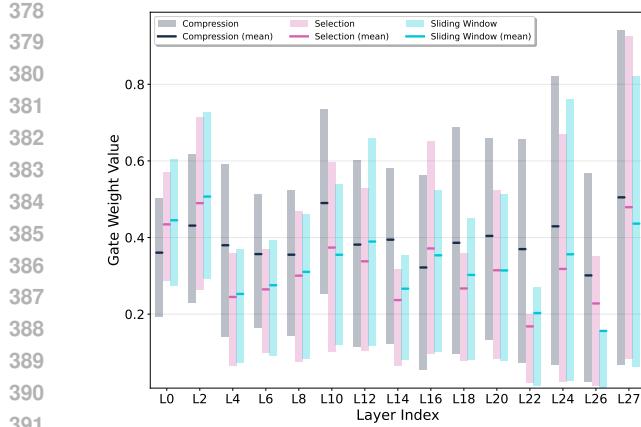
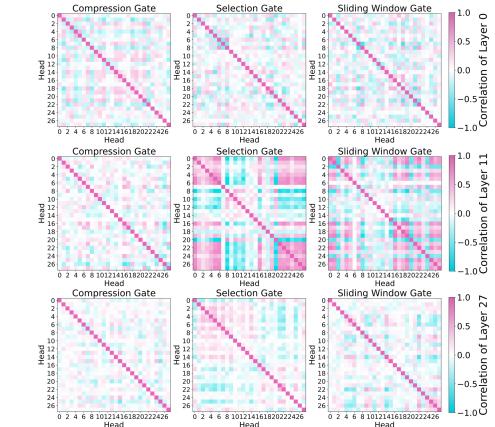


Figure 4: Gate weights across layers in VideoNSA. Compression remains dominant, while selection and sliding-window weaken in later layers.

Figure 5: Inter-head similarities of gates in VideoNSA. Selection and sliding-window gates show high similarity in middle layers.

performs block selection and local temporal integration. However, the compression gate shows consistently low inter-head similarity, indicating that it operates largely in a head-independent manner. At both the initial and final layers of VideoNSA, inter-head similarity remains weak across all gates, reflecting the need to maintain diversity in early representations and to support mixing information in higher-level abstractions. More inter-head gate similarities visualization in Appendix O.

Finding 5. Where does the efficiency bottleneck come from?

We measure the inference latency of each branch in VideoNSA using wall-clock time across varying context lengths from $1K$ to $128K$. The compression branch dominates runtime as the context grows, while the selection and sliding window branches contribute relatively little at longer contexts. Ideally, the compression branch grows approximately linearly with L , and the sliding window branch has a complexity of $O(L \cdot w)$, which results in linear scaling for a fixed window size w . The selection branch requires computing importance scores over all L/b blocks per query, leading to a computational complexity of $O(L^2/b)$. However, wall-clock latency deviates from these estimates due to hardware parallelism, memory access patterns, and kernel launch overheads. Overall, the compression branch emerges as the primary bottleneck, highlighting the need for further optimization of its kernel design and memory efficiency.

Finding 6. Do learnable sparse mechanisms induce dynamic attention sinks?

In decoder-only transformers, a disproportionate amount of attention is often allocated to the first few tokens, which act as attention sinks and absorb excessive attention mass as a byproduct of softmax normalization. Prior studies (Gu et al., 2024; Xiao et al., 2023) show that attention sinks arise from massive activations and unusually small key and value norms, so attention directed to these tokens contributes little to the residual state. This raises an important question in learnable sparse attention: whether sparsity patterns amplify or mitigate such sinks.

We follow the attention sink definition in (Pai et al., 2025a):

$$\text{Attention Sink} = \mathbf{1} \left\{ \alpha > 0.1 \wedge \|v\| < \text{median}(\|v\|) - 2 \cdot \text{IQR}(\|v\|) \right\},$$

where α is the average attention score received by the key, and $\|v\|$ is the value norm of the token.

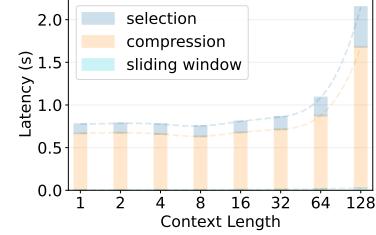


Figure 6: Inference latency of each branch in VideoNSA.

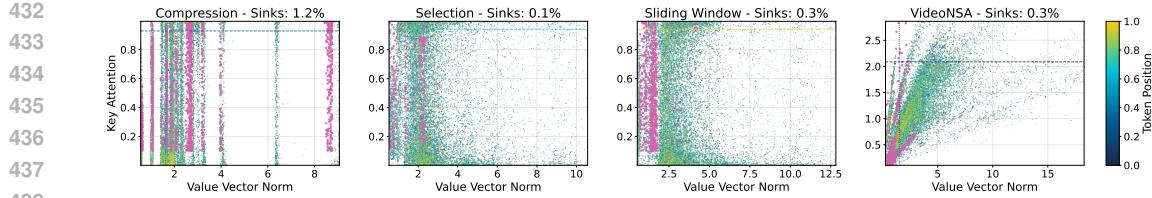


Figure 7: Attention sinks distribution of different branches. VideoNSA maintains a low overall sink ratio, with pink points indicating identified sinks.

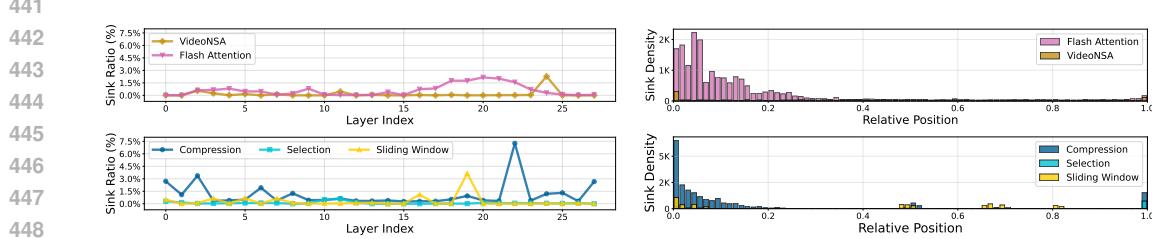


Figure 8: Layer-wise attention sink ratio distribution in different branches and Flash Attention.

Figure 9: Relative positions of attention sinks in different branches and Flash Attention.

Figure 7 illustrates the average distribution of attention sinks across the three branches of VideoNSA. Each frame is encoded into 256 tokens, and we adopt the same sparse attention configuration as used during training. The three branches exhibit markedly different sink behaviors. The compression branch produces the most sinks, with distinct banded concentrations along the value norm axis caused by token merging that amplifies some token norms while suppressing others. Conversely, the selection branch yields almost no sinks, as its top- k block filtering mechanism enforces a smoother value norm distribution. Notably, the sliding window branch demonstrates a clearer separation between sink and non-sink tokens along the value norm axis. Critically, dynamic gating allows VideoNSA to counteract the negative effects of the compression branch, achieving a stable model with a low overall sink ratio of 0.3%.

Figure 8 indicates that VideoNSA maintains low sink ratios overall, with only minor fluctuations across layers. However, Flash Attention exhibits a gradual increase in sink ratios toward deeper layers. The compression branch maintains relatively high sink levels across most layers. The selection branch remains consistently close to zero, while the sliding window branch occasionally shows higher peaks in the middle-to-late layers, indicating that locality constraints may still introduce bias in long-sequence settings. From the perspective of positional distribution in Figure 9, Flash Attention produces sinks that are uniformly spread across the entire sequence due to its fully connected dense attention. Under dynamic gating, VideoNSA achieves smoother temporal coverage, alleviating over-reliance on early positions while avoiding the global diffusion characteristic of dense attention. In contrast, the compression branch exhibits strong accumulation at the beginning with an even steeper decay, indicating that token merging exerts its strongest impact on early-stage representations. The selection branch yields very few sinks across the sequence, while the sliding window branch produces sparse peaks at periodic boundaries of local neighborhoods. More analysis about attention sinks on various sparse attention settings can be found in Appendix S.

5 CONCLUSION

In this work, we present VideoNSA, a hybrid hardware-aware sparse attention model that significantly advances video understanding across various tasks. By dynamically fusing block-wise compression, salient block selection, and a sliding window, VideoNSA effectively preserves critical information while achieving near-linear scalability in efficiency and memory. Our experiments demonstrate that VideoNSA consistently outperforms existing methods on key tasks including long video understanding, temporal reasoning, and spatial understanding. While the prefill stage remains the primary bottleneck, our findings confirm that this hybrid sparse approach provides a powerful and scalable framework, paving the way for more capable video foundation models.

486 **6 ETHICS STATEMENT**
487488 This research on video understanding utilizes publicly available datasets, ensuring that all data com-
489 plies with privacy regulations. We acknowledge the potential biases that can arise in automatic
490 answer generation, particularly concerning gender, race, or other characteristics. We have taken
491 measures to evaluate and minimize such biases, while remaining committed to further improve-
492 ments. Additionally, we recognize the potential risks of misuse, such as generating misleading
493 answers, and have checked the training dataset with safeguards against such applications.
494495 **7 REPRODUCIBILITY STATEMENT**
496497 We have made several efforts to ensure the reproducibility of our work. All the key implemen-
498 tation details, including the architecture of our model, the training procedures, and hyperparameter
499 settings, are described in supplementary material Section B. The settings of the used evalua-
500 tion benchmarks are in Section C to further support reproducibility.
501502 **8 THE USE OF LARGE LANGUAGE MODELS**
503504 Large language models (LLMs) were used only for light editorial purposes, such as minor grammar
505 checking and language polishing. They were not used for generating scientific content, research
506 ideation, experiment design, or analysis. The authors take full responsibility for the entirety of the
507 paper, and LLMs are not considered contributors or eligible for authorship.
508510 **REFERENCES**
511512 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
513 Sanghi. Gqa: Training generalized multi-query transformer models from multi-head check-
514 points. *arXiv preprint arXiv:2305.13245*, 2023.515 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
516 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
517 2025.518 Payman Behnam, Yaosheng Fu, Ritchie Zhao, Po-An Tsai, Zhiding Yu, and Alexey Tumanov. Rock-
519 etkv: Accelerating long-context llm inference via two-stage kv cache compression, 2025.520 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
521 *arXiv preprint arXiv:2004.05150*, 2020.522 Mu Cai, Reuben Tan, Jianrui Zhang, Bocheng Zou, Kai Zhang, Feng Yao, Fangrui Zhu, Jing Gu,
523 Yiwu Zhong, Yuzhang Shang, et al. Temporalbench: Benchmarking fine-grained temporal under-
524 standing for multimodal video models. *arXiv preprint arXiv:2410.10818*, 2024.525 Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng, Vashisht Madhavan, Omer Bar-Tal, Jenq-
526 Neng Hwang, Saining Xie, and Christopher D Manning. Auroracap: Efficient, performant video
527 detailed captioning and a new benchmark. *arXiv preprint arXiv:2410.03051*, 2024.528 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
529 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
530 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.531 Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
532 of large language models via positional interpolation. *arXiv preprint arXiv:2306.15595*, 2023.533 Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
534 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
535 long videos. *arXiv preprint arXiv:2408.10188*, 2024b.

540 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
 541 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
 542 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
 543 2024c.

544 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv*
 545 *preprint arXiv:2307.08691*, 2023.

546 Sixun Dong, Juhua Hu, Mian Zhang, Ming Yin, Yanjie Fu, and Qi Qian. Mmtok: Multimodal
 547 coverage maximization for efficient inference of vlms, 2025.

548 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
 549 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluat-
 550 ing large multi-modality models. In *Proceedings of the 32nd ACM international conference on*
 551 *multimedia*, pp. 11198–11201, 2024.

552 Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
 553 Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in
 554 your llms. *arXiv preprint arXiv:2410.13276*, 2024.

555 Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao
 556 Sun, Tianzhu Ye, Li Dong, Hayden Kwok-Hay So, Yu Hua, Ting Cao, Fan Yang, and Mao Yang.
 557 Seerattention-r: Sparse attention adaptation for long reasoning, 2025.

558 Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
 559 Min Lin. When attention sink emerges in language models: An empirical view. *arXiv preprint*
 560 *arXiv:2410.10781*, 2024.

561 Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
 562 on-the-fly length generalization for large language models. 2023.

563 Zhiyuan He, Yike Zhang, Chengruidong Zhang, Huiqiang Jiang, Yuqing Yang, and Lili Qiu. Trian-
 564 glemix: A lossless and efficient attention pattern for long context prefilling, 2025.

565 Yu Huang, Zixin Wen, Aarti Singh, Yuejie Chi, and Yuxin Chen. Transformers provably learn
 566 chain-of-thought reasoning with length generalization. *arXiv preprint arXiv:2511.07378*, 2025.

567 Jeongseok Hyun, Sukjun Hwang, Su Ho Han, Taeoh Kim, Inwoong Lee, Dongyoong Wee, Joon-
 568 Young Lee, Seon Joo Kim, and Minho Shim. Multi-granular spatio-temporal token merging for
 569 training-free acceleration of video llms. *arXiv preprint arXiv:2507.07990*, 2025.

570 Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
 571 Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
 572 for long-context llms via dynamic sparse attention. *Advances in Neural Information Processing*
 573 *Systems*, 37:52481–52515, 2024.

574 Jindong Jiang, Xiuyu Li, Zhijian Liu, Muyang Li, Guo Chen, Zhiqi Li, De-An Huang, Guilin Liu,
 575 Zhiding Yu, Kurt Keutzer, Sungjin Ahn, Jan Kautz, Hongxu Yin, Yao Lu, Song Han, and Wonmin
 576 Byeon. Storm: Token-efficient long video understanding for multimodal llms, 2025a.

577 Pengfei Jiang, Hanjun Li, Linglan Zhao, Fei Chao, Ke Yan, Shouhong Ding, and Rongrong Ji. Visa:
 578 Group-wise visual token selection and aggregation via graph summarization for efficient mllms
 579 inference. 2025b. doi: 10.1145/3746027.3755792.

580 Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified visual
 581 representation empowers large language models with image and video understanding. In *Pro-
 582 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13700–
 583 13710, 2024.

584 Chaitanya K Joshi. Transformers are graph neural networks. *arXiv preprint arXiv:2506.22084*,
 585 2025.

594 Michael Kalloniatis and Charles Luu. Temporal resolution. In Helga Kolb, Eduardo Fernandez,
 595 Ralph Nelson, and Bryan Jones (eds.), *Webvision: The Organization of the Retina and Visual*
 596 *System*. University of Utah Health Sciences Center, Salt Lake City (UT), 2007. URL <https://www.ncbi.nlm.nih.gov/books/NBK11559/>. Accessed September 24, 2025.
 597

598 Minsoo Kim, Kyuhong Shim, Jungwook Choi, and Simyung Chang. Infinipot-v: Memory-
 599 constrained kv cache compression for streaming video understanding, 2025.
 600

601 Henry Ko. Optimizing nsa for tpus – kernel worklog. https://henryhmko.github.io/posts/nsa_tpu/nsa_tpu.html, 2025. Blog post.
 602

603 Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
 604 attention mechanism for efficient long-sequence inference. *arXiv preprint arXiv:2502.20766*,
 605 2025.
 606

607 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 608 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 609 *arXiv:2408.03326*, 2024a.
 610

611 Handong Li, Yiyuan Zhang, Longteng Guo, Xiangyu Yue, and Jing Liu. Breaking the encoder
 612 barrier for seamless video-language understanding, 2025a.
 613

614 Hongyu Li, Songhao Han, Yue Liao, Junfeng Luo, Jialin Gao, Shuicheng Yan, and Si Liu. Re-
 615 enforcement learning tuning for videollms: Reward design and data efficiency. *arXiv preprint*
 616 *arXiv:2506.01908*, 2025b.
 617

618 Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhang Zhu, Haian Huang, Jianfei Gao, Kunchang
 619 Li, Yinan He, Chenting Wang, et al. Videochat-flash: Hierarchical compression for long-context
 620 video modeling. *arXiv preprint arXiv:2501.00574*, 2024b.
 621

622 Yixuan Li, Changli Tang, Jimin Zhuang, Yudong Yang, Guangzhi Sun, Wei Li, Zejun Ma, and Chao
 623 Zhang. Improving llm video understanding with 16 frames per second, 2025c.
 624

625 Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
 626 Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
 627 long-context methods. *arXiv preprint arXiv:2412.10319*, 2024c.
 628

629 Yucheng Li, Huiqiang Jiang, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Amir H.
 630 Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, and Lili Qiu. Mminference: Accelerating
 631 pre-filling for long-context vlms via modality-aware permutation sparse attention, 2025d.
 632

633 Manlai Liang, Wanyi Huang, Mandi Liu, Huaijun Li, and Jinlong Li. Lag-relative sparse attention
 634 in long context training, 2025.
 635

636 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 637 *arXiv:1711.05101*, 2017.
 638

639 Wentao Ma, Weiming Ren, Yiming Jia, Zhuofeng Li, Ping Nie, Ge Zhang, and Wenhui Chen.
 640 Videoeval-pro: Robust and realistic long video understanding evaluation. *arXiv preprint*
 641 *arXiv:2505.14640*, 2025.
 642

643 mdy666. Scalable-flash-native-sparse-attention. <https://github.com/mdy666/Scalable-Flash-Native-Sparse-Attention>, 2025. GitHub repository.
 644

645 Zhenyu Ning, Guangda Liu, Qihao Jin, Wenchoao Ding, Minyi Guo, and Jieru Zhao. Livevlm:
 646 Efficient online video understanding via streaming-oriented kv cache and retrieval, 2025.
 647

648 Dhruv Pai, Timor Averbuch, Mason Wang, and Ben Keigwin. Sparsity is cool. Blog post, Tilde Re-
 649 search, June 2025a. URL <https://www.tilderesearch.com/blog/sparse-attn>.
 650 Tilde; correspondence to dhruv@tilderesearch.com.
 651

652 Dhruv Pai, Timor Averbuch, Mason Wang, and Ben Keigwin. Sparsity is cool. <https://www.tilderesearch.com/blog/sparse-attn>, June 25 2025b. Tilde Research Blog.
 653

648 Francesco Pappone. Attention sinks from the graph perspective. [https://publish.
649 obsidian.md/the-tensor-throne/Transformers+as+GNNs/Attention+
650 sinks+from+the+graph+perspective](https://publish.obsidian.md/the-tensor-throne/Transformers+as+GNNs/Attention+sinks+from+the+graph+perspective), August 2025. Blogpost.
651

652 Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
653 enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021.
654

655 Minghao Qin, Xiangrui Liu, Zhengyang Liang, Yan Shu, Huaying Yuan, Juenjie Zhou, Shitao Xiao,
656 Bo Zhao, and Zheng Liu. Video-xl-2: Towards very long-video understanding through task-aware
657 kv sparsification, 2025a.
658

659 Minghao Qin, Xiangrui Liu, Zhengyang Liang, Yan Shu, Huaying Yuan, Juenjie Zhou, Shitao Xiao,
660 Bo Zhao, and Zheng Liu. Video-xl-2: Towards very long-video understanding through task-aware
661 kv sparsification. *arXiv preprint arXiv:2506.19225*, 2025b.
662

663 Tianyuan Qu, Longxiang Tang, Bohao Peng, Senqiao Yang, Bei Yu, and Jiaya Jia. Does your vision-
664 language model get lost in the long video sampling dilemma? *arXiv preprint arXiv:2503.12496*,
665 2025.
666

667 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
668 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
669 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
670 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
671 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
672 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
673 URL <https://arxiv.org/abs/2412.15115>.
674

675 Weiming Ren, Wentao Ma, Huan Yang, Cong Wei, Ge Zhang, and Wenhui Chen. Vamba: Under-
676 standing hour-long videos with hybrid mamba-transformers, 2025.
677

678 Ziyao Shangguan, Chuhan Li, Yuxuan Ding, Yanan Zheng, Yilun Zhao, Tesca Fitzgerald, and Ar-
679 man Cohan. Tomato: Assessing visual temporal reasoning capabilities in multimodal foundation
680 models. *arXiv preprint arXiv:2410.23266*, 2024.
681

682 Kele Shao, Keda Tao, Kejia Zhang, Sicheng Feng, Mu Cai, Yuzhang Shang, Haoxuan You, Can Qin,
683 Yang Sui, and Huan Wang. When tokens talk too much: A survey of multimodal long-context
684 token compression across images, videos, and audios, 2025.
685

686 Yan Shu, Zheng Liu, Peitian Zhang, Minghao Qin, Junjie Zhou, Zhengyang Liang, Tiejun Huang,
687 and Bo Zhao. Video-xl: Extra-long vision language model for hour-scale video understanding.
688 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26160–26169,
689 2025.
690

691 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
692 Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory
693 for long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision
694 and Pattern Recognition*, pp. 18221–18232, 2024.
695

696 Enxin Song, Wenhao Chai, Weili Xu, Jianwen Xie, Yuxuan Liu, and Gaoang Wang. Video-mmlu:
697 A massive multi-discipline lecture understanding benchmark. *arXiv preprint arXiv:2504.14693*,
698 2025a.
699

700 Enxin Song, Wenhao Chai, Tian Ye, Jenq-Neng Hwang, Xi Li, and Gaoang Wang. Moviechat+:
701 Question-aware sparse memory for long video question answering. *IEEE Transactions on Pattern
Analysis and Machine Intelligence*, 2025b.
702

703 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
704 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
705

706 Core Team, Zihao Yue, Zhenru Lin, Yifan Song, Weikun Wang, Shuhuai Ren, Shuhao Gu, Shicheng
707 Li, Peidian Li, Liang Zhao, Lei Li, Kainan Bao, Hao Tian, Hailin Zhang, Gang Wang, Dawei
708 Zhu, Cici, Chenhong He, Bowen Ye, Bowen Shen, Zihan Zhang, Zihan Jiang, Zhixian Zheng,
709 Zhichao Song, Zhenbo Luo, Yue Yu, Yudong Wang, Yuanyuan Tian, Yu Tu, Yihan Yan, Yi Huang,
710

702 Xu Wang, Xinzhe Xu, Xingchen Song, Xing Zhang, Xing Yong, Xin Zhang, Xiangwei Deng,
 703 Wenyu Yang, Wenhan Ma, Weiwei Lv, Weiji Zhuang, Wei Liu, Sirui Deng, Shuo Liu, Shimao
 704 Chen, Shihua Yu, Shaohui Liu, Shande Wang, Rui Ma, Qiantong Wang, Peng Wang, Nuo Chen,
 705 Menghang Zhu, Kangyang Zhou, Kang Zhou, Kai Fang, Jun Shi, Jinhao Dong, Jiebao Xiao,
 706 Jiaming Xu, Huaqiu Liu, Hongshen Xu, Heng Qu, Haochen Zhao, Hanglong Lv, Guoan Wang,
 707 Duo Zhang, Dong Zhang, Di Zhang, Chong Ma, Chang Liu, Can Cai, and Bingquan Xia. Mimo-vl
 708 technical report, 2025a. URL <https://arxiv.org/abs/2506.03569>.

709 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen,
 710 Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint*
 711 *arXiv:2504.07491*, 2025b.

712 Kwai Keye Team. Kwai keye-vl technical report, 2025. URL <https://arxiv.org/abs/2507.01949>.

713 Qwen Team. Qwen2.5-vl-7b-instruct-awq. <https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct-AWQ>, 2024.

714 Abhishek Tyagi, Arjun Iyer, William H Renninger, Christopher Kanan, and Yuhao Zhu. Dynamic
 715 sparse training of diagonally sparse networks, 2025.

716 Pavlo Vasylenko, Marcos Treviso, and André F. T. Martins. Long-context generalization with sparse
 717 attention, 2025.

718 Xiao Wang, Qingyi Si, Jianlong Wu, Shiyu Zhu, Li Cao, and Liqiang Nie. Retake: Reducing tempo-
 719 ral and knowledge redundancy for long video understanding. *arXiv preprint arXiv:2412.20504*,
 720 2024.

721 Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian
 722 Ma, Haian Huang, Jianfei Gao, et al. Internvideo2. 5: Empowering video mllms with long and
 723 rich context modeling. *arXiv preprint arXiv:2501.12386*, 2025a.

724 Yixuan Wang, Huang He, Siqi Bao, Hua Wu, Haifeng Wang, Qingfu Zhu, and Wanxiang Che.
 725 Proxyattn: Guided sparse attention via representative heads. *arXiv preprint arXiv:2509.24745*,
 726 2025b.

727 Ziyi Wang, Haoran Wu, Yiming Rong, Deyang Jiang, Yixin Zhang, Yunlong Zhao, Shuang Xu, and
 728 Bo Xu. Lvc: A lightweight compression framework for enhancing vlms in long video under-
 729 standing, 2025c.

730 Zichen Wen, Yifeng Gao, Weijia Li, Conghui He, and Linfeng Zhang. Token pruning in multimodal
 731 large language models: Are we solving the right problem? *arXiv preprint arXiv:2502.11501*,
 732 2025.

733 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 734 interleaved video-language understanding. *Advances in Neural Information Processing Systems*,
 735 37:28828–28857, 2024.

736 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 737 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

738 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 739 language models with attention sinks. In *The Twelfth International Conference on Learning Rep-*
 740 *resentations*, 2024.

741 Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
 742 attention with antidiagonal scoring. *arXiv preprint arXiv:2503.16428*, 2025a.

743 Weili Xu, Enxin Song, Wenhao Chai, Xuexiang Wen, Tian Ye, and Gaoang Wang. Auro-
 744 ralong: Bringing rnns back to efficient open-ended video understanding. *arXiv preprint*
 745 *arXiv:2507.02591*, 2025b.

746 Ran Yan, Youhe Jiang, and Binhang Yuan. Flash sparse attention: An alternative efficient imple-
 747 *mentation of native sparse attention kernel*, 2025.

756 Chenyu Yang, Xuan Dong, Xizhou Zhu, Weijie Su, Jiahao Wang, Hao Tian, Zhe Chen, Wenhai
 757 Wang, Lewei Lu, , and Jifeng Dai. Pvc: Progressive visual token compression for unified image
 758 and video processing in large vision-language models. *arXiv preprint arXiv:2412.09613*, 2024.
 759

760 Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 761 space: How multimodal large language models see, remember, and recall spaces, 2025a. URL
 762 <https://arxiv.org/abs/2412.14171>.

763 Lijie Yang, Zhihao Zhang, Arti Jain, Shijie Cao, Baihong Yuan, Yiwei Chen, Zhihao Jia, and Ravi
 764 Neatravali. Less is more: Training-free sparse attention with global locality for efficient reasoning,
 765 2025b.

766 Senqiao Yang, Yukang Chen, Zhuotao Tian, Chengyao Wang, Jingyao Li, Bei Yu, and Jiaya Jia.
 767 Visionzip: Longer is better but not necessary in vision language models. In *Proceedings of the*
 768 *Computer Vision and Pattern Recognition Conference*, pp. 19792–19802, 2025c.

769 Sihan Yang, Runsen Xu, Chenhang Cui, Tai Wang, Dahua Lin, and Jiangmiao Pang. Vflowopt:
 770 A token pruning framework for lmms with visual information flow-guided optimization. *arXiv*
 771 *preprint arXiv:2508.05211*, 2025d.

772 Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations
 773 of linear attention mechanism, January 2024. URL <https://github.com/fla-org/flash-linear-attention>.

774 Yanlai Yang, Zhuokai Zhao, Satya Narayan Shukla, Aashu Singh, Shlok Kumar Mishra, Lizhu
 775 Zhang, and Mengye Ren. Streammem: Query-agnostic kv cache memory for streaming video
 776 understanding, 2025e.

777 Linli Yao, Yicheng Li, Yuancheng Wei, Lei Li, Shuhuai Ren, Yuanxin Liu, Kun Ouyang, Lean Wang,
 778 Shicheng Li, Sida Li, Lingpeng Kong, Qi Liu, Yuanxing Zhang, and Xu Sun. Timechat-online:
 779 80

780 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
 781 Y. X. Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang,
 782 and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse
 783 attention, 2025a.

784 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
 785 YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
 786 trainable sparse attention. *arXiv preprint arXiv:2502.11089*, 2025b.

787 Zhihao Zhan, Jianan Zhao, Zhaocheng Zhu, and Jian Tang. Overcoming long-context limitations of
 788 state-space models via context-dependent sparse attention, 2025.

789 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong
 790 Leng, Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation
 791 models for image and video understanding. *arXiv preprint arXiv:2501.13106*, 2025a.

792 Ce Zhang, Kaixin Ma, Tianqing Fang, Wenhao Yu, Hongming Zhang, Zhisong Zhang, Yaqi Xie,
 793 Katia Sycara, Haitao Mi, and Dong Yu. Vscan: Rethinking visual token reduction for efficient
 794 large vision-language models. *arXiv preprint arXiv:2505.22654*, 2025b.

795 Dell Zhang, Xiangyu Chen, Jixiang Luo, Mengxi Jia, Changzhi Sun, Rui long Ren, Jingren Liu, Hao
 796 Sun, and Xuelong Li. Infinite video understanding. *arXiv preprint arXiv:2507.09068*, 2025c.

797 Haichao Zhang and Yun Fu. Neural discrete token representation learning for extreme token reduc-
 798 tion in video large language models, 2025.

799 Hanzhi Zhang, Heng Fan, Kewei Sha, Yan Huang, and Yunhe Feng. Dam: Dynamic attention mask
 800 for long-context large language model inference acceleration, 2025d.

810 Jintao Zhang, Rundong Su, Chunyu Liu, Jia Wei, Ziteng Wang, Haoxu Wang, Pengle Zhang,
 811 Huiqiang Jiang, Haofeng Huang, Chendong Xiang, Haocheng Xi, Shuo Yang, Xingyang Li,
 812 Yuezhou Hu, Tianyu Fu, Tianchen Zhao, Yicheng Zhang, Boqun Cao, Youhe Jiang, Chang Chen,
 813 Kai Jiang, Huayu Chen, Min Zhao, Xiaoming Xu, Yi Wu, Fan Bao, Jun Zhu, and Jianfei Chen. A
 814 survey of efficient attention methods: Hardware-efficient, sparse, compact, and linear attention.
 815 2025e.

816 Jintao Zhang, Haoxu Wang, Kai Jiang, Shuo Yang, Kaiwen Zheng, Haocheng Xi, Ziteng Wang,
 817 Hongzhou Zhu, Min Zhao, Ion Stoica, et al. Sla: Beyond sparsity in diffusion transformers via
 818 fine-tunable sparse-linear attention. *arXiv preprint arXiv:2509.24006*, 2025f.

819 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
 820 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, et al. Lmms-eval: Reality check on the evaluation
 821 of large multimodal models. *arXiv preprint arXiv:2407.12772*, 2024a.

822 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 823 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
 824 *arXiv preprint arXiv:2406.16852*, 2024b.

825 Peiyuan Zhang, Yongqi Chen, Haofeng Huang, Will Lin, Zhengzhong Liu, Ion Stoica, Eric Xing,
 826 and Hao Zhang. Vsa: Faster video diffusion with trainable sparse attention, 2025g.

827 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
 828 Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024c. URL
 829 <https://llava-v1.github.io/blog/2024-04-30-llava-next-video/>.

830 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 831 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024d.

832 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-
 833 tion tuning with synthetic data, 2024e. URL <https://arxiv.org/abs/2410.02713>.

834 Yunzhu Zhang, Yu Lu, Tianyi Wang, Fengyun Rao, Yi Yang, and Linchao Zhu. Flexselect: Flexible
 835 token selection for efficient long video understanding. *arXiv preprint arXiv:2506.00993*, 2025h.

836 Weilin Zhao, Zihan Zhou, Zhou Su, Chaojun Xiao, Yuxuan Li, Yanghao Li, Yudi Zhang, Weilun
 837 Zhao, Zhen Li, Yuxiang Huang, et al. Inflm-v2: Dense-sparse switchable attention for seamless
 838 short-to-long adaptation. *arXiv preprint arXiv:2509.24663*, 2025.

839 Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
 840 Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight
 841 infrastructure for fine-tuning, 2024. URL <https://arxiv.org/abs/2408.05517>.

842 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 843 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 844 understanding. *arXiv e-prints*, pp. arXiv–2406, 2024.

845 Orr Zohar, Xiaohan Wang, Rui Li, Andrés Marafioti, Miquel Farré, Merve Noyan, Leandro von
 846 Werra, Serena Yeung-Levy, and Thomas Wolf. Apollo2: Exploring the long-video frontier of
 847 large multimodal models, 2025.

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Appendix

The supplementary material is structured as follows:

- Literature review about the related works in Section A.
- The training settings for VideoNSA in Section B.
- The introduction of the used evaluation benchmarks and settings in Section C.
- More results on long-form video benchmarks in Section D.
- More results on temporal reasoning benchmarks in Section E.
- More results on spatial understanding benchmarks in Section F.
- **Results on additional video understanding benchmarks in Section G.**
- Visualization of attention pattern in each branch in Section H.
- More results on branch combination in Section I.
- More results on information scaling study in Section J.
- **Additional context-length scaling results of Qwen2.5-VL in Section K.**
- More results on attention scaling study in Section L.
- **Theoretical analysis of context length and attention budget scaling in Section M.**
- Full gate values distribution in Section N.
- More inter-head gate similarites visualization in Section O.
- **Benchmark-level gating analysis and PCA visualization in Section P.**
- **Additional analysis of training and inference efficiency in Section Q.**
- **Additional analysis on CMP latency bottleneck in Section R.**
- More analysis about attention sinks on various sparse attention settings can be found in Section S.
- **Comparison of sparsity patterns between text-only NSA and VideoNSA in Section T.**
- Visualization of attention sinks in dense attention in Section U.

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 A RELATED WORK

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 A.1 EFFICIENT VIDEO UNDERSTANDING

900 Video understanding systems typically convert videos into long sequences of vision tokens, which
 901 can easily exceed GPU memory and slow down inference as the video length grows. To address this,
 902 existing work mainly address this by **token compression**, **alternative sequence modeling**, and **KV-
 903 cache compression**. One important line of work emphasizes token compression. Spatial or temporal
 904 token merging methods (Wang et al., 2025c; Zhang & Fu, 2025; Li et al., 2025c; Jiang et al., 2025a;
 905 Li et al., 2025a; Shao et al., 2025; Song et al., 2024; Chai et al., 2024) progressively discard re-
 906 dundant content, while question-/task-aware strategies (Jiang et al., 2025b; Dong et al., 2025; Yao
 907 et al., 2025; Song et al., 2025b) tailor retained tokens to the query. These approaches substantially
 908 lower FLOPs but still rely on dense attention once tokens are merged. Beyond pure self-attention,
 909 Mamba-based or hybrid architectures (Jiang et al., 2025a; Ren et al., 2025; Xu et al., 2025b) inject
 910 state-space or recurrent modules to approach linear-time inference while preserving long-range de-
 911 pendencies. Also, there exists approach to design data efficient systems for further fine-tuning (Li
 912 et al., 2025b). Another direction targets the key-value cache during decoding via task-aware spar-
 913 sification and streaming-friendly memory (Qin et al., 2025a; Ning et al., 2025; Kim et al., 2025;
 914 Yang et al., 2025e) reduce memory and improve throughput, yet prefill still scales quadratically
 915 with sequence length. In contrast to methods that mostly decide *where* to drop or compress tokens,
 916 our approach systematically probe the effectiveness of *native sparse attention* (Yuan et al., 2025a)
 917 that restructures attention itself to be learnable and sparse from the ground up. VideoNSA attains
 near-linear scalability up to 128K tokens and processes over 10,000 frames on a single GPU, outper-
 forming compression-only pipelines on long-video understanding, temporal reasoning, and spatial
 understanding tasks.

918 A.2 SPARSE ATTENTION MECHANISM
919

920 Sparse attention is a central strategy for efficient long-context modeling in language and multi-
921 modal systems. Surveys (Zhang et al., 2025e) categorize approaches into *pattern-based* vs. *dynamic/learned*. **Pattern-based sparsity.** Methods such as Longformer (Beltagy et al., 2020),
922 StreamingLLM (Xiao et al., 2024), and TriangleMix (He et al., 2025) prescribe fixed local/strided
923 patterns that can be applied training-free; recent multimodal works (Zhang et al., 2025d; Yang et al.,
924 2025b) follow similar principles, while hardware-efficient kernels like Flash Sparse Attention (Yan
925 et al., 2025) further reduce prefill latency. InFLLM-V2 (Zhao et al., 2025) uses switchable dense
926 sparse attention to smoothly adapt models from short to long sequences while maintaining consis-
927 tency and achieving efficient acceleration with high performance. ProxyAttn (Wang et al., 2025b)
928 uses representative heads for fine-grained block importance estimation, enabling faster sparse at-
929 tention with minimal performance loss. **Dynamic and trainable sparsity.** Content- or gradient-
930 adaptive mechanisms select important connections (e.g., diagonal selection (Tyagi et al., 2025) or
931 lag-relative strategies (Liang et al., 2025)); trainable sparse attention improves long-context reasoning
932 (Gao et al., 2025; Vasylenko et al., 2025; Gao et al., 2024), diffusion-based video generation
933 (Zhang et al., 2025g), and state-space models (Zhan et al., 2025). SLA (Zhang et al., 2025f) decom-
934 poses attention weights into critical, marginal, and negligible parts, combining sparse and low-rank
935 acceleration to greatly reduce computation while preserving generation quality. Hybrid approaches
936 such as RocketKV (Behnam et al., 2025) combine token/cache compression with learned sparsity,
937 and MMInference (Li et al., 2025d) accelerates modality-aware sparse prefill for VLMs. Despite
938 these advances, most techniques are optimized for text or short multimodal contexts and do not
939 directly address the ultra-long, highly redundant spatio-temporal structure of videos. VideoNSA
940 unifies *block-wise compression*, *salient block selection*, and a *sliding-window* branch under learn-
941 able gates that dynamically allocate computation across three native sparse branches (Yuan et al.,
942 2025a). This end-to-end, data-driven design preserves critical global/local dependencies while scal-
943 ing nearly linearly in both time and memory.

944 B DETAILED TRAINING SETTINGS
945

946 Training hyperparameters for VideoNSA are shown in Table 4. We filter a subset of LLaVA-Video-
947 178K (Zhang et al., 2024e) as the training data. For each video, we uniformly sample at 4 frames
948 per second and retain only those with 350–550 frames, resulting in 216K video question–answer
949 pairs from the original 961K pairs in LLaVA-Video-178K (Zhang et al., 2024e).

951 Table 4: Training hyper-parameters for VideoNSA.
952

953 Hyper-parameters	954 Fine-tuning
955 trainable parameters	956 ViT + MLP + LLM
956 warmup schedule	957 linear
957 warmup start factor	958 1e-5
958 warmup ratio	959 0.1
959 learning rate schedule	960 cosine
960 optimizer	961 AdamW (Loshchilov & Hutter, 2017)
961 optimizer hyper-parameters	962 $\beta_1, \beta_2 = (0.9, 0.999)$
962 weight decay	963 0.01
963 max norm	964 1
964 epoch	965 1
965 peak learning rate	966 1e-6
966 total equivalent batch size	967 32

968 C EVALUATION BENCHMARKS AND SETTINGS
969

970 971 We list all the hyper-parameters and prompt used for evaluation as shown in Table 5.

972 Table 5: Evaluation settings summary for each benchmarks. For all benchmarks we set temperature,
 973 top p, number of beams to 0, 0, 1 respectively. # TPF stands for the vision tokens per frame, and #
 974 F stands for the number of sampling frames.

Benchmark	# TPF	# F	# Max New Tokens
LongVideoBench (Wu et al., 2024)	512	256	32
LongTimeScope (Zohar et al., 2025)	128	512	16
TimeScope (Zohar et al., 2025)	64	2048	16
MLVU _{test} (Zhou et al., 2024)	128	512	16
Tomato (Shangguan et al., 2024)	4FPS	256	1024
VSIBench (Yang et al., 2025a)	256	128	16

D MORE RESULTS ON LONG-FORM VIDEO BENCHMARKS

985
 986 Table 6: LongTimeScope results across baselines. Metrics include overall accuracy and task-specific
 987 scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated
 988 by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method	Overall	18000			28800			36000		
		OCR	QA	Temporal	OCR	QA	Temporal	OCR	QA	Temporal
Flash Attn	40.7	54.0	42.0	22.0	48.0	60.0	24.0	48.0	58.0	10.0
Flash Attn + SFT	40.2	46.0	30.0	34.0	46.0	44.0	36.0	52.0	44.0	20.0
AWQ	—	—	—	—	—	—	—	—	—	—
XAttn	41.1	52.0	56.0	30.0	54.0	52.0	6.0	52.0	64.0	4.0
Minference	44.4	64.0	56.0	26.0	58.0	60.0	8.0	56.0	66.0	6.0
tri-shape	28.4	34.0	36.0	12.0	48.0	48.0	0.0	44.0	32.0	2.0
FlexPrefill	39.1	52.0	46.0	24.0	46.0	56.0	14.0	46.0	66.0	2.0
FastV	35.6	36.0	50.0	16.0	44.0	50.0	4.0	44.0	64.0	12.0
VisionZip	31.1	38.0	32.0	14.0	56.0	46.0	0.0	44.0	46.0	4.0
VScan	40.4	48.0	52.0	24.0	50.0	52.0	22.0	46.0	64.0	6.0
VideoNSA	44.4	50.0	54.0	30.0	54.0	72.0	0.0	48.0	76.0	16.0

1008 Table 7: LongVideoBench results across baselines. Metrics include overall accuracy and task-specific
 1009 scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025)
 1010 accelerated by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method	Overall	600	TOS	S2E	E3E	S2A	SAA	O3O	T3O	T3E	O2E	T2O	S2O	TAA	T2E	E2O	SSS	T2A	60	SOS	15	3600
Flash Attn	58.7	58.5	38.4	69.9	66.0	70.5	56.9	57.6	58.1	53.4	63.2	63.2	55.6	52.4	63.1	63.1	39.2	64.6	72.7	61.7	65.6	52.3
Flash Attn + SFT	57.8	55.8	38.4	65.6	61.7	73.9	56.9	65.2	55.4	57.5	57.5	56.6	62.5	51.2	55.4	66.2	39.2	63.3	74.4	58.0	64.6	52.0
AWQ	59.0	60.0	34.2	72.0	64.9	68.2	59.7	57.6	52.7	50.7	69.0	52.6	63.9	57.3	61.5	67.7	43.3	62.0	73.8	63.0	67.7	50.9
XAttn	59.1	59.4	36.0	70.0	66.0	67.2	57.3	58.1	55.8	53.8	64.5	62.2	64.3	56.3	65.2	66.7	41.3	58.5	75.2	60.7	68.8	50.6
Minference	59.2	60.6	34.6	74.3	66.0	68.3	58.7	56.6	53.1	52.4	68.0	56.9	60.1	58.8	60.5	65.2	39.2	63.6	74.6	66.9	67.3	50.8
tri-shape	59.5	60.9	34.6	73.2	66.0	69.5	58.7	58.1	55.8	52.4	68.0	55.6	61.5	60.0	60.5	66.7	38.2	63.6	74.6	66.9	67.8	51.1
FlexPrefill	58.4	61.7	31.5	65.6	62.8	71.6	59.7	59.1	58.1	52.1	65.5	51.3	62.5	48.8	61.5	72.3	42.3	63.3	71.5	65.4	58.2	52.1
FastV	57.3	57.3	43.8	64.5	60.6	70.5	52.8	56.1	52.7	48.0	59.8	67.1	56.9	48.8	67.7	66.2	40.2	58.2	69.8	61.7	70.9	48.9
VisionZip	52.4	53.2	32.9	63.4	66.0	58.0	54.2	50.0	51.4	42.5	57.5	47.4	58.3	45.1	56.9	61.5	30.9	51.9	62.2	61.7	58.2	46.8
VScan	58.7	57.0	29.5	69.0	65.0	69.6	56.3	54.1	56.1	55.5	61.2	58.5	61.9	60.2	58.0	73.4	41.4	61.3	74.2	65.9	73.7	50.3
VideoNSA	60.2	59.9	48.1	65.1	67.6	74.1	55.6	55.5	58.4	56.3	62.2	57.0	63.9	53.3	56.2	71.6	35.9	62.7	67.5	72.4	66.3	55.1

1021 We take LongVideoBench (Wu et al., 2024), LongTimeScope (Zohar et al., 2025), MLVU (Zhou
 1022 et al., 2024), and TimeScope (Zohar et al., 2025) as representative long-video benchmarks and
 1023 compare against existing token compression and sparse attention methods. As shown in Table 6,
 1024 Table 7, Table 8, and Table 9, VideoNSA achieves comparable performance without specialized
 1025 designs. Moreover, we observe that VideoNSA significantly outperforms the baselines on subtasks
 related to temporal reasoning and on videos of extended length.

1026 Table 8: MLVU results across baselines. Metrics include overall accuracy and task-specific scores
 1027 across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated by
 1028 Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

1029

Method	Overall	PlotQA	Needle	Ego	Count	Order	Anomaly	Reco	Topic	Reason.	SportsQA	TutorialQA
Flash Attn	51.2	58.0	68.3	52.8	31.7	25.7	46.2		79.1		38.9	48.8
Flash Attn + SFT	51.2	58.0	58.3	58.5	23.3	40.0	43.6		81.3		36.1	37.2
AWQ	46.0	42.7	53.0	40.9	27.2	50.2	57.0		65.0		38.3	39.2
XAttn	50.2	60.0	64.7	56.5	28.0	29.4	41.6		74.9		39.7	39.9
MIInference	49.2	56.0	64.7	48.9	29.7	26.6	41.6		77.1		39.7	39.9
tri-shape	49.2	56.0	64.7	48.9	29.7	26.6	41.6		77.1		39.7	39.9
FlexPrefill	46.0	54.0	54.7	42.7	24.7	40.9	36.6		72.6		29.7	32.2
FastV	41.8	44.0	45.0	47.2	18.3	30.0	46.2		84.6		28.6	32.2
VisionZip	33.1	30.0	26.7	30.2	6.7	22.9	41.0		68.1		19.7	26.4
VScan	48.1	58.0	63.3	50.9	28.3	24.3	43.6		78.0		47.2	39.5
VideoNSA	51.8	48.0	69.3	51.3	27.7	34.6	44.5		86.2		47.7	31.6

1039

1040 Table 9: TimeScope results across baselines. Metrics include overall accuracy and task-specific scores
 1041 across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated by
 1042 Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

1043

Method	Overall	60	120	180	300	600	1200	1800	3600	7200	10800
Flash Attn	81.0	96.7	96.0	96.0	94.7	94.0	88.0	82.0	68.7	52.7	41.3
Flash Attn + SFT	76.8	96.7	96.7	96.0	95.3	90.7	78.0	78.0	54.7	41.3	40.7
AWQ	—	—	—	—	—	—	—	—	—	—	—
XAttn	83.1	94.0	93.4	93.4	92.0	92.7	89.4	82.7	72.7	70.7	50.7
MIInference	82.7	93.4	94.0	93.4	92.0	92.7	87.4	80.0	74.0	70.0	50.0
tri-shape	82.7	93.4	94.0	93.4	92.0	92.7	87.4	80.0	74.0	70.0	50.0
FlexPrefill	83.0	96.7	96.0	96.7	95.3	96.0	95.3	86.0	77.3	55.3	35.3
FastV	46.5	82.7	76.0	74.0	54.0	32.7	32.7	29.3	29.3	34.0	20.0
VisionZip	43.5	92.0	66.7	60.0	43.3	35.3	26.0	30.7	29.3	28.0	23.3
VScan	80.3	96.7	96.7	96.0	93.3	92.7	89.3	81.3	60.0	55.3	41.3
VideoNSA	83.7	96.7	96.0	97.4	92.0	85.4	91.6	89.3	73.3	63.3	52.0

1056

1058 E MORE RESULTS ON TEMPORAL REASONING BENCHMARKS

1059

1061 We take Tomato (Shangguan et al., 2024) as the representative temporal reasoning benchmark
 1062 and compare against existing token compression and sparse attention methods. As shown in Ta-
 1063 ble 10, VideoNSA achieves comparable performance without specialized designs. Moreover, we
 1064 observe that VideoNSA significantly outperforms the baselines on subtasks including object count-
 1065 ing, shape description, and human actions.

1066

1067 F MORE RESULTS ON SPATIAL UNDERSTANDING BENCHMARKS

1068

1069 We take VSIBench (Yang et al., 2025a) as the representative spatial understanding benchmark
 1070 and compare against existing token compression and sparse attention methods. As shown in Ta-
 1071 ble 11, VideoNSA achieves comparable performance without specialized designs. Moreover, we
 1072 observe that VideoNSA significantly outperforms the baselines on subtasks including object relative
 1073 direction, route planning, and object size estimation.

1074

1075

1076 G RESULTS ON ADDITIONAL VIDEO UNDERSTANDING BENCHMARKS

1077

1078 We conduct additional experiments on LSDBench (Qu et al., 2025) and VideoEvalPro (Ma et al.,
 1079 2025) to compare VideoNSA and other training-free sparse attention baselines, demonstrating the
 consistent advantage of VideoNSA in multiple video understanding tasks.

1080 Table 10: Tomato results across baselines. Metrics include overall accuracy and task-specific scores
 1081 across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated by
 1082 Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

1083

Method	Overall	Direction	Count	Rotation	Shape & Trend	Vel. & Freq.	Visual Cues	Human	Simulated	Object
Flash Attn	22.6	23.6	23.3	16.1	22.9	21.9	42.9	18.0	19.7	27.9
Flash Attn + SFT	21.7	19.6	23.3	18.2	26.0	18.1	38.6	18.8	18.0	25.6
XAttn	21.4	22.1	22.9	19.6	17.9	17.1	42.9	15.5	21.5	26.8
MIInference	23.0	22.6	27.1	18.9	22.0	20.0	37.1	16.6	20.6	29.6
FlexPrefill	23.7	23.3	25.0	22.7	22.0	21.4	35.7	17.1	22.7	29.9
FastV	21.6	20.6	26.0	20.3	23.3	12.7	—	17.1	24.2	25.6
VisionZip	19.1	17.6	16.8	21.0	19.3	19.0	30.0	14.8	21.5	22.3
VScan	23.6	25.3	21.9	19.9	24.2	20.5	42.9	18.7	21.9	28.7
VideoNSA	26.5	21.6	31.5	22.0	25.6	23.3	40.0	21.7	23.6	29.3

1091

1092 Table 11: VSIBench results across baselines. Metrics include overall accuracy and task-specific
 1093 scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated
 1094 by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

1095

Method	Overall	Obj. Order	Abs. Dist.	Counting	Rel. Dist.	Size Est.	Room Est.	Route Plan.	Rel. Dir.
Flash Attn	29.7	25.7	16.0	20.5	34.7	49.5	22.5	30.4	38.5
Flash Attn + SFT	30.6	31.9	14.2	12.3	40.4	46.6	30.4	30.9	37.8
AWQ	—	—	—	—	—	—	—	—	—
XAttn	35.0	32.7	18.1	39.7	37.6	52.1	30.0	32.5	37.4
MIInference	36.6	36.5	18.2	43.9	39.4	48.5	38.8	30.0	37.7
tri-shape	36.5	35.7	18.2	44.3	39.8	48.6	38.8	29.0	37.7
FlexPrefill	34.9	34.1	21.6	35.1	39.3	51.8	29.7	30.4	36.8
FastV	34.0	31.7	21.7	26.1	36.2	47.8	35.0	33.5	40.1
VisionZip	32.1	28.8	17.9	28.8	36.5	48.9	26.9	29.4	39.3
VScan	34.4	33.0	21.9	33.0	40.0	51.9	28.5	30.4	36.6
VideoNSA	36.0	25.5	19.0	42.5	35.4	54.0	30.1	37.5	43.6

1106

H VISUALIZATION OF ATTENTION PATTERN IN EACH BRANCH

1107

1109 We visualize the attention patterns of the last layer across the three branches in Figure 10, Figure 11,
 1110 Figure 12, and Figure 13, together with the final attention output, as representative examples. The
 1111 compression branch reduces redundancy to preserve salient information, the selection branch high-
 1112 lights task-relevant regions with sparse activations, and the sliding window branch enforces local
 1113 temporal coverage by focusing on short-range dependencies. These complementary roles collec-
 1114 tively shape the final attention output.

1115

I MORE RESULTS ON BRANCH COMBINATION

1116

1118 In this section, we report detailed results of different branch combinations across three domains, in-
 1119 cluding long video understanding (Table 14, Tavke 15, Table 16, and Table 17), temporal reasoning
 1120 (Table 18), and spatial understanding (Table 19). The corresponding performances are summarized
 1121 in the table, which highlights how the use of individual branches or their combinations affects down-
 1122 stream tasks.

1123

J MORE RESULTS ON INFORMATION SCALING STUDY

1124

1126 Figure 16 shows the scaling performance of VideoNSA under different context allocation strategies
 1127 on LongTimeScope and MLVU. Both benchmarks were trained with a maximum context length
 1128 of 32K tokens, yet their performance consistently improves when scaled to 64K, beyond the training
 1129 budget. On LongTimeScope (Zohar et al., 2025), the best results emerge around 512 frames
 1130 with 128 TPF at 64K tokens, underscoring the dataset’s reliance on extended temporal coverage for
 1131 long-horizon reasoning. In contrast, MLVU (Zhou et al., 2024) also peaks at 64K with the same al-
 1132 location, but its contours are smoother, and competitive performance extends across a broader range
 1133 of frame–token trade-offs. This suggests that while LongTimeScope demands aggressive temporal
 scaling, MLVU benefits from a more balanced distribution of temporal and spatial information.

Table 12: Results on LSDBench (Qu et al., 2025).

Model	Accuracy
LongVA (Zhang et al., 2024b)	32.5
LongVila (Chen et al., 2024b)	49.8
InternVL2.5 (Chen et al., 2024c)	50.1
Qwen2.5-VL-7B (Qwen et al., 2025)	52.2
Qwen2.5-VL-7B-SFT	52.5
<i>Sparse Attention Methods</i>	
+ Tri-Shape (Li et al., 2024c)	49.5
+ MInference (Jiang et al., 2024)	49.5
+ FlexPrefill (Lai et al., 2025)	52.3
+ XAttention (Xu et al., 2025a)	51.3
VideoNSA	55.2

Table 13: Results on VideoEvalPro (Ma et al., 2025). HP stands for Holistic Perception, HR stands for Holistic Reasoning, LR stands for Local Reasoning, LP stands for Local Perception.

Model	HP	HR	LR	LP	Overall
LongVA (Zhang et al., 2024b)	20.5	6.8	19.0	9.5	16.5
Video-XL (Shu et al., 2025)	22.3	15.0	18.2	10.2	18.6
InternVL2.5 (Chen et al., 2024c)	28.8	19.7	21.5	16.7	24.6
Qwen2.5-VL-7B (Qwen et al., 2025)	33.9	15.6	24.8	17.8	27.7
Qwen2.5-VL-7B-SFT	34.5	15.8	25.3	18.2	28.3
<i>Sparse Attention Methods</i>					
+ Tri-Shape (Li et al., 2024c)	34.1	16.3	25.1	20.0	28.4
+ MInference (Jiang et al., 2024)	32.3	17.1	27.7	16.7	26.0
+ FlexPrefill (Lai et al., 2025)	33.0	15.9	26.3	19.8	28.3
+ XAttention (Xu et al., 2025a)	34.5	16.6	25.6	20.5	28.9
VideoNSA	35.4	16.9	26.3	19.1	29.4

Table 14: LongVideoBranch results across different branch selection strategy. Metrics include overall accuracy and task-specific scores across different steps.

Method	Overall	600	TOS	S2E	E3E	S2A	SAA	O3O	T3O	T3E	O2E	T2O	S2O	TA	T2E	E2O	SSS	T2A	60	SOS	15	3600
VideoNSA + Test SFT	56.1	57.0	46.6	59.1	61.7	69.3	56.9	63.6	52.7	50.7	56.3	59.2	59.7	43.9	55.4	64.6	38.1	58.2	70.4	60.5	65.1	48.1
NSA-CMP	48.1	50.5	38.4	51.6	56.4	53.4	50.0	45.5	51.4	41.1	54.0	42.1	43.1	45.1	47.7	53.9	26.8	53.2	55.2	64.2	47.6	44.3
NSA-SLC	48.4	49.0	32.9	61.3	59.6	58.0	52.8	48.5	46.0	43.8	52.9	36.8	47.2	42.7	44.6	55.4	33.0	48.1	53.5	55.6	50.3	45.7
NSA-SWA	49.1	50.7	37.0	52.7	56.4	59.1	51.4	48.5	43.2	45.2	55.2	42.1	48.6	45.1	46.2	61.5	30.9	45.6	54.1	65.4	48.7	46.5
NSA-CMPSLC	49.4	49.5	34.3	55.9	61.7	58.0	56.9	48.5	47.3	41.1	56.3	35.5	52.8	47.6	46.2	55.4	34.0	41.8	54.1	63.0	48.2	48.2
NSA-SLCSWA	49.3	48.8	32.9	58.1	61.7	55.7	52.8	47.0	46.0	46.6	54.0	34.2	48.6	47.6	47.7	54.0	35.1	48.1	54.1	64.2	49.2	48.2
NSA-CMPSWA	48.8	49.3	34.3	53.8	59.6	54.6	52.8	50.0	48.7	42.5	57.5	40.8	51.4	42.7	46.2	55.4	29.9	45.6	57.6	64.2	48.7	45.9

In addition to the overall scaling trends, we further report detailed subtask-level results under different allocation settings in Table 20, Table 21, Table 22, Table 23, Table 24, and Table 25.

K ADDITIONAL CONTEXT-LENGTH SCALING RESULTS OF QWEN2.5-VL

We include Table 26 and Table 27 to further illustrate the long-context behavior of the base model. Since Qwen2.5-VL 7B (Qwen et al., 2025) has a maximum context window of 128k, its modeling ability tends to become less stable when approaching this upper bound. As shown in Figure K,

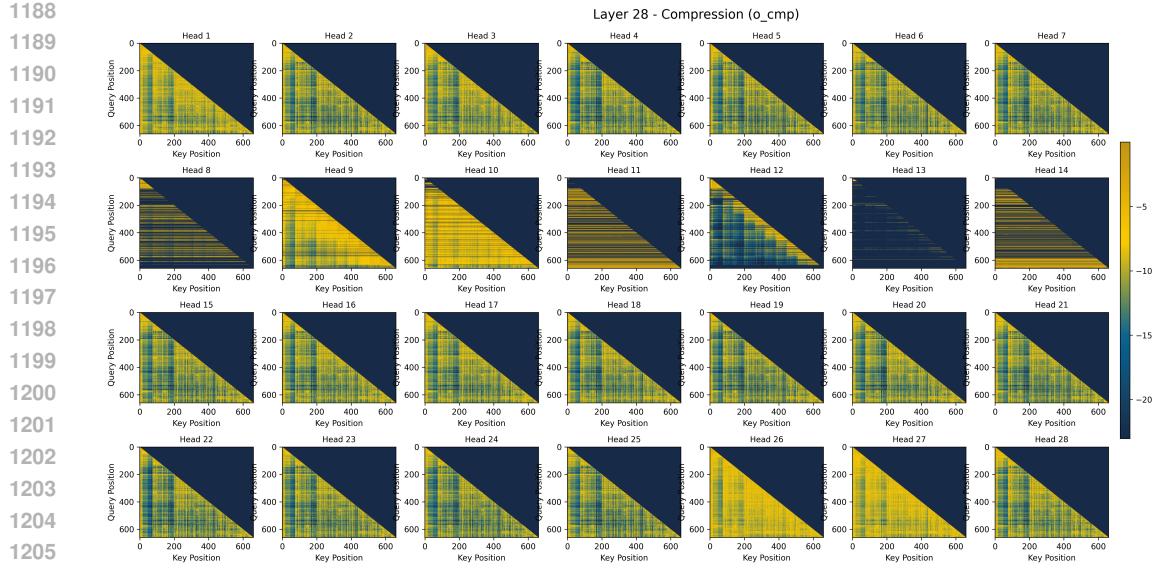


Figure 10: Attention pattern of the compression branch in the final layer of VideoNSA.

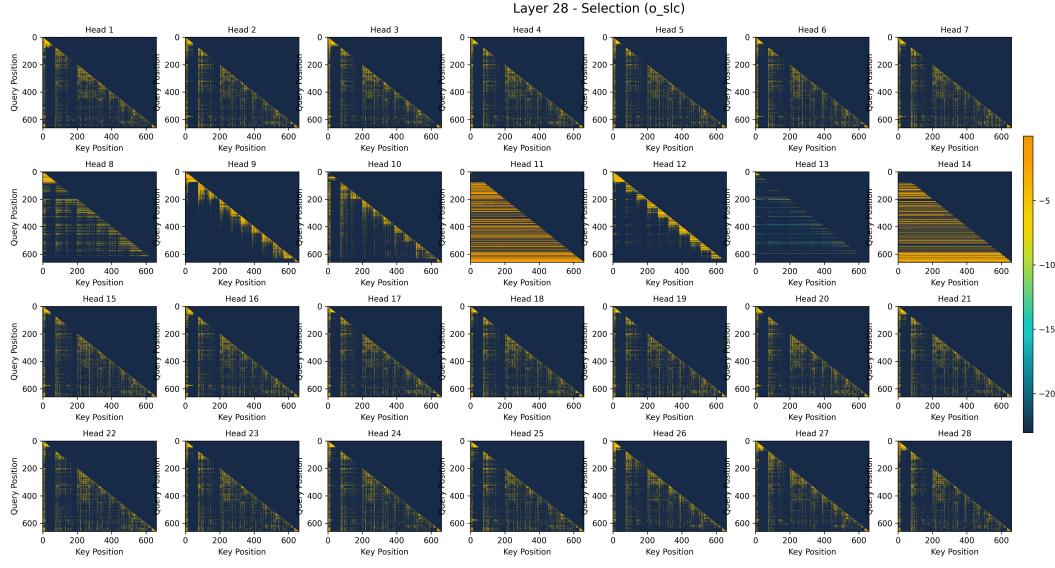


Figure 11: Attention pattern of the selection branch in the final layer of VideoNSA.

1230 Qwen2.5-VL (Qwen et al., 2025) often peaks at 64k and slightly declines at 128k across several
1231 benchmarks. In contrast, VideoNSA maintains stable or stronger performance at 128k, demonstrating
1232 that the observed 64k > 128k phenomenon arises from backbone limitations rather than the
1233 proposed sparse architecture.

L MORE RESULTS ON ATTENTION SCALING STUDY

1237 Figure 16 evaluates the scaling behavior of VideoNSA under different attention allocation strategies,
1238 where the x-axis denotes the sliding window size (log scale), the y-axis shows the block count, and
1239 the size and color of each marker reflect performance, with the dashed blue curve indicating config-
1240 urations of equal attention budget and arrows marking the training setting as well as reduced-budget
1241 configurations (3.6% and 1.8%); on LongVideoBench, performance peaks near the training config-
1242 uration and degrades when allocating excessive budget to local attention through larger sliding

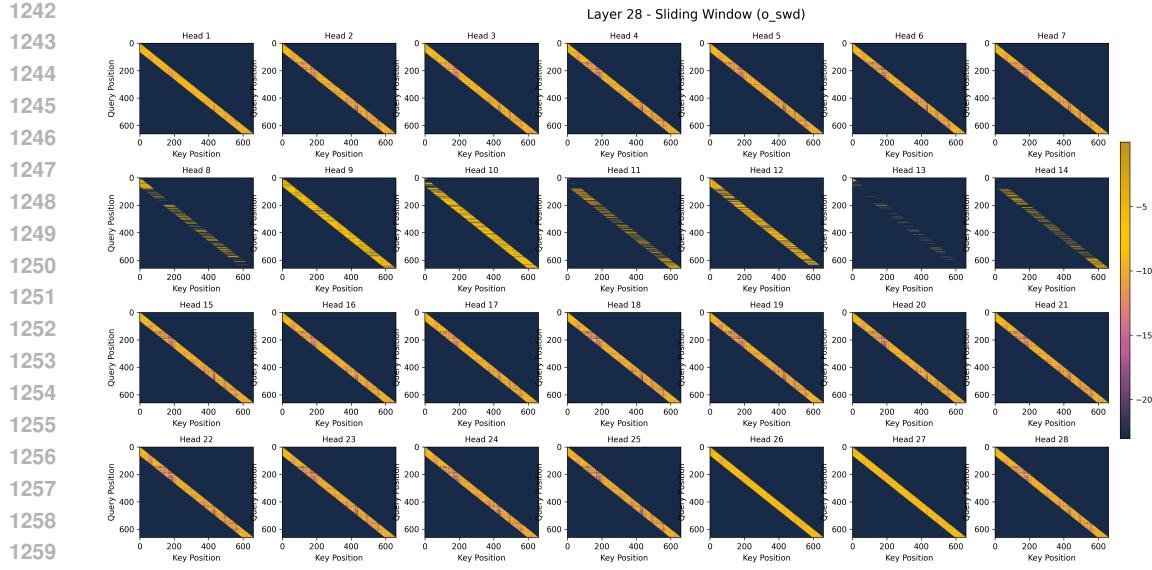


Figure 12: Attention pattern of the sliding window branch in the final layer of VideoNSA.

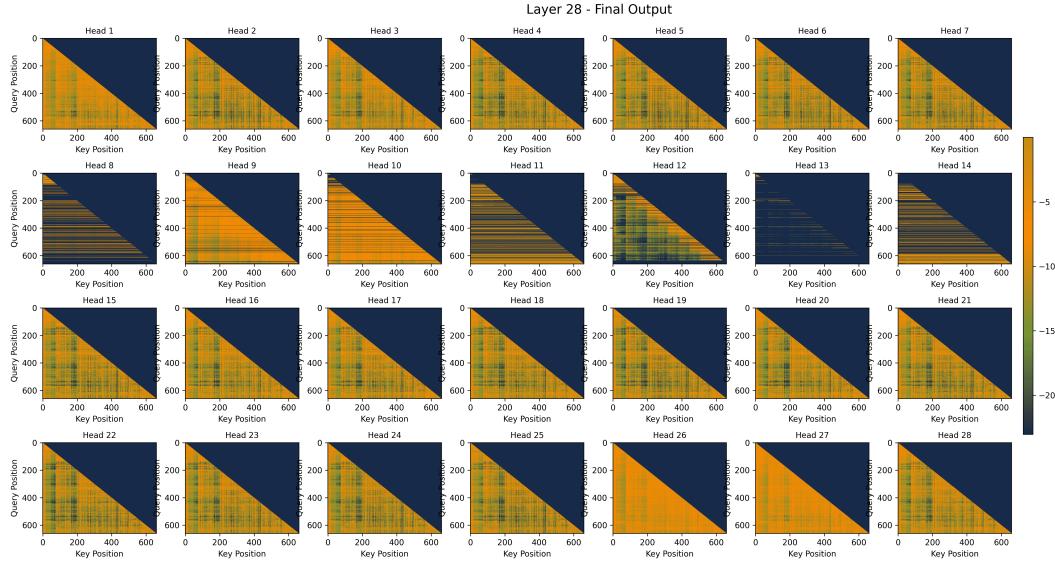


Figure 13: Attention pattern of the final vision attention output in the final layer of VideoNSA.

windows, while the best configuration achieves strong results with only 3.6% of the full budget, and on TimeScope, performance is even more sensitive, with larger sliding windows quickly reducing accuracy whereas maintaining more global blocks yields superior outcomes, and overall the results confirm that training allocations are well balanced, that prioritizing global attention is consistently more effective than enlarging local windows under equal budget, and that VideoNSA sustains leading performance with as little as 3.6% or less of the full attention cost, demonstrating both efficiency and hardware awareness.

In addition to the overall scaling trends, we further report detailed subtask-level results under different allocation settings in Table 20, Table 21, Table 22, Table 23, Table 24, and Table 25.

M THEORETICAL FOUNDATIONS OF SCALING BEHAVIOR

1296 Table 15: LongTimeScope results across different branch selection strategy. Metrics include overall
 1297 accuracy and task-specific scores across different steps.
 1298

Method	Overall	18000			28800			36000		
		OCR	QA	Temporal	OCR	QA	Temporal	OCR	QA	Temporal
VideoNSA + Test SFT	40.9	52.0	42.0	42.0	48.0	62.0	18.0	42.0	50.0	12.0
NSA-CMP	25.1	20.0	22.0	24.0	38.0	40.0	0.0	34.0	34.0	14.0
NSA-SLC	37.1	30.0	38.0	40.0	50.0	58.0	12.0	42.0	44.0	20.0
NSA-SWA	29.8	34.0	34.0	22.0	36.0	46.0	4.0	34.0	46.0	12.0
NSA-CMPSLC	32.4	36.0	34.0	24.0	46.0	54.0	8.0	42.0	36.0	12.0
NSA-SLCSWA	34.4	38.0	36.0	36.0	46.0	56.0	8.0	38.0	36.0	16.0
NSA-CMPSWA	31.6	30.0	38.0	20.0	40.0	52.0	16.0	36.0	36.0	16.0
VideoNSA	44.4	50.0	54.0	30.0	54.0	72.0	0.0	48.0	76.0	16.0

1309 Table 16: TimeScope results across different branch selection strategy. Metrics include overall
 1310 accuracy and task-specific scores across different steps.
 1311

Method	Overall	60	120	180	300	600	1200	1800	3600	7200	10800
Full Attn	81.0	96.7	96.0	96.0	94.7	94.0	88.0	82.0	68.7	52.7	41.3
Flash Attn	81.0	96.7	96.0	96.0	94.7	94.0	88.0	82.0	68.7	52.7	41.3
Flash Attn + SFT	76.8	96.7	96.7	96.0	95.3	90.7	78.0	78.0	54.7	41.3	40.7
AWQ	—	—	—	—	—	—	—	—	—	—	—
XAttn	83.1	94.0	93.4	93.4	92.0	92.7	89.4	82.7	72.7	70.7	50.7
MIInference	82.7	93.4	94.0	93.4	92.0	92.7	87.4	80.0	74.0	70.0	50.0
tri-shape	82.7	93.4	94.0	93.4	92.0	92.7	87.4	80.0	74.0	70.0	50.0
FlexPrefill	83.0	96.7	96.0	96.7	95.3	96.0	95.3	86.0	77.3	55.3	35.3
FastV	46.5	82.7	76.0	74.0	54.0	32.7	32.7	29.3	29.3	34.0	20.0
VisionZip	43.5	92.0	66.7	60.0	43.3	35.3	26.0	30.7	29.3	28.0	23.3
VScan	80.3	96.7	96.7	96.0	93.3	92.7	89.3	81.3	60.0	55.3	41.3
Retake	—	—	—	—	—	—	—	—	—	—	—
AdaRetake	—	—	—	—	—	—	—	—	—	—	—
SFT + Test NSA	81.0	96.7	96.0	96.0	94.7	94.0	88.0	82.0	68.7	52.7	41.3
NSA + Test SFT	83.0	96.7	95.3	94.0	93.3	94.0	90.7	87.3	76.7	54.7	47.3
NSA-CMP	41.5	82.0	74.0	65.3	59.3	17.3	25.3	19.3	26.7	27.3	18.0
NSA-SLC	63.7	92.0	86.0	86.7	78.0	66.7	57.3	51.3	40.7	38.0	40.0
NSA-SWA	59.3	—	—	—	—	—	—	—	—	—	—
NSA-CMPSLC	57.3	88.7	80.0	73.3	73.3	46.7	44.7	48.7	42.7	43.3	32.0
NSA-SLCSWA	65.2	92.0	89.3	89.3	79.3	66.0	59.3	50.0	41.3	40.7	44.7
NSA-CMPSWA	57.3	88.7	80.0	73.3	73.3	46.7	44.7	48.7	42.7	43.3	32.0
VideoNSA	83.7	96.7	96.0	97.4	92.0	85.4	91.6	89.3	73.3	63.3	52.0

1336
 1337 In Section 4, we perform two scaling experiments along context length and attention budget. We
 1338 observe that VideoNSA exhibits strong extrapolation ability on context length: although trained with
 1339 only 36K tokens, it can generalize to 128K at test time, achieving the best performance at 64K. In
 1340 contrast, when scaling the attention budget, even a small reduction to 3.6% of attention computation
 1341 already delivers outstanding performance, and further increasing the visible-token count does not
 1342 yield additional gains. To clarify these phenomena, we provide theoretical interpretations from
 1343 routing-path stability and the geometric structure of RoPE (Su et al., 2024).

1344
 1345 **Routing-path Stability.** Recent work (Huang et al., 2025) indicates that a model’s ability to main-
 1346 tain performance on long sequences depends critically on the stability of its attention routing struc-
 1347 ture across positions. In the standard attention mechanism, the attention weight from the query
 1348 vector Q_n at position n to the key vector Z_j at position j is defined as

$$\text{Attn}_{n \rightarrow j} = \frac{\exp(Z_j^\top Q_n)}{\sum_k \exp(Z_k^\top Q_n)}.$$

1350 Table 17: MLVU results across different branch selection strategy. Metrics include overall accuracy
 1351 and task-specific scores across different steps.

1352

Method	Overall	PlotQA	Needle	Ego	Count	Order	Anomaly	Reco	Topic	Reason.	SportsQA	TutorialQA
NSA + Test SFT	51.6	56.0	61.7	66.0	31.7	28.6	51.3	80.2	80.2	36.1	32.6	
NSA-CMP	43.9	36.0	35.0	42.9	—	24.3	30.8	80.2	80.2	30.6	—	
NSA-SLC	47.7	50.0	50.0	52.4	—	22.9	33.3	74.7	74.7	33.3	—	
NSA-SWA	40.2	40.0	40.0	41.5	15.0	24.3	30.8	76.9	76.9	36.1	34.9	
NSA-SLCSWA	42.4	42.0	48.3	45.3	16.7	25.7	38.5	75.8	75.8	33.3	34.9	
NSA-CMPSWA	43.4	46.0	40.0	43.4	18.3	35.7	33.3	82.4	82.4	27.8	32.6	

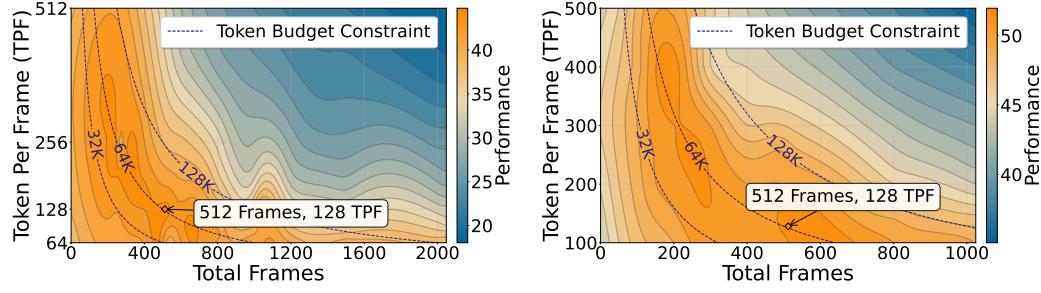
1359

1360 Table 18: Tomato results across different branch selection strategy. Metrics include overall accuracy
 1361 and task-specific scores across different steps.

1362

Method	Overall	Direction	Count	Rotation	Shape & Trend	Vel. & Freq.	Visual Cues	Human	Simulated	Object
NSA + Test SFT	23.4	21.3	29.1	17.5	25.1	20.0	40.0	19.3	19.3	28.5
NSA-CMP	23.3	22.1	29.5	17.1	24.7	20.5	34.3	19.2	22.7	27.3
NSA-SLC	24.0	21.3	32.2	16.4	26.0	22.9	32.9	19.8	21.5	28.7
NSA-SWA	24.0	21.3	32.2	16.4	26.0	22.9	32.9	19.8	21.5	28.7
NSA-CMPSLC	23.5	20.8	29.8	18.5	22.9	23.8	34.3	19.0	26.8	25.8
NSA-SLCSWA	23.0	20.6	27.4	18.5	22.4	24.8	32.9	19.5	21.0	26.8
NSA-CMPSWA	24.5	23.1	30.8	18.9	25.1	22.9	32.9	21.0	23.6	28.0

1363



1370

(a) Information Scaling of LongTimeScope

1371

(b) Information Scaling of MLVU

1372

1373 Figure 14: Scaling Performance of VideoNSA under Different Context Allocation Strategies. We
 1374 highlight the token budget constraint to indicate settings with equal context length, and annotate the
 1375 best-performing configuration under each benchmark.

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386 Here, Q_n and Z_j denote the query and key representations at positions n and j , respectively. If the
 1387 model can consistently focus its attention on the task-relevant target token set \mathcal{T} during inference,
 1388 then (i) $\sum_{j \in \mathcal{T}} \text{Attn}_{n \rightarrow j}$ should dominate across different positions; and (ii) the attention assigned to
 1389 the same key token j should remain nearly unchanged under positional shifts, i.e.,

$$\Delta_i = |\text{Attn}_{n \rightarrow j} - \text{Attn}_{n+i \rightarrow j}| \approx 0,$$

1390

1391 where Δ_i measures the deviation of routing paths across positions in long sequences.

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404 When we scale the context length using dense temporal and spatial sampling, the sparse-attention
 1405 pattern and mask structure M remain unchanged, which means the model continues to use the routing
 1406 structure learned during training while simply facing a larger pool of candidate evidence. Since
 1407 denser sampling mainly introduces redundant or finer-grained details, the model treats these tokens
 1408 as auxiliary evidence, leaving the core target tokens and their relative attention weights essentially
 1409 unchanged. Consequently, the overall routing-path structure is preserved, Δ_i remains small, and the
 1410 model can maintain or even improve its performance at longer context lengths.

1411 In contrast, attention-budget scaling explicitly modifies the set of visible tokens in the sparse-
 1412 attention mechanism by replacing the original mask M with a new mask M' . The effective query
 1413 becomes

$$Q_{\text{eff}} = Q \odot M',$$

1414 where \odot denotes elementwise multiplication, and the corresponding new attention weight is

$$\text{Attn}'_{n \rightarrow j} \propto \exp(Z_j^\top (Q \odot M')).$$

1404 Table 19: VSIBench results across different branch selection strategy. Metrics include overall accuracy
 1405 and task-specific scores across different steps.

1406

Method	Overall	Obj. Order	Abs. Dist.	Counting	Rel. Dist.	Size Est.	Room Est.	Route Plan.	Rel. Dir.
NSA + Test SFT	33.1	24.3	19.8	31.2	38.0	49.8	32.2	32.5	37.2
NSA-CMP	29.2	19.9	16.3	12.6	29.3	48.7	26.7	38.1	41.7
NSA-SLC	27.6	18.0	10.9	17.3	32.0	47.8	24.8	32.0	38.1
NSA-SWA	29.8	22.8	15.6	17.4	32.3	49.8	27.2	33.5	39.4
NSA-CMPSLC	29.4	19.9	16.3	15.1	31.0	51.1	25.5	33.5	42.6
NSA-SLCSWA	29.1	19.9	12.2	18.5	31.4	49.6	26.5	34.0	40.4
NSA-CMPSWA	30.3	22.5	15.6	15.3	31.1	52.5	26.7	35.1	43.3

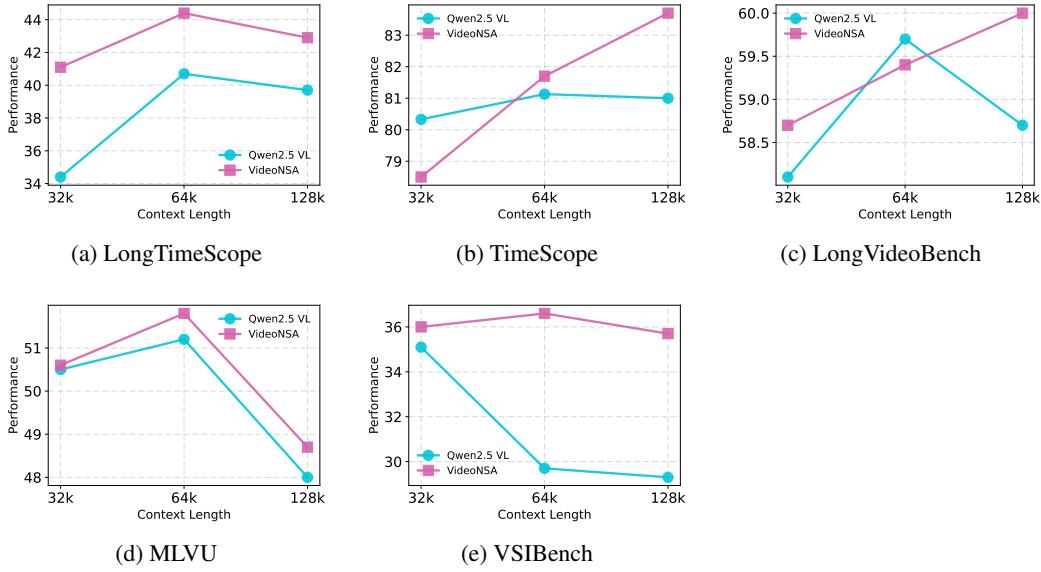
1414 Table 20: Ablation study results on information scaling of LongTimeScope (Zohar et al., 2025).
 1415 Metrics include overall accuracy and task-specific scores across different steps. # TPF stands for
 1416 token per frame, and # F stands for sampling frame number.

1417

# TPF	# F	Overall	18000			28800			36000		
			OCR	QA	Temporal	OCR	QA	Temporal	OCR	QA	Temporal
256	128	42.9	54.0	48.0	36.0	46.0	62.0	6.0	40.0	80.0	14.0
512	128	41.1	54.0	60.0	28.0	42.0	62.0	4.0	40.0	78.0	2.0
128	256	42.0	58.0	56.0	26.0	46.0	62.0	2.0	40.0	78.0	10.0
256	256	41.3	58.0	52.0	36.0	48.0	62.0	0.0	40.0	70.0	6.0
512	256	41.6	54.0	56.0	32.0	46.0	60.0	2.0	40.0	78.0	6.0
64	512	40.2	52.0	52.0	26.0	44.0	64.0	2.0	44.0	76.0	2.0
128	512	44.4	50.0	54.0	30.0	54.0	72.0	0.0	48.0	76.0	16.0
256	512	38.7	48.0	50.0	30.0	52.0	56.0	8.0	36.0	60.0	8.0
64	1024	41.6	54.0	56.0	22.0	46.0	66.0	4.0	36.0	72.0	18.0
128	1024	41.1	50.0	46.0	32.0	46.0	62.0	14.0	38.0	54.0	28.0
64	2048	38.4	50.0	62.0	26.0	40.0	60.0	2.0	38.0	42.0	26.0

1432

1433



1452 Figure 15: Performance comparison of Qwen2.5-VL and VideoNSA under different context lengths.

1453

1454

1455

1456

1457

Even if the modification from M to M' appears small in proportion, it substantially changes the set of candidate evidence accessible to each query and alters the relative logits. First, the newly visible tokens reduce the relative weight allocated to the original key tokens, producing a dilution effect. Second, in video tasks, the added visible tokens often lie in similar visual-semantic clusters as the

1458 Table 21: Ablation study results on information scaling of TimeScope (Zohar et al., 2025). Metrics
 1459 include overall accuracy and task-specific scores across different steps. # TPF stands for token per
 1460 frame, and # F stands for sampling frame number.

1461

# TPF	# F	Overall	60	120	180	300	600	1200	1800	3600	7200	10800
256	128	73.1	96.7	94.7	93.4	85.4	72.0	62.6	57.3	56.6	54.0	58.6
512	128	72.5	95.4	94.0	92.7	82.0	72.7	64.6	57.3	56.3	53.3	56.6
128	256	76.5	98.0	97.4	96.0	86.7	78.7	78.0	63.3	58.6	54.0	54.0
256	256	76.1	96.7	96.7	91.4	86.7	76.0	74.6	64.0	62.0	56.0	56.6
512	256	75.8	95.4	94.7	90.7	86.7	76.0	75.3	66.0	62.6	53.3	57.3
64	512	78.5	96.7	95.4	94.7	88.0	80.7	82.6	71.3	62.0	58.0	55.3
128	512	76.5	98.0	97.4	96.0	86.7	78.7	78.0	63.3	58.6	54.0	54.0
256	512	77.3	96.7	96.7	90.7	83.4	76.7	78.0	72.0	66.6	59.3	52.6
64	1024	81.7	96.7	95.4	94.7	90.0	84.7	88.0	78.0	69.3	64.0	56.6
128	1024	81.8	98.0	97.4	94.0	85.4	80.7	92.0	78.0	72.6	66.0	54.0
64	2048	82.7	96.7	95.4	94.7	90.0	82.0	91.3	88.0	73.3	63.3	52.0

1475

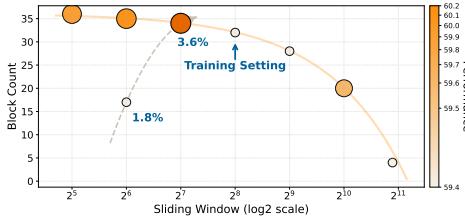
1476 Table 22: Ablation study results on information scaling of LongVideoBench (Wu et al., 2024).
 1477 Metrics include overall accuracy and task-specific scores across different steps. # TPF stands for
 1478 token per frame, and # F stands for sampling frame number.

1479

# TPF	# F	Overall	600.0	TOS	S2E	E3E	S2A	SAA	O3O	T3O	T3E	O2E	T2O	S2O	TAA	T2E	E2O	SSS	T2A	60.0	SOS	15.0	3600.0
512	64	58.3	55.5	44.0	67.2	66.6	71.8	57.0	54.0	48.9	50.8	59.9	55.7	63.9	53.3	57.8	70.1	37.9	60.2	68.1	71.2	65.7	54.9
128	128	57.4	56.8	45.4	66.1	66.6	69.5	61.2	55.5	53.0	49.5	59.9	51.7	54.2	47.2	57.8	68.5	40.0	58.9	68.6	70.0	63.6	52.4
256	128	57.9	58.5	48.1	69.4	66.6	70.6	58.4	55.5	53.0	48.1	57.6	47.8	54.2	49.7	59.3	68.5	40.0	65.2	68.1	70.0	63.1	52.6
512	128	59.0	59.4	49.5	68.3	66.6	72.9	63.9	54.0	53.0	49.5	61.0	51.7	61.2	50.9	56.2	68.5	39.0	64.0	68.6	71.2	63.6	54.2
128	256	58.7	52.7	46.7	68.3	65.5	69.5	57.0	52.5	53.0	48.1	56.4	46.5	51.4	48.5	57.8	67.0	37.9	65.2	63.4	70.0	58.3	52.7
256	256	58.2	58.7	39.9	64.0	66.6	71.8	58.4	54.0	59.7	52.2	59.9	55.7	58.4	50.9	56.2	70.1	40.0	61.4	66.9	68.7	63.1	53.5
512	256	59.4	60.4	52.2	67.2	65.5	75.2	61.2	54.0	55.7	52.2	62.2	53.1	62.6	49.7	56.2	68.5	35.9	65.2	67.5	72.4	65.7	54.0
64	512	57.7	58.2	41.3	67.2	68.7	65.0	58.4	58.5	54.3	52.2	62.2	49.1	58.4	53.3	62.4	71.6	35.9	55.1	66.3	68.7	61.5	53.5
128	512	58.5	59.4	42.6	68.3	66.6	69.5	59.8	60.0	57.0	52.2	64.5	50.4	59.8	52.1	59.3	68.5	35.9	60.2	65.7	68.7	63.6	54.0
256	512	58.3	59.2	44.0	64.0	64.5	71.8	65.3	52.5	55.7	55.0	61.0	54.4	62.6	49.7	59.3	71.6	37.9	56.4	66.9	67.5	63.1	53.5
64	1024	58.4	59.4	42.6	65.1	68.7	66.1	62.6	55.5	58.4	49.5	64.5	54.4	58.4	50.9	59.3	74.7	36.9	57.6	66.3	68.7	61.5	54.2
128	1024	58.7	58.5	41.3	67.2	68.7	71.8	65.3	60.0	59.7	52.2	59.9	53.1	62.6	47.2	59.3	71.6	32.8	60.2	65.7	67.5	63.6	55.1

1488

1489



(a) Attention Scaling of Long VideoBench

(b) Attention Scaling of TimeScope

1490 Figure 16: Scaling Performance of VideoNSA under Different Attention Allocation Strategies. We
 1491 highlight the attention budget constraint to indicate settings with equal attention budget, and
 1492 annotate the best-performing configuration under each benchmark.

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

original key tokens and thus have non-negligible similarity scores $Z_j^\top Q$. These tokens directly compete with and divert attention away from the originally dominant key tokens. Under the combined influence of these effects, the stable routing-path structure learned during training is overwritten: formerly high-weight key tokens may be diluted or overshadowed by the new candidates, causing Δ_i to increase significantly. As a result, the model is more likely to follow incorrect reasoning paths, leading to degraded performance.

Geometric Rotational of RoPE. RoPE (Su et al., 2024) maps the representation at position i into a rotation in a two-dimensional subspace:

$$q'(i) = R(i\omega)q, \quad k'(j) = R(j\omega)k,$$

1512 Table 23: Ablation study results on information scaling of MLVU (Zhou et al., 2024). Metrics
 1513 include overall accuracy and task-specific scores across different steps. # TPF stands for token per
 1514 frame, and # F stands for sampling frame number.

# TPF	# F	Overall	PlotQA	Needle	Ego	Count	Order	Anomaly	Reco	Topic	Reason.	SportsQA	TutorialQA
256	128	49.6	46.0	52.7	53.2	24.3	36.0	47.0	87.3	36.6	36.2		
512	128	49.2	52.0	51.0	47.5	24.3	37.4	39.3	87.3	42.1	33.9		
128	256	50.6	50.0	57.7	60.7	24.3	33.1	39.3	86.2	42.1	36.2		
256	256	51.2	50.0	56.0	56.9	27.7	38.9	41.9	85.1	42.1	36.2		
512	256	48.0	54.0	49.3	49.4	22.7	37.4	39.3	86.2	33.8	29.3		
64	512	51.2	50.0	62.7	55.1	24.3	34.6	47.0	84.0	42.1	38.6		
128	512	51.8	48.0	69.3	51.3	27.7	34.6	44.5	86.2	47.7	31.6		
256	512	48.6	50.0	51.0	47.5	24.3	33.1	52.2	84.0	47.7	26.9		
64	1024	51.8	56.0	66.0	53.2	26.0	36.0	47.0	84.0	42.1	31.6		
128	1024	48.0	52.0	51.0	49.4	29.3	33.1	44.5	80.7	44.9	24.6		

1525 Table 24: Ablation study results on information scaling of Tomato (Shangguan et al., 2024). Metrics
 1526 include overall accuracy and task-specific scores across different steps. # TPF stands for token per
 1527 frame, and # F stands for sampling frame number.

FPS	TPF	Overall	Direction	Count	Rotation	Shape&Trend	Velocity&Freq.	Visual Cues	Human	Simulated	Object
1	64	24.7	22.8	26.7	20.6	25.1	27.1	34.3	21.2	23.2	28.4
1	128	23.9	20.6	29.8	19.9	24.7	23.8	32.9	19.8	24.0	27.6
1	256	24.7	22.3	29.5	19.6	25.1	25.2	35.7	20.8	23.3	28.7
1	512	23.9	20.6	29.8	19.9	24.7	22.9	34.3	20.3	21.5	27.9
2	64	24.5	21.1	31.8	19.6	22.4	25.7	35.7	20.7	21.9	28.8
2	128	24.3	20.6	30.5	20.3	24.7	23.3	38.6	20.7	22.3	28.4
2	256	24.4	21.3	29.5	18.5	26.5	24.8	37.1	20.3	24.0	28.2
2	512	24.7	19.4	32.2	21.3	25.6	23.8	37.1	20.0	24.0	29.1
4	64	25.1	22.1	31.5	19.6	26.5	23.3	38.6	21.2	25.0	29.0
4	128	25.8	21.8	33.2	21.3	25.6	25.7	37.1	21.5	25.3	29.9
4	256	26.2	23.1	32.5	20.6	26.9	26.7	37.1	21.8	25.3	30.5
4	512	26.5	21.6	31.5	22.0	25.6	23.3	40.0	21.7	23.6	29.3

1540
 1541 where $R(i\omega)$ is a rotation matrix and ω denotes the frequency parameters. This yields an inner
 1542 product that depends only on the relative distance between the two positions:

$$\langle q'(i), k'(j) \rangle = \langle R((i-j)\omega)q, k \rangle.$$

1543 RoPE (Su et al., 2024) therefore establishes a structured geometric correspondence between relative
 1544 distance and rotation phase. Under this geometry, when the context length is moderately increased
 1545 (e.g., from 36K to 64K), the model only needs to resolve a larger phase difference $d\omega$; within
 1546 this range, the growth of the phase still lies in the extrapolation regime covered by the empirical
 1547 distribution seen during training. As a result, the model can naturally generalize.

1548 LM-Infinite (Han et al., 2023) further proves that, in order to distinguish the growing clusters of
 1549 relative distances $\alpha(n)$, the attention logit must increase monotonically with sequence length:

$$\sup_{q,k,d \leq n} |w(q, k, d)| \geq \left(\frac{\alpha(n)}{2} \right)^{1/(2r)} \frac{\varepsilon}{4e},$$

1550 where $w(q, k, d)$ denotes the logit at relative distance d , and $\alpha(n)$ grows with n . This ‘‘logit growth’’
 1551 is controlled and beneficial at moderate lengths, expanding the dynamic range of attention and en-
 1552 abling the model to maintain token separability over larger distances and consistent with the
 1553 strong performance we observe around 64K.

1554 However, when the effective phase difference $d\omega$ becomes excessively large, the rotation angle
 1555 may approach or exceed the periodic range of multiple frequency dimensions, giving rise to *phase*
 1556 *aliasing*: tokens that should correspond to distinct relative distances collapse into similar or even in-
 1557 distinguishable phase regions. In such cases, although attention logits continue to grow with length,
 1558 the high-frequency components of RoPE lose their discriminative resolution, reducing geometric
 1559 separability among tokens, which aligns with existing analyses (Press et al., 2021; Chen et al., 2023)
 showing the degradation of relative positional encoding at extreme distances.

1566 Table 25: Ablation study results on information scaling of VSIBench (Yang et al., 2025a). Metrics
 1567 include overall accuracy and task-specific scores across different steps. # TPF stands for token per
 1568 frame, and # F stands for sampling frame number.

1569

1570	TPF	# Max Frames	Overall	Obj. Order	Abs. Dist.	Counting	Rel. Dist.	Size Est.	Room Est.	Route Plan.	Rel. Dir.
1571	512	32	34.9	27.6	16.2	31.4	35.1	52.2	31.5	40.1	44.6
1572	512	64	34.8	29.1	17.5	34.9	33.0	52.2	31.0	36.5	43.9
1573	256	128	36.0	24.7	17.6	41.3	37.5	53.9	30.7	39.1	43.3
1574	512	128	34.6	27.4	17.2	37.3	34.4	50.3	30.6	35.5	43.8
1575	128	256	35.6	26.8	17.0	42.0	36.8	51.8	31.2	35.0	44.2
1576	256	256	35.5	27.8	17.0	42.4	33.7	51.3	31.6	35.5	44.5
1577	512	256	34.8	28.2	16.5	40.3	33.9	48.8	30.7	36.5	43.3
1578	64	512	34.2	29.1	15.8	42.1	33.9	45.5	27.7	37.0	42.9
1579	128	512	36.0	25.5	19.0	42.5	35.4	54.0	30.1	37.5	43.6
1580	256	512	33.9	28.2	15.8	42.9	31.3	43.6	29.9	36.5	43.1
1581	64	1024	35.8	24.4	18.5	46.4	34.4	52.4	29.7	37.5	43.0
1582	128	1024	35.7	26.6	18.4	45.3	32.7	50.3	31.7	37.0	43.7

1583

1584 Table 26: Performance of Qwen2.5-VL 7B under different context lengths.

1585

1586 Context	1587 LVB	1588 MLVU	1589 TimeScope	1590 LTS	1591 VSIBench
1592 32k	1593 58.1	1594 50.5	1595 80.33	1596 34.4	1597 35.1
1598 64k	1599 59.7	1600 51.2	1601 81.13	1602 40.7	1603 29.7
1604 128k	1605 58.7	1606 48.0	1607 81.00	1608 39.7	1609 29.3

1610

1611

1612

N FULL GATE VALUES DISTRIBUTION

1613

1614

1615

O MORE INTER-HEAD GATE SIMILARITIES VISUALIZATION

1616

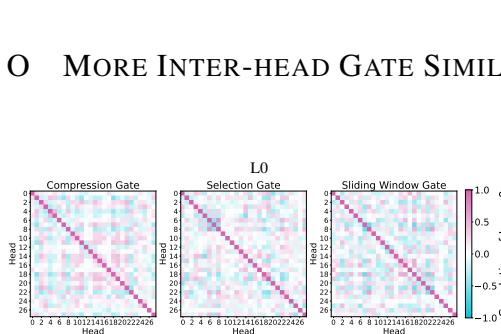
1617

1618

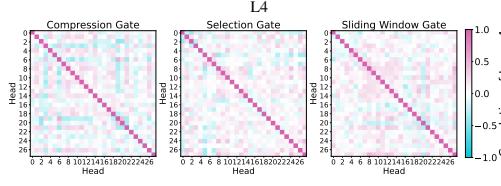
1619

1620

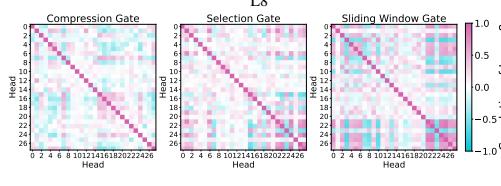
N FULL GATE VALUES DISTRIBUTION



1621 Figure 18: More Inter-head Gate Similarities Visualization



1622 Figure 19: More Inter-head Gate Similarities Visualization



1623 Figure 20: More Inter-head Gate Similarities Visualization

Table 27: Performance of VideoNSA under different context lengths.

Context	LVB	MLVU	TimeScope	LTS	VSIBench
32k	58.7	50.6	78.5	41.1	36.0
64k	59.4	51.8	81.7	44.4	36.6
128k	60.0	48.7	83.7	42.9	35.7

Table 28: LongTimeScope (Zohar et al., 2025) results across different attention budget strategy. Metrics include overall accuracy and task-specific scores across different steps.

Block Count	Window Size	Overall	18000			28800			36000		
			OCR	QA	Temporal	OCR	QA	Temporal	OCR	QA	Temporal
36	32	44.0	56.0	50.0	28.0	46.0	66.0	16.0	46.0	72.0	16.0
35	64	44.0	54.0	58.0	26.0	46.0	68.0	12.0	46.0	74.0	12.0
34	128	41.8	50.0	56.0	28.0	44.0	64.0	6.0	46.0	74.0	8.0
28	512	42.0	50.0	56.0	28.0	48.0	64.0	6.0	46.0	76.0	4.0
20	1024	40.9	52.0	56.0	28.0	48.0	64.0	0.0	44.0	76.0	0.0
4	1900	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	128	41.6	52.0	56.0	26.0	46.0	62.0	10.0	42.0	76.0	4.0
64	512	42.4	52.0	56.0	28.0	48.0	64.0	8.0	46.0	76.0	4.0

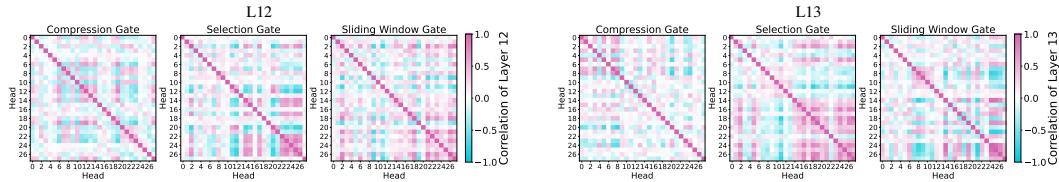


Figure 21: More Inter-head Gate Similarities Visualization

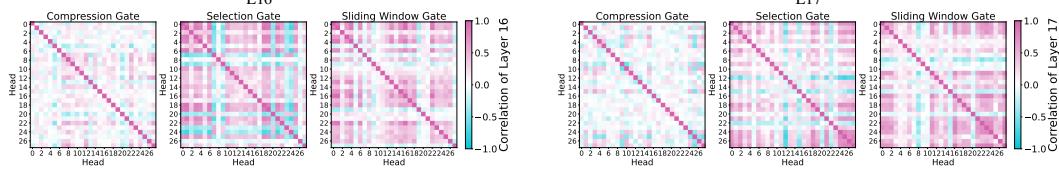


Figure 22: More Inter-head Gate Similarities Visualization

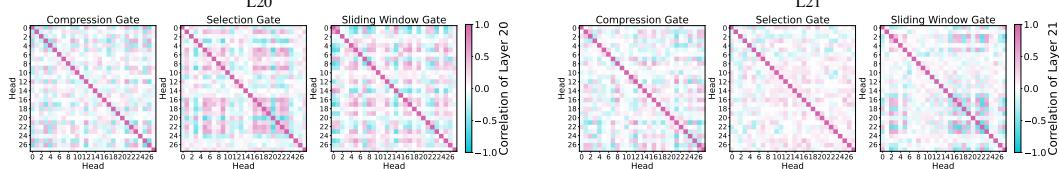


Figure 23: More Inter-head Gate Similarities Visualization

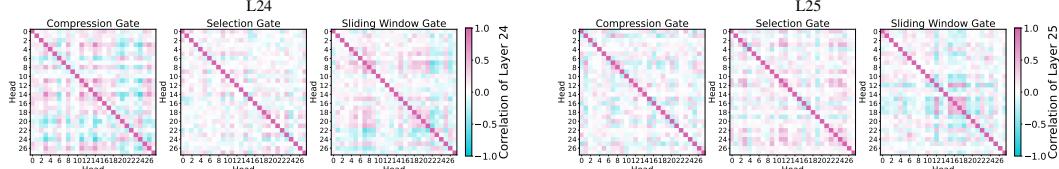


Figure 24: More Inter-head Gate Similarities Visualization

P BENCHMARK-LEVEL GATING ANALYSIS AND PCA VISUALIZATION

In this section, we provide additional evidence that VideoNSA’s routing strategy depends on input video content rather than layer depth alone. We collect the layer-head gate vectors for representative videos from three benchmarks with distinct visual properties (LongTimeScope (Zohar et al.,

1674 Table 29: TimeScope (Zohar et al., 2025) results across different attention budget strategy. Metrics
 1675 include overall accuracy and task-specific scores across different steps.
 1676

Block Count	Window Size	Overall	60	120	180	300	600	1200	1800	3600	7200	10800
36	32	81.6	97.4	97.4	96.7	85.4	82.7	86.3	85.3	71.3	60.6	52.7
35	64	82.4	92.7	91.3	92.7	91.4	83.4	91.6	91.3	74.6	63.3	52.0
34	128	82.2	96.7	96.7	94.7	89.4	82.0	88.3	85.3	76.6	60.0	52.7
28	512	82.8	94.7	97.4	94.7	90.7	82.7	91.6	88.6	74.0	63.3	50.0
20	1024	83.2	96.7	97.4	97.4	88.7	85.4	89.0	84.6	78.6	58.6	55.3
4	1900	8.6	4.7	4.7	4.7	4.7	4.7	12.3	13.3	13.3	13.3	10.0
10	512	59.9	4.7	4.7	94.7	88.7	79.4	85.6	80.0	68.0	58.0	35.3
40	1024	83.7	96.7	96.0	97.4	92.0	85.4	91.6	89.3	73.3	63.3	52.0

1686 Table 30: LongVideoBench (Wu et al., 2024) results across different attention budget strategy. Met-
 1687 rics include overall accuracy and task-specific scores across different steps.
 1688

Block Count	Window Size	Overall	600.0	TOS	S2E	E3E	S2A	SAA	O3O	T3O	T3E	O2E	T2O	S2O	TAA	T2E	E2O	SSS	T2A	60.0	SOS	15.0	3600.0
36	32	59.9	57.7	48.1	64.0	66.6	72.9	55.6	52.5	58.4	57.7	59.9	54.4	70.9	52.1	56.2	70.1	32.8	66.5	67.5	72.4	65.2	56.1
35	64	60.1	58.7	48.1	64.0	65.5	75.2	57.0	55.5	59.7	59.1	58.7	55.7	66.7	49.7	56.2	70.1	34.8	65.2	66.9	73.7	65.7	55.9
34	128	60.2	59.9	48.1	65.1	67.6	74.1	55.6	55.5	58.4	56.3	62.2	57.0	63.9	53.3	56.2	71.6	35.9	62.7	67.5	72.4	66.3	55.1
28	512	59.4	60.4	46.7	62.9	66.6	74.1	58.4	52.5	54.3	56.3	64.5	55.7	59.8	49.7	56.2	79.3	34.8	61.4	67.5	68.7	64.1	53.3
20	1024	59.6	60.6	45.4	66.1	66.6	72.9	59.8	54.0	54.3	55.0	64.5	57.0	58.4	50.9	56.2	80.9	32.8	62.7	69.2	67.5	63.6	53.1
4	1900	28.3	27.6	23.4	24.2	35.7	25.2	32.0	29.7	27.3	24.8	31.1	30.7	33.4	35.1	27.0	28.5	26.6	19.7	27.4	28.0	27.1	29.7
17	64	59.4	58.0	46.7	62.9	65.5	74.1	55.6	52.5	58.4	57.7	58.7	57.0	66.7	50.9	56.2	71.6	30.7	64.0	68.1	72.4	65.7	54.2

1694
 1695
 1696 2025) for multi-shot transitions, Tomato (Shangguan et al., 2024) for high-frequency motion, and
 1697 VSIBench (Yang et al., 2025a) for complex spatial layouts) and project the gate vectors into a 2D
 1698 space using PCA.

1699 As shown in Figure 25, the gate patterns form three clearly separated clusters, regardless of whether
 1700 we use the compression branch, the selection branch, or the sliding-window branch, which indicates
 1701 that VideoNSA learns benchmark-specific routing strategies conditioned on visual content, rather
 1702 than following a fixed depth pattern.

1703 To further isolate the role of input-driven routing, we replace each layer’s gate with a static value
 1704 averaged from a 1K training subset, forcing the model to depend only on layer depth. As shown in
 1705 Table 34, the performance drops across all six benchmarks, especially on tasks requiring long-range
 1706 temporal integration, confirming that dynamic gating is essential.

1708 Q ADDITIONAL ANALYSIS OF TRAINING AND INFERENCE EFFICIENCY

1710 To complement the efficiency discussion in the main paper, we provide additional analysis of both
 1711 FLOPs and wall-clock latency across different attention mechanisms and context lengths.

1713 **Training Efficiency.** Under identical optimization settings, training VideoNSA requires approx-
 1714 imately 4600 H100 GPU hours, while the dense baseline requires 5280 H100 GPU hours. This
 1715 corresponds to 0.87× of the dense baseline, indicating that VideoNSA achieves slightly improved
 1716 training efficiency despite using a more complex attention mechanism.

1718 **Inference Efficiency.** Table 35 presents the theoretical FLOPs of different attention mechanisms.
 1719 In the ideal case, NSA requires only 2.05 PFLOPs, which is 0.24× that of Flash Attention, demon-
 1720 strating the theoretical computational efficiency of the sparse routing structure. However, the actual
 1721 FLOPs and wall-clock latency of VideoNSA are higher than this ideal value due to implementa-
 1722 tion constraints in the current NSA kernel. The Qwen2.5-VL 7B (Qwen et al., 2025) adopts an unusual
 1723 head configuration of 4 KV heads and 28 query heads. To satisfy Triton kernel requirements, the
 1724 query heads must be padded to 64, which introduces additional computation and memory access
 1725 overhead. As a result, the practical efficiency of VideoNSA deviates from its theoretical FLOPs ad-
 1726 vantage. As shown in Figure 26, VideoNSA’s latency grows much more slowly than dense attention,
 1727 and compared with other sparse baselines, it delivers competitive inference speed while achieving
 1728 stronger model performance.

1728 Table 31: MLVU (Zhou et al., 2024) results across different attention budget strategy. Metrics
 1729 include overall accuracy and task-specific scores across different steps.
 1730

1731	Block	Count	Window	Size	Overall	Direction	Count	Rotation	Shape&Trend	Velocity&Freq.	Visual	Cues	Human	Simulated	Object
1732	32	256	26.5	21.6	31.5	22.0	25.6	23.3	40.0	21.7	23.6	29.3			
	36	32	25.9	21.6	32.5	19.2	25.1	25.5	37.1	21.4	21.5	29.2			
1733	35	64	27.1	23.8	33.9	20.6	25.6	25.5	37.1	22.1	24.2	30.8			
1734	34	128	27.2	23.8	34.2	20.3	25.1	25.5	38.6	21.9	24.2	30.8			
	28	512	26.1	21.8	32.2	19.2	24.7	27.5	37.1	22.1	22.4	28.2			
1735	20	1024	25.1	20.6	30.8	17.5	23.3	29.4	34.3	21.4	23.3	25.6			
	64	512	25.3	21.3	30.5	19.6	24.2	27.5	32.9	21.4	22.9	27.4			
1736	4	2048	26.4	21.8	33.6	20.3	25.6	27.5	32.9	21.8	24.7	29.4			
1737	16	128	21.4	19.5	17.5	20.2	21.0	30.0	28.8	17.8	17.6	20.6			

1738
 1739 Table 32: Tomato (Shangguan et al., 2024) results across different attention budget strategy. Metrics
 1740 include overall accuracy and task-specific scores across different steps.
 1741

1742	Block	Count	Window	Size	Overall	Direction	Count	Rotation	Shape&Trend	Velocity&Freq.	Visual	Cues	Human	Simulated	Object
1743	36	32	25.9	21.6	32.5	19.2	25.1	25.5	37.1	21.4	21.5	29.2			
	35	64	27.1	23.8	33.9	20.6	25.6	25.5	37.1	22.1	24.2	30.8			
1744	34	128	27.2	23.8	34.2	20.3	25.1	25.5	38.6	21.9	24.2	30.8			
1745	28	512	26.1	21.8	32.2	19.2	24.7	27.5	37.1	22.1	22.4	28.2			
	20	1024	25.1	20.6	30.8	17.5	23.3	29.4	34.3	21.4	23.3	25.6			
1746	64	512	25.3	21.3	30.5	19.6	24.2	27.5	32.9	21.4	22.9	27.4			
1747	4	2048	26.4	21.8	33.6	20.3	25.6	27.5	32.9	21.8	24.7	29.4			
1748	16	128	21.4	19.5	17.5	20.2	21.0	30.0	28.8	17.8	17.6	20.6			

1750 R ADDITIONAL ANALYSIS ON CMP LATENCY BOTTLENECK

1751 In this section, we provide additional analysis supporting the observation in findings that the CMP
 1752 branch becomes the dominant source of latency as the context length increases.

1753 Since the block size determines how many CMP operations are executed, we vary the block size and
 1754 measure the resulting latency across multiple context lengths. As summarized in Table 36, although
 1755 increasing the block size reduces the number of CMP executions, the overall latency improvement
 1756 remains small. Smaller blocks are dominated by memory-access overhead, while larger blocks incur
 1757 higher computation per block. As a result, block-size scaling affects latency only moderately within
 1758 a narrow range and does not change the overall scaling trend.

1759 We also observe that the most significant acceleration comes from more efficient NSA implementations
 1760 instead of architectural hyperparameters. As shown in Table 37, the flash-nsa (mdy666, 2025)
 1761 implementation runs about twice as fast as our current nsa-impl (Pai et al., 2025a) in the forward
 1762 pass and up to six times faster in the backward pass. Other teams are also developing improved
 1763 kernels such as optimizing NSA for TPUs (Ko, 2025). These findings show that the dominant factor
 1764 affecting CMP and overall NSA latency comes from kernel efficiency, including memory access
 1765 patterns and kernel design.

1766 S MORE ANALYSIS ABOUT ATTENTION SINKS ON VARIOUS SPARSE 1767 ATTENTION SETTINGS

1768 Figure 27a indicates that in the compression branch, smaller blocks produce sharper and higher sink
 1769 peaks at the sequence start, while larger blocks used in training reduce the initial peak but introduce
 1770 broader low-density diffusion with periodic boundary spikes. The selection sinks in 27b remain at
 1771 consistently low densities under different configurations, suggesting that the top-k filtering mecha-
 1772 nism robustly suppresses sink formation across different settings. Figure 27 shows the distribution
 1773 of attention sinks under different sparse attention settings. When varying the window size, sinks
 1774 are concentrated near the beginning and decay rapidly with position. Overall, larger windows yield
 1775 lower sink density but broader coverage, while the training configuration ($w = 256$) strikes a mid-
 1776 ground and exhibits sparse periodic clusters in the mid-to-late sequence, reflecting sensitivity to
 1777 local boundaries learned during training.

Table 33: VSIBench (Yang et al., 2025a) results across different attention budget strategy. Metrics include overall accuracy and task-specific scores across different steps.

Block Count	Window Size	Overall	Appearance	Abs. Dist.	Counting	Rel. Dist.	Size Est.	Room Est.	Route Plan.	Rel. Dir.
28	512	36.0	23.9	18.2	45.5	36.9	54.1	29.8	36.0	43.4
20	1024	35.9	24.0	18.5	46.8	36.7	53.6	29.0	36.5	42.0
4	1900	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34	128	35.5	24.7	18.7	37.8	36.2	53.9	31.7	36.0	45.2
35	64	35.4	25.5	20.4	33.2	35.4	53.6	31.5	38.1	46.0
36	32	34.9	25.3	20.6	28.4	36.0	54.4	30.9	38.1	45.9
36	62	35.3	25.2	20.5	28.3	35.8	54.7	31.0	41.1	46.1
16	128	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
64	512	35.8	23.6	18.3	45.9	36.8	54.2	29.3	36.5	42.3

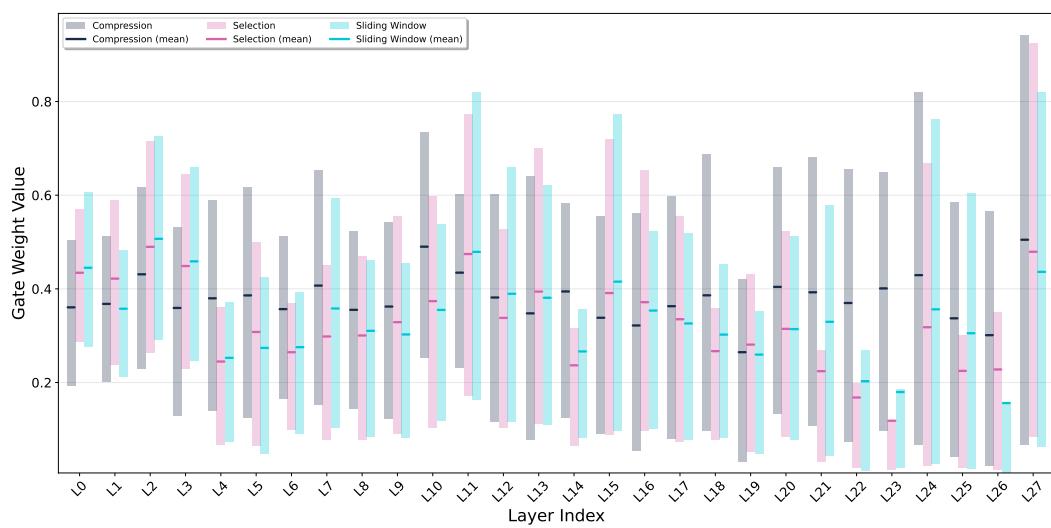


Figure 17: Gate weight distribution of each layer.

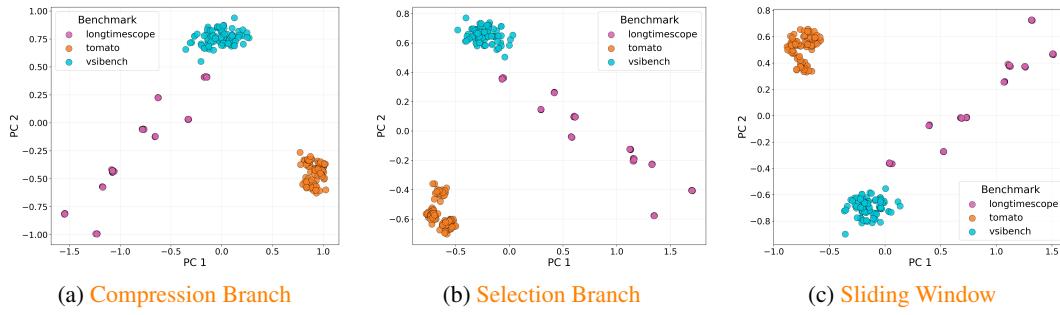


Figure 25: PCA visualization of benchmark-level gate patterns.

T DISCUSSION ON MODALITY-SPECIFIC SPARSITY

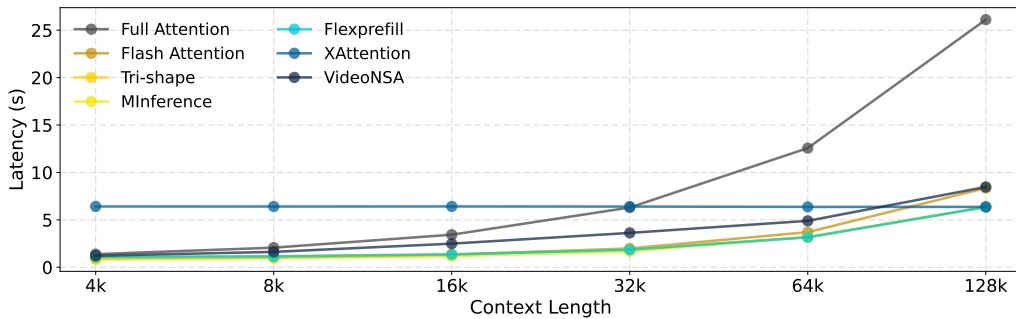
To further contextualize the modality-specific sparsity patterns exhibited by VideoNSA, we compare its behavior with the text-only NSA (Pai et al., 2025a) used in language models. As shown in Figure 28, the text-only NSA (Pai et al., 2025a) displays a distinct gating dynamic. The sliding-window branch gradually becomes dominant in deeper layers, while the compression and selection branches diminish rapidly and remain almost inactive throughout most of the network. This pattern reflects the one-dimensional and relatively uniform nature of textual sequences, where long-range interactions are sparse and stable, and the model tends to converge toward a single prevailing routing path. The text-only NSA (Pai et al., 2025a) also presents a noticeable anomaly in the final layer, where all three branches suddenly become active again despite having remained largely inactive in

Table 34: Ablation on static gates averaged over a 1K training subset.

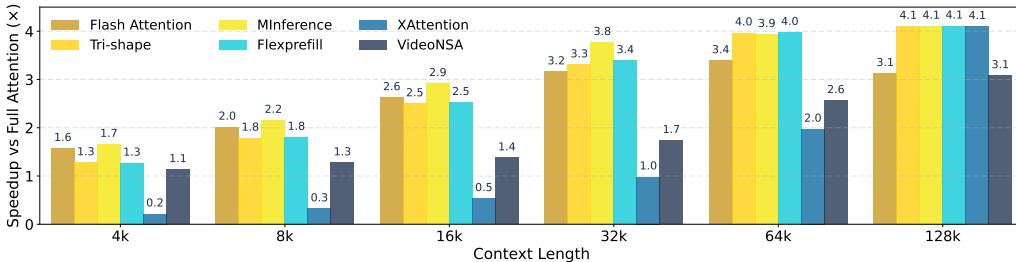
Model	Long Video Understanding				Temporal Reasoning Spatial Understanding	
	LongVideoBench	MLVU _{Test}	TimeScope	LongTimeScope	Tomato	VSIBench
Qwen2.5-VL-7B	58.7	51.2	81.0	40.7	22.6	29.7
VideoNSA	59.4 (+1.1%)	51.8 (+1.2%)	82.7 (+2.1%)	44.4 (+9.1%)	26.2 (+15.9%)	36.1 (+20.3%)
VideoNSA+ Static Gate	58.4 (-0.5%)	51.2 (0.0%)	81.2 (+0.2%)	41.5 (+2.0%)	23.7 (+4.8%)	31.8 (+7.1%)

Table 35: Theoretical FLOPs comparison among different attention mechanisms. “VideoNSA (ideal)” denotes the theoretical FLOPs of NSA without query-head padding.

Method	FLOPs	Relative
Flash Attention	8.40 PF	1.00×
Tri-shape	7.07 PF	0.84×
MInference	4.13 PF	0.49×
Flexprefill	7.75 PF	0.92×
XAttention	1.94 PF	0.23×
VideoNSA (ideal)	2.05 PF	0.24×
VideoNSA	4.68 PF	0.56×



(a) Absolute prefill latency across attention mechanisms.



(b) Prefill-time speedup over full attention across context lengths.

Figure 26: Inference efficiency comparison across attention mechanisms.

previous layers. This behavior suggests a late-stage shift in inductive patterns that is characteristic of language modeling. In contrast, VideoNSA, as shown in Figure 17, maintains active and balanced usage of all three branches across nearly the entire depth of the network, with the compression branch playing a consistently prominent role.

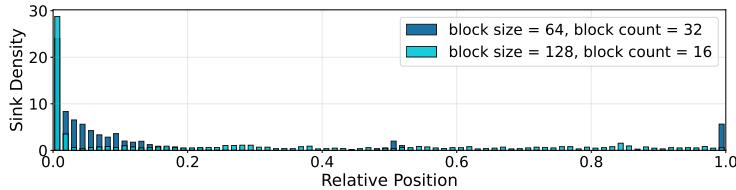
The inter-head similarities further highlight the divergence between the two modalities. The text-only NSA (Pai et al., 2025a) in Figure 29 exhibits strong correlations across heads in the early layers, which indicates a set of conserved induction-like operations. Later in the model, selection and sliding window gate values become decorrelated across heads. VideoNSA, as shown in Section O, however, displays substantially weaker cross-head correlations overall, and only a few mid-layer clusters emerge in the selection and sliding-window branches. These findings imply that VideoNSA adjusts its sparse routing behavior to accommodate the rich spatiotemporal redundancy and multi-scale

Table 36: CMP latency under different block sizes and context lengths.

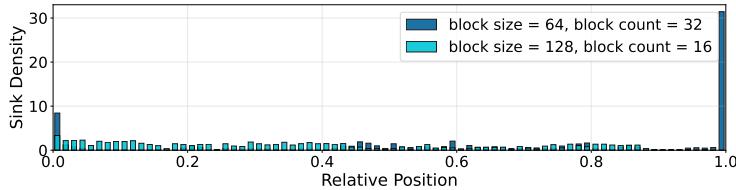
Block Size	4k	8k	16k	32k	64k	128k
32	0.868	1.022	1.311	1.982	3.698	8.343
64	0.882	1.036	1.322	1.997	3.687	8.323
128	0.880	1.027	1.308	1.993	3.705	8.353

Table 37: Latency comparison between different NSA implementations at 8k context length.

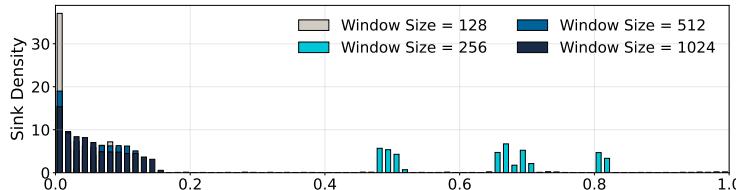
Implementation	forward	backward
nsa-impl (Pai et al., 2025a)	5.402	32.826
flash-nsa (mdy666, 2025)	2.429	5.537



(a) Compression sinks across block size and counts.



(b) Selection sinks across block size and counts.



(c) Sliding window sinks across window sizes.

Figure 27: Attention sink distributions across the three branches under different sparse settings.

structure of video inputs, rather than collapsing into a single dominant pathway as observed in the text-only model.

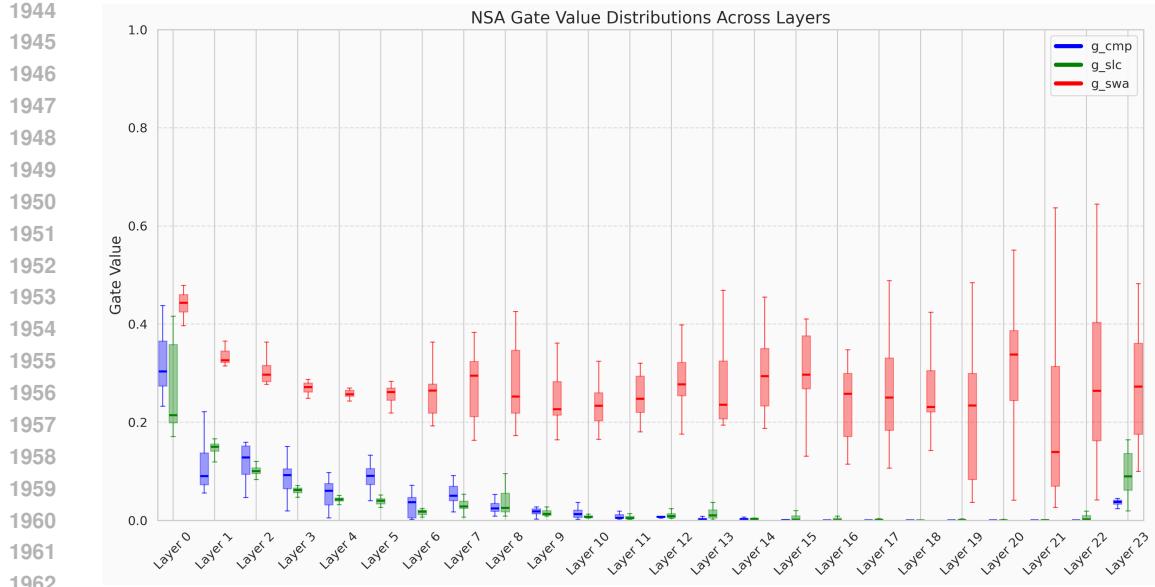


Figure 28: Layer-wise gate distributions of text-only NSA (Pai et al., 2025a).

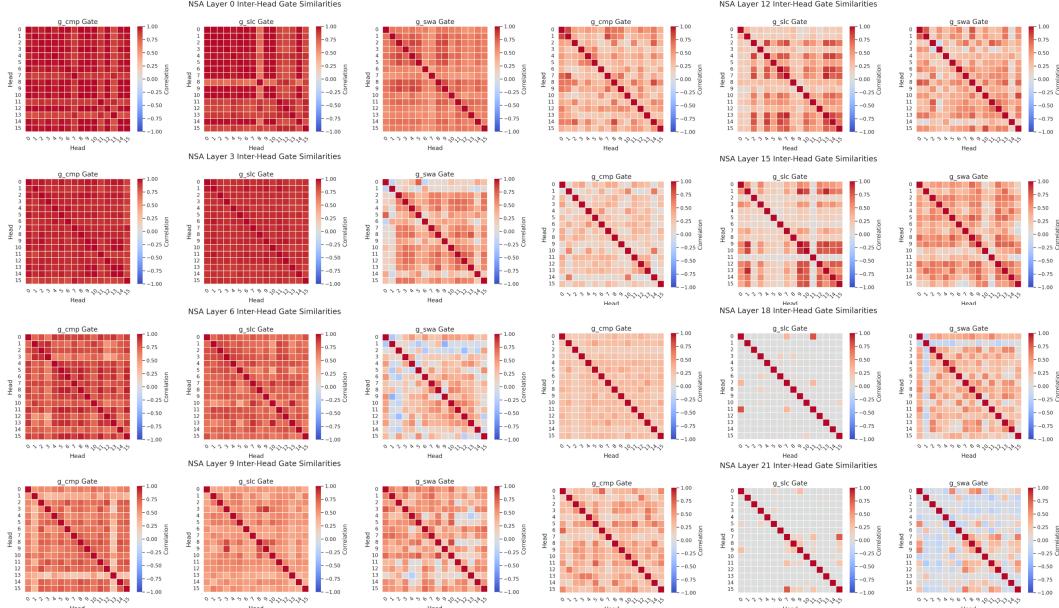


Figure 29: Inter-head gate similarities of text-only NSA (Pai et al., 2025a).

1998
1999

U DENSE ATTENTION SINK VISUALIZATION

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051