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ABSTRACT

Video understanding in multimodal language models remains limited by context
length: models often miss key transition frames and struggle to maintain coher-
ence across long time scales. To address this, we adapt Native Sparse Attention
(NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-
VL through end-to-end training on a 216K video instruction dataset. We em-
ploy a hardware-aware hybrid approach to attention, preserving dense atten-
tion for text, while employing NSA for video. Compared to token-compression
and training-free sparse baselines, VideoNSA achieves performance
on long-video understanding, temporal reasoning, and spatial benchmarks. Fur-
ther ablation analysis reveals four key findings: (1) reliable scaling to 128K to-
kens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-
dependent branch usage patterns; and (4) the learnable combined sparse attention
help induce dynamic attention sinks.

1 INTRODUCTION

Key moments of a video can occur at any time, exemplified by soccer where game deciding moments
typically span seconds of a 90 minute game. Within those game deciding moments split second
actions define the outcome: an assist, a missed tackle, the movement of the keeper. Multimodal large
language models (MLLMs)(Team| 2025; [Team et al., 2025bjal) have achieved substantial progress
in vision-language perception and reasoning, but still cannot match humans ability to extract and
reason about salient moments in videos. While humans naturally sample color visuals around 60hz,
(Kalloniatis & Luul 2007) across large contexts, existing VLMs often sample a single frame per
second. Intuitively, increasing the context for these models by sampling more frames improves
accuracy (Cai et al.,[2024;|Wu et al.| 2024)), particularly for long videos and complex reasoning tasks.
However, this approach pays for improvement with additional tokens, increasing computational
complexity and pushing against fundamental limits of model context.

To address these challenges, many approaches (Wang et al., 2024 |L1 et al.| 2024bj Jin et al.| 2024;
Wang et al., [2025a; [Yang et al.| [2024) adopt token compression to reduce redundancy and increase
informative context. However, when applied to complex reasoning tasks, these compression-based
models perform worse compared to full-token methods (Song et al.,[2025a)). Moreover, compression
strategies often limit generalization through reduced perception and reasoning capacity (Wen et al.,
20235). In contrast, sparse attention mechanisms preserve tokens, but focus the models capabilities
on relevant dependencies between tokens. Numerous sparse attention methods have already been
employed in large language models (LLMs), but most are inadequate for video complexity (detailed
in Appendix [A). Therefore, we present VideoNSA, which adopts Native Sparse Attention (Yuan
et al.,|2025b), a learnable hardware-aware sparse attention mechanism proven to be effective in long-
context modeling. VideoNSA is the first learnable and hardware-aware sparse attention framework
tailored for video understanding, effectively scaling to ultra-long vision-text context. We apply the
learnable sparse attention to video token sequences, while preserving grouped-query attention for
text tokens. Following this pattern, our experiments show that using only 3.6% of the attention
budget on 128K context length while improving performance on various tasks

We further conduct massive experiments and analyses of VideoNSA , revealing several impor-
tant findings: (1) VideoNSA extrapolates effectively to contexts beyond its training length, and
the optimal balance between temporal density and spatial resolution is highly task dependent.
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(2) VideoNSA is also sensitive by attention scaling, with results remaining strongest near the training
configuration. (3) The gating distribution evolves dynamically across layers, and the selection and
sliding-window branches gradually lose importance in deeper layers. (4) The compression branch
emerges as the main computational bottleneck. (5)Moreover, the learned sparse attention weights
remain beneficial even under dense attention settings. (6) Learnable sparse attention induces dis-
tinctive attention sink behaviors across branches, with very few sinks in the selection branch and
periodic sink formation in the compression branch.

In particular, our paper makes the following contributions:
* We propose VideoNSA, a hardware-aware native sparse attention mechanism, and systematically
investigate its effectiveness for video understanding, scaling up to a 128K vision context length.

* We introduce hybrid sparse attention in VideoNSA, enabling flexible allocation of information
and attention budgets to achieve optimal performance across diverse task.

* We dynamically combine global and local attention through three complementary branches, which
effectively reduce attention sinks in long vision contexts.

2 VIDEONSA

2.1 PRELIMINARIES

Native sparse attention.  Existing training-free sparse attention methods are rarely hardware
aligned, and typically don’t increase training efficiency. Native Sparse Attention (Yuan et al.,[2025b)
(NSA) avoids computing attention between all key-value pairs (K, V), instead, for each query q¢,
NSA dynamically constructs an information-dense KV cache subset. NSA combines three comple-
mentary cache branches with a learnable gate g adaptively weighting each branch yielding o;:

o; = Z gi - Attn(qt,Kf,Vtc). (1)

c€{cmp, slc, win}

Token Compression (CMP) branch aggregates sequential blocks of keys into more coarse-grained,
single block-level representations K;"* via a learnable MLP (:

- ) t—
K™ = {o(Kpiat1:a4m)) |0 <0 < LTJ}? )
where m is the block length, d is the stride.

Token Selection (SLC) branch preserves the most salient key-value blocks by computing importance
scores pii¢” and selecting the indices of the top-n blocks:

I = {i | rank(p{* [i]) < n}. (3)
The final set of selected keys is formed by concatenating these top-ranked blocks:
K?C = Cat({Kpim/+1:(+1)ym1 | © € It}), 4)

where I; is the set of selected indices, n is the number of blocks to retain.

Sliding Window (SWA) branch simply applies the standard sliding window attention, which retains
the fixed w most recent key-value pairs:

K =Ko, V™= Vi ®)

Grouped query attention. In Multi-Head Attention (MHA), each query head has dedicated key—
value (KV) projections, which makes the KV cache scale with the number of heads and increases
inference cost. Grouped-Query Attention (GQA) (Ainslie et all 2023) mitigates this by letting
multiple query heads share fewer KV heads. For each input {z;}1 |, GQA partitions the h query

heads into g groups (1 < g < h). At a given timestep ¢, the output ogs) for the s-th query head with
group index m(s) = [sg/h] is computed by applying attention to the shared keys and values as:

()T )
ol¥) = Attention(q\*, KSZ(S”, V<(7tn(s))) = softmax (d =t ) V<(T(S)), (6)
< < dr <
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Figure 1: Overview of VideoNSA. Video frames are encoded into frame-level KV

blocks. VideoNSA utilizes three sparse attention branches during prefilling stage: compression
branch reduces redundancy via token averaging, selection branch identifies top-k important to-
kens, and sliding window branch enforces local temporal coverage. The outputs are combined
through dynamic gating before integration with text tokens for LLM decoding.

where qgs) = a:l-Wq(s), kgm(s)) = a:l-W,gm(s)), vgm(s)) = xin(m(S)). The outputs o; from all heads
are concatenated by o; = [ogl), 052), cee ogh)}. VideoNSA utilizes Qwen2.5-VL-7B (Bai et al.,
2025) as the backbone, with Qwen2.5-7B (Qwen et al.,[2025) as the LLM decoder, which employs

GQA for efficient KV cache utilization using 28 query heads and 4 shared key/value heads.

2.2 ARCHITECTURE

Existing token compression methods (Yang et al., 2025d; |[Zhang et al., 2025¢c} Hyun et al., 2025
Zhang et al.l 2025h) suffer from irreversible information loss on complex tasks and don’t address
computational and latency bottlenecks in LLM video understanding. From the perspective of at-
tention as a message passing in a Graph Neural Network (Joshi, 2025} [Pappone) 2025)), it’s clear
this bottleneck is fundamental. Standard attention propagates information between nodes (tokens)
through edges (attention weights), with each token being updated by aggregating features from its
neighbors, weighted by attention scores. Training-free sparse attention often imposes a static adja-
cency matrix whose fixed subgraph connectivity restricts information flow. Conversely, NSA (Yuan
et al.| 2025b) provides data-dependent sparsity that preserves edges necessary for a particular task.

We build VideoNSA upon Qwen2.5-VL-7B (Qwen et al.,[2025)), which incorporates a vision encoder
and adopts Qwen2.5-7B (Bai et al.} 2025) as the LLM. As illustrated in Figure|l| VideoNSA intro-
duces a hybrid attention mechanism in the LLM across different modalities. At each layer [, we split
the input tokens X 1) into vision tokens ngl) and text tokens X(Tlfl) according to their position
IDs. For vision tokens, VideoNSA applies NSA (Yuan et al.,[2025b)) with a dedicated gate g; on each
head. We set the block size s equal to the token number per frame, and obtain the block-level rep-
resentation by averaging all tokens within the block. The vision attention output oy is dynamically
weighted by the compression, selection, and sliding window branches as:

og) = Z g¢ Attn(q, K¢, \7?),
ce{cmp,slc,win}
where gf is implemented as a two-layer MLP with a sigmoid activation.
The text attention output ogp is computed using standard GQA (Ainslie et al., 2023) to preserve
instruction following capabilities. We obtain the final output o(!) of the layer [ by concatenating:

o) = [og); o(Tl) ]
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Table 1: Results on long video understanding, temporal reasoning and spatial understanding tasks.
LVB, LTS for LongVideobench (Wu et al.| [2024) and LongTimeScope (Zohar et al., 2025)).

Model Long-form Video Temporal  Spatial
LVB MLVU,.s; TimeScope LTS Tomato VSIBench

LLaVA-OneVision-7B (Li et al.|[2024a) 56.3 - - - 255 324
LLaVA-Video-7B (Zhang et al.||2024c) 58.2 - 74.1 34.0 - 35.6
VideoLLaMA3-8B (Zhang et al.||2025a) 59.8 47.7 69.5 - - -
InternVL2.5-8B (Chen et al.||2024c¢) 60.0 - 55.8 - - -
Video-XL-2 (Qin et al.|[2025b) 61.0 52.2 - - - -
Qwen2.5-VL-7B (Qwen et al.||2025) 58.7 51.2 81.0 40.7 22.6 29.7
Qwen2.5-VL-7B-AWQ (Team|[2024) 59.0 46.0 - - - 35.0
Qwen2.5-VL-7B-SFT 57.8 51.2 76.8 40.2 21.7 30.5
Token Compression Methods
+ FastV (Chen et al.||2024a) 57.3 41.8 46.5 35.6 21.6 32.0
+ VScan (Zhang et al.|[2025b) 58.7 48.1 80.3 31.1 19.1 34.4
+ VisionZip (Yang et al.|[2025¢) 52.4 33.1 43.5 40.4 23.6 32.1
Sparse Attention Methods
+ Tri-Shape (Li et al.!|[2024c) 59.5 49.2 82.7 28.4 22.1 349
+ Mlinference (Jiang et al.|[2024) 59.2 49.2 82.7 44.4 23.0 36.5
+ FlexPrefill (Lai et al.|[2025) 58.4 46.0 83.0 39.1 23.7 34.0
+ XAttention (Xu et al.||2025a) 59.1 50.2 83.1 41.1 21.4 36.6
VideoNSA 60.0 51.8 83.7 44.4 26.5 36.1

2.3 TRAINING RECIPE

We conduct end-to-end training to adapt vision features for data-dependent sparse connectivity in the
language model. The training dataset of VideoNSA is constructed from LLaVA-Video-178K (Zhang
et al.l |2024d) by filtering for question answer pairs at 4 fps and retaining videos with 350-550
frames, for a subset of 216K pairs. To emphasize sparse attention for temporal redundancy, we
constrain the maximum pixels per frame to 50,176, and the maximum context length per training
instance to 36K tokens. In VideoNSA, block size s is set to 64, block b is set to 32, and sliding
window size w is set to 256. We trained using SWIFT (Zhao et al., [2024), adapting the NSA (Yuan
et al.,[2025b)) implementation from FLA (Yang & Zhang},|2024) and (Pai et al.,[2025b)). The complete
training process requires 4600 H100 GPU hours. More training details including hyper-parameters
selection can be found in Appendix

3 EXPERIMENTS

3.1 EFFECTIVENESS ON VIDEO UNDERSTANDING

Baselines Our primary baseline is Qwen2.5-VL-7B (Qwen et al.| [2025)) with dense FlashAtten-
tion (Dao, |2023). We compare VideoNSA against several strong baselines, including the quan-
tization model AWQ (Team), [2024), training-free token compression models (Yang et al. [2025c
Zhang et al., 2025bj (Chen et al., 2024a)), and training-free sparse attention methods (Jiang et al.,
2024; [Xu et al., 20254} |Lai et al.l 20255 L1 et al., 2024c). All methods employ their official config-
uration without additional training and using Qwen2.5-VL-7B (Qwen et al., 2025)) as a base. For
token compression baselines, we use the token kept ratio and sampling fps from the original pa-
pers that yield the best accuracy, while for sparse attention baselines, we use the same configuration
as VideoNSA. In addition, we fine-tune Qwen2.5-VL-7B (Qwen et al., 2025) using the same train-
ing dataset as VideoNSA to serve as a competitive baseline. We also include models with different
backbones for a broad comparison.

We evaluate VideoNSA across three domains including long video understanding, tem-
poral reasoning, and spatial understanding using LMMs-Eval (Zhang et al., |2024a) and
VLMEvalKit (Duan et al.,[2024). Table[I|indicates that sparse attention methods consistently outper-
form token compression approaches. We empirically evaluate the effectiveness of VideoNSA based
on several popular long video understanding benchmarks, including LongVideoBench (Wu et al.,
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Table 2: Ablation study on branch selection across different tasks. LVB, LTS for
LongVideobench (Wu et al.,[2024) and LongTimeScope (Zohar et al.l 2025).

Branch Long Video Understanding Temporal Reasoning Spatial Understanding

CMP SLC SWD LVB MLVU;., TimeScope LTS Tomato VSIBench
v 48.1 439 415 251 233 29.2
v 484 4717 637  37.1 24.0 27.6
v 491 402 593 298 24.0 29.8
v / 494 427 573 324 235 29.4
v vV 493 424 652 344 23.0 29.1
vV /488 434 573 316 24.5 30.3
v vV Vv 600 518 837 444 26.5 36.1

2024), MLVU (Zhou et al.l |2024), TimeScope (Zohar et al., [2025) and LongTimeScope (Zohar
et al.| 2025)). VideoNSA achieves competitive results, narrowing the gap with state-of-the-art meth-
ods. We observe that VideoNSA shows clear advantages on tasks involving order-sensitive tem-
poral reasoning and ultra-long video settings (10 hours in LongTimeScope (Zohar et al., 2025)).
To evaluate the visual temporal reasoning capbility of VideoNSA, we evaluate VideoNSA on
Tomato (Shangguan et al., 2024), a benchmark spanning six reasoning types and three video sce-
narios. VideoNSA attains the highest accuracy on Tomato (Shangguan et al., 2024), substantially
outperforming compression-based methods, underscoring their limitations in fine-grained temporal
inference. VSIBench (Yang et al.l |2025a) focuses on spatial reasoning allowing us to test whether
efficient models can preserve local fidelity while achieving efficiency. VideoNSA matches the
strongest sparse attention baselines and significantly surpasses token compression methods in spa-
tial understanding, confirming that it preserves spatial fidelity. All detailed evaluation settings and
subset results can be found in Appendix [C] Appendix [D] Appendix [E] and Appendix [/

3.2 ABLATION STUDY

To further analyze the components of VideoNSA, we visualize attention pattern in each branch in
Appendix [H] and assess the effectiveness of different branches. Table [2] shows that single-branch
models suffer significant degradation, and even two-branch combinations remain inferior to the
full VideoNSA, highlighting the necessity of integrating all three branches with dynamic gating.
Detailed results of different branch combination can be found in Appendix [

4 SCALING ANALYSIS AND FINDINGS

Finding 1. Do learned sparse attention weights remain beneficial in dense attention settings?

Table 3: Ablation study on transferring sparse attention weights to dense attention across tasks.

Model Long Video Understanding Temporal Reasoning Spatial Understanding
LongVideoBench MLVUr.s;  TimeScope LongTimeScope Tomato VSIBench
Qwen2.5-VL-7B 58.7 51.2 81.0 40.7 22.6 29.7
Dense-SFT 57.8 (-1.5%)  51.2(+0.0%) 76.8 (-52%) 40.2 (-1.2%) 21.7 (-4.0%) 30.6 (+2.1%)
Dense-NSA 56.1 (-44%)  51.6 (+0.8%) 83.0 (+2.5%) 40.9 (+0.5%) 23.4 (+3.5%) 33.1 (+10.7%)
VideoNSA 594 (+1.1%) 51.8(+1.2%) 82.7 (+2.1%) 44.4 (+9.1%) 26.2 (+15.9%) 36.1 (+20.3%)

We further examine whether the learned QKV weights of VideoNSA can imrpove performance in
dense attention inference. Table [3] reports the relative performance change over the Qwen2.5-VL-
7B (Qwen et al., [2025)). Due to the limited quality of the training data, our fine-tuned Qwen2.5-
VL-7B (Dense-SFT) exhibits slight performance drops on most benchmarks. We observe that the
transferred model (Dense-NSA) allows the dense variant to recover and surpass the baseline on
several benchmarks suggesting that sparse-trained weights provides inductive bias towards more
effective attention distributions. However, the effect remains limited on LongVideoBench (Wu et al.,
2024). VideoNSA significantly outperforms Dense-NSA on most tasks, highlighting the importance
of runtime sparsity and dynamic gating.



Under review as a conference paper at ICLR 2026

—~500 T T

a7 Token Budget Constraint 80

E N BT 55

4007, ] 709

g 50 &

- € €

L= 300 S 60 £
(<] (e}

o | 45¢ =

=200/ & e

o 40

f_é L | j4o

1000 200 400 600 800 1000 400 800 1200 1600 2000
Total Frames Total Frames
(a) Information Scaling of LongVideoBench (b) Information Scaling of TimeScope
5007 36

g:500 oy

= € 400!

~ 400 3 400| 359

£ £ &

© © £

i 300 i 4E

o [ (e}

[o] — [0 ‘©

£ 200 e 2o ) & 38

c = c

g g

Q100 S 32

1.0

1.5 20 25 3.0 35
Frame Per Second (FPS) Total Frames

800 1000

(c) Information Scaling of Tomato (d) Information Scaling of VSIBench
Figure 2: Scaling Performance of VideoNSA under Different Context Allocation Strategies. We
highlight the Token Budget Constraint to indicate settings with equal context length, and annotate
the best-performing configuration under each benchmark. Since videos in Tomato (Shangguan et al.
2024), we vary FPS instead of total frames, with FPS x TPF = 128 denoted as K.

‘ Finding 2. How far can VideoNSA scale in context length? ‘

The effective vision context length L is jointly determined by the number of vision tokens per frame
T and the total number of input frames F'. VideoNSA is trained with a maximum context length of
L = 36K tokens, corresponding to 7" = 64 tokens per frame. We conduct an information budget
study under a fixed context length, by varying tokens per frame and frame rate. We then scale up the
context length beyond the training budget, evaluating up to the maximum 128K tokens supported by
the language model. As observed in Figure 2] the model consistently achieves higher performance
when scaled to longer contexts beyond its training length across benchmarks. However, the ideal
allocation of same token budget is highly task-dependent. LongVideoBench favors
allocating more tokens per frame, while Tomato (Shangguan et all, [2024) and TimeScope
[2025) benefit more from increasing the number of frames, emphasizing temporal coverage.
VSIBench (Yang et all, [2025a) shows mixed preferences depending on context length, reflecting
a balance between spatial and temporal sampling. Additional results on information scaling are
reported in Appendix [J]

‘ Finding 3. How to allocate the attention budget?

We define the Attention Budget as the total number of key-value pairs visible to each query, denoted
by K,;s. It is composed of a global sparse component and a local sliding-window component as:
K4n = b x s+ w, where b and s denote the number and size of global blocks, and w is the sliding-
window width. With context length L, compared to causal dense attention with @ edges, the
fraction of attention used ~ is

L(eSH+w) 2(eS+w)

L=y — -1 °
2

To determine the optimal attention allocation, we first fix the total sequence length L, the atten-
tion budget K., and the block size S = 64, while systematically varying the local attention ratio
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Figure 3: Scaling Performance of VideoNSA under Different Attention Allocation Strategies. Scat-
ter points from small to large and from light to dark indicate increasing performance. We annotate
the point corresponding to the same attention allocation strategy as used during training and connect
configurations with equal attention budgets using solid orange lines. We further scale the best con-
figuration using dashed lines. Percentages show attention relative to full attention.

_w

a = z=—. We then employ the optimal allocation ratio * for attention budget scaling. As shown in
Figureg scatter points denote different allocation strategies, with their size and color reflecting per-
formance. We highlight the point corresponding to the training configuration, connect equal-budget
settings with solid orange lines, and extend the best-performing configuration with dashed lines,
where the annotated values indicate the fraction of attention used . Results show that model perfor-
mance is highly sensitive to attention allocation. Although the optimal ratio between global and local
attention varies across tasks, configurations close to the training allocation generally yield better re-
sults. Under the same budget, fine-tuning around the training setting often improves performance,
whereas simply enlarging the overall budget does not consistently bring further gains. Moreover,
across most benchmarks, increasing global attention (enlarging the block count) tends to outper-
form increasing local attention (enlarging the sliding window). Remarkably, VideoNSA achieves
leading performance using only 3.6% of the full attention budget. More results are in Appendix [L}

Finding 4. What roles do compression, selection, and sliding-window gates play in VideoNSA? ‘

We analyze the gating distribution of VideoNSA across Tomato (Shangguan et al., 2024), VSI-
Bench (Yang et al., 2025a)), and LongVideoBench (Wu et al., 2024])), and aggregate the average rout-
ing gate weights over 100 examples from each. As illustrated in Figure[d] where shaded bars denote
the interquartile range and horizontal lines represent mean values, each head in VideoNSA exhibits
distinct and diverse preferences across branches throughout its full depth. The diversity allows dif-
ferent layers to specialize in distinct modes of the context-dependent information flow. The compres-
sion branch maintains relatively high average weights across most layers, underscoring its primary
role in reducing redundancy while preserving salient features. The selection and sliding window
gates fluctuate more strongly, occasionally surpassing the compression branch in early and middle
layers. However, their contributions diminish in the final layers (e.g., L22-1.26), demonstrating that
the focus shifts towards aggregating high-level features. We also note strange behavior in the last
layer, where all three branches are fully active despite selection and sliding window being inactive
in the layers before. Full gate values distribution in Appendix [N

We further dive into the inter-head gate similarity of each layer in Figure[5] In the middle layers, both
selection and sliding window gates exhibit pronounced increases in inter-head similarity. This indi-
cates that multiple mid-layer heads converge to highly consistent gating behaviors when the model
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Figure 4: Gate weights across layers in VideoNSA. Figure 5: Inter-head similarities of gates
Compression remains dominant, while selection and in VideoNSA. Selection and sliding-window
sliding-window weaken in later layers. gates show high similarity in middle layers.

performs block selection and local temporal integration. However, the compression gate shows con-
sistently low inter-head similarity, indicating that it operates largely in a head-independent manner.
At both the initial and final layers of VideoNSA, inter-head similarity remains weak across all gates,
reflecting the need to maintain diversity in early representations and to support mixing information
in higher-level abstractions. More inter-head gate similarites visualization in Appendix [O]

Finding 5. Where does the efficiency bottleneck come from? ‘

We measure the inference latency of each branch

in VideoNSA using wall-clock time across varying con- 2.0 selection
text lengths from 1K to 128 K. The compression branch _ compression
215 sliding window

dominates runtime as the context grows, while the selection >

and sliding window branches contribute relatively little at g 1.0
. ©

longer contexts. Ideally, the compression branch grows -

0.5
approximately linearly with L, and the sliding window branch
has a complexity of O(L - w), which results in linear scaling 00 T2 & 15 32 64 128
for a fixed window size w. The selection branch requires Context Length

computing importance scores over all L/b blocks per query,

leading to a computational complexity of O(L?/b). However, Figure 6: Inference latency of each
wall-clock latency deviates from these estimates due to branch in VideoNSA.

hardware parallelism, memory access patterns, and kernel

launch overheads. Overall, the compression branch emerges as the primary bottleneck, highlighting
the need for further optimization of its kernel design and memory efficiency.

Finding 6. Do learnable sparse mechanisms induce dynamic attention sinks?

In decoder-only transformers, a disproportionate amount of attention is often allocated to the first
few tokens, which act as attention sinks and absorb excessive attention mass as a byproduct of
softmax normalization. Prior studies (Gu et al.l 2024} | Xi1ao et al.| 2023)) show that attention sinks
arise from massive activations and unusually small key and value norms, so attention directed to
these tokens contributes little to the residual state. This raises an important question in learnable
sparse attention: whether sparsity patterns amplify or mitigate such sinks.

We follow the attention sink defination in (Pai1 et al.,|[2025a)):
Attention Sink = 1{a > 0.1 A |lv|| < median(]jv]|) — 2 - IQR(HUH)},

where « is the average attention score received by the key, and ||v|| is the value norm of the token.
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Figure 7: Attention sinks distribution of different branches. VideoNSA maintains a low overall sink
ratio, with pink points indicating identified sinks.
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bution in different branches and Flash Attention. different branches and Flash Attention.

Figure[7illustrates the average distribution of attention sinks across the three branches of VideoNSA.
Each frame is encoded into 256 tokens, and we adopt the same sparse attention configuration as
used during training. The three branches exhibit markedly different sink behaviors. The compres-
sion branch produces the most sinks, with distinct banded concentrations along the value norm
axis caused by token merging that amplifies some token norms while suppressing others. Con-
versely, the selection branch yields almost no sinks, as its top-k block filtering mechanism enforces
a smoother value norm distribution. Notably, the sliding window branch demonstrates a clearer
separation between sink and non-sink tokens along the value norm axis. Critically, dynamic gating
allows VideoNSA to counteract the negative effects of the compression branch, achieving a stable
model with a low overall sink ratio of 0.3%.

Figure [§] indicates that VideoNSA maintains low sink ratios overall, with only minor fluctuations
across layers. However, Flash Attention exhibits a gradual increase in sink ratios toward deeper
layers. The compression branch maintains relatively high sink levels across most layers. The se-
lection branch remains consistently close to zero, while the sliding window branch occasionally
shows higher peaks in the middle-to-late layers, indicating that locality constraints may still intro-
duce bias in long-sequence settings. From the perspective of positional distribution in Figure [9]
Flash Attention produces sinks that are uniformly spread across the entire sequence due to its fully
connected dense attention. Under dynamic gating,VideoNSA achieves smoother temporal cover-
age, alleviating over-reliance on early positions while avoiding the global diffusion characteristic of
dense attention. In contrast, the compression branch exhibits strong accumulation at the beginning
with an even steeper decay, indicating that token merging exerts its strongest impact on early-stage
representations. The selection branch yields very few sinks across the sequence, while the sliding
window branch produces sparse peaks at periodic boundaries of local neighborhoods. More analysis
about attention sinks on various sparse attention settings can be found in Appendix [S]

5 CONCLUSION

In this work, we present VideoNSA, a hybrid hardware-aware sparse attention model that sig-
nificantly advances video understanding across various tasks. By dynamically fusing block-wise
compression, salient block selection, and a sliding window, VideoNSA effectively preserves criti-
cal information while achieving near-linear scalability in efficiency and memory. Our experiments
demonstrate that VideoNSA consistently outperforms existing methods on key tasks including long
video understanding, temporal reasoning, and spatial understanding. While the prefill stage remains
the primary bottleneck, our findings confirm that this hybrid sparse approach provides a powerful
and scalable framework, paving the way for more capable video foundation models.
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6 ETHICS STATEMENT

This research on video understanding utilizes publicly available datasets, ensuring that all data com-
plies with privacy regulations. We acknowledge the potential biases that can arise in automatic
answer generation, particularly concerning gender, race, or other characteristics. We have taken
measures to evaluate and minimize such biases, while remaining committed to further improve-
ments. Additionally, we recognize the potential risks of misuse, such as generating misleading
answers, and have checked the training dataset with safeguards against such applications.

7 REPRODUCIBILITY STATEMENT

We have made several efforts to ensure the reproducibility of our work. All the key implementa-
tion details, including the architecture of our model, the training procedures, and hyperparameter
settings, are described in supplementary meterial Section [B] The settings of the used evaluation
benchmarks are in Section [C]to further support reproducibility.

8 THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used only for light editorial purposes, such as minor grammar
checking and language polishing. They were not used for generating scientific content, research
ideation, experiment design, or analysis. The authors take full responsibility for the entirety of the
paper, and LLMs are not considered contributors or eligible for authorship.
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Appendix
The supplementary material is structured as follows:

* literature review about the related works in Section[Al

* The training settings for VideoNSA in Section[B]

* The introduction of the used evaluation benchmarks and settings in Section [C]
* More results on long-form video benchmarks in Section

* More results on temporal reasoning benchmarks in Section[E}

* More results on spatial understanding benchmarks in Section [F}

. G

* Visualization of attention pattern in each branch in Section [H]

* More results on branch combination in Section

* More results on information scaling study in Section[J}
* More results on attention scaling study in Section|[]

* Full gate values distribution in Section [N]

* More inter-head gate similarites visualization in Section [0}

y [

* More analysis about attention sinks on various sparse attention settings can be found in Section [S]

* Visualization of attention sinks in dense attention in Section [Ul

A RELATED WORK

A.1 EFFICIENT VIDEO UNDERSTANDING

Video understanding systems typically convert videos into long sequences of vision tokens, which
can easily exceed GPU memory and slow down inference as the video length grows. To address this,
existing work mainly address this by token compression, alternative sequence modeling, and KV-
cache compression. One important line of work emphasizes token compression. Spatial or temporal
token merging methods (Wang et al., 2025c} Zhang & Ful 2025} [Li et al.| [2025¢; Jiang et al.,|2025a;
Li et al 2025a; Shao et al.l 2025; Song et al., [2024; |Chai et al., [2024) progressively discard re-
dundant content, while question-/task-aware strategies (Jiang et al., 2025b; [Dong et al., 2025} [Yao
et al.| [2025; [Song et al.,|2025b) tailor retained tokens to the query. These approaches substantially
lower FLOPs but still rely on dense attention once tokens are merged. Beyond pure self-attention,
Mamba-based or hybrid architectures (Jiang et al., [2025a; Ren et al. 2025} Xu et al.l 2025b) inject
state-space or recurrent modules to approach linear-time inference while preserving long-range de-
pendencies. Also, there exists approach to design data efficient systems for further fine-tuning (Li
et al.,[2025b)). Another direction targets the key—value cache during decoding via task-aware spar-
sification and streaming-friendly memory (Qin et al.l 2025a; Ning et al. 2025} Kim et al., |2025;
Yang et al., 2025¢) reduce memory and improve throughput, yet prefill still scales quadratically
with sequence length. In contrast to methods that mostly decide where to drop or compress tokens,
our approach systematically probe the effectiveness of native sparse attention (Yuan et al., [2025a)
that restructures attention itself to be learnable and sparse from the ground up. VideoNSA attains
near-linear scalability up to 128K tokens and processes over 10,000 frames on a single GPU, outper-
forming compression-only pipelines on long-video understanding, temporal reasoning, and spatial
understanding tasks.

17



Under review as a conference paper at ICLR 2026

A.2 SPARSE ATTENTION MECHANISM

Sparse attention is a central strategy for efficient long-context modeling in language and multi-
modal systems. Surveys (Zhang et al.l [2025e)) categorize approaches into pattern-based vs. dy-
namic/learned. Pattern-based sparsity. Methods such as Longformer (Beltagy et al., [2020),
StreamingLLM (Xiao et al., 2024), and TriangleMix (He et al., 2025) prescribe fixed local/strided
patterns that can be applied training-free; recent multimodal works (Zhang et al.}[2025d; Yang et al.}
2025b) follow similar principles, while hardware-efficient kernels like Flash Sparse Attention (Yan
et al.| [2025) further reduce prefill latency. InfLLM-V2 (Zhao et al.| 2025)) uses switchable dense
sparse attention to smoothly adapt models from short to long sequences while maintaining consis-
tency and achieving efficient acceleration with high performance. ProxyAttn (Wang et al., 2025b)
uses representative heads for fine-grained block importance estimation, enabling faster sparse at-
tention with minimal performance loss. Dynamic and trainable sparsity. Content- or gradient-
adaptive mechanisms select important connections (e.g., diagonal selection (Tyagi et al., 2025) or
lag-relative strategies (Liang et al.,|2025)); trainable sparse attention improves long-context reason-
ing (Gao et al.l 2025} [Vasylenko et al., [2025} |Gao et al., [2024), diffusion-based video generation
(Zhang et al.,2025g), and state-space models (Zhan et al., 2025). SLA (Zhang et al.| 2025f) decom-
poses attention weights into critical, marginal, and negligible parts, combining sparse and low-rank
acceleration to greatly reduce computation while preserving generation quality. Hybrid approaches
such as RocketKV (Behnam et al., 2025) combine token/cache compression with learned sparsity,
and MMlnference (Li et al.l |2025d) accelerates modality-aware sparse prefill for VLMs. Despite
these advances, most techniques are optimized for text or short multimodal contexts and do not
directly address the ultra-long, highly redundant spatio-temporal structure of videos. VideoNSA
unifies block-wise compression, salient block selection, and a sliding-window branch under learn-
able gates that dynamically allocate computation across three native sparse branches (Yuan et al.,
2025a). This end-to-end, data-driven design preserves critical global/local dependencies while scal-
ing nearly linearly in both time and memory.

B DETAILED TRAINING SETTINGS

Training hyperparameters for VideoNSA are shown in Table |4} We filter a subset of LLaVA-Video-
178K (Zhang et al [2024e) as the training data. For each video, we uniformly sample at 4 frames
per second and retain only those with 350-550 frames, resulting in 216K video question—answer
pairs from the original 961K pairs in LLaVA-Video-178K (Zhang et al., [2024e).

Table 4: Training hyper-parameters for VideoNSA.

Hyper-parameters Fine-tuning
trainable parameters ViT + MLP + LLM
warmup schedule linear

warmup start factor le-5

warmup ratio 0.1

learning rate schedule cosine
optimizer AdamW (Loshchilov & Hutter,)2017)
optimizer hyper-parameters B1, B2 = (0.9,0.999)
weight decay 0.01

max norm 1

epoch 1

peak learning rate le-6

total equivalent batch size 32

C EVALUATION BENCHMARKS AND SETTINGS

We list all the hyper-parameters and prompt used for evaluation as shown in Table 5]
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Table 5: Evaluation settings summary for each benchmarks. For all benchmarks we set temperature,
top p, number of beams to 0, 0, 1 respectively. # TPF stands for the vision tokens per frame, and #
F stands for the number of sampling frames.

Benchmark # TPF #F # Max New Tokens
LongVideoBench (Wu et al.}|2024) 512 256 32
LongTimeScope (Zohar et al.}|2025) 128 512 16
TimeScope (Zohar et al.}[2025) 64 2048 16
MLVU,.s¢ (Zhou et al.|2024) 128 512 16

Tomato (Shangguan et al.|[2024) 4FPS 256 1024
VSIBench (Yang et al.][2025a) 256 128 16

D MORE RESULTS ON LONG-FORM VIDEO BENCHMARKS

Table 6: LongTimeScope results across baselines. Metrics include overall accuracy and task-specific
scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025)) accelerated
by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

18000 28800 36000
Method Overall
OCR QA Temporal OCR QA Temporal OCR QA Temporal

Flash Attn 40.7 54.0 420 220 480 60.0 240 48.0 580 10.0
Flash Attn + SFT  40.2 46.0 300 340 46.0 440 36.0 520 440 20.0
AWQ - - - - - - - - - -
XAttn 41.1 52.0 56.0 30.0 54.0 52.0 6.0 52.0 64.0 4.0
Mlnference 444 64.0 56.0 26.0 58.0 60.0 8.0 56.0 66.0 6.0
tri-shape 284 340 360 120 48.0 48.0 0.0 44.0 320 2.0
FlexPrefill 39.1 520 460 240 46.0 56.0 140 46.0 66.0 2.0
FastV 356 36.0 500 160 44.0 50.0 4.0 440 640 120
VisionZip 31.1  38.0 32.0 140 56.0 46.0 0.0 44.0 46.0 4.0
VScan 404 48.0 52.0 240 500 520 220 46.0 64.0 6.0
VideoNSA 444 50.0 54.0 30.0 54.0 72.0 0.0 48.0 76.0 16.0

Table 7: LongVideoBench results across baselines. Metrics include overall accuracy and task-
specific scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025)
accelerated by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall 600 TOS S2E E3E S2A SAA 030 T30 T3E O2E T20 S20 TAA T2E E20 SSS T2A 60 SOS 15 3600
Flash Attn 58.7 585 384 69.9 66.0 70.5 56.9 57.6 58.1 53.4 63.2 63.2 55.6 524 63.1 63.1 392 64.6 72.7 61.7 65.6 52.3
Flash Attn + SFT  57.8 55.8 384 65.6 61.7 73.9 56.9 652 554 57.5 57.5 56.6 62.5 51.2 554 66.2 39.2 63.3 744 58.0 64.6 52.0
AWQ 59.0 60.0 342 72.0 64.9 68.2 59.7 57.6 52.7 50.7 69.0 52.6 639 57.3 61.5 67.7 43.3 62.0 73.8 63.0 67.7 50.9
XAttn 59.1 594 36.0 70.0 66.0 672 57.3 58.1 558 53.8 64.5 62.2 643 56.3 652 66.7 41.3 58.5 752 60.7 68.8 50.6
Minference 592 60.6 34.6 743 66.0 68.3 58.7 56.6 53.1 52.4 68.0 56.9 60.1 58.8 60.5 652 39.2 63.6 74.6 66.9 67.3 50.8
tri-shape 59.5 609 34.6 73.2 66.0 69.5 58.7 58.1 558 524 68.0 55.6 61.5 60.0 60.5 66.7 38.2 63.6 74.6 66.9 67.8 5l.1
FlexPrefill 584 61.7 31.5 65.6 62.8 71.6 59.7 59.1 58.1 52.1 65.5 51.3 62.5 48.8 61.5 72.3 423 63.3 71.5 654 582 52.1
FastV 57.3 573 438 64.5 60.6 70.5 52.8 56.1 52.7 48.0 59.8 67.1 56.9 48.8 67.7 66.2 40.2 58.2 69.8 61.7 70.9 48.9
VisionZip 524 532 329 634 66.0 58.0 542 50.0 51.4 425 57.5 474 583 45.1 569 61.5 309 519 622 61.7 582 46.8
VScan 58.7 57.0 29.5 69.0 65.0 69.6 56.3 54.1 56.1 55.5 61.2 58.5 61.9 60.2 58.0 73.4 41.4 61.3 742 659 73.7 50.3
VideoNSA 60.2 599 48.1 65.1 67.6 74.1 55.6 55.5 584 56.3 62.2 57.0 639 53.3 56.2 71.6 359 62.7 67.5 72.4 66.3 55.1

We take LongVideoBench (Wu et al., 2024), LongTimeScope (Zohar et al.| [2025), MLVU (Zhou
et al., 2024), and TimeScope (Zohar et all [2025) as representative long-video benchmarks and
compare against existing token compression and sparse attention methods. As shown in Table [6]
Table [7, Table 8] and Table [9] VideoNSA achieves comparable performance without specialized
designs. Moreover, we observe that VideoNSA significantly outperforms the baselines on subtasks
related to temporal reasoning and on videos of extended length.
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Table 8: MLVU results across baselines. Metrics include overall accuracy and task-specific scores
across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., [2025)) accelerated by
Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall PlotQA Needle Ego Count Order Anomaly Reco Topic Reason. SportsQA Tutorial QA
Flash Attn 51.2 58.0 683 528 31.7 257 46.2 79.1 389 48.8
Flash Attn + SFT  51.2 58.0 583 585 233 40.0 43.6 81.3 36.1 37.2
AWQ 46.0 4277 53.0 409 272 502 57.0 65.0 38.3 39.2
XAttn 50.2 60.0 647 565 28.0 294 41.6 74.9 39.7 39.9
Minference 49.2 56.0 647 489 29.7 26.6 41.6 77.1 39.7 39.9
tri-shape 49.2 56.0 647 489 29.7 26.6 41.6 77.1 39.7 39.9
FlexPrefill 46.0 54.0 547 427 247 409 36.6 72.6 29.7 322
FastV 41.8 440 450 472 183 30.0 46.2 84.6 28.6 322
VisionZip 33.1 300 267 302 6.7 229 41.0 68.1 19.7 26.4
VScan 48.1 58.0 633 509 283 243 43.6 78.0 472 39.5
VideoNSA 51.8 480 693 513 277 346 44.5 86.2 47.7 31.6

Table 9: TimeScope results across baselines. Metrics include overall accuracy and task-specific
scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al.| [2025) accelerated
by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall 60 120 180 300 600 1200 1800 3600 7200 10800
Flash Attn 81.0 96.7 96.0 96.0 94.7 94.0 83.0 82.0 68.7 52.7 413
Flash Attn + SET  76.8  96.7 96.7 96.0 953 90.7 78.0 78.0 54.7 41.3 40.7
AWQ - - - - -

XAttn 83.1 94.0 93.4 934 92.0 92.7 894 827 727 70.7 50.7
MiInference 82.7 93.4 94.0 934 92.0 92.7 87.4 80.0 740 70.0 50.0
tri-shape 82.7 93.4 94.0 934 92.0 92.7 87.4 80.0 740 70.0 50.0
FlexPrefill 83.0 96.7 96.0 96.7 953 96.0 953 86.0 77.3 553 353
FastV 46.5 82.7 76.0 74.0 54.0 32.7 32.7 293 293 34.0 20.0
VisionZip 435 92.0 66.7 60.0 43.3 353 26.0 30.7 293 28.0 23.3
VScan 80.3 96.7 96.7 96.0 933 92.7 89.3 813 60.0 553 413
VideoNSA 83.7 96.7 96.0 97.4 92.0 854 91.6 89.3 733 633 52.0

E MORE RESULTS ON TEMPORAL REASONING BENCHMARKS

We take Tomato (Shangguan et al. 2024) as the representative temporal reasoning benchmark
and compare against existing token compression and sparse attention methods. As shown in Ta-
ble [I0] VideoNSAachieves comparable performance without specialized designs. Moreover, we
observe that VideoNSA significantly outperforms the baselines on subtasks including object count-
ing, shape description, and human actions.

F MORE RESULTS ON SPATIAL UNDERSTANDING BENCHMARKS

We take VSIBench (Yang et al.| [2025a) as the representative spatial understanding benchmark
and compare against existing token compression and sparse attention methods. As shown in Ta-
ble [T} VideoNSA achieves comparable performance without specialized designs. Moreover, we
observe that VideoNSA significantly outperforms the baselines on subtasks including object relative
direction, route planning, and object size estimation.

G
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Table 10: Tomato results across baselines. Metrics include overall accuracy and task-specific scores
across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., [2025)) accelerated by
Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall Direction Count Rotation Shape & Trend Vel. & Freq. Visual Cues Human Simulated Object
Flash Attn 22.6 23.6 233 16.1 229 21.9 429 18.0 19.7 27.9
Flash Attn + SFT  21.7 19.6 233 18.2 26.0 18.1 38.6 18.8 18.0 25.6
XAttn 21.4 22.1 22.9 19.6 17.9 17.1 429 15.5 21.5 26.8
Minference 23.0 22.6 27.1 18.9 22.0 20.0 37.1 16.6 20.6 29.6
FlexPrefill 23.7 233 25.0 227 22.0 21.4 35.7 17.1 22.7 29.9
FastV 21.6 20.6 260 203 23.3 12.7 - 17.1 24.2 25.6
VisionZip 19.1 17.6 16.8 21.0 19.3 19.0 30.0 14.8 21.5 223
VScan 23.6 25.3 21.9 19.9 24.2 20.5 429 18.7 21.9 28.7
VideoNSA 26.5 21.6 31.5 22.0 25.6 233 40.0 21.7 23.6 29.3

Table 11: VSIBench results across baselines. Metrics include overall accuracy and task-specific
scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., [2025) accelerated
by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall Obj. Order Abs. Dist. Counting Rel. Dist. Size Est. Room Est. Route Plan. Rel. Dir.
Flash Attn 29.7 25.7 16.0 20.5 347 49.5 22.5 30.4 38.5
Flash Attn + SFT  30.6 31.9 14.2 12.3 40.4 46.6 30.4 30.9 37.8
AWQ - - - - - - - - -
XAttn 35.0 32.7 18.1 39.7 37.6 52.1 30.0 32.5 37.4
Minference 36.6 36.5 18.2 439 39.4 48.5 38.8 30.0 37.7
tri-shape 36.5 35.7 18.2 443 39.8 48.6 38.8 29.0 37.7
FlexPrefill 34.9 34.1 21.6 35.1 39.3 51.8 29.7 30.4 36.8
FastV 34.0 31.7 21.7 26.1 36.2 47.8 35.0 33.5 40.1
VisionZip 32.1 28.8 17.9 28.8 36.5 48.9 26.9 29.4 39.3
VScan 34.4 33.0 21.9 33.0 40.0 51.9 28.5 30.4 36.6
VideoNSA 36.0 25.5 19.0 42.5 35.4 54.0 30.1 37.5 43.6

H VISUALIZATION OF ATTENTION PATTERN IN EACH BRANCH

We visualize the attention patterns of the last layer across the three branches in Figure[I0] Figure[T1]
Figure[12] and Figure [I3] together with the final attention output, as representative examples. The
compression branch reduces redundancy to preserve salient information, the selection branch high-
lights task-relevant regions with sparse activations, and the sliding window branch enforces local
temporal coverage by focusing on short-range dependencies. These complementary roles collec-
tively shape the final attention output.

I MORE RESULTS ON BRANCH COMBINATION

In this section, we report detailed results of different branch combinations across three domains, in-
cluding long video understanding (Table[T4] Tavke[I5] Table[I6] and Table[7), temporal reasoning
(Table[T8), and spatial understanding (Table[I9). The corresponding performances are summarized
in the table, which highlights how the use of individual branches or their combinations affects down-
stream tasks.

J  MORE RESULTS ON INFORMATION SCALING STUDY

Figure [T shows the scaling performance of VideoNSA under different context allocation strategies
on LongTimeScope and MLVU. Both benchmarks were trained with a maximum context length
of 32K tokens, yet their performance consistently improves when scaled to 64K, beyond the train-
ing budget. On LongTimeScope (Zohar et al.| 2025)), the best results emerge around 512 frames
with 128 TPF at 64K tokens, underscoring the dataset’s reliance on extended temporal coverage for
long-horizon reasoning. In contrast, MLVU (Zhou et al.| 2024) also peaks at 64K with the same al-
location, but its contours are smoother, and competitive performance extends across a broader range
of frame—token trade-offs. This suggests that while LongTimeScope demands aggressive temporal
scaling, MLVU benefits from a more balanced distribution of temporal and spatial information.
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Table 12: Results on LSDBench (Qu et al] [2025).

Model Accuracy
LongVA (Zhang et al.||2024b 32.5
LongVila (Chen et al.{[]2024b 49.8
InternVL2.5 (Chen et al.[[2024c}) 50.1
Qwen2.5-VL-7B (Qwen et al.|[2025) ~ 52.2
Qwen2.5-VL-7B-SFT 52.5
Sparse Attention Methods

+ Tri-Shape (Li et al.[[2024c) 49.5
+ Minference (Jiang et al.][2024) 49.5
+ FlexPrefill (Lai et al.]2025) 52.3
+ XAttention (Xu et al.|[2025a) 51.3
VideoNSA 55.2

Table 13: Results on VideoEvalPro (Ma et al} [2025). HP stands for Holistic Perception, HR
stands for Holistic Reasoning, LR stands for Local Reasoning, LP stands for Local Perception.

Model HP HR LR LP Overall
LongVA (Zhang et al.|[2024b) 205 6.8 190 95 16.5
Video-XL (Shu et al.[[2025 223 15.0 182 10.2 18.6
InternVL2.5 (Chen et al.[[2024c) 28.8 19.7 215 167 246
Qwen2.5-VL-7B (Qwen et al.|2025) 339 15.6 248 178 277
Qwen2.5-VL-7B-SFT 345 158 253 182 283
Sparse Attention Methods

+ Tri-Shape (Li et al.][2024c) 341 163 25.1 20.0 284
+ Minference (Jiang et al.[[2024) 323 171 277 167 260
+ FlexPrefill (Lai et al.[[2025) 33.0 159 263 19.8 283
+ XAttention (Xu et al.|[2025a) 345 16.6 25.6 20.5 289
VideoNSA 354 169 263 19.1 294

Table 14: LongVideoBranch results across different branch selection strategy. Metrics include over-
all accuracy and task-specific scores across different steps.

Method Overall 600 TOS S2E E3E S2A SAA 030 T30 T3E O2E T20 S20 TAA T2E E20 SSS T2A 60 SOS 15 3600
VideoNSA + Test SFT  56.1 57.0 46.6 59.1 61.7 69.3 56.9 63.6 52.7 50.7 56.3 59.2 59.7 43.9 554 64.6 38.1 58.2 704 60.5 65.1 48.1
NSA-CMP 48.1 50.5 384 51.6 564 53.4 50.0 45.5 51.4 41.1 54.0 42.1 43.1 45.1 47.7 53.9 268 53.2 552 64.2 47.6 44.3
NSA-SLC 484 490 329 61.3 59.6 58.0 52.8 485 46.0 43.8 529 36.8 47.2 42.7 44.6 554 33.0 48.1 53.5 55.6 50.3 45.7
NSA-SWA 49.1 50.7 37.0 52.7 56.4 59.1 51.4 48.5 432 452 552 42.1 48.6 45.1 46.2 61.5 30.9 45.6 54.1 654 48.7 46.5
NSA-CMPSLC 49.4 495 343 559 61.7 58.0 56.9 48.5 473 41.1 56.3 35.5 52.8 47.6 46.2 55.4 34.0 41.8 54.1 63.0 48.2 482
NSA-SLCSWA 493 488 329 58.1 61.7 55.7 52.8 47.0 46.0 46.6 54.0 34.2 48.6 47.6 477 54.0 35.1 48.1 54.1 64.2 492 482
NSA-CMPSWA 48.8 49.3 343 538 59.6 54.6 52.8 50.0 48.7 42.5 57.5 40.8 51.4 42.7 46.2 55.4 299 45.6 57.6 642 48.7 459

In addition to the overall scaling trends, we further report detailed subtask-level results under differ-
ent allocation settings in Table[20] Table 2T} Table 22} Table 23] Table[24] and Table

K ADDITIONAL CONTEXT-LENGTH SCALING RESULTS OF QWEN2.5-VL

We include Table 26]and Table 27]to further illustrate the long-context behavior of the base model.
Since Qwen2.5-VL 7B (Qwen et al] [2023) has a maximum context window of 128k, its modeling
ability tends to become less stable when approaching this upper bound. As shown in Figure [K]
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Figure 11: Attention pattern of the selection branch in the final layer of VideoNSA.

Qwen2.5-VL (Qwen et al] [2023) often peaks at 64k and slightly declines at 128k across several
benchmarks. In contrast, VideoNSA maintains stable or stronger performance at 128k, demonstrat-
ing that the observed 64k > 128k phenomenon arises from backbone limitations rather than the
proposed sparse architecture.

L MORE RESULTS ON ATTENTION SCALING STUDY

Figure[T6|evaluates the scaling behavior of VideoNSA under different attention allocation strategies,
where the x-axis denotes the sliding window size (log scale), the y-axis shows the block count, and
the size and color of each marker reflect performance, with the dashed blue curve indicating config-
urations of equal attention budget and arrows marking the training setting as well as reduced-budget
configurations (3.6% and 1.8%); on LongVideoBench, performance peaks near the training con-
figuration and degrades when allocating excessive budget to local attention through larger sliding
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Figure 12: Attention pattern of the sliding window branch in the final layer of VideoNSA.

Layer 28 - Final Output
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Figure 13: Attention pattern of the final vision attention output in the final layer of VideoNSA.

windows, while the best configuration achieves strong results with only 3.6% of the full budget, and
on TimeScope, performance is even more sensitive, with larger sliding windows quickly reducing
accuracy whereas maintaining more global blocks yields superior outcomes, and overall the results
confirm that training allocations are well balanced, that prioritizing global attention is consistently
more effective than enlarging local windows under equal budget, and that VideoNSA sustains lead-
ing performance with as little as 3.6% or less of the full attention cost, demonstrating both efficiency
and hardware awareness.

In addition to the overall scaling trends, we further report detailed subtask-level results under differ-
ent allocation settings in Table 20} Table 2T} Table 22} Table 23] Table[24] and Table 23]

M THEORETICAL FOUNDATIONS OF SCALING BEHAVIOR
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Table 15: LongTimeScope results across different branch selection strategy. Metrics include overall
accuracy and task-specific scores across different steps.

18000 28800 36000
OCR QA Temporal OCR QA Temporal OCR QA Temporal
VideoNSA + Test SFT 409 52.0 420 420 480 62.0 18.0 42.0 500 120

Method Overall

NSA-CMP 25.1 20.0 22.0 240 38.0 40.0 0.0 340 34.0 14.0
NSA-SLC 37.1 30.0 38.0 400 500 58.0 12.0 42.0 440 20.0
NSA-SWA 29.8 34.0 340 220 36.0 46.0 4.0 340 46.0 12.0
NSA-CMPSLC 324 36.0 340 240 46.0 54.0 8.0 42.0 36.0 120
NSA-SLCSWA 344 38.0 360 360 46.0 56.0 8.0 38.0 36.0 16.0
NSA-CMPSWA 31.6 30.0 38.0 200 400 520 16.0 36.0 36.0 16.0
VideoNSA 444 500 540 30.0 540 72.0 0.0 48.0 76.0 16.0

Table 16: TimeScope results across different branch selection strategy. Metrics include overall
accuracy and task-specific scores across different steps.

Method Overall 60 120 180 300 600 1200 1800 3600 7200 10800
Full Attn 81.0 96.7 96.0 96.0 94.7 94.0 88.0 82.0 68.7 527 413
Flash Attn 81.0 96.7 96.0 96.0 94.7 94.0 88.0 82.0 68.7 527 413
Flash Attn + SFT 76.8 96.7 96.7 96.0 95.3 90.7 78.0 78.0 54.7 41.3 40.7
AWQ - - — — — — - - — — -
XAttn 83.1 94.0 934 934 92.0 92.7 894 82.7 727 70.7 50.7
Minference 827 93.4 94.0 93.4 92.0 92.7 874 80.0 740 70.0 50.0
tri-shape 827 934 94.0 93.4 92.0 92.7 874 80.0 740 70.0 50.0
FlexPrefill 83.0 96.7 96.0 96.7 953 96.0 953 86.0 773 553 353
FastV 46.5 82.7 76.0 74.0 54.0 32.7 32.7 293 293 34.0 20.0
VisionZip 435 92.0 66.7 60.0 43.3 353 26.0 30.7 29.3 28.0 233
VScan 80.3 96.7 96.7 96.0 93.3 92.7 89.3 813 60.0 553 413
Retake - - - - - - - - - - -
AdaRetake

SFT + Test NSA  81.0 96.7 96.0 96.0 94.7 94.0 88.0 82.0 68.7 52.7 41.3
NSA + Test SFT  83.0 96.7 953 94.0 93.3 94.0 90.7 873 76.7 5477 473

NSA-CMP 415 82.0 74.0 653 59.3 17.3 253 193 267 273 18.0
NSA-SLC 63.7 92.0 86.0 86.7 78.0 66.7 57.3 513 40.7 38.0 40.0
NSA-SWA 59.3

NSA-CMPSLC 573 88.7 80.0 73.3 73.3 46.7 44.7 487 4277 433 32.0
NSA-SLCSWA 65.2 92.0 89.3 89.3 793 66.0 59.3 50.0 41.3 40.7 44.7
NSA-CMPSWA 573 88.7 80.0 73.3 733 46.7 4477 48.7 4277 433 320
VideoNSA 83.7 96.7 96.0 97.4 92.0 854 91.6 89.3 733 633 52.0

&
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Table 17: MLVU results across different branch selection strategy. Metrics include overall accuracy
and task-specific scores across different steps.

Method Overall PlotQA Needle Ego Count Order Anomaly Reco Topic Reason. SportsQA TutorialQA
NSA + Test SFT 516  56.0 61.7 66.0 31.7 286 51.3 80.2 36.1 32.6
NSA-CMP 439 36.0 350 429 - 243 30.8 80.2 30.6 -
NSA-SLC 477 500 500 524 - 229 333 74.7 333 -
NSA-SWA 402  40.0 400 415 150 243 30.8 76.9 36.1 349
NSA-SLCSWA 424 420 483 453 167 25.7 38.5 75.8 333 349
NSA-CMPSWA 434 460 40.0 434 183 35.7 333 82.4 27.8 32.6

Table 18: Tomato results across different branch selection strategy. Metrics include overall accuracy
and task-specific scores across different steps.

Method Overall Direction Count Rotation Shape & Trend Vel. & Freq. Visual Cues Human Simulated Object
NSA + Test SFT  23.4 21.3 29.1 17.5 25.1 20.0 40.0 19.3 19.3 28.5
NSA-CMP 233 22.1 29.5 17.1 24.7 20.5 34.3 19.2 22.7 27.3
NSA-SLC 24.0 21.3 322 16.4 26.0 229 329 19.8 21.5 28.7
NSA-SWA 24.0 21.3 322 16.4 26.0 229 329 19.8 21.5 28.7
NSA-CMPSLC 235 20.8 29.8 18.5 229 23.8 34.3 19.0 26.8 25.8
NSA-SLCSWA  23.0 20.6 27.4 18.5 224 24.8 329 19.5 21.0 26.8
NSA-CMPSWA 245 23.1 30.8 18.9 25.1 229 329 21.0 23.6 28.0
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Figure 14: Scaling Performance of VideoNSA under Different Context Allocation Strategies. We
highlight the token budget constraint to indicate settings with equal context length, and annotate the
best-performing configuration under each benchmark.

Here, @, and Z; denote the query and key representations at positions n and j, respectively. If the
model can consmently focus its attention on the task-relevant target token set 7 during inference,
then (i) Z]’GT Attn,,_, ; should dominate across different positions; and (ii) the attention assigned to
the same key token j should remain nearly unchanged under positional shifts, i.e.,

Ai = Attnnﬁj — Attnnﬂ-ﬁj ~ 0,
where A; measures the deviation of routing paths across positions in long sequences.

When we scale the context length using dense temporal and spatial sampling, the sparse-attention
pattern and mask structure M remain unchanged, which means the model continues to use the rout-
ing structure learned during training while simply facing a larger pool of candidate evidence. Since
denser sampling mainly introduces redundant or finer-grained details, the model treats these tokens
as auxiliary evidence, leaving the core target tokens and their relative attention weights essentially
unchanged. Consequently, the overall routing-path structure is preserved, A; remains small, and the
model can maintain or even improve its performance at longer context lengths.

In contrast, attention-budget scaling explicitly modifies the set of visible tokens in the sparse-
attention mechanism by replacing the original mask M with a new mask M’. The effective query

becomes
Qe = Q © M,
where © denotes elementwise multiplication, and the corresponding new attention weight is
T —~ s
Attn), 5 o< exp(Z; (Q © M")).
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Table 19: VSIBench results across different branch selection strategy. Metrics include overall accu-
racy and task-specific scores across different steps.

Method Overall Obj. Order Abs. Dist. Counting Rel. Dist. Size Est. Room Est. Route Plan. Rel. Dir.
NSA + Test SFT  33.1 243 19.8 31.2 38.0 49.8 322 32.5 37.2
NSA-CMP 29.2 19.9 16.3 12.6 29.3 48.7 26.7 38.1 41.7
NSA-SLC 27.6 18.0 10.9 17.3 32.0 47.8 24.8 32.0 38.1
NSA-SWA 29.8 22.8 15.6 17.4 32.3 49.8 27.2 335 39.4
NSA-CMPSLC 294 19.9 16.3 15.1 31.0 51.1 25.5 335 42.6
NSA-SLCSWA  29.1 19.9 12.2 18.5 31.4 49.6 26.5 34.0 404
NSA-CMPSWA  30.3 22.5 15.6 15.3 31.1 52.5 26.7 35.1 433

Table 20: Ablation study results on information scaling of LongTimeScope (Zohar et al., [2025).
Metrics include overall accuracy and task-specific scores across different steps. # TPF stands for
token per frame, and # F stands for sampling frame number.

4TPF #F Overall 18000 28800 36000
OCR QA Temporal OCR QA Temporal OCR QA Temporal
256 128 429 54.0 48.0 36.0 46.0 62.0 6.0 40.0 80.0 14.0
512 128 41.1 54.0 60.0 28.0 42.0 62.0 4.0 40.0 78.0 2.0
128 256 420 58.0 56.0 26.0 46.0 62.0 2.0 40.0 78.0 10.0
256 256 41.3 58.0 52.0 36.0 48.0 62.0 0.0 40.0 70.0 6.0
512 256 41.6 540 56.0 32.0 46.0 60.0 2.0 40.0 78.0 6.0
64 512 40.2 52.0 520 26.0 44.0 64.0 2.0 44.0 76.0 2.0
128 512 444 50.0 540 300 54.0 72.0 0.0 48.0 76.0 16.0
256 512 387 48.0 50.0 30.0 52.0 56.0 8.0 36.0 60.0 8.0
64 1024 41.6 54.0 56.0 22.0 46.0 66.0 4.0 36.0 72.0 18.0
128 1024 41.1 50.0 46.0 32.0 46.0 62.0 14.0 38.0 54.0 28.0
64 2048 384 500 62.0 26.0 40.0 60.0 2.0 38.0 42.0 26.0
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Table 21: Ablation study results on information scaling of TimeScope (Zohar et al.,|2025). Metrics
include overall accuracy and task-specific scores across different steps. # TPF stands for token per
frame, and # F stands for sampling frame number.

#TPF #F Overall 60 120 180 300 600 1200 1800 3600 7200 10800

256 128 73.1 96.7 947 934 854 720 62.6 57.3 56.6 540 58.6
512 128 725 954 94.0 92.7 82.0 72.7 64.6 57.3 563 533 56.6
128 256 765 98.0 97.4 96.0 86.7 78.7 78.0 63.3 58.6 540 54.0
256 256  76.1 96.7 96.7 914 86.7 76.0 74.6 64.0 62.0 56.0 56.6
512 256 758 954 94.7 90.7 86.7 76.0 753 66.0 62.6 533 57.3
64 512 785 96.7 954 947 88.0 80.7 82.6 71.3 62.0 58.0 553
128 512 765 98.0 97.4 96.0 86.7 78.7 78.0 63.3 58.6 540 54.0
256 512 773 96.7 96.7 90.7 83.4 76.7 78.0 72.0 66.6 593 52.6
64 1024 81.7 96.7 95.4 94.7 90.0 84.7 88.0 78.0 69.3 64.0 56.6
128 1024 81.8 98.0 97.4 94.0 854 80.7 92.0 78.0 72.6 66.0 54.0
64 2048 8277 96.7 954 94.7 90.0 82.0 91.3 88.0 73.3 633 52.0

Table 22: Ablation study results on information scaling of LongVideoBench (Wu et al., [2024).
Metrics include overall accuracy and task-specific scores across different steps. # TPF stands for
token per frame, and # F stands for sampling frame number.

#TPF #F |Overall 600.0 TOS S2E E3E S2A SAA 030 T30 T3E O2E T20 S20 TAA T2E E20 SSS T2A 60.0 SOS 15.0 3600.0

512 64 | 583 555 44.0 67.2 66.6 71.8 57.0 54.0 48.9 50.8 59.9 55.7 63.9 53.3 57.8 70.1 37.9 60.2 68.1 71.2 65.7 549
128 128 | 57.4 56.8 454 66.1 66.6 69.5 61.2 555 53.0 49.5 59.9 51.7 542 47.2 57.8 68.5 40.0 58.9 68.6 70.0 63.6 52.4
256 128 | 579 585 48.1 69.4 66.6 70.6 58.4 55.5 53.0 48.1 57.6 47.8 542 49.7 59.3 68.5 40.0 652 68.1 70.0 63.1 52.6
512 128 | 59.0 594 495 683 66.6 729 639 54.0 53.0 49.5 61.0 51.7 61.2 509 56.2 68.5 39.0 64.0 68.6 71.2 63.6 542
128 256 | 58.7 52.7 46.7 68.3 655 69.5 57.0 52.5 53.0 48.1 56.4 46.5 51.4 48.5 57.8 67.0 37.9 652 63.4 70.0 58.3 52.7
256 256 | 582 587 399 64.0 66.6 71.8 58.4 54.0 59.7 52.2 59.9 55.7 584 509 56.2 70.1 40.0 614 669 68.7 63.1 53.5
512 256 | 594 604 522 67.2 655 752 612 54.0 557 52.2 622 53.1 62.6 49.7 56.2 68.5 35.9 652 67.5 724 65.7 54.0
64 512 | 57.7 582 413 672 68.7 650 584 585 543 522 622 49.1 58.4 533 624 71.6 359 55.1 66.3 68.7 61.5 53.5
128 512 | 585 594 426 68.3 66.6 69.5 59.8 60.0 57.0 52.2 64.5 50.4 59.8 52.1 59.3 68.5 359 60.2 65.7 68.7 63.6 54.0
256 512 | 583 59.2 44.0 64.0 645 71.8 653 52.5 557 55.0 61.0 544 62.6 49.7 593 71.6 37.9 56.4 669 67.5 63.1 53.5
64 1024 | 584 594 426 65.1 68.7 66.1 62.6 555 584 49.5 64.5 544 584 509 59.3 747 369 57.6 66.3 68.7 61.5 54.2
128 1024| 58.7 585 413 672 68.7 71.8 653 60.0 59.7 52.2 59.9 53.1 62.6 47.2 59.3 71.6 32.8 60.2 65.7 67.5 63.6 55.1
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Figure 16: Scaling Performance of VideoNSA under Different Attention Allocation Strategies. We
highlight the attention budget constraint to indicate settings with equal attention budget, and annotate
the best-performing configuration under each benchmark.
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Table 23: Ablation study results on information scaling of MLVU (Zhou et al., [2024). Metrics
include overall accuracy and task-specific scores across different steps. # TPF stands for token per
frame, and # F stands for sampling frame number.

#TPF #F \Overall PlotQA Needle Ego Count Order Anomaly Reco Topic Reason. SportsQA Tutorial QA

256 128 | 49.6 460 527 532 243 36.0 47.0 87.3 36.6 36.2
512 128 | 49.2 520 51.0 475 243 374 39.3 87.3 42.1 339
128 256 | 50.6 500 577 60.7 243 33.1 39.3 86.2 42.1 36.2
256 256 | 51.2 500 560 569 27.7 389 41.9 85.1 42.1 36.2
512 256 | 48.0 540 493 494 227 374 39.3 86.2 33.8 29.3
64 512 | 512 500 627 55.1 243 346 47.0 84.0 42.1 38.6
128 512 | 51.8 480 693 513 277 346 44.5 86.2 47.7 31.6
256 512 | 48.6 50.0 51.0 475 243 33.1 522 84.0 4717 26.9
64 1024| 51.8 56.0 66.0 532 260 36.0 47.0 84.0 42.1 31.6
128 1024| 480 520 51.0 494 293 33.1 44.5 80.7 449 24.6

Table 24: Ablation study results on information scaling of Tomato (Shangguan et al.}[2024). Metrics
include overall accuracy and task-specific scores across different steps. # TPF stands for token per
frame, and # F stands for sampling frame number.

FPS TPF|Overall Direction Count Rotation Shape&Trend Velocity&Freq. Visual Cues Human Simulated Object

1 64 | 247 22.8 26.7 20.6 25.1 27.1 343 21.2 232 28.4
1 128 239 20.6 29.8 19.9 24.7 23.8 329 19.8 24.0 27.6
1 256 247 22.3 29.5 19.6 25.1 25.2 35.7 20.8 233 28.7
1 512 239 20.6 29.8 19.9 24.7 229 343 20.3 21.5 279
2 64| 245 21.1 31.8 19.6 22.4 25.7 35.7 20.7 21.9 28.8
2 128 | 243 20.6 30.5 20.3 24.7 23.3 38.6 20.7 223 28.4
2 256 244 21.3 29.5 18.5 26.5 24.8 37.1 20.3 24.0 28.2
2 512 247 19.4 322 213 25.6 23.8 37.1 20.0 24.0 29.1
4 64| 251 22.1 315 19.6 26.5 233 38.6 21.2 25.0 29.0
4 128 258 21.8 332 213 25.6 25.7 37.1 21.5 253 29.9
4 256 262 23.1 325 20.6 26.9 26.7 37.1 21.8 25.3 30.5
4 512| 265 21.6 315 22.0 25.6 233 40.0 21.7 23.6 29.3

where R(iw) is a rotation matrix and w denotes the frequency parameters. This yields an inner
product that depends only on the relative distance between the two positions:

(i), K (5)) = (R((i = j)w)a. k).

RoPE therefore establishes a structured geometric correspondence between relative
distance and rotation phase. Under this geometry, when the context length is moderately increased
(e.g., from 36K to 64K), the model only needs to resolve a larger phase difference dw; within
this range, the growth of the phase still lies in the extrapolation regime covered by the empirical
distribution seen during training. As a result, the model can naturally generalize.

LM-Infinite (Han et al] [2023) further proves that, in order to distinguish the growing clusters of

relative distances «(n), the attention logit must increase monotonically with sequence length:

) 1/(2r) -
sup |w(q,k,d)| > <”(”>> -

q,k,d<n 2 de

where w(q, k, d) denotes the logit at relative distance d, and «(n) grows with n. This “logit growth”
is controlled and beneficial at moderate lengths, expanding the dynamic range of attention and en-
abling the model to maintain token separability over larger distances and consistenting with the
strong performance we observe around 64K.

However, when the effective phase difference dw becomes excessively large, the rotation angle
may approach or exceed the periodic range of multiple frequency dimensions, giving rise to phase
aliasing: tokens that should correspond to distinct relative distances collapse into similar or even in-
distinguishable phase regions. In such cases, although attention logits continue to grow with length,
the high-frequency components of RoPE lose their discriminative resolution, reducing geometric
separability among tokens, which aligns with existing analyses (Press et al ] [2021} [Chen et al} 2023))

showing the degradation of relative positional encoding at extreme distances.

29



Under review as a conference paper at ICLR 2026

Table 25: Ablation study results on information scaling of VSIBench (Yang et al.,2025a). Metrics
include overall accuracy and task-specific scores across different steps. # TPF stands for token per
frame, and # F stands for sampling frame number.

TPF # Max Frames | Overall Obj. Order Abs. Dist. Counting Rel. Dist. Size Est. Room Est. Route Plan. Rel. Dir.

512 32 349 27.6 16.2 314 35.1 522 31.5 40.1 44.6
512 64 34.8 29.1 17.5 34.9 33.0 522 31.0 36.5 439
256 128 36.0 24.7 17.6 41.3 37.5 539 30.7 39.1 433
512 128 34.6 27.4 17.2 373 34.4 50.3 30.6 355 43.8
128 256 35.6 26.8 17.0 42.0 36.8 51.8 31.2 35.0 442
256 256 355 27.8 17.0 42.4 337 51.3 31.6 355 44.5
512 256 34.8 28.2 16.5 40.3 339 48.8 30.7 36.5 433
64 512 342 29.1 15.8 42.1 33.9 45.5 27.7 37.0 429
128 512 36.0 255 19.0 42.5 354 54.0 30.1 37.5 43.6
256 512 339 28.2 15.8 42.9 31.3 43.6 29.9 36.5 43.1
64 1024 35.8 24.4 18.5 46.4 34.4 52.4 29.7 37.5 43.0
128 1024 35.7 26.6 18.4 453 327 50.3 31.7 37.0 43.7

Table 26:

Context LVB MLVU TimeScope LTS VSIBench

32k 58.1 50.5 80.33 344 35.1
64k 59.7 512 81.13  40.7 29.7
128k 587 48.0 81.00  39.7 29.3

N FULL GATE VALUES DISTRIBUTION
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Table 27: Performance of VideoNSA under different context lengths.

Context LVB

MLVU TimeScope LTS VSIBench

32k 58.7
64k 59.4
128k 60.0

50.6
51.8
48.7

78.5
81.7
83.7

41.1
44.4
42.9

36.0
36.6
35.7

Table 28: LongTimeScope (Zohar et al., 2025) results across different attention budget strategy.
Metrics include overall accuracy and task-specific scores across different steps.

Block Count Window Size Overall

18000

28800

36000

OCR

QA Temporal

OCR

QA Temporal OCR

QA Temporal

36
35
34
28
20
4

16
64

32

64

128
512

1024
1900

128
512

44.0
44.0
41.8
42.0
40.9
0.0
41.6
42.4

56.0
54.0
50.0
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52.0
52.0
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58.0 26.0
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P BENCHMARK-LEVEL GATING ANALYSIS AND PCA VISUALIZATION
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In this section, we provide additional evidence that VideoNSA’s routing strategy depends on input
video content rather than layer depth alone. We collect the layer—head gate vectors for represen-
tative videos from three benchmarks with distinct visual properties (LongTimeScope (Zohar et al |
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Table 29: TimeScope (Zohar et al., 2025) results across different attention budget strategy. Metrics
include overall accuracy and task-specific scores across different steps.

Block Count Window Size Overall 60 120 180 300 600 1200 1800 3600 7200 10800

36 32 81.6 974 97.4 96.7 854 827 863 853 713 60.6 52.7
35 64 824 927 913 92.7 914 834 91.6 913 746 633 520
34 128 822 96.7 96.7 947 89.4 82.0 883 853 76.6 60.0 52.7
28 512 82.8 947 974 947 90.7 82.7 91.6 88.6 740 633 500
20 1024 83.2 96.7 974 974 88.7 854 89.0 84.6 78.6 58.6 553
4 1900 86 47 47 47 47 47 123 133 133 133 10.0
10 512 599 47 47 947 88.7 794 85.6 80.0 68.0 58.0 353
40 1024 83.7 96.7 96.0 97.4 92.0 854 91.6 89.3 733 633 52.0

Table 30: LongVideoBench (Wu et al.,[2024) results across different attention budget strategy. Met-
rics include overall accuracy and task-specific scores across different steps.

Block Count Window Size | Overall 600.0 TOS S2E E3E S2A SAA 030 T30 T3E O2E T20 S20 TAA T2E E20 SSS T2A 60.0 SOS 15.0 3600.0

36 32 599 57.7 48.1 64.0 66.6 729 55.6 52.5 584 57.7 59.9 54.4 709 52.1 56.2 70.1 32.8 66.5 67.5 72.4 652 56.1
35 64 60.1 587 48.1 64.0 65.5 752 57.0 55.5 59.7 59.1 58.7 55.7 66.7 49.7 56.2 70.1 34.8 65.2 66.9 73.7 65.7 559
34 128 602 599 48.1 65.1 67.6 74.1 556 55.5 584 56.3 62.2 57.0 63.9 533 56.2 71.6 359 62.7 67.5 72.4 66.3 55.1
28 512 59.4 604 46.7 62.9 66.6 74.1 584 52.5 54.3 56.3 64.5 557 59.8 49.7 56.2 79.3 34.8 61.4 67.5 68.7 64.1 53.3
20 1024 59.6  60.6 454 66.1 66.6 729 59.8 54.0 54.3 55.0 64.5 57.0 584 509 56.2 80.9 32.8 62.7 69.2 67.5 63.6 53.1
4 1900 283 27.6 234 242 357 252 320 29.7 27.3 24.8 31.1 30.7 334 351 27.0 285 26.6 19.7 274 28.0 27.1 29.7
17 64 594 58.0 46.7 62.9 655 74.1 55.6 52.5 584 57.7 58.7 57.0 66.7 50.9 56.2 71.6 30.7 64.0 68.1 72.4 657 542

2023) for multi-shot transitions, Tomato (Shangguan et al} 2024)) for high-frequency motion, and
VSIBench (Yang et al} 2023a)) for complex spatial layouts) and project the gate vectors into a 2D
space using PCA.

As shown in Figure@ the gate patterns form three clearly separated clusters, regardless of whether
we use the compression branch, the selection branch, or the sliding-window branch, which indicates
that VideoNSA learns benchmark-specific routing strategies conditioned on visual content, rather
than following a fixed depth pattern.

To further isolate the role of input-driven routing, we replace each layer’s gate with a static value
averaged from a 1K training subset, forcing the model to depend only on layer depth. As shown in
Table[34} the performance drops across all six benchmarks, especially on tasks requiring long-range
temporal integration, confirming that dynamic gating is essential.

Q ADDITIONAL ANALYSIS OF TRAINING AND INFERENCE EFFICIENCY

To complement the efficiency discussion in the main paper, we provide additional analysis of both
FLOPs and wall-clock latency across different attention mechanisms and context lengths.

Training Efficiency. Under identical optimization settings, training VideoNSA requires approx-
imately 4600 H100 GPU hours, while the dense baseline requires 5280 H100 GPU hours. This
corresponds to 0.87x of the dense baseline, indicating that VideoNSA achieves slightly improved
training efficiency despite using a more complex attention mechanism.

Inference Efficiency. Table[33]presents the theoretical FLOPs of different attention mechanisms.
In the ideal case, NSA requires only 2.05 PFLOPs, which is 0.24 x that of Flash Attention, demon-
strating the theoretical computational efficiency of the sparse routing structure. However, the actual
FLOPs and wall-clock latency of VideoNSA are higher than this ideal value due to implementation
constraints in the current NSA kernel. The Qwen2.5-VL 7B (Qwen et al} 2023) adopts an unusual
head configuration of 4 KV heads and 28 query heads. To satisfy Triton kernel requirements, the
query heads must be padded to 64, which introduces additional computation and memory access
overhead. As a result, the practical efficiency of VideoNSA deviates from its theoretical FLOPs ad-
vantage. As shown in Figure@ VideoNSA’s latency grows much more slowly than dense attention,
and compared with other sparse baselines, it delivers competitive inference speed while achieving
stronger model performance.
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Table 31: MLVU (Zhou et al., 2024) results across different attention budget strategy. Metrics
include overall accuracy and task-specific scores across different steps.

Block Count Window Size‘Overall Direction Count Rotation Shape&Trend Velocity&Freq. Visual Cues Human Simulated Object

32 256 26.5 21.6 31,5 220 25.6 23.3 40.0 21.7 23.6 29.3
36 32 259 21.6 32.5 19.2 25.1 25.5 37.1 21.4 21.5 29.2
35 64 27.1 23.8 339 206 25.6 25.5 37.1 22.1 242 30.8
34 128 27.2 23.8 342 203 25.1 25.5 38.6 21.9 242 30.8
28 512 26.1 21.8 322 19.2 24.7 27.5 37.1 22.1 22.4 28.2
20 1024 25.1 20.6 30.8 17.5 23.3 29.4 34.3 21.4 23.3 25.6
64 512 25.3 21.3 30.5 19.6 242 27.5 329 21.4 229 27.4
4 2048 26.4 21.8 33.6 203 25.6 27.5 329 21.8 24.7 29.4
16 128 21.4 19.5 17.5 202 21.0 30.0 28.8 17.8 17.6 20.6

Table 32: Tomato (Shangguan et al., 2024) results across different attention budget strategy. Metrics
include overall accuracy and task-specific scores across different steps.

Block Count Window Size‘Overa.ll Direction Count Rotation Shape&Trend Velocity&Freq. Visual Cues Human Simulated Object

36 32 259 21.6 32.5 19.2 25.1 25.5 37.1 21.4 21.5 29.2
35 64 27.1 23.8 339 206 25.6 25.5 37.1 22.1 242 30.8
34 128 27.2 23.8 342 203 25.1 25.5 38.6 21.9 242 30.8
28 512 26.1 21.8 322 19.2 24.7 27.5 37.1 22.1 22.4 28.2
20 1024 25.1 20.6 30.8 17.5 23.3 29.4 34.3 21.4 233 25.6
64 512 25.3 21.3 30.5 19.6 24.2 27.5 329 21.4 229 27.4
4 2048 26.4 21.8 33.6 203 25.6 27.5 329 21.8 24.7 29.4
16 128 21.4 19.5 17.5 20.2 21.0 30.0 28.8 17.8 17.6 20.6

R ADDITIONAL ANALYSIS ON CMP LATENCY BOTTLENECK

In this section, we provide additional analysis supporting the observation in findings that the CMP
branch becomes the dominant source of latency as the context length increases.

Since the block size determines how many CMP operations are executed, we vary the block size and
measure the resulting latency across multiple context lengths. As summarized in Table[3¢] although
increasing the block size reduces the number of CMP executions, the overall latency improvement
remains small. Smaller blocks are dominated by memory-access overhead, while larger blocks incur
higher computation per block. As a result, block-size scaling affects latency only moderately within
a narrow range and does not change the overall scaling trend.

We also observe that the most significant acceleration comes from more efficient NSA implementa-
tions instead of architectural hyperparameters. As shown in Table[37] the flash-nsa (mdy666]
implementation runs about twice as fast as our current nsa-impl in the forward
pass and up to six times faster in the backward pass. Other teams are also developing improved
kernels such as optimizing NSA for TPUs (Ko] 2023). These findings show that the dominant factor
affecting CMP and overall NSA latency comes from kernel efficiency, including memory access
patterns and kernel design.

S MORE ANALYSIS ABOUT ATTENTION SINKS ON VARIOUS SPARSE
ATTENTION SETTINGS

Figure[274]indicates that in the compression branch, smaller blocks produce sharper and higher sink
peaks at the sequence start, while larger blocks used in training reduce the initial peak but introduce
broader low-density diffusion with periodic boundary spikes. The selection sinks in [27b] remain at
consistently low densities under different configurations, suggesting that the top-k filtering mecha-
nism robustly suppresses sink formation across different settings. Figure 27] shows the distribution
of attention sinks under different sparse attention settings. When varying the window size, sinks
are concentrated near the beginning and decay rapidly with position. Overall, larger windows yield
lower sink density but broader coverage, while the training configuration (w = 256) strikes a mid-
dle ground and exhibits sparse periodic clusters in the mid-to-late sequence, reflecting sensitivity to
local boundaries learned during training.
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Table 33: VSIBench (Yang et al., 2025a)) results across different attention budget strategy. Metrics
include overall accuracy and task-specific scores across different steps.

Block Count Window Size | Overall Appearance Abs. Dist. Counting Rel. Dist. Size Est. Room Est. Route Plan. Rel. Dir.

28 512 36.0 23.9 18.2 45.5 36.9 54.1 29.8 36.0 434
20 1024 359 24.0 18.5 46.8 36.7 53.6 29.0 36.5 42.0
4 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
34 128 35.5 24.7 18.7 37.8 36.2 539 31.7 36.0 452
35 64 354 25.5 204 332 354 53.6 315 38.1 46.0
36 32 34.9 25.3 20.6 28.4 36.0 54.4 30.9 38.1 459
36 62 35.3 25.2 20.5 28.3 35.8 54.7 31.0 41.1 46.1
16 128 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
64 512 35.8 23.6 18.3 459 36.8 54.2 293 36.5 423
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T DISCUSSION ON MODALITY-SPECIFIC SPARSITY

To further contextualize the modality-specific sparsity patterns exhibited by VideoNSA, we compare
its behavior with the text-only NSA (Pai et al} 2025a) used in language models. As shown in
Figure 28] the text-only NSA (Pal et al] [2025a)) displays a distinct gating dynamic. The sliding-
window branch gradually becomes dominant in deeper layers, while the compression and selection
branches diminish rapidly and remain almost inactive throughout most of the network. This pattern
reflects the one-dimensional and relatively uniform nature of textual sequences, where long-range
interactions are sparse and stable, and the model tends to converge toward a single prevailing routing
path. The text-only NSA [20234) also presents a noticeable anomaly in the final layer,
where all three branches suddenly become active again despite having remained largely inactive in

34




1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 34: Ablation on static gates averaged over a 1K training subset.

Model Long Video Understanding Temporal Reasoning Spatial Understanding
LongVideoBench MLVUr.,; TimeScope LongTimeScope Tomato VSIBench
Qwen2.5-VL-7B 58.7 51.2 81.0 40.7 22.6 29.7
VideoNSA 594 (+1.1%) 51.8 (+1.2%)82.7 (+2.1%) 44.4 (+9.1%) 26.2 (+15.9%) 36.1 (+20.3%)
VideoNSA+ Static Gate 58.4 (-0.5%) 51.2 (0.0%) 81.2 (+0.2%) 41.5 (+2.0%) 23.7 (+4.8%) 31.8 (+7.1%)

Table 35: Theoretical FLOPs comparison among different attention mechanisms. “VideoNSA
(ideal)” denotes the theoretical FLOPs of NSA without query-head padding.

Method FLOPs Relative
Flash Attention 8.40PF 1.00x
Tri-shape 7.07PF 0.84x
Milnference 4.13PF 0.49x
Flexprefill 7.75PF 0.92x
XAttention 1.94 PF 0.23x
VideoNSA (ideal) 2.05PF 0.24x
VideoNSA 468 PF  0.56x
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Figure 26: Inference efficiency comparison across attention mechanisms.

previous layers. This behavior suggests a late-stage shift in inductive patterns that is characteristic of
language modeling. In contrast, VideoNSA, as shown in Figure[[7} maintains active and balanced
usage of all three branches across nearly the entire depth of the network, with the compression
branch playing a consistently prominent role.

The inter-head similarities further highlight the divergence between the two modalities. The text-
only NSA [20234) in Figure29)exhibits strong correlations across heads in the early layers,
which indicates a set of conserved induction-like operations. Later in the model, selection and slid-
ing window gate values become decorrelated across heads. VideoNSA, as shown in Section[O} how-
ever, displays substantially weaker cross-head correlations overall, and only a few mid-layer clusters
emerge in the selection and sliding-window branches. These findings imply that VideoNSA adjusts
its sparse routing behavior to accommodate the rich spatiotemporal redundancy and multi-scale
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Table 36: CMP latency under different block sizes and context lengths.

Block Size | 4k 8k 16k 32k 64k 128k

32 10.868 1.022 1.311 1.982 3.698 8.343
64 10.882 1.036 1.322 1.997 3.687 8.323
128 0.880 1.027 1.308 1.993 3.705 8.353

Table 37: Latency comparison between different NSA implementations at 8k context length.

Implementation forward backward
nsa-impl (Pai et al| [2025a) = 5.402  32.826
flash-nsa (mdy666, [2025) =~ 2.429 5.537
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Figure 27: Attention sink distributions across the three branches under
different sparse settings.

structure of video inputs, rather than collapsing into a single dominant pathway as observed in the
text-only model.
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NSA Gate Value Distributions Across Layers
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Figure 28: Layer-wise gate distributions of text-only NSA (Pai et al.}[2025a).
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Figure 29: Inter-head gate similarities of text-only NSA (Pai et al}[2025a)).
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