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ABSTRACT

Video understanding in multimodal language models remains limited by context
length: models often miss key transition frames and struggle to maintain coher-
ence across long time scales. To address this, we adapt Native Sparse Attention
(NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-
VL through end-to-end training on a 216K video instruction dataset. We em-
ploy a hardware-aware hybrid approach to attention, preserving dense atten-
tion for text, while employing NSA for video. Compared to token-compression
and training-free sparse baselines, VideoNSA achieves competitive performance
on long-video understanding, temporal reasoning, and spatial benchmarks. Fur-
ther ablation analysis reveals four key findings: (1) reliable scaling to 128K to-
kens; (2) an optimal global–local attention allocation at a fixed budget; (3) task-
dependent branch usage patterns; and (4) the learnable combined sparse attention
help induce dynamic attention sinks.

1 INTRODUCTION

Key moments of a video can occur at any time, exemplified by soccer where game deciding moments
typically span seconds of a 90 minute game. Within those game deciding moments split second
actions define the outcome: an assist, a missed tackle, the movement of the keeper. Multimodal large
language models (MLLMs)(Team, 2025; Team et al., 2025b;a) have achieved substantial progress
in vision-language perception and reasoning, but still cannot match humans ability to extract and
reason about salient moments in videos. While humans naturally sample color visuals around 60hz,
(Kalloniatis & Luu, 2007) across large contexts, existing VLMs often sample a single frame per
second. Intuitively, increasing the context for these models by sampling more frames improves
accuracy (Cai et al., 2024; Wu et al., 2024), particularly for long videos and complex reasoning tasks.
However, this approach pays for improvement with additional tokens, increasing computational
complexity and pushing against fundamental limits of model context.

To address these challenges, many approaches (Wang et al., 2024; Li et al., 2024b; Jin et al., 2024;
Wang et al., 2025a; Yang et al., 2024) adopt token compression to reduce redundancy and increase
informative context. However, when applied to complex reasoning tasks, these compression-based
models perform worse compared to full-token methods (Song et al., 2025a). Moreover, compression
strategies often limit generalization through reduced perception and reasoning capacity (Wen et al.,
2025). In contrast, sparse attention mechanisms preserve tokens, but focus the models capabilities
on relevant dependencies between tokens. Numerous sparse attention methods have already been
employed in large language models (LLMs), but most are inadequate for video complexity (detailed
in Appendix A). Therefore, we present VideoNSA, which adopts Native Sparse Attention (Yuan
et al., 2025b), a learnable hardware-aware sparse attention mechanism proven to be effective in long-
context modeling. VideoNSA is the first learnable and hardware-aware sparse attention framework
tailored for video understanding, effectively scaling to ultra-long vision-text context. We apply the
learnable sparse attention to video token sequences, while preserving grouped-query attention for
text tokens. Following this pattern, our experiments show that using only 3.6% of the attention
budget on 128K context length while improving performance on various tasks

We further conduct massive experiments and analyses of VideoNSA , revealing several impor-
tant findings: (1) VideoNSA extrapolates effectively to contexts beyond its training length, and
the optimal balance between temporal density and spatial resolution is highly task dependent.
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(2) VideoNSA is also sensitive by attention scaling, with results remaining strongest near the training
configuration. (3) The gating distribution evolves dynamically across layers, and the selection and
sliding-window branches gradually lose importance in deeper layers. (4) The compression branch
emerges as the main computational bottleneck. (5)Moreover, the learned sparse attention weights
remain beneficial even under dense attention settings. (6) Learnable sparse attention induces dis-
tinctive attention sink behaviors across branches, with very few sinks in the selection branch and
periodic sink formation in the compression branch.

In particular, our paper makes the following contributions:

• We propose VideoNSA, a hardware-aware native sparse attention mechanism, and systematically
investigate its effectiveness for video understanding, scaling up to a 128K vision context length.

• We introduce hybrid sparse attention in VideoNSA, enabling flexible allocation of information
and attention budgets to achieve optimal performance across diverse task.

• We dynamically combine global and local attention through three complementary branches, which
effectively reduce attention sinks in long vision contexts.

2 VIDEONSA

2.1 PRELIMINARIES

Native sparse attention. Existing training-free sparse attention methods are rarely hardware
aligned, and typically don’t increase training efficiency. Native Sparse Attention (Yuan et al., 2025b)
(NSA) avoids computing attention between all key-value pairs (Kt,Vt), instead, for each query qt,
NSA dynamically constructs an information-dense KV cache subset. NSA combines three comple-
mentary cache branches with a learnable gate gct adaptively weighting each branch yielding ot:

ot =
∑

c∈{cmp, slc,win}

gct ·Attn
(
qt, K̃

c
t , Ṽ

c
t

)
. (1)

Token Compression (CMP) branch aggregates sequential blocks of keys into more coarse-grained,
single block-level representations K̃cmp

t via a learnable MLP φ:

K̃cmp
t = {φ(K[id+1:id+m]) | 0 ≤ i < ⌊ t−m

d
⌋}, (2)

where m is the block length, d is the stride.

Token Selection (SLC) branch preserves the most salient key-value blocks by computing importance
scores pslc’

t and selecting the indices of the top-n blocks:

It = {i | rank(pslc’
t [i]) ≤ n}. (3)

The final set of selected keys is formed by concatenating these top-ranked blocks:

K̃slc
t = Cat({K[im′+1:(i+1)m′] | i ∈ It}), (4)

where It is the set of selected indices, n is the number of blocks to retain.

Sliding Window (SWA) branch simply applies the standard sliding window attention, which retains
the fixed w most recent key-value pairs:

K̃swa
t = Kt−w+1:t, Ṽswa

t = Vt−w+1:t. (5)

Grouped query attention. In Multi-Head Attention (MHA), each query head has dedicated key–
value (KV) projections, which makes the KV cache scale with the number of heads and increases
inference cost. Grouped-Query Attention (GQA) (Ainslie et al., 2023) mitigates this by letting
multiple query heads share fewer KV heads. For each input {xi}Li=1, GQA partitions the h query
heads into g groups (1 ≤ g ≤ h). At a given timestep t, the output o(s)t for the s-th query head with
group index m(s) = ⌈sg/h⌉ is computed by applying attention to the shared keys and values as:

o
(s)
t = Attention(q(s)t ,K

(m(s))
≤t , V

(m(s))
≤t ) = softmax

(
(q

(s)
t )⊤K

(m(s))
≤t√

dk

)
V

(m(s))
≤t , (6)

2
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Figure 1: Overview of VideoNSA. Video frames are encoded into frame-level KV
blocks. VideoNSA utilizes three sparse attention branches during prefilling stage: compression
branch reduces redundancy via token averaging, selection branch identifies top-k important to-
kens, and sliding window branch enforces local temporal coverage. The outputs are combined
through dynamic gating before integration with text tokens for LLM decoding.

where q
(s)
i = xiW

(s)
q , k(m(s))

i = xiW
(m(s))
k , v(m(s))

i = xiW
(m(s))
v . The outputs ot from all heads

are concatenated by ot = [o
(1)
t , o

(2)
t , . . . , o

(h)
t ]. VideoNSA utilizes Qwen2.5-VL-7B (Bai et al.,

2025) as the backbone, with Qwen2.5-7B (Qwen et al., 2025) as the LLM decoder, which employs
GQA for efficient KV cache utilization using 28 query heads and 4 shared key/value heads.

2.2 ARCHITECTURE

Existing token compression methods (Yang et al., 2025d; Zhang et al., 2025c; Hyun et al., 2025;
Zhang et al., 2025h) suffer from irreversible information loss on complex tasks and don’t address
computational and latency bottlenecks in LLM video understanding. From the perspective of at-
tention as a message passing in a Graph Neural Network (Joshi, 2025; Pappone, 2025), it’s clear
this bottleneck is fundamental. Standard attention propagates information between nodes (tokens)
through edges (attention weights), with each token being updated by aggregating features from its
neighbors, weighted by attention scores. Training-free sparse attention often imposes a static adja-
cency matrix whose fixed subgraph connectivity restricts information flow. Conversely, NSA (Yuan
et al., 2025b) provides data-dependent sparsity that preserves edges necessary for a particular task.

We build VideoNSA upon Qwen2.5-VL-7B (Qwen et al., 2025), which incorporates a vision encoder
and adopts Qwen2.5-7B (Bai et al., 2025) as the LLM. As illustrated in Figure 1, VideoNSA intro-
duces a hybrid attention mechanism in the LLM across different modalities. At each layer l, we split
the input tokens X(l−1) into vision tokens X(l−1)

V and text tokens X(l−1)
T according to their position

IDs. For vision tokens, VideoNSA applies NSA (Yuan et al., 2025b) with a dedicated gate gct on each
head. We set the block size s equal to the token number per frame, and obtain the block-level rep-
resentation by averaging all tokens within the block. The vision attention output oV is dynamically
weighted by the compression, selection, and sliding window branches as:

o
(l)
V =

∑
c∈{cmp,slc,win}

gct Attn
(
qt, K̃

c
t , Ṽ

c
t

)
,

where gct is implemented as a two-layer MLP with a sigmoid activation.

The text attention output o(l)
T is computed using standard GQA (Ainslie et al., 2023) to preserve

instruction following capabilities. We obtain the final output o(l) of the layer l by concatenating:

o(l) = [o
(l)
V ; o

(l)
T ].
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Table 1: Results on long video understanding, temporal reasoning and spatial understanding tasks.
LVB, LTS for LongVideobench (Wu et al., 2024) and LongTimeScope (Zohar et al., 2025).

Model Long-form Video Temporal Spatial

LVB MLVUtest TimeScope LTS Tomato VSIBench

LLaVA-OneVision-7B (Li et al., 2024a) 56.3 – – – 25.5 32.4
LLaVA-Video-7B (Zhang et al., 2024c) 58.2 – 74.1 34.0 – 35.6
VideoLLaMA3-8B (Zhang et al., 2025a) 59.8 47.7 69.5 – – –
InternVL2.5-8B (Chen et al., 2024c) 60.0 – 55.8 – – –
Video-XL-2 (Qin et al., 2025b) 61.0 52.2 – – – –

Qwen2.5-VL-7B (Qwen et al., 2025) 58.7 51.2 81.0 40.7 22.6 29.7
Qwen2.5-VL-7B-AWQ (Team, 2024) 59.0 46.0 – – – 35.0
Qwen2.5-VL-7B-SFT 57.8 51.2 76.8 40.2 21.7 30.5
Token Compression Methods
+ FastV (Chen et al., 2024a) 57.3 41.8 46.5 35.6 21.6 32.0
+ VScan (Zhang et al., 2025b) 58.7 48.1 80.3 31.1 19.1 34.4
+ VisionZip (Yang et al., 2025c) 52.4 33.1 43.5 40.4 23.6 32.1
Sparse Attention Methods
+ Tri-Shape (Li et al., 2024c) 59.5 49.2 82.7 28.4 22.1 34.9
+ MInference (Jiang et al., 2024) 59.2 49.2 82.7 44.4 23.0 36.5
+ FlexPrefill (Lai et al., 2025) 58.4 46.0 83.0 39.1 23.7 34.0
+ XAttention (Xu et al., 2025a) 59.1 50.2 83.1 41.1 21.4 36.6

VideoNSA 60.0 51.8 83.7 44.4 26.5 36.1

2.3 TRAINING RECIPE

We conduct end-to-end training to adapt vision features for data-dependent sparse connectivity in the
language model. The training dataset of VideoNSA is constructed from LLaVA-Video-178K (Zhang
et al., 2024d) by filtering for question answer pairs at 4 fps and retaining videos with 350–550
frames, for a subset of 216K pairs. To emphasize sparse attention for temporal redundancy, we
constrain the maximum pixels per frame to 50,176, and the maximum context length per training
instance to 36K tokens. In VideoNSA, block size s is set to 64, block b is set to 32, and sliding
window size w is set to 256. We trained using SWIFT (Zhao et al., 2024), adapting the NSA (Yuan
et al., 2025b) implementation from FLA (Yang & Zhang, 2024) and (Pai et al., 2025b). The complete
training process requires 4600 H100 GPU hours. More training details including hyper-parameters
selection can be found in Appendix B.

3 EXPERIMENTS

3.1 EFFECTIVENESS ON VIDEO UNDERSTANDING

Baselines Our primary baseline is Qwen2.5-VL-7B (Qwen et al., 2025) with dense FlashAtten-
tion (Dao, 2023). We compare VideoNSA against several strong baselines, including the quan-
tization model AWQ (Team, 2024), training-free token compression models (Yang et al., 2025c;
Zhang et al., 2025b; Chen et al., 2024a), and training-free sparse attention methods (Jiang et al.,
2024; Xu et al., 2025a; Lai et al., 2025; Li et al., 2024c). All methods employ their official config-
uration without additional training and using Qwen2.5-VL-7B (Qwen et al., 2025) as a base. For
token compression baselines, we use the token kept ratio and sampling fps from the original pa-
pers that yield the best accuracy, while for sparse attention baselines, we use the same configuration
as VideoNSA. In addition, we fine-tune Qwen2.5-VL-7B (Qwen et al., 2025) using the same train-
ing dataset as VideoNSA to serve as a competitive baseline. We also include models with different
backbones for a broad comparison.

We evaluate VideoNSA across three domains including long video understanding, tem-
poral reasoning, and spatial understanding using LMMs-Eval (Zhang et al., 2024a) and
VLMEvalKit (Duan et al., 2024). Table 1 indicates that sparse attention methods consistently outper-
form token compression approaches. We empirically evaluate the effectiveness of VideoNSA based
on several popular long video understanding benchmarks, including LongVideoBench (Wu et al.,

4
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Table 2: Ablation study on branch selection across different tasks. LVB, LTS for
LongVideobench (Wu et al., 2024) and LongTimeScope (Zohar et al., 2025).

Branch Long Video Understanding Temporal Reasoning Spatial Understanding

CMP SLC SWD LVB MLVUtest TimeScope LTS Tomato VSIBench

! 48.1 43.9 41.5 25.1 23.3 29.2
! 48.4 47.7 63.7 37.1 24.0 27.6

! 49.1 40.2 59.3 29.8 24.0 29.8

! ! 49.4 42.7 57.3 32.4 23.5 29.4
! ! 49.3 42.4 65.2 34.4 23.0 29.1

! ! 48.8 43.4 57.3 31.6 24.5 30.3

! ! ! 60.0 51.8 83.7 44.4 26.5 36.1

2024), MLVU (Zhou et al., 2024), TimeScope (Zohar et al., 2025) and LongTimeScope (Zohar
et al., 2025). VideoNSA achieves competitive results, narrowing the gap with state-of-the-art meth-
ods. We observe that VideoNSA shows clear advantages on tasks involving order-sensitive tem-
poral reasoning and ultra-long video settings (10 hours in LongTimeScope (Zohar et al., 2025)).
To evaluate the visual temporal reasoning capbility of VideoNSA, we evaluate VideoNSA on
Tomato (Shangguan et al., 2024), a benchmark spanning six reasoning types and three video sce-
narios. VideoNSA attains the highest accuracy on Tomato (Shangguan et al., 2024), substantially
outperforming compression-based methods, underscoring their limitations in fine-grained temporal
inference. VSIBench (Yang et al., 2025a) focuses on spatial reasoning allowing us to test whether
efficient models can preserve local fidelity while achieving efficiency. VideoNSA matches the
strongest sparse attention baselines and significantly surpasses token compression methods in spa-
tial understanding, confirming that it preserves spatial fidelity. All detailed evaluation settings and
subset results can be found in Appendix C, Appendix D, Appendix E, and Appendix F.

3.2 ABLATION STUDY

To further analyze the components of VideoNSA, we visualize attention pattern in each branch in
Appendix H and assess the effectiveness of different branches. Table 2 shows that single-branch
models suffer significant degradation, and even two-branch combinations remain inferior to the
full VideoNSA, highlighting the necessity of integrating all three branches with dynamic gating.
Detailed results of different branch combination can be found in Appendix I.

4 SCALING ANALYSIS AND FINDINGS

Finding 1. Do learned sparse attention weights remain beneficial in dense attention settings?

Table 3: Ablation study on transferring sparse attention weights to dense attention across tasks.

Model Long Video Understanding Temporal Reasoning Spatial Understanding

LongVideoBench MLVUTest TimeScope LongTimeScope Tomato VSIBench

Qwen2.5-VL-7B 58.7 51.2 81.0 40.7 22.6 29.7
Dense-SFT 57.8 (-1.5%) 51.2 (+0.0%) 76.8 (-5.2%) 40.2 (-1.2%) 21.7 (-4.0%) 30.6 (+2.1%)
Dense-NSA 56.1 (-4.4%) 51.6 (+0.8%) 83.0 (+2.5%) 40.9 (+0.5%) 23.4 (+3.5%) 33.1 (+10.7%)
VideoNSA 59.4 (+1.1%) 51.8 (+1.2%) 82.7 (+2.1%) 44.4 (+9.1%) 26.2 (+15.9%) 36.1 (+20.3%)

We further examine whether the learned QKV weights of VideoNSA can imrpove performance in
dense attention inference. Table 3 reports the relative performance change over the Qwen2.5-VL-
7B (Qwen et al., 2025). Due to the limited quality of the training data, our fine-tuned Qwen2.5-
VL-7B (Dense-SFT) exhibits slight performance drops on most benchmarks. We observe that the
transferred model (Dense-NSA) allows the dense variant to recover and surpass the baseline on
several benchmarks suggesting that sparse-trained weights provides inductive bias towards more
effective attention distributions. However, the effect remains limited on LongVideoBench (Wu et al.,
2024). VideoNSA significantly outperforms Dense-NSA on most tasks, highlighting the importance
of runtime sparsity and dynamic gating.
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(a) Information Scaling of LongVideoBench
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(b) Information Scaling of TimeScope
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(c) Information Scaling of Tomato
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(d) Information Scaling of VSIBench
Figure 2: Scaling Performance of VideoNSA under Different Context Allocation Strategies. We
highlight the Token Budget Constraint to indicate settings with equal context length, and annotate
the best-performing configuration under each benchmark. Since videos in Tomato (Shangguan et al.,
2024), we vary FPS instead of total frames, with FPS × TPF = 128 denoted as K0.

Finding 2. How far can VideoNSA scale in context length?

The effective vision context length L is jointly determined by the number of vision tokens per frame
T and the total number of input frames F . VideoNSA is trained with a maximum context length of
L = 36K tokens, corresponding to T = 64 tokens per frame. We conduct an information budget
study under a fixed context length, by varying tokens per frame and frame rate. We then scale up the
context length beyond the training budget, evaluating up to the maximum 128K tokens supported by
the language model. As observed in Figure 2, the model consistently achieves higher performance
when scaled to longer contexts beyond its training length across benchmarks. However, the ideal
allocation of same token budget is highly task-dependent. LongVideoBench (Wu et al., 2024) favors
allocating more tokens per frame, while Tomato (Shangguan et al., 2024) and TimeScope (Zohar
et al., 2025) benefit more from increasing the number of frames, emphasizing temporal coverage.
VSIBench (Yang et al., 2025a) shows mixed preferences depending on context length, reflecting
a balance between spatial and temporal sampling. Additional results on information scaling are
reported in Appendix J.

Finding 3. How to allocate the attention budget?

We define the Attention Budget as the total number of key-value pairs visible to each query, denoted
by Kvis. It is composed of a global sparse component and a local sliding-window component as:
Kattn = b× s+w, where b and s denote the number and size of global blocks, and w is the sliding-
window width. With context length L, compared to causal dense attention with L(L−1)

2 edges, the
fraction of attention used γ is

γ =
L(cS + w)

L(L−1)
2

=
2(cS + w)

L− 1
,

To determine the optimal attention allocation, we first fix the total sequence length L, the atten-
tion budget Kvis, and the block size S = 64, while systematically varying the local attention ratio

6
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(a) Attention Scaling of MLVU
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(b) Attention Scaling of LongTimeScope
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(c) Attention Scaling of Tomato
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(d) Attention Scaling of VSIBench
Figure 3: Scaling Performance of VideoNSA under Different Attention Allocation Strategies. Scat-
ter points from small to large and from light to dark indicate increasing performance. We annotate
the point corresponding to the same attention allocation strategy as used during training and connect
configurations with equal attention budgets using solid orange lines. We further scale the best con-
figuration using dashed lines. Percentages show attention relative to full attention.

α = w
Kattn

. We then employ the optimal allocation ratio α⋆ for attention budget scaling. As shown in
Figure 3, scatter points denote different allocation strategies, with their size and color reflecting per-
formance. We highlight the point corresponding to the training configuration, connect equal-budget
settings with solid orange lines, and extend the best-performing configuration with dashed lines,
where the annotated values indicate the fraction of attention used γ. Results show that model perfor-
mance is highly sensitive to attention allocation. Although the optimal ratio between global and local
attention varies across tasks, configurations close to the training allocation generally yield better re-
sults. Under the same budget, fine-tuning around the training setting often improves performance,
whereas simply enlarging the overall budget does not consistently bring further gains. Moreover,
across most benchmarks, increasing global attention (enlarging the block count) tends to outper-
form increasing local attention (enlarging the sliding window). Remarkably, VideoNSA achieves
leading performance using only 3.6% of the full attention budget. More results are in Appendix L.

Finding 4. What roles do compression, selection, and sliding-window gates play in VideoNSA?

We analyze the gating distribution of VideoNSA across Tomato (Shangguan et al., 2024), VSI-
Bench (Yang et al., 2025a), and LongVideoBench (Wu et al., 2024), and aggregate the average rout-
ing gate weights over 100 examples from each. As illustrated in Figure 4, where shaded bars denote
the interquartile range and horizontal lines represent mean values, each head in VideoNSA exhibits
distinct and diverse preferences across branches throughout its full depth. The diversity allows dif-
ferent layers to specialize in distinct modes of the context-dependent information flow. The compres-
sion branch maintains relatively high average weights across most layers, underscoring its primary
role in reducing redundancy while preserving salient features. The selection and sliding window
gates fluctuate more strongly, occasionally surpassing the compression branch in early and middle
layers. However, their contributions diminish in the final layers (e.g., L22–L26), demonstrating that
the focus shifts towards aggregating high-level features. We also note strange behavior in the last
layer, where all three branches are fully active despite selection and sliding window being inactive
in the layers before. Full gate values distribution in Appendix N.

We further dive into the inter-head gate similarity of each layer in Figure 5. In the middle layers, both
selection and sliding window gates exhibit pronounced increases in inter-head similarity. This indi-
cates that multiple mid-layer heads converge to highly consistent gating behaviors when the model
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Figure 4: Gate weights across layers in VideoNSA.
Compression remains dominant, while selection and
sliding-window weaken in later layers.

Figure 5: Inter-head similarities of gates
in VideoNSA. Selection and sliding-window
gates show high similarity in middle layers.

performs block selection and local temporal integration. However, the compression gate shows con-
sistently low inter-head similarity, indicating that it operates largely in a head-independent manner.
At both the initial and final layers of VideoNSA, inter-head similarity remains weak across all gates,
reflecting the need to maintain diversity in early representations and to support mixing information
in higher-level abstractions. More inter-head gate similarites visualization in Appendix O.

Finding 5. Where does the efficiency bottleneck come from?
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Figure 6: Inference latency of each
branch in VideoNSA.

We measure the inference latency of each branch
in VideoNSA using wall-clock time across varying con-
text lengths from 1K to 128K. The compression branch
dominates runtime as the context grows, while the selection
and sliding window branches contribute relatively little at
longer contexts. Ideally, the compression branch grows
approximately linearly with L, and the sliding window branch
has a complexity of O(L · w), which results in linear scaling
for a fixed window size w. The selection branch requires
computing importance scores over all L/b blocks per query,
leading to a computational complexity of O(L2/b). However,
wall-clock latency deviates from these estimates due to
hardware parallelism, memory access patterns, and kernel
launch overheads. Overall, the compression branch emerges as the primary bottleneck, highlighting
the need for further optimization of its kernel design and memory efficiency.

Finding 6. Do learnable sparse mechanisms induce dynamic attention sinks?

In decoder-only transformers, a disproportionate amount of attention is often allocated to the first
few tokens, which act as attention sinks and absorb excessive attention mass as a byproduct of
softmax normalization. Prior studies (Gu et al., 2024; Xiao et al., 2023) show that attention sinks
arise from massive activations and unusually small key and value norms, so attention directed to
these tokens contributes little to the residual state. This raises an important question in learnable
sparse attention: whether sparsity patterns amplify or mitigate such sinks.

We follow the attention sink defination in (Pai et al., 2025a):

Attention Sink = 1
{
α > 0.1 ∧ ∥v∥ < median(∥v∥)− 2 · IQR(∥v∥)

}
,

where α is the average attention score received by the key, and ∥v∥ is the value norm of the token.
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Figure 7: Attention sinks distribution of different branches. VideoNSA maintains a low overall sink
ratio, with pink points indicating identified sinks.
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Figure 8: Layer-wise attention sink ratio distri-
bution in different branches and Flash Attention.
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Figure 9: Relative positions of attention sinks in
different branches and Flash Attention.

Figure 7 illustrates the average distribution of attention sinks across the three branches of VideoNSA.
Each frame is encoded into 256 tokens, and we adopt the same sparse attention configuration as
used during training. The three branches exhibit markedly different sink behaviors. The compres-
sion branch produces the most sinks, with distinct banded concentrations along the value norm
axis caused by token merging that amplifies some token norms while suppressing others. Con-
versely, the selection branch yields almost no sinks, as its top-k block filtering mechanism enforces
a smoother value norm distribution. Notably, the sliding window branch demonstrates a clearer
separation between sink and non-sink tokens along the value norm axis. Critically, dynamic gating
allows VideoNSA to counteract the negative effects of the compression branch, achieving a stable
model with a low overall sink ratio of 0.3%.

Figure 8 indicates that VideoNSA maintains low sink ratios overall, with only minor fluctuations
across layers. However, Flash Attention exhibits a gradual increase in sink ratios toward deeper
layers. The compression branch maintains relatively high sink levels across most layers. The se-
lection branch remains consistently close to zero, while the sliding window branch occasionally
shows higher peaks in the middle-to-late layers, indicating that locality constraints may still intro-
duce bias in long-sequence settings. From the perspective of positional distribution in Figure 9,
Flash Attention produces sinks that are uniformly spread across the entire sequence due to its fully
connected dense attention. Under dynamic gating,VideoNSA achieves smoother temporal cover-
age, alleviating over-reliance on early positions while avoiding the global diffusion characteristic of
dense attention. In contrast, the compression branch exhibits strong accumulation at the beginning
with an even steeper decay, indicating that token merging exerts its strongest impact on early-stage
representations. The selection branch yields very few sinks across the sequence, while the sliding
window branch produces sparse peaks at periodic boundaries of local neighborhoods. More analysis
about attention sinks on various sparse attention settings can be found in Appendix S.

5 CONCLUSION

In this work, we present VideoNSA, a hybrid hardware-aware sparse attention model that sig-
nificantly advances video understanding across various tasks. By dynamically fusing block-wise
compression, salient block selection, and a sliding window, VideoNSA effectively preserves criti-
cal information while achieving near-linear scalability in efficiency and memory. Our experiments
demonstrate that VideoNSA consistently outperforms existing methods on key tasks including long
video understanding, temporal reasoning, and spatial understanding. While the prefill stage remains
the primary bottleneck, our findings confirm that this hybrid sparse approach provides a powerful
and scalable framework, paving the way for more capable video foundation models.
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6 ETHICS STATEMENT

This research on video understanding utilizes publicly available datasets, ensuring that all data com-
plies with privacy regulations. We acknowledge the potential biases that can arise in automatic
answer generation, particularly concerning gender, race, or other characteristics. We have taken
measures to evaluate and minimize such biases, while remaining committed to further improve-
ments. Additionally, we recognize the potential risks of misuse, such as generating misleading
answers, and have checked the training dataset with safeguards against such applications.

7 REPRODUCIBILITY STATEMENT

We have made several efforts to ensure the reproducibility of our work. All the key implementa-
tion details, including the architecture of our model, the training procedures, and hyperparameter
settings, are described in supplementary meterial Section B. The settings of the used evaluation
benchmarks are in Section C to further support reproducibility.

8 THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used only for light editorial purposes, such as minor grammar
checking and language polishing. They were not used for generating scientific content, research
ideation, experiment design, or analysis. The authors take full responsibility for the entirety of the
paper, and LLMs are not considered contributors or eligible for authorship.
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Appendix
The supplementary material is structured as follows:

• Iiterature review about the related works in Section A.

• The training settings for VideoNSA in Section B.

• The introduction of the used evaluation benchmarks and settings in Section C.

• More results on long-form video benchmarks in Section D.

• More results on temporal reasoning benchmarks in Section E.

• More results on spatial understanding benchmarks in Section F.

• Results on additional video understanding benchmarks in Section G.

• Visualization of attention pattern in each branch in Section H.

• More results on branch combination in Section I.

• More results on information scaling study in Section J.

• Additional context-length scaling results of Qwen2.5-VL in Section K.

• More results on attention scaling study in Section L.

• Theoretical analysis of context length and attention budget scaling in Section M.

• Full gate values distribution in Section N.

• More inter-head gate similarites visualization in Section O.

• Benchmark-level gating analysis and PCA visualization in Section P.

• Additional analysis of training and inference efficiency in Section Q.

• Additional analysis on CMP latency bottleneck in Section R.

• More analysis about attention sinks on various sparse attention settings can be found in Section S.

• Comparison of sparsity patterns between text-only NSA and VideoNSA in Section T.

• Visualization of attention sinks in dense attention in Section U.

A RELATED WORK

A.1 EFFICIENT VIDEO UNDERSTANDING

Video understanding systems typically convert videos into long sequences of vision tokens, which
can easily exceed GPU memory and slow down inference as the video length grows. To address this,
existing work mainly address this by token compression, alternative sequence modeling, and KV-
cache compression. One important line of work emphasizes token compression. Spatial or temporal
token merging methods (Wang et al., 2025c; Zhang & Fu, 2025; Li et al., 2025c; Jiang et al., 2025a;
Li et al., 2025a; Shao et al., 2025; Song et al., 2024; Chai et al., 2024) progressively discard re-
dundant content, while question-/task-aware strategies (Jiang et al., 2025b; Dong et al., 2025; Yao
et al., 2025; Song et al., 2025b) tailor retained tokens to the query. These approaches substantially
lower FLOPs but still rely on dense attention once tokens are merged. Beyond pure self-attention,
Mamba-based or hybrid architectures (Jiang et al., 2025a; Ren et al., 2025; Xu et al., 2025b) inject
state-space or recurrent modules to approach linear-time inference while preserving long-range de-
pendencies. Also, there exists approach to design data efficient systems for further fine-tuning (Li
et al., 2025b). Another direction targets the key–value cache during decoding via task-aware spar-
sification and streaming-friendly memory (Qin et al., 2025a; Ning et al., 2025; Kim et al., 2025;
Yang et al., 2025e) reduce memory and improve throughput, yet prefill still scales quadratically
with sequence length. In contrast to methods that mostly decide where to drop or compress tokens,
our approach systematically probe the effectiveness of native sparse attention (Yuan et al., 2025a)
that restructures attention itself to be learnable and sparse from the ground up. VideoNSA attains
near-linear scalability up to 128K tokens and processes over 10,000 frames on a single GPU, outper-
forming compression-only pipelines on long-video understanding, temporal reasoning, and spatial
understanding tasks.
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A.2 SPARSE ATTENTION MECHANISM

Sparse attention is a central strategy for efficient long-context modeling in language and multi-
modal systems. Surveys (Zhang et al., 2025e) categorize approaches into pattern-based vs. dy-
namic/learned. Pattern-based sparsity. Methods such as Longformer (Beltagy et al., 2020),
StreamingLLM (Xiao et al., 2024), and TriangleMix (He et al., 2025) prescribe fixed local/strided
patterns that can be applied training-free; recent multimodal works (Zhang et al., 2025d; Yang et al.,
2025b) follow similar principles, while hardware-efficient kernels like Flash Sparse Attention (Yan
et al., 2025) further reduce prefill latency. InfLLM-V2 (Zhao et al., 2025) uses switchable dense
sparse attention to smoothly adapt models from short to long sequences while maintaining consis-
tency and achieving efficient acceleration with high performance. ProxyAttn (Wang et al., 2025b)
uses representative heads for fine-grained block importance estimation, enabling faster sparse at-
tention with minimal performance loss. Dynamic and trainable sparsity. Content- or gradient-
adaptive mechanisms select important connections (e.g., diagonal selection (Tyagi et al., 2025) or
lag-relative strategies (Liang et al., 2025)); trainable sparse attention improves long-context reason-
ing (Gao et al., 2025; Vasylenko et al., 2025; Gao et al., 2024), diffusion-based video generation
(Zhang et al., 2025g), and state-space models (Zhan et al., 2025). SLA (Zhang et al., 2025f) decom-
poses attention weights into critical, marginal, and negligible parts, combining sparse and low-rank
acceleration to greatly reduce computation while preserving generation quality. Hybrid approaches
such as RocketKV (Behnam et al., 2025) combine token/cache compression with learned sparsity,
and MMInference (Li et al., 2025d) accelerates modality-aware sparse prefill for VLMs. Despite
these advances, most techniques are optimized for text or short multimodal contexts and do not
directly address the ultra-long, highly redundant spatio-temporal structure of videos. VideoNSA
unifies block-wise compression, salient block selection, and a sliding-window branch under learn-
able gates that dynamically allocate computation across three native sparse branches (Yuan et al.,
2025a). This end-to-end, data-driven design preserves critical global/local dependencies while scal-
ing nearly linearly in both time and memory.

B DETAILED TRAINING SETTINGS

Training hyperparameters for VideoNSA are shown in Table 4. We filter a subset of LLaVA-Video-
178K (Zhang et al., 2024e) as the training data. For each video, we uniformly sample at 4 frames
per second and retain only those with 350–550 frames, resulting in 216K video question–answer
pairs from the original 961K pairs in LLaVA-Video-178K (Zhang et al., 2024e).

Table 4: Training hyper-parameters for VideoNSA.

Hyper-parameters Fine-tuning

trainable parameters ViT + MLP + LLM
warmup schedule linear
warmup start factor 1e-5
warmup ratio 0.1
learning rate schedule cosine
optimizer AdamW (Loshchilov & Hutter, 2017)
optimizer hyper-parameters β1, β2 = (0.9, 0.999)
weight decay 0.01
max norm 1
epoch 1
peak learning rate 1e-6
total equivalent batch size 32

C EVALUATION BENCHMARKS AND SETTINGS

We list all the hyper-parameters and prompt used for evaluation as shown in Table 5.
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Table 5: Evaluation settings summary for each benchmarks. For all benchmarks we set temperature,
top p, number of beams to 0, 0, 1 respectively. # TPF stands for the vision tokens per frame, and #
F stands for the number of sampling frames.

Benchmark # TPF # F # Max New Tokens

LongVideoBench (Wu et al., 2024) 512 256 32
LongTimeScope (Zohar et al., 2025) 128 512 16
TimeScope (Zohar et al., 2025) 64 2048 16
MLVUtest (Zhou et al., 2024) 128 512 16
Tomato (Shangguan et al., 2024) 4FPS 256 1024
VSIBench (Yang et al., 2025a) 256 128 16

D MORE RESULTS ON LONG-FORM VIDEO BENCHMARKS

Table 6: LongTimeScope results across baselines. Metrics include overall accuracy and task-specific
scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated
by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall 18000 28800 36000

OCR QA Temporal OCR QA Temporal OCR QA Temporal

Flash Attn 40.7 54.0 42.0 22.0 48.0 60.0 24.0 48.0 58.0 10.0
Flash Attn + SFT 40.2 46.0 30.0 34.0 46.0 44.0 36.0 52.0 44.0 20.0
AWQ – – – – – – – – – –
XAttn 41.1 52.0 56.0 30.0 54.0 52.0 6.0 52.0 64.0 4.0
MInference 44.4 64.0 56.0 26.0 58.0 60.0 8.0 56.0 66.0 6.0
tri-shape 28.4 34.0 36.0 12.0 48.0 48.0 0.0 44.0 32.0 2.0
FlexPrefill 39.1 52.0 46.0 24.0 46.0 56.0 14.0 46.0 66.0 2.0
FastV 35.6 36.0 50.0 16.0 44.0 50.0 4.0 44.0 64.0 12.0
VisionZip 31.1 38.0 32.0 14.0 56.0 46.0 0.0 44.0 46.0 4.0
VScan 40.4 48.0 52.0 24.0 50.0 52.0 22.0 46.0 64.0 6.0
VideoNSA 44.4 50.0 54.0 30.0 54.0 72.0 0.0 48.0 76.0 16.0

Table 7: LongVideoBench results across baselines. Metrics include overall accuracy and task-
specific scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025)
accelerated by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall 600 TOS S2E E3E S2A SAA O3O T3O T3E O2E T2O S2O TAA T2E E2O SSS T2A 60 SOS 15 3600

Flash Attn 58.7 58.5 38.4 69.9 66.0 70.5 56.9 57.6 58.1 53.4 63.2 63.2 55.6 52.4 63.1 63.1 39.2 64.6 72.7 61.7 65.6 52.3
Flash Attn + SFT 57.8 55.8 38.4 65.6 61.7 73.9 56.9 65.2 55.4 57.5 57.5 56.6 62.5 51.2 55.4 66.2 39.2 63.3 74.4 58.0 64.6 52.0
AWQ 59.0 60.0 34.2 72.0 64.9 68.2 59.7 57.6 52.7 50.7 69.0 52.6 63.9 57.3 61.5 67.7 43.3 62.0 73.8 63.0 67.7 50.9
XAttn 59.1 59.4 36.0 70.0 66.0 67.2 57.3 58.1 55.8 53.8 64.5 62.2 64.3 56.3 65.2 66.7 41.3 58.5 75.2 60.7 68.8 50.6
MInference 59.2 60.6 34.6 74.3 66.0 68.3 58.7 56.6 53.1 52.4 68.0 56.9 60.1 58.8 60.5 65.2 39.2 63.6 74.6 66.9 67.3 50.8
tri-shape 59.5 60.9 34.6 73.2 66.0 69.5 58.7 58.1 55.8 52.4 68.0 55.6 61.5 60.0 60.5 66.7 38.2 63.6 74.6 66.9 67.8 51.1
FlexPrefill 58.4 61.7 31.5 65.6 62.8 71.6 59.7 59.1 58.1 52.1 65.5 51.3 62.5 48.8 61.5 72.3 42.3 63.3 71.5 65.4 58.2 52.1
FastV 57.3 57.3 43.8 64.5 60.6 70.5 52.8 56.1 52.7 48.0 59.8 67.1 56.9 48.8 67.7 66.2 40.2 58.2 69.8 61.7 70.9 48.9
VisionZip 52.4 53.2 32.9 63.4 66.0 58.0 54.2 50.0 51.4 42.5 57.5 47.4 58.3 45.1 56.9 61.5 30.9 51.9 62.2 61.7 58.2 46.8
VScan 58.7 57.0 29.5 69.0 65.0 69.6 56.3 54.1 56.1 55.5 61.2 58.5 61.9 60.2 58.0 73.4 41.4 61.3 74.2 65.9 73.7 50.3
VideoNSA 60.2 59.9 48.1 65.1 67.6 74.1 55.6 55.5 58.4 56.3 62.2 57.0 63.9 53.3 56.2 71.6 35.9 62.7 67.5 72.4 66.3 55.1

We take LongVideoBench (Wu et al., 2024), LongTimeScope (Zohar et al., 2025), MLVU (Zhou
et al., 2024), and TimeScope (Zohar et al., 2025) as representative long-video benchmarks and
compare against existing token compression and sparse attention methods. As shown in Table 6,
Table 7, Table 8, and Table 9, VideoNSA achieves comparable performance without specialized
designs. Moreover, we observe that VideoNSA significantly outperforms the baselines on subtasks
related to temporal reasoning and on videos of extended length.
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Table 8: MLVU results across baselines. Metrics include overall accuracy and task-specific scores
across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated by
Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall PlotQA Needle Ego Count Order Anomaly Reco Topic Reason. SportsQA TutorialQA

Flash Attn 51.2 58.0 68.3 52.8 31.7 25.7 46.2 79.1 38.9 48.8
Flash Attn + SFT 51.2 58.0 58.3 58.5 23.3 40.0 43.6 81.3 36.1 37.2
AWQ 46.0 42.7 53.0 40.9 27.2 50.2 57.0 65.0 38.3 39.2
XAttn 50.2 60.0 64.7 56.5 28.0 29.4 41.6 74.9 39.7 39.9
MInference 49.2 56.0 64.7 48.9 29.7 26.6 41.6 77.1 39.7 39.9
tri-shape 49.2 56.0 64.7 48.9 29.7 26.6 41.6 77.1 39.7 39.9
FlexPrefill 46.0 54.0 54.7 42.7 24.7 40.9 36.6 72.6 29.7 32.2
FastV 41.8 44.0 45.0 47.2 18.3 30.0 46.2 84.6 28.6 32.2
VisionZip 33.1 30.0 26.7 30.2 6.7 22.9 41.0 68.1 19.7 26.4
VScan 48.1 58.0 63.3 50.9 28.3 24.3 43.6 78.0 47.2 39.5
VideoNSA 51.8 48.0 69.3 51.3 27.7 34.6 44.5 86.2 47.7 31.6

Table 9: TimeScope results across baselines. Metrics include overall accuracy and task-specific
scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated
by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall 60 120 180 300 600 1200 1800 3600 7200 10800

Flash Attn 81.0 96.7 96.0 96.0 94.7 94.0 88.0 82.0 68.7 52.7 41.3
Flash Attn + SFT 76.8 96.7 96.7 96.0 95.3 90.7 78.0 78.0 54.7 41.3 40.7
AWQ – – – – – – – – – – –
XAttn 83.1 94.0 93.4 93.4 92.0 92.7 89.4 82.7 72.7 70.7 50.7
MInference 82.7 93.4 94.0 93.4 92.0 92.7 87.4 80.0 74.0 70.0 50.0
tri-shape 82.7 93.4 94.0 93.4 92.0 92.7 87.4 80.0 74.0 70.0 50.0
FlexPrefill 83.0 96.7 96.0 96.7 95.3 96.0 95.3 86.0 77.3 55.3 35.3
FastV 46.5 82.7 76.0 74.0 54.0 32.7 32.7 29.3 29.3 34.0 20.0
VisionZip 43.5 92.0 66.7 60.0 43.3 35.3 26.0 30.7 29.3 28.0 23.3
VScan 80.3 96.7 96.7 96.0 93.3 92.7 89.3 81.3 60.0 55.3 41.3
VideoNSA 83.7 96.7 96.0 97.4 92.0 85.4 91.6 89.3 73.3 63.3 52.0

E MORE RESULTS ON TEMPORAL REASONING BENCHMARKS

We take Tomato (Shangguan et al., 2024) as the representative temporal reasoning benchmark
and compare against existing token compression and sparse attention methods. As shown in Ta-
ble 10, VideoNSAachieves comparable performance without specialized designs. Moreover, we
observe that VideoNSA significantly outperforms the baselines on subtasks including object count-
ing, shape description, and human actions.

F MORE RESULTS ON SPATIAL UNDERSTANDING BENCHMARKS

We take VSIBench (Yang et al., 2025a) as the representative spatial understanding benchmark
and compare against existing token compression and sparse attention methods. As shown in Ta-
ble 11, VideoNSA achieves comparable performance without specialized designs. Moreover, we
observe that VideoNSA significantly outperforms the baselines on subtasks including object relative
direction, route planning, and object size estimation.

G RESULTS ON ADDITIONAL VIDEO UNDERSTANDING BENCHMARKS

We conduct additional experiments on LSDBench (Qu et al., 2025) and VideoEvalPro (Ma et al.,
2025) to compare VideoNSA and other training-free sparse attention baselines, demonstrating the
consistent advantage of VideoNSA in multiple video understanding tasks.
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Table 10: Tomato results across baselines. Metrics include overall accuracy and task-specific scores
across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated by
Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall Direction Count Rotation Shape & Trend Vel. & Freq. Visual Cues Human Simulated Object

Flash Attn 22.6 23.6 23.3 16.1 22.9 21.9 42.9 18.0 19.7 27.9
Flash Attn + SFT 21.7 19.6 23.3 18.2 26.0 18.1 38.6 18.8 18.0 25.6
XAttn 21.4 22.1 22.9 19.6 17.9 17.1 42.9 15.5 21.5 26.8
MInference 23.0 22.6 27.1 18.9 22.0 20.0 37.1 16.6 20.6 29.6
FlexPrefill 23.7 23.3 25.0 22.7 22.0 21.4 35.7 17.1 22.7 29.9
FastV 21.6 20.6 26.0 20.3 23.3 12.7 – 17.1 24.2 25.6
VisionZip 19.1 17.6 16.8 21.0 19.3 19.0 30.0 14.8 21.5 22.3
VScan 23.6 25.3 21.9 19.9 24.2 20.5 42.9 18.7 21.9 28.7
VideoNSA 26.5 21.6 31.5 22.0 25.6 23.3 40.0 21.7 23.6 29.3

Table 11: VSIBench results across baselines. Metrics include overall accuracy and task-specific
scores across different steps. Flash Attn stands for Qwen2.5-VL-7B (Qwen et al., 2025) accelerated
by Flash Infer, and Flash Attn + SFT stands for our fine-tuning version.

Method Overall Obj. Order Abs. Dist. Counting Rel. Dist. Size Est. Room Est. Route Plan. Rel. Dir.

Flash Attn 29.7 25.7 16.0 20.5 34.7 49.5 22.5 30.4 38.5
Flash Attn + SFT 30.6 31.9 14.2 12.3 40.4 46.6 30.4 30.9 37.8
AWQ – – – – – – – – –
XAttn 35.0 32.7 18.1 39.7 37.6 52.1 30.0 32.5 37.4
MInference 36.6 36.5 18.2 43.9 39.4 48.5 38.8 30.0 37.7
tri-shape 36.5 35.7 18.2 44.3 39.8 48.6 38.8 29.0 37.7
FlexPrefill 34.9 34.1 21.6 35.1 39.3 51.8 29.7 30.4 36.8
FastV 34.0 31.7 21.7 26.1 36.2 47.8 35.0 33.5 40.1
VisionZip 32.1 28.8 17.9 28.8 36.5 48.9 26.9 29.4 39.3
VScan 34.4 33.0 21.9 33.0 40.0 51.9 28.5 30.4 36.6
VideoNSA 36.0 25.5 19.0 42.5 35.4 54.0 30.1 37.5 43.6

H VISUALIZATION OF ATTENTION PATTERN IN EACH BRANCH

We visualize the attention patterns of the last layer across the three branches in Figure 10, Figure 11,
Figure 12, and Figure 13, together with the final attention output, as representative examples. The
compression branch reduces redundancy to preserve salient information, the selection branch high-
lights task-relevant regions with sparse activations, and the sliding window branch enforces local
temporal coverage by focusing on short-range dependencies. These complementary roles collec-
tively shape the final attention output.

I MORE RESULTS ON BRANCH COMBINATION

In this section, we report detailed results of different branch combinations across three domains, in-
cluding long video understanding (Table 14, Tavke 15, Table 16, and Table 17), temporal reasoning
(Table 18), and spatial understanding (Table 19). The corresponding performances are summarized
in the table, which highlights how the use of individual branches or their combinations affects down-
stream tasks.

J MORE RESULTS ON INFORMATION SCALING STUDY

Figure 16 shows the scaling performance of VideoNSA under different context allocation strategies
on LongTimeScope and MLVU. Both benchmarks were trained with a maximum context length
of 32K tokens, yet their performance consistently improves when scaled to 64K, beyond the train-
ing budget. On LongTimeScope (Zohar et al., 2025), the best results emerge around 512 frames
with 128 TPF at 64K tokens, underscoring the dataset’s reliance on extended temporal coverage for
long-horizon reasoning. In contrast, MLVU (Zhou et al., 2024) also peaks at 64K with the same al-
location, but its contours are smoother, and competitive performance extends across a broader range
of frame–token trade-offs. This suggests that while LongTimeScope demands aggressive temporal
scaling, MLVU benefits from a more balanced distribution of temporal and spatial information.
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Table 12: Results on LSDBench (Qu et al., 2025).

Model Accuracy

LongVA (Zhang et al., 2024b) 32.5
LongVila (Chen et al., 2024b) 49.8
InternVL2.5 (Chen et al., 2024c) 50.1

Qwen2.5-VL-7B (Qwen et al., 2025) 52.2
Qwen2.5-VL-7B-SFT 52.5
Sparse Attention Methods
+ Tri-Shape (Li et al., 2024c) 49.5
+ MInference (Jiang et al., 2024) 49.5
+ FlexPrefill (Lai et al., 2025) 52.3
+ XAttention (Xu et al., 2025a) 51.3

VideoNSA 55.2
Table 13: Results on VideoEvalPro (Ma et al., 2025). HP stands for Holistic Perception, HR
stands for Holistic Reasoning, LR stands for Local Reasoning, LP stands for Local Perception.

Model HP HR LR LP Overall

LongVA (Zhang et al., 2024b) 20.5 6.8 19.0 9.5 16.5
Video-XL (Shu et al., 2025) 22.3 15.0 18.2 10.2 18.6
InternVL2.5 (Chen et al., 2024c) 28.8 19.7 21.5 16.7 24.6

Qwen2.5-VL-7B (Qwen et al., 2025) 33.9 15.6 24.8 17.8 27.7
Qwen2.5-VL-7B-SFT 34.5 15.8 25.3 18.2 28.3
Sparse Attention Methods
+ Tri-Shape (Li et al., 2024c) 34.1 16.3 25.1 20.0 28.4
+ MInference (Jiang et al., 2024) 32.3 17.1 27.7 16.7 26.0
+ FlexPrefill (Lai et al., 2025) 33.0 15.9 26.3 19.8 28.3
+ XAttention (Xu et al., 2025a) 34.5 16.6 25.6 20.5 28.9

VideoNSA 35.4 16.9 26.3 19.1 29.4

Table 14: LongVideoBranch results across different branch selection strategy. Metrics include over-
all accuracy and task-specific scores across different steps.

Method Overall 600 TOS S2E E3E S2A SAA O3O T3O T3E O2E T2O S2O TAA T2E E2O SSS T2A 60 SOS 15 3600

VideoNSA + Test SFT 56.1 57.0 46.6 59.1 61.7 69.3 56.9 63.6 52.7 50.7 56.3 59.2 59.7 43.9 55.4 64.6 38.1 58.2 70.4 60.5 65.1 48.1
NSA-CMP 48.1 50.5 38.4 51.6 56.4 53.4 50.0 45.5 51.4 41.1 54.0 42.1 43.1 45.1 47.7 53.9 26.8 53.2 55.2 64.2 47.6 44.3
NSA-SLC 48.4 49.0 32.9 61.3 59.6 58.0 52.8 48.5 46.0 43.8 52.9 36.8 47.2 42.7 44.6 55.4 33.0 48.1 53.5 55.6 50.3 45.7
NSA-SWA 49.1 50.7 37.0 52.7 56.4 59.1 51.4 48.5 43.2 45.2 55.2 42.1 48.6 45.1 46.2 61.5 30.9 45.6 54.1 65.4 48.7 46.5
NSA-CMPSLC 49.4 49.5 34.3 55.9 61.7 58.0 56.9 48.5 47.3 41.1 56.3 35.5 52.8 47.6 46.2 55.4 34.0 41.8 54.1 63.0 48.2 48.2
NSA-SLCSWA 49.3 48.8 32.9 58.1 61.7 55.7 52.8 47.0 46.0 46.6 54.0 34.2 48.6 47.6 47.7 54.0 35.1 48.1 54.1 64.2 49.2 48.2
NSA-CMPSWA 48.8 49.3 34.3 53.8 59.6 54.6 52.8 50.0 48.7 42.5 57.5 40.8 51.4 42.7 46.2 55.4 29.9 45.6 57.6 64.2 48.7 45.9

In addition to the overall scaling trends, we further report detailed subtask-level results under differ-
ent allocation settings in Table 20, Table 21, Table 22, Table 23, Table 24, and Table 25.

K ADDITIONAL CONTEXT-LENGTH SCALING RESULTS OF QWEN2.5-VL

We include Table 26 and Table 27 to further illustrate the long-context behavior of the base model.
Since Qwen2.5-VL 7B (Qwen et al., 2025) has a maximum context window of 128k, its modeling
ability tends to become less stable when approaching this upper bound. As shown in Figure K,
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Figure 10: Attention pattern of the compression branch in the final layer of VideoNSA.

Figure 11: Attention pattern of the selection branch in the final layer of VideoNSA.

Qwen2.5-VL (Qwen et al., 2025) often peaks at 64k and slightly declines at 128k across several
benchmarks. In contrast, VideoNSA maintains stable or stronger performance at 128k, demonstrat-
ing that the observed 64k > 128k phenomenon arises from backbone limitations rather than the
proposed sparse architecture.

L MORE RESULTS ON ATTENTION SCALING STUDY

Figure 16 evaluates the scaling behavior of VideoNSA under different attention allocation strategies,
where the x-axis denotes the sliding window size (log scale), the y-axis shows the block count, and
the size and color of each marker reflect performance, with the dashed blue curve indicating config-
urations of equal attention budget and arrows marking the training setting as well as reduced-budget
configurations (3.6% and 1.8%); on LongVideoBench, performance peaks near the training con-
figuration and degrades when allocating excessive budget to local attention through larger sliding
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Figure 12: Attention pattern of the sliding window branch in the final layer of VideoNSA.

Figure 13: Attention pattern of the final vision attention output in the final layer of VideoNSA.

windows, while the best configuration achieves strong results with only 3.6% of the full budget, and
on TimeScope, performance is even more sensitive, with larger sliding windows quickly reducing
accuracy whereas maintaining more global blocks yields superior outcomes, and overall the results
confirm that training allocations are well balanced, that prioritizing global attention is consistently
more effective than enlarging local windows under equal budget, and that VideoNSA sustains lead-
ing performance with as little as 3.6% or less of the full attention cost, demonstrating both efficiency
and hardware awareness.

In addition to the overall scaling trends, we further report detailed subtask-level results under differ-
ent allocation settings in Table 20, Table 21, Table 22, Table 23, Table 24, and Table 25.

M THEORETICAL FOUNDATIONS OF SCALING BEHAVIOR
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Table 15: LongTimeScope results across different branch selection strategy. Metrics include overall
accuracy and task-specific scores across different steps.

Method Overall 18000 28800 36000

OCR QA Temporal OCR QA Temporal OCR QA Temporal

VideoNSA + Test SFT 40.9 52.0 42.0 42.0 48.0 62.0 18.0 42.0 50.0 12.0
NSA-CMP 25.1 20.0 22.0 24.0 38.0 40.0 0.0 34.0 34.0 14.0
NSA-SLC 37.1 30.0 38.0 40.0 50.0 58.0 12.0 42.0 44.0 20.0
NSA-SWA 29.8 34.0 34.0 22.0 36.0 46.0 4.0 34.0 46.0 12.0
NSA-CMPSLC 32.4 36.0 34.0 24.0 46.0 54.0 8.0 42.0 36.0 12.0
NSA-SLCSWA 34.4 38.0 36.0 36.0 46.0 56.0 8.0 38.0 36.0 16.0
NSA-CMPSWA 31.6 30.0 38.0 20.0 40.0 52.0 16.0 36.0 36.0 16.0
VideoNSA 44.4 50.0 54.0 30.0 54.0 72.0 0.0 48.0 76.0 16.0

Table 16: TimeScope results across different branch selection strategy. Metrics include overall
accuracy and task-specific scores across different steps.

Method Overall 60 120 180 300 600 1200 1800 3600 7200 10800

Full Attn 81.0 96.7 96.0 96.0 94.7 94.0 88.0 82.0 68.7 52.7 41.3
Flash Attn 81.0 96.7 96.0 96.0 94.7 94.0 88.0 82.0 68.7 52.7 41.3
Flash Attn + SFT 76.8 96.7 96.7 96.0 95.3 90.7 78.0 78.0 54.7 41.3 40.7
AWQ – – – – – – – – – – –
XAttn 83.1 94.0 93.4 93.4 92.0 92.7 89.4 82.7 72.7 70.7 50.7
MInference 82.7 93.4 94.0 93.4 92.0 92.7 87.4 80.0 74.0 70.0 50.0
tri-shape 82.7 93.4 94.0 93.4 92.0 92.7 87.4 80.0 74.0 70.0 50.0
FlexPrefill 83.0 96.7 96.0 96.7 95.3 96.0 95.3 86.0 77.3 55.3 35.3
FastV 46.5 82.7 76.0 74.0 54.0 32.7 32.7 29.3 29.3 34.0 20.0
VisionZip 43.5 92.0 66.7 60.0 43.3 35.3 26.0 30.7 29.3 28.0 23.3
VScan 80.3 96.7 96.7 96.0 93.3 92.7 89.3 81.3 60.0 55.3 41.3
Retake – – – – – – – – – – –
AdaRetake – – – – – – – – – – –
SFT + Test NSA 81.0 96.7 96.0 96.0 94.7 94.0 88.0 82.0 68.7 52.7 41.3
NSA + Test SFT 83.0 96.7 95.3 94.0 93.3 94.0 90.7 87.3 76.7 54.7 47.3
NSA-CMP 41.5 82.0 74.0 65.3 59.3 17.3 25.3 19.3 26.7 27.3 18.0
NSA-SLC 63.7 92.0 86.0 86.7 78.0 66.7 57.3 51.3 40.7 38.0 40.0
NSA-SWA 59.3 – – – – – – – – – –
NSA-CMPSLC 57.3 88.7 80.0 73.3 73.3 46.7 44.7 48.7 42.7 43.3 32.0
NSA-SLCSWA 65.2 92.0 89.3 89.3 79.3 66.0 59.3 50.0 41.3 40.7 44.7
NSA-CMPSWA 57.3 88.7 80.0 73.3 73.3 46.7 44.7 48.7 42.7 43.3 32.0
VideoNSA 83.7 96.7 96.0 97.4 92.0 85.4 91.6 89.3 73.3 63.3 52.0

In Section 4, we perform two scaling experiments along context length and attention budget. We
observe that VideoNSA exhibits strong extrapolation ability on context length: although trained with
only 36K tokens, it can generalize to 128K at test time, achieving the best performance at 64K. In
contrast, when scaling the attention budget, even a small reduction to 3̃.6% of attention computation
already delivers outstanding performance, and further increasing the visible-token count does not
yield additional gains. To clarify these phenomena, we provide theoretical interpretations from
routing-path stability and the geometric structure of RoPE (Su et al., 2024).

Routing-path Stability. Recent work (Huang et al., 2025) indicates that a model’s ability to main-
tain performance on long sequences depends critically on the stability of its attention routing struc-
ture across positions. In the standard attention mechanism, the attention weight from the query
vector Qn at position n to the key vector Zj at position j is defined as

Attnn→j =
exp(Z⊤

j Qn)∑
k exp(Z

⊤
k Qn)

.
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Table 17: MLVU results across different branch selection strategy. Metrics include overall accuracy
and task-specific scores across different steps.

Method Overall PlotQA Needle Ego Count Order Anomaly Reco Topic Reason. SportsQA TutorialQA

NSA + Test SFT 51.6 56.0 61.7 66.0 31.7 28.6 51.3 80.2 36.1 32.6
NSA-CMP 43.9 36.0 35.0 42.9 – 24.3 30.8 80.2 30.6 –
NSA-SLC 47.7 50.0 50.0 52.4 – 22.9 33.3 74.7 33.3 –
NSA-SWA 40.2 40.0 40.0 41.5 15.0 24.3 30.8 76.9 36.1 34.9
NSA-SLCSWA 42.4 42.0 48.3 45.3 16.7 25.7 38.5 75.8 33.3 34.9
NSA-CMPSWA 43.4 46.0 40.0 43.4 18.3 35.7 33.3 82.4 27.8 32.6

Table 18: Tomato results across different branch selection strategy. Metrics include overall accuracy
and task-specific scores across different steps.

Method Overall Direction Count Rotation Shape & Trend Vel. & Freq. Visual Cues Human Simulated Object

NSA + Test SFT 23.4 21.3 29.1 17.5 25.1 20.0 40.0 19.3 19.3 28.5
NSA-CMP 23.3 22.1 29.5 17.1 24.7 20.5 34.3 19.2 22.7 27.3
NSA-SLC 24.0 21.3 32.2 16.4 26.0 22.9 32.9 19.8 21.5 28.7
NSA-SWA 24.0 21.3 32.2 16.4 26.0 22.9 32.9 19.8 21.5 28.7
NSA-CMPSLC 23.5 20.8 29.8 18.5 22.9 23.8 34.3 19.0 26.8 25.8
NSA-SLCSWA 23.0 20.6 27.4 18.5 22.4 24.8 32.9 19.5 21.0 26.8
NSA-CMPSWA 24.5 23.1 30.8 18.9 25.1 22.9 32.9 21.0 23.6 28.0
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(b) Information Scaling of MLVU
Figure 14: Scaling Performance of VideoNSA under Different Context Allocation Strategies. We
highlight the token budget constraint to indicate settings with equal context length, and annotate the
best-performing configuration under each benchmark.

Here, Qn and Zj denote the query and key representations at positions n and j, respectively. If the
model can consistently focus its attention on the task-relevant target token set T during inference,
then (i)

∑
j∈T Attnn→j should dominate across different positions; and (ii) the attention assigned to

the same key token j should remain nearly unchanged under positional shifts, i.e.,
∆i =

∣∣Attnn→j − Attnn+i→j

∣∣ ≈ 0,

where ∆i measures the deviation of routing paths across positions in long sequences.

When we scale the context length using dense temporal and spatial sampling, the sparse-attention
pattern and mask structure M remain unchanged, which means the model continues to use the rout-
ing structure learned during training while simply facing a larger pool of candidate evidence. Since
denser sampling mainly introduces redundant or finer-grained details, the model treats these tokens
as auxiliary evidence, leaving the core target tokens and their relative attention weights essentially
unchanged. Consequently, the overall routing-path structure is preserved, ∆i remains small, and the
model can maintain or even improve its performance at longer context lengths.

In contrast, attention-budget scaling explicitly modifies the set of visible tokens in the sparse-
attention mechanism by replacing the original mask M with a new mask M ′. The effective query
becomes

Qeff = Q⊙M ′,

where ⊙ denotes elementwise multiplication, and the corresponding new attention weight is

Attn′n→j ∝ exp
(
Z⊤
j (Q⊙M ′)

)
.
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Table 19: VSIBench results across different branch selection strategy. Metrics include overall accu-
racy and task-specific scores across different steps.

Method Overall Obj. Order Abs. Dist. Counting Rel. Dist. Size Est. Room Est. Route Plan. Rel. Dir.

NSA + Test SFT 33.1 24.3 19.8 31.2 38.0 49.8 32.2 32.5 37.2
NSA-CMP 29.2 19.9 16.3 12.6 29.3 48.7 26.7 38.1 41.7
NSA-SLC 27.6 18.0 10.9 17.3 32.0 47.8 24.8 32.0 38.1
NSA-SWA 29.8 22.8 15.6 17.4 32.3 49.8 27.2 33.5 39.4
NSA-CMPSLC 29.4 19.9 16.3 15.1 31.0 51.1 25.5 33.5 42.6
NSA-SLCSWA 29.1 19.9 12.2 18.5 31.4 49.6 26.5 34.0 40.4
NSA-CMPSWA 30.3 22.5 15.6 15.3 31.1 52.5 26.7 35.1 43.3

Table 20: Ablation study results on information scaling of LongTimeScope (Zohar et al., 2025).
Metrics include overall accuracy and task-specific scores across different steps. # TPF stands for
token per frame, and # F stands for sampling frame number.

# TPF # F Overall 18000 28800 36000

OCR QA Temporal OCR QA Temporal OCR QA Temporal

256 128 42.9 54.0 48.0 36.0 46.0 62.0 6.0 40.0 80.0 14.0
512 128 41.1 54.0 60.0 28.0 42.0 62.0 4.0 40.0 78.0 2.0
128 256 42.0 58.0 56.0 26.0 46.0 62.0 2.0 40.0 78.0 10.0
256 256 41.3 58.0 52.0 36.0 48.0 62.0 0.0 40.0 70.0 6.0
512 256 41.6 54.0 56.0 32.0 46.0 60.0 2.0 40.0 78.0 6.0
64 512 40.2 52.0 52.0 26.0 44.0 64.0 2.0 44.0 76.0 2.0
128 512 44.4 50.0 54.0 30.0 54.0 72.0 0.0 48.0 76.0 16.0
256 512 38.7 48.0 50.0 30.0 52.0 56.0 8.0 36.0 60.0 8.0
64 1024 41.6 54.0 56.0 22.0 46.0 66.0 4.0 36.0 72.0 18.0
128 1024 41.1 50.0 46.0 32.0 46.0 62.0 14.0 38.0 54.0 28.0
64 2048 38.4 50.0 62.0 26.0 40.0 60.0 2.0 38.0 42.0 26.0
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Figure 15: Performance comparison of Qwen2.5-VL and VideoNSA under different context lengths.

Even if the modification from M to M ′ appears small in proportion, it substantially changes the set
of candidate evidence accessible to each query and alters the relative logits. First, the newly visible
tokens reduce the relative weight allocated to the original key tokens, producing a dilution effect.
Second, in video tasks, the added visible tokens often lie in similar visual-semantic clusters as the
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Table 21: Ablation study results on information scaling of TimeScope (Zohar et al., 2025). Metrics
include overall accuracy and task-specific scores across different steps. # TPF stands for token per
frame, and # F stands for sampling frame number.

# TPF # F Overall 60 120 180 300 600 1200 1800 3600 7200 10800

256 128 73.1 96.7 94.7 93.4 85.4 72.0 62.6 57.3 56.6 54.0 58.6
512 128 72.5 95.4 94.0 92.7 82.0 72.7 64.6 57.3 56.3 53.3 56.6
128 256 76.5 98.0 97.4 96.0 86.7 78.7 78.0 63.3 58.6 54.0 54.0
256 256 76.1 96.7 96.7 91.4 86.7 76.0 74.6 64.0 62.0 56.0 56.6
512 256 75.8 95.4 94.7 90.7 86.7 76.0 75.3 66.0 62.6 53.3 57.3
64 512 78.5 96.7 95.4 94.7 88.0 80.7 82.6 71.3 62.0 58.0 55.3
128 512 76.5 98.0 97.4 96.0 86.7 78.7 78.0 63.3 58.6 54.0 54.0
256 512 77.3 96.7 96.7 90.7 83.4 76.7 78.0 72.0 66.6 59.3 52.6
64 1024 81.7 96.7 95.4 94.7 90.0 84.7 88.0 78.0 69.3 64.0 56.6
128 1024 81.8 98.0 97.4 94.0 85.4 80.7 92.0 78.0 72.6 66.0 54.0
64 2048 82.7 96.7 95.4 94.7 90.0 82.0 91.3 88.0 73.3 63.3 52.0

Table 22: Ablation study results on information scaling of LongVideoBench (Wu et al., 2024).
Metrics include overall accuracy and task-specific scores across different steps. # TPF stands for
token per frame, and # F stands for sampling frame number.

# TPF # F Overall 600.0 TOS S2E E3E S2A SAA O3O T3O T3E O2E T2O S2O TAA T2E E2O SSS T2A 60.0 SOS 15.0 3600.0

512 64 58.3 55.5 44.0 67.2 66.6 71.8 57.0 54.0 48.9 50.8 59.9 55.7 63.9 53.3 57.8 70.1 37.9 60.2 68.1 71.2 65.7 54.9
128 128 57.4 56.8 45.4 66.1 66.6 69.5 61.2 55.5 53.0 49.5 59.9 51.7 54.2 47.2 57.8 68.5 40.0 58.9 68.6 70.0 63.6 52.4
256 128 57.9 58.5 48.1 69.4 66.6 70.6 58.4 55.5 53.0 48.1 57.6 47.8 54.2 49.7 59.3 68.5 40.0 65.2 68.1 70.0 63.1 52.6
512 128 59.0 59.4 49.5 68.3 66.6 72.9 63.9 54.0 53.0 49.5 61.0 51.7 61.2 50.9 56.2 68.5 39.0 64.0 68.6 71.2 63.6 54.2
128 256 58.7 52.7 46.7 68.3 65.5 69.5 57.0 52.5 53.0 48.1 56.4 46.5 51.4 48.5 57.8 67.0 37.9 65.2 63.4 70.0 58.3 52.7
256 256 58.2 58.7 39.9 64.0 66.6 71.8 58.4 54.0 59.7 52.2 59.9 55.7 58.4 50.9 56.2 70.1 40.0 61.4 66.9 68.7 63.1 53.5
512 256 59.4 60.4 52.2 67.2 65.5 75.2 61.2 54.0 55.7 52.2 62.2 53.1 62.6 49.7 56.2 68.5 35.9 65.2 67.5 72.4 65.7 54.0
64 512 57.7 58.2 41.3 67.2 68.7 65.0 58.4 58.5 54.3 52.2 62.2 49.1 58.4 53.3 62.4 71.6 35.9 55.1 66.3 68.7 61.5 53.5
128 512 58.5 59.4 42.6 68.3 66.6 69.5 59.8 60.0 57.0 52.2 64.5 50.4 59.8 52.1 59.3 68.5 35.9 60.2 65.7 68.7 63.6 54.0
256 512 58.3 59.2 44.0 64.0 64.5 71.8 65.3 52.5 55.7 55.0 61.0 54.4 62.6 49.7 59.3 71.6 37.9 56.4 66.9 67.5 63.1 53.5
64 1024 58.4 59.4 42.6 65.1 68.7 66.1 62.6 55.5 58.4 49.5 64.5 54.4 58.4 50.9 59.3 74.7 36.9 57.6 66.3 68.7 61.5 54.2
128 1024 58.7 58.5 41.3 67.2 68.7 71.8 65.3 60.0 59.7 52.2 59.9 53.1 62.6 47.2 59.3 71.6 32.8 60.2 65.7 67.5 63.6 55.1
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Figure 16: Scaling Performance of VideoNSA under Different Attention Allocation Strategies. We
highlight the attention budget constraint to indicate settings with equal attention budget, and annotate
the best-performing configuration under each benchmark.

original key tokens and thus have non-negligible similarity scores Z⊤
j′Q. These tokens directly com-

pete with and divert attention away from the originally dominant key tokens. Under the combined
influence of these effects, the stable routing-path structure learned during training is overwritten:
formerly high-weight key tokens may be diluted or overshadowed by the new candidates, causing
∆i to increase significantly. As a result, the model is more likely to follow incorrect reasoning paths,
leading to degraded performance.

Geometric Rotational of RoPE. RoPE (Su et al., 2024) maps the representation at position i into
a rotation in a two-dimensional subspace:

q′(i) = R(iω)q, k′(j) = R(jω)k,
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Table 23: Ablation study results on information scaling of MLVU (Zhou et al., 2024). Metrics
include overall accuracy and task-specific scores across different steps. # TPF stands for token per
frame, and # F stands for sampling frame number.

# TPF # F Overall PlotQA Needle Ego Count Order Anomaly Reco Topic Reason. SportsQA TutorialQA

256 128 49.6 46.0 52.7 53.2 24.3 36.0 47.0 87.3 36.6 36.2
512 128 49.2 52.0 51.0 47.5 24.3 37.4 39.3 87.3 42.1 33.9
128 256 50.6 50.0 57.7 60.7 24.3 33.1 39.3 86.2 42.1 36.2
256 256 51.2 50.0 56.0 56.9 27.7 38.9 41.9 85.1 42.1 36.2
512 256 48.0 54.0 49.3 49.4 22.7 37.4 39.3 86.2 33.8 29.3
64 512 51.2 50.0 62.7 55.1 24.3 34.6 47.0 84.0 42.1 38.6
128 512 51.8 48.0 69.3 51.3 27.7 34.6 44.5 86.2 47.7 31.6
256 512 48.6 50.0 51.0 47.5 24.3 33.1 52.2 84.0 47.7 26.9
64 1024 51.8 56.0 66.0 53.2 26.0 36.0 47.0 84.0 42.1 31.6
128 1024 48.0 52.0 51.0 49.4 29.3 33.1 44.5 80.7 44.9 24.6

Table 24: Ablation study results on information scaling of Tomato (Shangguan et al., 2024). Metrics
include overall accuracy and task-specific scores across different steps. # TPF stands for token per
frame, and # F stands for sampling frame number.

FPS TPF Overall Direction Count Rotation Shape&Trend Velocity&Freq. Visual Cues Human Simulated Object

1 64 24.7 22.8 26.7 20.6 25.1 27.1 34.3 21.2 23.2 28.4
1 128 23.9 20.6 29.8 19.9 24.7 23.8 32.9 19.8 24.0 27.6
1 256 24.7 22.3 29.5 19.6 25.1 25.2 35.7 20.8 23.3 28.7
1 512 23.9 20.6 29.8 19.9 24.7 22.9 34.3 20.3 21.5 27.9
2 64 24.5 21.1 31.8 19.6 22.4 25.7 35.7 20.7 21.9 28.8
2 128 24.3 20.6 30.5 20.3 24.7 23.3 38.6 20.7 22.3 28.4
2 256 24.4 21.3 29.5 18.5 26.5 24.8 37.1 20.3 24.0 28.2
2 512 24.7 19.4 32.2 21.3 25.6 23.8 37.1 20.0 24.0 29.1
4 64 25.1 22.1 31.5 19.6 26.5 23.3 38.6 21.2 25.0 29.0
4 128 25.8 21.8 33.2 21.3 25.6 25.7 37.1 21.5 25.3 29.9
4 256 26.2 23.1 32.5 20.6 26.9 26.7 37.1 21.8 25.3 30.5
4 512 26.5 21.6 31.5 22.0 25.6 23.3 40.0 21.7 23.6 29.3

where R(iω) is a rotation matrix and ω denotes the frequency parameters. This yields an inner
product that depends only on the relative distance between the two positions:

⟨q′(i), k′(j)⟩ = ⟨R((i− j)ω)q, k⟩.

RoPE (Su et al., 2024) therefore establishes a structured geometric correspondence between relative
distance and rotation phase. Under this geometry, when the context length is moderately increased
(e.g., from 36K to 64K), the model only needs to resolve a larger phase difference dω; within
this range, the growth of the phase still lies in the extrapolation regime covered by the empirical
distribution seen during training. As a result, the model can naturally generalize.

LM-Infinite (Han et al., 2023) further proves that, in order to distinguish the growing clusters of
relative distances α(n), the attention logit must increase monotonically with sequence length:

sup
q,k,d≤n

|w(q, k, d)| ≥
(
α(n)

2

)1/(2r)
ε

4e
,

where w(q, k, d) denotes the logit at relative distance d, and α(n) grows with n. This “logit growth”
is controlled and beneficial at moderate lengths, expanding the dynamic range of attention and en-
abling the model to maintain token separability over larger distances and consistenting with the
strong performance we observe around 64K.

However, when the effective phase difference dω becomes excessively large, the rotation angle
may approach or exceed the periodic range of multiple frequency dimensions, giving rise to phase
aliasing: tokens that should correspond to distinct relative distances collapse into similar or even in-
distinguishable phase regions. In such cases, although attention logits continue to grow with length,
the high-frequency components of RoPE lose their discriminative resolution, reducing geometric
separability among tokens, which aligns with existing analyses (Press et al., 2021; Chen et al., 2023)
showing the degradation of relative positional encoding at extreme distances.
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Table 25: Ablation study results on information scaling of VSIBench (Yang et al., 2025a). Metrics
include overall accuracy and task-specific scores across different steps. # TPF stands for token per
frame, and # F stands for sampling frame number.

TPF # Max Frames Overall Obj. Order Abs. Dist. Counting Rel. Dist. Size Est. Room Est. Route Plan. Rel. Dir.

512 32 34.9 27.6 16.2 31.4 35.1 52.2 31.5 40.1 44.6
512 64 34.8 29.1 17.5 34.9 33.0 52.2 31.0 36.5 43.9
256 128 36.0 24.7 17.6 41.3 37.5 53.9 30.7 39.1 43.3
512 128 34.6 27.4 17.2 37.3 34.4 50.3 30.6 35.5 43.8
128 256 35.6 26.8 17.0 42.0 36.8 51.8 31.2 35.0 44.2
256 256 35.5 27.8 17.0 42.4 33.7 51.3 31.6 35.5 44.5
512 256 34.8 28.2 16.5 40.3 33.9 48.8 30.7 36.5 43.3
64 512 34.2 29.1 15.8 42.1 33.9 45.5 27.7 37.0 42.9

128 512 36.0 25.5 19.0 42.5 35.4 54.0 30.1 37.5 43.6
256 512 33.9 28.2 15.8 42.9 31.3 43.6 29.9 36.5 43.1
64 1024 35.8 24.4 18.5 46.4 34.4 52.4 29.7 37.5 43.0

128 1024 35.7 26.6 18.4 45.3 32.7 50.3 31.7 37.0 43.7

Table 26: Performance of Qwen2.5-VL 7B under different context lengths.

Context LVB MLVU TimeScope LTS VSIBench

32k 58.1 50.5 80.33 34.4 35.1
64k 59.7 51.2 81.13 40.7 29.7
128k 58.7 48.0 81.00 39.7 29.3
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Figure 18: More Inter-head Gate Similarites Visualization
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Figure 19: More Inter-head Gate Similarites Visualization
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Figure 20: More Inter-head Gate Similarites Visualization
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Table 27: Performance of VideoNSA under different context lengths.

Context LVB MLVU TimeScope LTS VSIBench

32k 58.7 50.6 78.5 41.1 36.0
64k 59.4 51.8 81.7 44.4 36.6
128k 60.0 48.7 83.7 42.9 35.7

Table 28: LongTimeScope (Zohar et al., 2025) results across different attention budget strategy.
Metrics include overall accuracy and task-specific scores across different steps.

Block Count Window Size Overall 18000 28800 36000

OCR QA Temporal OCR QA Temporal OCR QA Temporal

36 32 44.0 56.0 50.0 28.0 46.0 66.0 16.0 46.0 72.0 16.0
35 64 44.0 54.0 58.0 26.0 46.0 68.0 12.0 46.0 74.0 12.0
34 128 41.8 50.0 56.0 28.0 44.0 64.0 6.0 46.0 74.0 8.0
28 512 42.0 50.0 56.0 28.0 48.0 64.0 6.0 46.0 76.0 4.0
20 1024 40.9 52.0 56.0 28.0 48.0 64.0 0.0 44.0 76.0 0.0
4 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 128 41.6 52.0 56.0 26.0 46.0 62.0 10.0 42.0 76.0 4.0
64 512 42.4 52.0 56.0 28.0 48.0 64.0 8.0 46.0 76.0 4.0
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Figure 21: More Inter-head Gate Similarites Visualization
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Figure 22: More Inter-head Gate Similarites Visualization
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Figure 23: More Inter-head Gate Similarites Visualization
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Figure 24: More Inter-head Gate Similarites Visualization

P BENCHMARK-LEVEL GATING ANALYSIS AND PCA VISUALIZATION

In this section, we provide additional evidence that VideoNSA’s routing strategy depends on input
video content rather than layer depth alone. We collect the layer–head gate vectors for represen-
tative videos from three benchmarks with distinct visual properties (LongTimeScope (Zohar et al.,
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Table 29: TimeScope (Zohar et al., 2025) results across different attention budget strategy. Metrics
include overall accuracy and task-specific scores across different steps.

Block Count Window Size Overall 60 120 180 300 600 1200 1800 3600 7200 10800

36 32 81.6 97.4 97.4 96.7 85.4 82.7 86.3 85.3 71.3 60.6 52.7
35 64 82.4 92.7 91.3 92.7 91.4 83.4 91.6 91.3 74.6 63.3 52.0
34 128 82.2 96.7 96.7 94.7 89.4 82.0 88.3 85.3 76.6 60.0 52.7
28 512 82.8 94.7 97.4 94.7 90.7 82.7 91.6 88.6 74.0 63.3 50.0
20 1024 83.2 96.7 97.4 97.4 88.7 85.4 89.0 84.6 78.6 58.6 55.3
4 1900 8.6 4.7 4.7 4.7 4.7 4.7 12.3 13.3 13.3 13.3 10.0
10 512 59.9 4.7 4.7 94.7 88.7 79.4 85.6 80.0 68.0 58.0 35.3
40 1024 83.7 96.7 96.0 97.4 92.0 85.4 91.6 89.3 73.3 63.3 52.0

Table 30: LongVideoBench (Wu et al., 2024) results across different attention budget strategy. Met-
rics include overall accuracy and task-specific scores across different steps.

Block Count Window Size Overall 600.0 TOS S2E E3E S2A SAA O3O T3O T3E O2E T2O S2O TAA T2E E2O SSS T2A 60.0 SOS 15.0 3600.0

36 32 59.9 57.7 48.1 64.0 66.6 72.9 55.6 52.5 58.4 57.7 59.9 54.4 70.9 52.1 56.2 70.1 32.8 66.5 67.5 72.4 65.2 56.1
35 64 60.1 58.7 48.1 64.0 65.5 75.2 57.0 55.5 59.7 59.1 58.7 55.7 66.7 49.7 56.2 70.1 34.8 65.2 66.9 73.7 65.7 55.9
34 128 60.2 59.9 48.1 65.1 67.6 74.1 55.6 55.5 58.4 56.3 62.2 57.0 63.9 53.3 56.2 71.6 35.9 62.7 67.5 72.4 66.3 55.1
28 512 59.4 60.4 46.7 62.9 66.6 74.1 58.4 52.5 54.3 56.3 64.5 55.7 59.8 49.7 56.2 79.3 34.8 61.4 67.5 68.7 64.1 53.3
20 1024 59.6 60.6 45.4 66.1 66.6 72.9 59.8 54.0 54.3 55.0 64.5 57.0 58.4 50.9 56.2 80.9 32.8 62.7 69.2 67.5 63.6 53.1
4 1900 28.3 27.6 23.4 24.2 35.7 25.2 32.0 29.7 27.3 24.8 31.1 30.7 33.4 35.1 27.0 28.5 26.6 19.7 27.4 28.0 27.1 29.7

17 64 59.4 58.0 46.7 62.9 65.5 74.1 55.6 52.5 58.4 57.7 58.7 57.0 66.7 50.9 56.2 71.6 30.7 64.0 68.1 72.4 65.7 54.2

2025) for multi-shot transitions, Tomato (Shangguan et al., 2024) for high-frequency motion, and
VSIBench (Yang et al., 2025a) for complex spatial layouts) and project the gate vectors into a 2D
space using PCA.

As shown in Figure 25, the gate patterns form three clearly separated clusters, regardless of whether
we use the compression branch, the selection branch, or the sliding-window branch, which indicates
that VideoNSA learns benchmark-specific routing strategies conditioned on visual content, rather
than following a fixed depth pattern.

To further isolate the role of input-driven routing, we replace each layer’s gate with a static value
averaged from a 1K training subset, forcing the model to depend only on layer depth. As shown in
Table 34, the performance drops across all six benchmarks, especially on tasks requiring long-range
temporal integration, confirming that dynamic gating is essential.

Q ADDITIONAL ANALYSIS OF TRAINING AND INFERENCE EFFICIENCY

To complement the efficiency discussion in the main paper, we provide additional analysis of both
FLOPs and wall-clock latency across different attention mechanisms and context lengths.

Training Efficiency. Under identical optimization settings, training VideoNSA requires approx-
imately 4600 H100 GPU hours, while the dense baseline requires 5280 H100 GPU hours. This
corresponds to 0.87× of the dense baseline, indicating that VideoNSA achieves slightly improved
training efficiency despite using a more complex attention mechanism.

Inference Efficiency. Table 35 presents the theoretical FLOPs of different attention mechanisms.
In the ideal case, NSA requires only 2.05 PFLOPs, which is 0.24× that of Flash Attention, demon-
strating the theoretical computational efficiency of the sparse routing structure. However, the actual
FLOPs and wall-clock latency of VideoNSA are higher than this ideal value due to implementation
constraints in the current NSA kernel. The Qwen2.5-VL 7B (Qwen et al., 2025) adopts an unusual
head configuration of 4 KV heads and 28 query heads. To satisfy Triton kernel requirements, the
query heads must be padded to 64, which introduces additional computation and memory access
overhead. As a result, the practical efficiency of VideoNSA deviates from its theoretical FLOPs ad-
vantage. As shown in Figure 26, VideoNSA’s latency grows much more slowly than dense attention,
and compared with other sparse baselines, it delivers competitive inference speed while achieving
stronger model performance.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 31: MLVU (Zhou et al., 2024) results across different attention budget strategy. Metrics
include overall accuracy and task-specific scores across different steps.

Block Count Window Size Overall Direction Count Rotation Shape&Trend Velocity&Freq. Visual Cues Human Simulated Object

32 256 26.5 21.6 31.5 22.0 25.6 23.3 40.0 21.7 23.6 29.3
36 32 25.9 21.6 32.5 19.2 25.1 25.5 37.1 21.4 21.5 29.2
35 64 27.1 23.8 33.9 20.6 25.6 25.5 37.1 22.1 24.2 30.8
34 128 27.2 23.8 34.2 20.3 25.1 25.5 38.6 21.9 24.2 30.8
28 512 26.1 21.8 32.2 19.2 24.7 27.5 37.1 22.1 22.4 28.2
20 1024 25.1 20.6 30.8 17.5 23.3 29.4 34.3 21.4 23.3 25.6
64 512 25.3 21.3 30.5 19.6 24.2 27.5 32.9 21.4 22.9 27.4
4 2048 26.4 21.8 33.6 20.3 25.6 27.5 32.9 21.8 24.7 29.4

16 128 21.4 19.5 17.5 20.2 21.0 30.0 28.8 17.8 17.6 20.6

Table 32: Tomato (Shangguan et al., 2024) results across different attention budget strategy. Metrics
include overall accuracy and task-specific scores across different steps.

Block Count Window Size Overall Direction Count Rotation Shape&Trend Velocity&Freq. Visual Cues Human Simulated Object

36 32 25.9 21.6 32.5 19.2 25.1 25.5 37.1 21.4 21.5 29.2
35 64 27.1 23.8 33.9 20.6 25.6 25.5 37.1 22.1 24.2 30.8
34 128 27.2 23.8 34.2 20.3 25.1 25.5 38.6 21.9 24.2 30.8
28 512 26.1 21.8 32.2 19.2 24.7 27.5 37.1 22.1 22.4 28.2
20 1024 25.1 20.6 30.8 17.5 23.3 29.4 34.3 21.4 23.3 25.6
64 512 25.3 21.3 30.5 19.6 24.2 27.5 32.9 21.4 22.9 27.4
4 2048 26.4 21.8 33.6 20.3 25.6 27.5 32.9 21.8 24.7 29.4

16 128 21.4 19.5 17.5 20.2 21.0 30.0 28.8 17.8 17.6 20.6

R ADDITIONAL ANALYSIS ON CMP LATENCY BOTTLENECK

In this section, we provide additional analysis supporting the observation in findings that the CMP
branch becomes the dominant source of latency as the context length increases.

Since the block size determines how many CMP operations are executed, we vary the block size and
measure the resulting latency across multiple context lengths. As summarized in Table 36, although
increasing the block size reduces the number of CMP executions, the overall latency improvement
remains small. Smaller blocks are dominated by memory-access overhead, while larger blocks incur
higher computation per block. As a result, block-size scaling affects latency only moderately within
a narrow range and does not change the overall scaling trend.

We also observe that the most significant acceleration comes from more efficient NSA implementa-
tions instead of architectural hyperparameters. As shown in Table 37, the flash-nsa (mdy666, 2025)
implementation runs about twice as fast as our current nsa-impl (Pai et al., 2025a) in the forward
pass and up to six times faster in the backward pass. Other teams are also developing improved
kernels such as optimizing NSA for TPUs (Ko, 2025). These findings show that the dominant factor
affecting CMP and overall NSA latency comes from kernel efficiency, including memory access
patterns and kernel design.

S MORE ANALYSIS ABOUT ATTENTION SINKS ON VARIOUS SPARSE
ATTENTION SETTINGS

Figure 27a indicates that in the compression branch, smaller blocks produce sharper and higher sink
peaks at the sequence start, while larger blocks used in training reduce the initial peak but introduce
broader low-density diffusion with periodic boundary spikes. The selection sinks in 27b remain at
consistently low densities under different configurations, suggesting that the top-k filtering mecha-
nism robustly suppresses sink formation across different settings. Figure 27 shows the distribution
of attention sinks under different sparse attention settings. When varying the window size, sinks
are concentrated near the beginning and decay rapidly with position. Overall, larger windows yield
lower sink density but broader coverage, while the training configuration (w = 256) strikes a mid-
dle ground and exhibits sparse periodic clusters in the mid-to-late sequence, reflecting sensitivity to
local boundaries learned during training.
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Table 33: VSIBench (Yang et al., 2025a) results across different attention budget strategy. Metrics
include overall accuracy and task-specific scores across different steps.

Block Count Window Size Overall Appearance Abs. Dist. Counting Rel. Dist. Size Est. Room Est. Route Plan. Rel. Dir.

28 512 36.0 23.9 18.2 45.5 36.9 54.1 29.8 36.0 43.4
20 1024 35.9 24.0 18.5 46.8 36.7 53.6 29.0 36.5 42.0
4 1900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

34 128 35.5 24.7 18.7 37.8 36.2 53.9 31.7 36.0 45.2
35 64 35.4 25.5 20.4 33.2 35.4 53.6 31.5 38.1 46.0
36 32 34.9 25.3 20.6 28.4 36.0 54.4 30.9 38.1 45.9
36 62 35.3 25.2 20.5 28.3 35.8 54.7 31.0 41.1 46.1
16 128 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
64 512 35.8 23.6 18.3 45.9 36.8 54.2 29.3 36.5 42.3
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Figure 17: Gate weight distribution of each layer.

(a) Compression Branch (b) Selection Branch (c) Sliding Window
Figure 25: PCA visualization of benchmark-level gate patterns.

T DISCUSSION ON MODALITY-SPECIFIC SPARSITY

To further contextualize the modality-specific sparsity patterns exhibited by VideoNSA, we compare
its behavior with the text-only NSA (Pai et al., 2025a) used in language models. As shown in
Figure 28, the text-only NSA (Pai et al., 2025a) displays a distinct gating dynamic. The sliding-
window branch gradually becomes dominant in deeper layers, while the compression and selection
branches diminish rapidly and remain almost inactive throughout most of the network. This pattern
reflects the one-dimensional and relatively uniform nature of textual sequences, where long-range
interactions are sparse and stable, and the model tends to converge toward a single prevailing routing
path. The text-only NSA (Pai et al., 2025a) also presents a noticeable anomaly in the final layer,
where all three branches suddenly become active again despite having remained largely inactive in
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Table 34: Ablation on static gates averaged over a 1K training subset.

Model Long Video Understanding Temporal ReasoningSpatial Understanding

LongVideoBench MLVUTest TimeScope LongTimeScope Tomato VSIBench

Qwen2.5-VL-7B 58.7 51.2 81.0 40.7 22.6 29.7
VideoNSA 59.4 (+1.1%) 51.8 (+1.2%)82.7 (+2.1%) 44.4 (+9.1%) 26.2 (+15.9%) 36.1 (+20.3%)

VideoNSA+ Static Gate 58.4 (-0.5%) 51.2 (0.0%) 81.2 (+0.2%) 41.5 (+2.0%) 23.7 (+4.8%) 31.8 (+7.1%)

Table 35: Theoretical FLOPs comparison among different attention mechanisms. “VideoNSA
(ideal)” denotes the theoretical FLOPs of NSA without query-head padding.

Method FLOPs Relative

Flash Attention 8.40 PF 1.00×
Tri-shape 7.07 PF 0.84×
MInference 4.13 PF 0.49×
Flexprefill 7.75 PF 0.92×
XAttention 1.94 PF 0.23×
VideoNSA (ideal) 2.05 PF 0.24×
VideoNSA 4.68 PF 0.56×
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(a) Absolute prefill latency across attention mechanisms.
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Figure 26: Inference efficiency comparison across attention mechanisms.

previous layers. This behavior suggests a late-stage shift in inductive patterns that is characteristic of
language modeling. In contrast, VideoNSA, as shown in Figure 17, maintains active and balanced
usage of all three branches across nearly the entire depth of the network, with the compression
branch playing a consistently prominent role.

The inter-head similarities further highlight the divergence between the two modalities. The text-
only NSA (Pai et al., 2025a) in Figure 29 exhibits strong correlations across heads in the early layers,
which indicates a set of conserved induction-like operations. Later in the model, selection and slid-
ing window gate values become decorrelated across heads. VideoNSA, as shown in Section O, how-
ever, displays substantially weaker cross-head correlations overall, and only a few mid-layer clusters
emerge in the selection and sliding-window branches. These findings imply that VideoNSA adjusts
its sparse routing behavior to accommodate the rich spatiotemporal redundancy and multi-scale
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Table 36: CMP latency under different block sizes and context lengths.

Block Size 4k 8k 16k 32k 64k 128k
32 0.868 1.022 1.311 1.982 3.698 8.343
64 0.882 1.036 1.322 1.997 3.687 8.323

128 0.880 1.027 1.308 1.993 3.705 8.353

Table 37: Latency comparison between different NSA implementations at 8k context length.

Implementation forward backward
nsa-impl (Pai et al., 2025a) 5.402 32.826
flash-nsa (mdy666, 2025) 2.429 5.537
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Figure 27: Attention sink distributions across the three branches under
different sparse settings.

structure of video inputs, rather than collapsing into a single dominant pathway as observed in the
text-only model.
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Figure 28: Layer-wise gate distributions of text-only NSA (Pai et al., 2025a).

Figure 29: Inter-head gate similarities of text-only NSA (Pai et al., 2025a).
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U DENSE ATTENTION SINK VISUALIZATION
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