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Abstract001

Pretraining on Machine-Translated text appears002
to be a viable alternative for pretraining lan-003
guage models in low-resource languages. Yet,004
we still lack a clear picture of how well lan-005
guage models scale on such noisy corpora and006
which properties of the source text matter. We007
fill this gap with a controlled study in Indone-008
sian and Tamil. Starting from one English009
corpus, we build two MT datasets—Natural-010
MT and a Simplified-MT variant generated011
with an LLM—and pretrain GPT-2 models012
of three sizes (124M, 355M, 774M). Our re-013
sults show: (1) loss on held-out native text014
continues to fall with model size, indicating015
that extra capacity learns transferable patterns016
despite translation noise; (2) models trained017
on Natural-MT consistently outperform those018
trained on Simplified-MT, implying that the019
linguistic richness of the source text survives020
translation and aids generalization; (3) a brief021
continual-pretraining phase on a modest native022
corpus pushes performance beyond a native-023
only baseline; (4) when downstream task data024
are also MT, MT-pretrained checkpoints match025
native-pretrained ones on sentiment analysis,026
NLI, and causal reasoning, though native expo-027
sure remains crucial for toxicity detection. To-028
gether, these findings suggest a practical recipe029
for data-poor languages: translate diverse En-030
glish text, scale models, and devote any native031
data to a short adaptation phase.032

1 Introduction033

Language technologies have advanced rapidly,034

with Large Language Models (LLMs) achieving035

strong performance across an array of tasks (Brown036

et al., 2020; Team et al., 2024; Qwen et al., 2025;037

Grattafiori et al., 2024). Scaling-law studies show038

that performance improves almost predictably with039

larger parameter counts and more training tokens040

(Kaplan et al., 2020; Hoffmann et al., 2022; Wei041

et al., 2022). Yet the corpora required to reap042
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Figure 1: (Top) Loss vs. model size for Indonesian.
(Bottom) Loss vs. model size for Tamil. Loss is eval-
uated on native text in their respective languages. In
both settings, adding more parameters improves loss
and models trained on Natural-MT consistently outper-
form those trained on Simplified-MT.

these benefits exist only for a handful of data- 043

rich languages such as English, leaving most of 044

the world’s languages under-served (Üstün et al., 045

2024). A workaround is to machine-translate En- 046

glish text into the target language, instantly produc- 047

ing billions of words but also introducing “trans- 048

lationese”—literal phrasing, source-language bias, 049

and cultural mismatches that diverge from native 050

prose (Jalota et al., 2023). 051

Although MT has known limitations, its accessi- 052

bility makes it a valuable source for supplemental 053
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data or even as primary training data. Recent works054

explore the utility of machine-translated pretraining055

data in some Indic languages (Doshi et al., 2024)056

and Arabic (Alcoba Inciarte et al., 2024), both057

showing encouraging results of achieving down-058

stream performance comparable with models pre-059

trained on native texts. While these works pro-060

duced encouraging results on MT-pretraining, key061

questions remain about its scalability and general-062

ization.063

This shift from native to synthetic data raises064

our first, fundamental question. When pretraining065

on noisy MT data, does increasing model size066

improve generalization to native language—or067

does it lead to overfitting on translation arti-068

facts? We answer this by measuring how native069

held-out loss changes as we increase the model size070

under a fixed MT corpus.071

To further examine the noise in MT data, we ex-072

plore whether simplifying source text before trans-073

lation can yield MT data with fewer errors. This074

assumption is grounded in the intuition that sim-075

pler language is easier to translate. However, this076

may also reduce linguistic diversity, yielding less077

expressive training data. What is the net effect078

of lowering source-side complexity on general-079

ization from MT pretraining to native text? We080

isolate this factor using parallel Natural-MT and081

Simplified-MT corpora.082

Beyond data characteristics lie training-scheme083

choices. Continual pretraining (CPT) is widely084

used for domain adaptation, but almost always085

starts from a clean checkpoint. Can models pre-086

trained on MT data serve as useful initializa-087

tion for continual native-only pretraining, or do088

translationese artifacts hinder learning by forc-089

ing the model to unlearn unnatural patterns?090

We study the drop in native loss and separately091

probe linguistic capabilities after a fixed CPT bud-092

get.093

Lastly, fine-tuning resources for truly low-094

resource languages aren’t always native. In prac-095

tice, one takes an English task dataset, machine-096

translates it, and trains on it as a substitute. Given097

such translation-based fine-tuning data, do MT-098

pretrained models ultimately outperform native-099

pretrained ones on native evaluation sets, or100

does the advantage disappear? We test evalu-101

ate this by fine-tuning on MT task data from En-102

glish and testing on four native natural language103

understanding (NLU) tasks.104

Our contributions are as follows: 105

(1) We release machine-translated corpora in In- 106

donesian and Tamil by translating both Natu- 107

ral and Simplified English sources. 108

(2) We provide insights into the generalization 109

potential of MT data as pretraining data by ob- 110

serving the scaling behavior across three GPT- 111

2 sizes (124M, 355M, 774M parameters). 112

(3) We quantify how source complexity, pretrain- 113

ing origin, and CPT affect loss on held-out 114

native texts and linguistic probing accuracy, 115

discovering that simplification usually hurts 116

and MT-pretraining → native-CPT has the po- 117

tential to yield much lower loss than native- 118

pretraining alone. 119

(4) We evaluate downstream transfer on four 120

NLU tasks whose training sets are machine- 121

translated, revealing that pretraining origin 122

matters little except in specific tasks like toxi- 123

city detection, where native exposure remains 124

critical. 125

This systematic study closes key evidence gaps 126

about scaling, text complexity, and continual pre- 127

training when machine-translated data is the only 128

realistic option. 129

2 Related Work 130

Performance gap in low-resource languages. 131

Recent breakthroughs in LLMs have been con- 132

centrated in high-resource languages like English, 133

where vast amounts of high-quality data are read- 134

ily available (Joshi et al., 2020). In contrast, low- 135

resource languages continue to lag significantly 136

behind, largely due to limited training data and 137

benchmarks. This disparity has motivated several 138

community-driven efforts aimed at closing the gap, 139

including initiatives like Masakhane for African 140

languages (Orife et al., 2020), SEA-CROWD for 141

Southeast Asian languages (Lovenia et al., 2024), 142

and developments of multilingual open-source 143

LLMs such as BLOOM (Workshop et al., 2023) 144

and Aya (Üstün et al., 2024). These efforts under- 145

score the importance of inclusive data and model 146

development to make LLMs more accessible across 147

languages. 148

Continual pretraining of language models. 149

The core idea of continual pretraining (CPT) is to 150

2



take advantage of general patterns learned from pre-151

vious pretraining regime and adapt it to the new do-152

main. Depending on the context, domain can mean153

different things. For example, adapting language154

models from one language to another (Cahyawi-155

jaya et al., 2023; Yong et al., 2023; Joshi et al.,156

2025) or it can be adapting language models trained157

on general knowledge to specialized domains like158

computer science publications (Gururangan et al.,159

2020). In our work, we frame CPT as adapting160

representations learned from translationese domain161

to native language domain. Our setup shares simi-162

larities with Doshi et al. (2024) but our focal point163

is to observe loss improvements on native texts and164

linguistic capabilities.165

Machine-Translated Data for Pretraining. Pre-166

training on machine-translated (MT) data has been167

explored in several languages, including Arabic168

(Alcoba Inciarte et al., 2024) and Indic languages169

such as Hindi, Marathi, and Gujarati (Doshi et al.,170

2024). These works primarily examine whether171

MT data can effectively bootstrap language models172

and match the performance of models trained on173

native text. In contrast, our work focuses on the174

properties of MT data itself, aiming to understand175

the conditions under which it supports effective176

pretraining.177

3 Target Languages and Machine178

Translation Models179

For the source language, we chose English due to180

its high-resourceness. For target languages, we181

decided based on several criteria: (1) language is182

not yet studied in the context of MT-pretraining (2)183

overall data in that language is relatively scarce, (3)184

availability of open-source MT model, (4) avail-185

ability of high-quality human-created NLU bench-186

marks, and (5) presence of a diagnostic bench-187

mark for linguistic knowledge, similar to BLiMP188

(Warstadt et al., 2020). All are essential for bet-189

ter understanding MT-pretraining’s generalization190

potential to native text beyond language modeling191

performance.192

For MT models, we use OPUS-MT (Tiedemann193

et al., 2023) English → Indonesian1 and English194

→ Tamil2, achieving BLEU score of 38.7 and 4.6195

on flores101-devset, respectively (opu). We use196

1opus-2019-12-18 version accessed at https:
//huggingface.co/Helsinki-NLP/opus-mt-en-id

2opus-2020-07-26 version accessed at https:
//huggingface.co/Helsinki-NLP/opus-mt-en-dra

OPUS-MT due to its open-source nature3, small 197

model size, and fast inference. 198

4 Data Setup 199

Corpus Words Types TTR Entropy

Natural 3.72B 12.70M 0.34% 10.77
Simplified 3.45B 9.56M 0.28% 10.34

Table 1: Source-side corpus statistics. Words are space-
separated words, Types are unique word count, TTR
is Type-Token Ratio, and Entropy refers to Unigram
Entropy. Lower TTR means lower lexical diversity.
Lower Entropy means lower complexity.

Source Language Data. The source English data 200

was curated from three permissively licensed cor- 201

pora4: Dolma v1.6 (Soldaini et al., 2024), FineWeb- 202

Edu (Penedo et al., 2024) and Wiki-40B (Guo 203

et al., 2020). The combined dataset, herein re- 204

ferred to as Natural Corpus, contains 3.98 billion 205

tokens, comprises of 40% Dolma (web, social me- 206

dia, books, academic), 10 % Wiki-40B (wiki), and 207

50% FineWeb-Edu (web). More details about the 208

sampling can be found in Anonymous (2025). 209

Indonesian Native Corpus. We use Indo4B 210

(Wilie et al., 2020) since it’s one of the largest 211

and most widely adopted pretraining dataset in In- 212

donesian. 213

Tamil Native Corpus. We randomly sampled 5B 214

tokens from Tamil subset of IndicMonoDoc (Doshi 215

et al., 2024) since it’s one of the largest, document- 216

level pretraining dataset in Tamil. 217

Simplified Data. We use Llama 3.1 8B 218

(Grattafiori et al., 2024) to transform Natural Cor- 219

pus into simplified texts, referred to as Simplified 220

Corpus. For efficient inference, we use the INT8 221

quantized version5 of the model and vLLM (Kwon 222

et al., 2023) as our LLM serving system. More de- 223

tails about the filtering and prompt can be found in 224

Anonymous (2025). The resulting data will be re- 225

ferred to as Simplified Corpus. Table 1 summarizes 226

corpus statistics and surface-level text complexity 227

metrics, with Simplified Corpus showing consis- 228

tently lower Types, TTR, and Unigram Entropy 229

than Natural Corpus, suggesting overall lower text 230

3CC-BY 4.0
4Dolma and FineWeb-Edu (ODC-BY), Wiki-40B (Cre-

ative Commons)
5https://huggingface.co/neuralmagic/

Meta-Llama-3.1-8B-Instruct-quantized.w8a8

3

https://huggingface.co/Helsinki-NLP/opus-mt-en-id
https://huggingface.co/Helsinki-NLP/opus-mt-en-id
https://huggingface.co/Helsinki-NLP/opus-mt-en-dra
https://huggingface.co/Helsinki-NLP/opus-mt-en-dra
https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8
https://huggingface.co/neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8


complexity. Here’s an example of what the simpli-231

fied texts look like:232

Original: Maintaining a relaxed state of233
mind allows you to approach challenges234
with clarity and calm, making it easier235
to find balanced solutions.236

Simplified: Staying calm helps you face237
challenges more clearly and find better238
solutions.239

Machine-Translated Data. Before MT, we split240

Native Corpus into sentences and apply pre-MT fil-241

tering: drop any document that contains a sentence242

exceeding a given token-count threshold. This is243

done simply for efficiency purposes. More details244

in Appendix A.245

After MT, we apply post-MT filtering: calcu-246

late sentence length ratio (in tokens) of translation247

to source text then drop documents in which any248

translation exceeds a sentence-length ratio of 2.249

After filtering, sentences are reconstructed back250

to documents. To control for core text content of251

the corpus, we ensure that all documents in Natural252

Corpus and Simplified Corpus are parallel. The253

final translated corpus will be referred to as Natural-254

MT Corpus if source data is Natural Corpus and255

Simplified-MT Corpus if source data is Simplified256

Corpus.257

4.1 Evaluation and Fine-tuning Data258

Our evaluation touches on three aspects: (1)259

out-of-distribution generalization to native text,260

(2) native-language proficiency, and (3) native-261

language downstream performance.262

Aspect (1): Out-of-distribution generalization263

to native text. We set a held-out validation set com-264

prising 200 million tokens from the native corpus265

of each language.266

Aspect (2): Native-language proficiency. We267

use the syntax subset of LINDSEA (Leong et al.,268

2023), which probes phenomena such as morphol-269

ogy, negation, argument structure, and filler-gap270

dependencies.271

Aspect (3): Native-language downstream per-272

formance. We evaluate on the Indonesian and273

Tamil subsets of SEA-HELM (Susanto et al., 2025)274

for four NLU tasks: sentiment analysis, toxicity275

detection, natural-language inference, and causal276

reasoning.277

4.2 Fine-tuning Data278

To investigate the generalization potential of279

machine-translated fine-tuning data, we train on280

Task Train Data Labels

SA

Amazon
(Hou et al., 2024)
Yelp
(Zhang et al., 2015)

negative (50K)
positive (50K)

TD HateSpeech
(Davidson et al., 2017)

hate (0.6K)
clean (2.4K)
rough (10.3K)

NLI WANLI
(Liu et al., 2022)

contradiction (11.2K)
entailment (10.9K)
neutral (11K)

CR B-COPA
(Kavumba et al., 2019) –

Table 2: Overview of fine-tuning tasks, data sources,
label splits, and example counts (in thousands). SA =
Sentiment Analysis, TD = Toxicity Detection, NLI =
Natural Language Inference, CR = Causal Reasoning.

machine-translated English task-specific datasets. 281

The list of datasets is summarized in Table 2. All 282

task datasets, except for causal reasoning, will go 283

through balanced-label sampling → pre-MT filter- 284

ing → MT → post-MT filtering. For more details, 285

refer to Appendix A. 286

5 Experimental Setup 287

5.1 Model Architecture 288

Size Layers dmodel Heads MLP Params

Small 12 768 12 3 072 124 M
Medium 24 1 024 16 4 096 355 M
Large 36 1 280 20 5 120 774 M

Table 3: Model configurations.

All models are plain GPT-2 decoders trained 289

from scratch. We train a 50,257-token byte-pair 290

encoding (Sennrich et al., 2016) separately for 291

Indonesian and Tamil on their respective native 292

corpora. Two additional special tokens are intro- 293

duced: a [PAD] token serving as both padding and 294

end-of-sequence, and a [SEP] token used only for 295

sequence-pair classification heads. During pretrain- 296

ing we attach a language-model head; downstream 297

experiments swap in a linear classification head. 298

5.2 Pretraining Configurations 299

Models. For each language, we train nine mod- 300

els: 301(
3 corpora: Natural-MT, Simplified-MT, Native

)
302

×
(
3 sizes: Small, Medium, Large

)
303
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Optimization. We optimize left-to-right lan-304

guage modeling with a 1 024-token window and305

an effective batch size of 384. AdamW is used306

with the default β1/β2/ε (0.9/0.999/1e–8) and307

weight-decay 0.01. A 100M-token sweep over308

{5e–5, 1e–4, 5e–4} showed 5e–4 to be consistently309

strongest; this value is fixed with 5 % warm-up and310

linear decay. Mixed precision (autocast + Grad-311

Scaler) and gradient clipping (1.0) are enabled;312

Large models use gradient checkpointing to work313

around memory constraints.314

Hardware and runtime. Small/Medium models315

train on 8 × P100 (16GB); Large models on 8 ×316

P40 (24GB). Wall-clock times range from 19h (In-317

donesian Simplified-MT, Small) to 12d 11h (Tamil318

Simplified-MT, Large).319

5.3 Continual Pretraining (CPT)320

Continual pretraining is applied to the small and321

medium models that were first trained on the322

Natural-MT and Simplified-MT corpora. Each run323

restarts from its final MT checkpoint and continues324

on the Native corpus: 1B tokens for Indonesian325

and 2.5B tokens for Tamil, which correspond to326

roughly half of the respective MT token counts.327

All optimization hyperparameters of the first stage328

are retained— AdamW with default moments, an329

effective batch size of 384 (1 024-token sequences),330

mixed precision, and gradient clipping— except331

that the peak learning rate is reduced by an order332

of magnitude to 5× 10−5 while maintaining a 5333

% warm-up and linear decay. This second stage334

therefore adapts MT-initialized representations to335

genuinely native data without altering the overall336

training dynamics.337

5.4 Fine-tuning & Evaluation338

Supervised tasks. Each pretrained checkpoint339

is fine-tuned on four downstream classifica-340

tion tasks—causal reasoning, sentiment analysis,341

natural-language inference (NLI), and toxicity de-342

tection (for Indonesian only). Training data con-343

sist solely of machine-translated (translationese)344

instances; a held-out portion of each task’s trans-345

lationese set serves as a development split for hy-346

perparameter selection. After grid search, the best347

configuration for each random seed is evaluated on348

the native SEA-HELM test set.349

Classification head and optimization. Fine-350

tuning attaches a simple classification head on top351

of the decoder: a single linear layer mapping the352
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Figure 2: (Top) Loss vs. model size for Indonesian.
(Bottom) Loss vs. model size for Tamil. Loss is eval-
uated on native text in their respective languages. In
both cases, continual pretraining of Natural-MT and
Simplified-MT on partial native corpus (1B tokens for
Indonesian, 2.5B for Tamil) significantly reduces loss,
surpassing the native model with equal native token ex-
posure. Dashed lines show the lowest loss achieved by
the largest native model.

hidden dimension to the number of class labels. 353

The model pools by taking the logits at the fi- 354

nal non-padding token of each sequence; cross- 355

entropy loss is computed on those pooled logits. 356

All decoder parameters and the output layer are 357

updated jointly. We sweep over learning rates 358

{ 1×10−4, 5×10−5, 2×10−5, 1×10−5, 5×10−6 } 359

and task-dependent epoch budgets (1–3 epochs for 360

causal and toxicity, 1–2 for NLI, and exactly one 361

epoch for sentiment). The maximum sequence 362

length remains 1024 tokens; batch sizes are tuned 363

to the longest example in each corpus (see Table 6 364

in the Appendix). All runs follow the pretraining 365

schedule of 5 % warm-up followed by linear decay 366

and employ no early stopping. 367

Metric and model selection. Systems are ranked 368

by balanced accuracy on the dev split, where bal- 369

anced accuracy is the unweighted mean of per- 370

class recall (macro-averaged). Final scores are 371
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Size Pretraining data Indonesian Tamil
Acc. ∆ Acc. ∆

Small

Native 55.8 71.5

Natural-MT 47.6 66.2
Natural-MT → Native-CPT 52.9 +5.3 69.1 +2.9

Simplified-MT 46.6 61.3
Simplified-MT → Native-CPT 52.4 +5.8 72.1 +10.8

Medium

Native 52.4 62.8

Natural-MT 50.5 65.5
Natural-MT → Native-CPT 53.7 +3.2 72.8 +7.3

Simplified-MT 49.5 65.1
Simplified-MT → Native-CPT 52.1 +2.6 76.0 +10.9

Large
Native 57.4 68.9

Natural-MT 49.7 62.8
Simplified-MT 49.7 62.8

Table 4: Accuracy on the LINDSEA Syntax subset (higher is better; random chance is 50 %). Native pretraining
produces the strongest Indonesian model (57.4%), whereas CPT lifts MT models to the top for Tamil (76.0% for
Medium Simplified-MT→Native). In Indonesian, MT models score close to or below random, but CPT raises them
by 4–6 percentage points, partially closing the gap to native. Tamil results are uniformly higher: even MT-only
models exceed 60%, and CPT adds another 6–10 percentage points. Scaling remains non-monotonic—Simplified-
MT CPT Medium surpasses all Large models in Tamil.

reported as means—and, where noted, standard372

deviations—over three independent random seeds.373

Zero-shot syntactic probing. To gauge the lin-374

guistic knowledge encoded by the pretrained rep-375

resentations, we also evaluate every checkpoint on376

the Syntax subset of LINDSEA. The subset is con-377

verted to BLiMP-style minimal pairs; a model is378

correct when it assigns a higher log-probability to379

the grammatical member of the pair. Accuracy is380

averaged across all syntactic phenomena.381

Compute budget. Fine-tuning uses the same382

hardware as pretraining: 8 × P100-16 GB for small383

and medium models, and 8 × P40-24 GB for large.384

A complete grid search for a single model across all385

tasks finishes in roughly 5h (small), 11h (medium),386

and 20h (large).387

6 Results and Discussion388

6.1 Scaling on Noisy Supervision389

MT data often contains artifacts like translation390

errors and unnatural phrasing. We hypothesized391

that increasing model capacity would lead to over-392

fitting on this noise, causing the model to memo-393

rize artifacts rather than learn transferable patterns.394

However, on a fixed MT data setup, our experi-395

ment shows that Natural-MT benefits from model396

scaling despite the inherent noise of MT data (see397

Figure 1). The lack of overfitting suggests that the398

model isn’t merely learning surface-level MT ar- 399

tifacts. Rather, it’s acquiring representations that 400

transfer to native data. 401

6.2 Source-Side Complexity Effects 402

We hypothesized that source text complexity would 403

influence how learnable the resulting MT data 404

is, though the direction of that influence was un- 405

clear. To test this, we compare models trained on 406

Natural-MT versus Simplified-MT. Across all sizes, 407

Natural-MT consistently achieves lower native vali- 408

dation loss than Simplified-MT (see Figure 1), con- 409

firming that richer source text yields more learnable 410

MT data. 411

The largest advantage appears in the Tamil small 412

model on LINDSEA—a gap of 6.2 percentage 413

points—while for larger models and for Indone- 414

sian the difference shrinks to under two points. A 415

similar pattern holds on downstream NLU tasks: 416

accuracy gaps rarely exceed two percentage points, 417

with the sole exception of the Indonesian medium 418

NLI system, where Natural-MT leads by 4.9 points. 419

That substantial perplexity improvements trans- 420

late into only modest accuracy gains suggests that 421

downstream performance depends on factors be- 422

yond native-like fluency. 423

We hypothesize that the simplification step pro- 424

duces English that is less natural, resulting in MT 425

data with weaker signals for morphology, syntax, 426
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Model size Pretraining data Indonesian Tamil

Causal Reasoning Sentiment Analysis NLI Toxicity Detection Causal Reasoning Sentiment Analysis NLI

Small

Native 54.5 63.4 53.7 52.6 50.8 87.1 42.8
Natural-MT 51.6 61.9 56.9 42.5 48.8 88.4 42.3
Simplified-MT 51.2 61.3 56.2 44.5 51.3 88.8 40.7
Natural-MT → Native-CPT 51.2 63.5 57.4 47.6 50.9 88.9 43.5
Simplified-MT → Native-CPT 49.4 62.9 58.2 49.6 50.0 89.0 43.0

Medium

Native 51.5 62.7 57.7 53.0 50.8 84.8 41.1
Natural-MT 49.6 62.6 60.7 44.1 53.7 90.3 43.8
Simplified-MT 47.7 61.6 55.8 44.6 51.9 90.6 44.8
Natural-MT → Native-CPT 51.9 64.2 59.7 49.5 50.9 91.2 45.1
Simplified-MT → Native-CPT 53.4 62.6 57.2 48.3 50.7 90.5 45.1

Large
Native 51.5 63.7 56.6 54.7 51.9 86.2 43.4
Natural-MT 54.8 62.6 61.6 45.2 50.9 90.6 43.6
Simplified-MT 52.7 61.5 63.2 46.2 49.0 90.0 43.3

Table 5: Average balanced accuracy on the SEA-HELM test sets after fine-tuning each model on translationese
over three random seeds (best runs). Across languages and sizes, several patterns stand out. (1) Toxicity detection
clearly favours native-pretraining; MT-pretrained models lag by 3–11 percentage points, despite identical fine-tuning
data. (2) For NLI and sentiment, the gap between MT-pretrained models and native-pretrained models is narrow;
continual pretraining (CPT) usually nudges performance to the top of each size block. (3) Causal reasoning (binary
choice) remains the hardest task: the best Indonesian model reaches only 54.8%, and Tamil peaks at 53.7%, close to
chance for a two-way decision. (4) Model size is not strictly monotonic: medium-sized models match or surpass
large ones on three of the seven task–language pairs.

Standard deviations over the three random seeds are reported in Table 7 in the appendix.

and discourse. Together, these observations show427

that preserving linguistic variety before transla-428

tion consistently improves learnability, although429

the magnitude of this benefit varies with language430

and model capacity.431

6.3 MT Pretrain → Native CPT432

If the model is trained on noisy MT data and433

learned to model translation artifacts, will it strug-434

gle to adapt to native language? Our experiments435

show that continually pretraining Natural-MT and436

Simplified-MT models on a subset of native texts437

(1B tokens for Indonesian, 2.5B for Tamil) sig-438

nificantly improves loss on native texts, even sur-439

passing the native model under equal native token440

exposure (see Figure 2). This also boosted syntac-441

tic accuracy on LINDSEA by up to six percent-442

age points in Indonesian and ten in Tamil. Our443

findings suggest that despite known translation arti-444

facts, MT-pretraining learns robust, adaptable rep-445

resentations, making it an effective initialization446

for continual pretraining on native text.447

6.4 Translationese Fine-Tuning Outcomes448

Fine-tuning exclusively on translationese task data449

still transfers well to native evaluation sets (Ta-450

ble 5). In fact, MT-pretrained models perform com-451

parably with native-pretrained models—balanced-452

accuracy gaps are usually within two percentage453

points—highlighting MT-pretraining as a viable al-454

ternative for bootstrapping models in low-resource455

scenarios. Three consistent observations emerge:456

1. Task sensitivity. Indonesian toxicity detec- 457

tion clearly prefers native pretraining, with 458

gaps of 3–11 percentage points. 459

2. General parity elsewhere. On sentiment 460

analysis and NLI, MT-pretrained models lie 461

within one to two percentage points of na- 462

tive models, and MT-pretrained→ native-CPT 463

variants often top each size block. 464

3. Capacity trade-offs. Although validation 465

loss still falls with size (§6.1), balanced- 466

accuracy gains taper: medium models match 467

or exceed large ones on four of seven 468

task–language pairs. 469

This tapering may reflect limitations of the trans- 470

lationese fine-tuning data—once the dataset lacks 471

sufficient size or diversity, extra model capacity 472

cannot be fully utilized. Nevertheless, transla- 473

tionese fine-tuning endows both MT-pretrained and 474

native-pretrained models with robust knowledge 475

that generalizes to native test inputs. Outside of 476

toxicity detection, relying on MT data in either 477

pretraining or fine-tuning does not seem to incur a 478

systematic drawback. 479

7 Conclusion 480

This study asked whether language models can 481

be scaled effectively on machine–translated (MT) 482

corpora, how the linguistic complexity of the 483

source text shapes that outcome, and whether 484

MT–pretrained checkpoints remain useful once 485

7



native data or translationese fine-tuning becomes486

available. Through controlled experiments in In-487

donesian and Tamil, four clear messages emerge:488

1. Scaling on MT data works. Larger GPT-2489

models (124M → 774M) trained purely on490

Natural-MT corpora achieve lower perplexity491

on held-out native text than their smaller coun-492

terparts—evidence that added capacity cap-493

tures transferable patterns rather than merely494

memorizing translation artifacts. This sug-495

gests that despite its noise, MT data contains496

transferable features that larger models can497

effectively learn.498

2. Keep the source text rich. Simplifying the499

English input before translation consistently500

degrades downstream generalization. Linguis-501

tic variety in the source provides signals that502

survive translation and remain valuable for503

learning.504

3. MT checkpoints are excellent springboards.505

Continual pretraining on even a fraction of506

native text (1B tokens in Indonesian, 2.5B in507

Tamil) lowers native validation loss beyond508

what a native-only model reaches with the509

same budget and lifts syntactic accuracy by510

up to ten points.511

4. Translationese fine-tuning is usually suffi-512

cient. When task data are also MT, models513

pretrained on MT match or surpass native-514

pretrained peers on sentiment, NLI, and causal515

reasoning; only toxicity detection retains a516

clear preference for native exposure.517

Future work should probe even larger capaci-518

ties, extend the analysis to additional language fam-519

ilies, and explore adaptive source simplification520

strategies that balance MT quality with linguistic521

breadth.522

Limitations523

Our study has several limitations. First, text simpli-524

fication using LLMs may introduce hallucinations,525

so Simplified-MT may deviate semantically from526

Natural-MT. Second, translating massive amounts527

of text from one language to another may carry528

over biases from the source language to the tar-529

get language. Pretraining language models with530

such artifacts may reinforce those biases. Third,531

our fixed MT dataset and three GPT-2 model sizes532

(124M, 355M, 774M) limit the scope; varying both 533

dataset and model size could yield more generaliz- 534

able insights. Fourth, we only examined English 535

as the source language, so findings may not hold 536

when translating from other languages. Fifth, re- 537

sults are influenced by MT model quality; despite 538

notable BLEU score differences, we cannot isolate 539

the impact of translation quality due to linguistic 540

confounds. Finally, while language and culture are 541

intertwined, this work focuses solely on language 542

translation without addressing cultural knowledge 543

transfer. 544
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Lang. Task Batch size

Indonesian

Causal reasoning 50
Sentiment analysis 12
NLI 10
Toxicity detection 2

Tamil
Causal reasoning 10
Sentiment analysis 2
NLI 2

Table 6: Batch sizes used during downstream fine-
tuning.
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Model size Pretraining data Indonesian Tamil

Causal Reasoning Sentiment Analysis NLI Toxicity Detection Causal Reasoning Sentiment Analysis NLI

Small

Native 54.5 ± 2.8 63.4 ± 0.4 53.7 ± 0.3 52.6 ± 0.4 50.8 ± 0.8 87.1 ± 0.7 42.8 ± 1.4
Natural-MT 51.6 ± 0.9 61.9 ± 1.0 56.9 ± 1.8 42.5 ± 0.8 48.8 ± 3.3 88.4 ± 0.6 42.3 ± 0.5
Simplified-MT 51.2 ± 1.9 61.3 ± 0.5 56.2 ± 1.2 44.5 ± 3.5 51.3 ± 3.3 88.8 ± 0.4 40.7 ± 0.7
Natural-MT → Native-CPT 51.2 ± 3.1 63.5 ± 0.5 57.4 ± 0.8 47.6 ± 2.9 50.9 ± 0.2 88.9 ± 0.3 43.5 ± 0.7
Simplified-MT → Native-CPT 49.4 ± 1.3 62.9 ± 0.7 58.2 ± 0.4 49.6 ± 1.0 50.0 ± 1.7 89.0 ± 0.6 43.0 ± 0.5

Medium

Native 51.5 ± 3.8 62.7 ± 0.2 57.7 ± 1.8 53.0 ± 0.7 50.8 ± 3.0 84.8 ± 0.2 41.1 ± 0.9
Natural-MT 49.6 ± 2.8 62.6 ± 0.5 60.7 ± 0.9 44.1 ± 1.1 53.7 ± 2.2 90.3 ± 0.2 43.8 ± 0.2
Simplified-MT 47.7 ± 2.2 61.6 ± 0.8 55.8 ± 0.4 44.6 ± 1.5 51.9 ± 3.1 90.6 ± 0.1 44.8 ± 0.9
Natural-MT → Native-CPT 51.9 ± 3.6 64.2 ± 0.5 59.7 ± 0.7 49.5 ± 0.7 50.9 ± 1.5 91.2 ± 0.5 45.1 ± 0.8
Simplified-MT → Native-CPT 53.4 ± 1.6 62.6 ± 0.7 57.2 ± 0.3 48.3 ± 1.6 50.7 ± 3.1 90.5 ± 0.2 45.1 ± 0.3

Large
Native 51.5 ± 3.7 63.7 ± 0.5 56.6 ± 1.1 54.7 ± 1.9 51.9 ± 1.5 86.2 ± 0.9 43.4 ± 0.8
Natural-MT 54.8 ± 1.6 62.6 ± 0.3 61.6 ± 1.6 45.2 ± 1.3 50.9 ± 4.7 90.6 ± 0.2 43.6 ± 1.4
Simplified-MT 52.7 ± 3.0 61.5 ± 0.3 63.2 ± 1.0 46.2 ± 0.5 49.0 ± 0.9 90.0 ± 0.4 43.3 ± 0.7

Table 7: Balanced accuracy mean ± standard deviation on the SEA-HELM native test sets, computed over three
random seeds. For most cells the standard deviation is below 2, or even 1 percentage point, confirming that the trends
discussed in Table 5 are statistically robust. The few wider spreads (≈ 2–4 percentage points) are mostly confined
to the most challenging task of causal reasoning. Even with these broader error bands, the qualitative picture is
unchanged: native-pretraining dominates toxicity, MT-CPT delivers the strongest NLI and sentiment models, causal
reasoning hovers near chance, and medium-sized models occasionally surpass their large counterparts.
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