
Effective Non-Dissipative Propagation for
Continuous-Time Dynamic Graphs

Alessio Gravina ∗†

University of Pisa
Pisa, Italy

Giulio Lovisotto ∗‡

Huawei Munich Research Center
Munich, Germany

Claudio Gallicchio
University of Pisa

Pisa, Italy

Davide Bacciu
University of Pisa

Pisa, Italy

Claas Grohnfeldt
Huawei Munich Research Center

Munich, Germany

Abstract

Recent research on Deep Graph Networks (DGNs) has broadened the domain of
learning on graphs to real-world systems of interconnected entities that evolve over
time. This paper addresses prediction problems on graphs defined by a stream of
events, possibly irregularly sampled over time, generally referred to as Continuous-
Time Dynamic Graphs (C-TDGs). While many predictive problems on graphs may
require capturing interactions between nodes at different distances, existing DGNs
for C-TDGs are not designed to propagate and preserve long-range information -
resulting in suboptimal performance. In this work, we present Continuous-Time
Graph Anti-Symmetric Network (CTAN), a DGN for C-TDGs designed within
the ordinary differential equations framework that enables efficient propagation of
long-range dependencies. We show that our method robustly performs stable and
non-dissipative information propagation over dynamically evolving graphs, where
the number of ODE discretization steps allows scaling the propagation range. We
empirically validate the proposed approach on several real and synthetic graph
benchmarks, showing that CTAN leads to improved performance while enabling
the propagation of long-range information.

1 Introduction

Graphs are a highly expressive abstraction for modelling entities and their relations, e.g., molecular
structures, recommender systems, or traffic networks. Deep Graph Networks (DGNs) [Bacciu et al.,
2020, Wu et al., 2021] have lately emerged as a family of deep learning models that can effectively
process and learn such structured information. While most of the proposed DGNs have been designed
for static graphs, many real-world scenarios are inherently dynamic in nature. Examples include
the continual activities and interactions between members of social networks, recurrent purchases
by users on e-commerce platforms, or evolving interactions of processes with files in an operating
system. The community has therefore begun to investigate models that can process the temporal
dimension of a dynamic graph [Kazemi et al., 2020], with more recent interest into those graphs
defined through a stream of events (possibly irregularly sampled over time), known as Continuous-
Time Dynamic Graphs (C-TDGs). However, given that the newly proposed methods are designed
upon static DGNs, they inherit all their weaknesses. Specifically, they suffer from the over-squashing
phenomenon [Alon and Yahav, 2021], which prevents the final DGN to learn and propagate long

∗These authors contributed equally to this work.
†alessio.gravina@phd.unipi.it. Work done while interning at Huawei Technologies.
‡giulio.lovisotto@huawei.com

Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.



range information [Gravina et al., 2023]. With growing evidence from the static case [Dwivedi et al.,
2022] that long-range dependencies are necessary for effective learning, the ability to learn properties
beyond local neighborhoods remains an open challenge in the C-TDG domain.

In this paper, we propose the Continuous-Time Graph Anti-Symmetric Network (CTAN), a frame-
work for scalable learning of C-TDGs with effective long range propagation of information, thanks to
properties inherited from stable and non-dissipative ordinary differential equations (ODEs). We estab-
lish theoretical conditions for achieving stability and non-dissipation in the CTAN ODE by employing
anti-symmetric weight matrices, which is the key factor for modeling long-range spatio-temporal
interactions. The CTAN layer is derived from the forward Euler discretization of the designed ODE.
The formulation of CTAN allows scaling the radius of propagation of information depending on the
number of discretization steps, i.e., the number of layers in the final architecture. Remarkably, even
with a limited number of layers, the non-dissipative behavior enables the transmission of information
for a past event as new events occur, since node states are used to efficiently retain and propagate
historical information. Consequently, this mechanism permits scaling the single event propagation
to cover a larger portion of the C-TDG. The general formulation of the node update state function
allows extending DGNs for static graphs to the domain of C-TDGs, thus reinterpreting current
state-of-the-art static DGNs as a discretized representation of non-dissipative ODEs tailored for
C-TDGs. To the best of our knowledge, CTAN is the first framework to address the problem of
long-range propagation in C-TDGs and the first to bridge the gap between ODEs and C-TDGs.

The key contributions of this work can be summarized as follows: (i) We introduce the problem
of long-range propagation (i.e., non-dissipativeness) within C-TDGs; (ii) We introduce CTAN, a
new deep graph network for learning C-TDGs based on ODEs, which enables stable and non-
dissipative propagation to preserve long term dependencies in the information flow, and it does so in
a theoretically founded way; (iii) we present novel benchmark datasets specifically designed to assess
the ability of DGNs to propagate information over long spatio-temporal distances within C-TDGs;
(iv) we conduct extensive experiments to demonstrate the benefits of our method, showing that CTAN
not only outperforms state-of-the-art DGNs on synthetic long-range tasks but also outperforms them
on several real-world benchmark datasets.

2 Preliminaries

We consider a dynamic graph as the tuple G(t) = (V(t), E(t),X(t),E(t)), defined for any time
t ≥ 0, which models a dynamical system of interacting entities (also known as nodes) where
interactions (or edges) evolve over time, i.e., they are dynamic in nature. Here, V(t) is the set
of nodes that are present in the graph at time t, and E(t) ⊆ {{u, v, t−} |u, v ∈ V(t), t− < t}
defines the edges between them. Matrices X(t) ∈ R|V(t)|×dn and E(t) ∈ R|E(t)|×de contain
node and edge features, respectively. The u-th row of X(t) is denoted as xu and represents the
features of the single node u. Similarly, we indicate edge feature vectors as euvt. Each node u
is also associated to state hu(t) ∈ H(t) ∈ R|V(t)|×d, which encodes node evolution over time t.

Figure 1: The evolution of a Continuous-Time
Dynamic Graph through the stream of events up
to timestamp t4. The event type V⊕ corresponds
to “node creation", and E⊕ means “edge addition".
At each timestamp, the faded portion of the graph
corresponds to historical information.

In our setting, the dynamic graph is observed as
a stream of events, also known as observations,
that can appear irregularly over time. Therefore,
the system of interacting entities is not fully ob-
served over time, and it is known as C-TDG. In
this scenario, the dynamic graph can be rewrit-
ten as G = {ot | t ∈ [t0, tn]}, where each event
ot = (t, EventType, u, v, xu, xv, euvt) is a
tuple containing the timestamp, the event type,
the involved nodes, and their states. The event
types can be grouped into three main classes,
which are node-wise events (i.e., a node is up-
dated or created), interaction events (i.e., an
edge is created), and deletion events (i.e., a
node/edge is deleted). In the following, we will
refer to V⊕ as the event “node creation", and to
E⊕ as “edge addition". We present in Figure 1
a visual exemplification of a C-TDG.

2



3 Continuous-Time Graph Anti-Symmetric Network

Learning the dynamics of a C-TDG can be cast as the problem of learning information propagation
following newly observed events in the system. This entails learning a diffusion function that updates
the state of node u as

hu(t) = F (t,xu,hu(t), {hv(t)}, {euvt−}) , with (v, t−) ∈ N t
u (1)

where N t
u = {(v, t−) | {u, v, t−} ∈ E(t)} is the temporal neighborhood of a node u at time t, which

consists of all the historical neighbors of u prior to current time t. In the following, we omit the time
subscript from the edge feature vector to enhance readability, since it refers to a time in the past in
which the edge appeared.

In recent literature, Eq. 1 is modeled through a dynamical system described by a learnable ordinary
differential equation (ODE) [Poli et al., 2019, Chamberlain et al., 2021, Eliasof et al., 2021, Rusch
et al., 2022, Gravina et al., 2023]. Differently from discrete models, neural-ODE-based approaches
learn more effective latent dynamics and have shown the ability to learn complex temporal patterns
from irregularly sampled timestamps [Chen et al., 2018, Rubanova et al., 2019, Kidger et al., 2020],
making them more suitable to address C-TDG problems.

In this paper, we leverage non-dissipative ODEs [Haber and Ruthotto, 2017, Chang et al., 2019,
Gravina et al., 2023] for the processing of C-TDGs. Thus, we propose a framework as a solution to
a stable and non-dissipative ODE over a streamed graph. The main goal of our work is therefore
achieving preservation of long-range information between nodes over a stream of events. We do so
by first showing how a generic ODE can learn the hidden dynamics of a C-TDG and then by deriving
the condition under which the ODE is constrained to the desired behavior.

First, we define a Cauchy problem in terms of the following node-wise ODE defined in time t ∈ [0, T ]

∂hu(t)

∂t
= fθ

(
t,xu,hu(t), {hv(t)}v∈N t

u
, {euv}v∈N t

u

)
(2)

and subject to an initial condition hu(0) ∈ Rd. The term fθ is a function parametrized by the weights
θ that describes the dynamics of node state. We observe that this framework can naturally deal with
events that arrive at an arbitrary time. Indeed, the original Cauchy problem in Eq. 2 can be divided
into multiple sub-problems, one per each event in the C-TDG. The i-th sub-problem, defined in the
interval t ∈ [ts, te], is responsible for propagating only the information encoded by the i-th event.
Overall, when a new event oi happens, the ODE in Eq. 2 computes new nodes’ representations,
hi
u(te), starting from the initial configurations, hi

u(ts). In other words, fθ evolves the state of each
node given its initial condition. The top-right of Figure 2 visually summarizes this concept, showing
the nodes’ evolution given the propagation of an incoming event. We observe that the knowledge
of past events is preserved and propagated in the system thanks to an initial condition that includes
not only the current nodes’ input state but also the nodes’ representations computed in the previous
sub-problem, i.e., hi

u(ts) = ψ(hi−1
u (te),xu(i)). We notice that the terminal time te is responsible for

determining the extent of information propagation across the graph, since it limits the propagation to a
constrained distance from the source. Smaller values of te allow only for localized event propagation,
whereas larger values enable the dissemination of information to a broader set of nodes.

We now proceed to derive the condition under which the ODE is constrained to the stable and
non-dissipative behavior, allowing for the propagation of long-range dependencies in the information
flow. We start by defining the concepts of non-dissipativeness4 as follow

Definition 1 (Non-dissipativeness over a C-TDG). Let u, v ∈ V(t) be two nodes of the C-TDG at
some time t, connected by a path of length L. If an event oi occurs at node u, then oi’s information is
propagated from u to v, ∀L ≥ 0.

We start by instantiating Eq. 2 as

∂hu(t)

∂t
= σ

(
Wthu(t) + Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

)
+ bt

)
(3)

4The interested reader is referred to [Glendinning, 1994, Ascher et al., 1995] for an in-depth analysis of
dissipative dynamical systems.

3



Figure 2: A high-level overview of the proposed framework illustrated for the i-th Cauchy sub-
problem. On the left, we depict the propagation of the information of event oi through the graph. The
faded portion of the graph corresponds to historical information, while the rest is the incoming event.
On the right, we illustrate the evolution of nodes’ states given the propagation of the incoming event.
Specifically, the top right shows the evolution as an ODE, fθ, that computes the node representation
for a node k, hk(t). Such computation is subject to an initial condition hk(ts) = ψ(hi−1

k (te),xk(i))
that includes the node representations computed in the previous sub-problem and the current node
input state. In the bottom right, the discretized solution of the ODE is computed as iterative steps of
the method over a discrete set of points in the time interval [ts, te].

where σ is a monotonically non-decreasing activation function; Φ is the aggregation function that
computes the representation of the neighborhood of the node u considering nodes’ states and edges’
features; t−v is the time point of the previous event for node v; and Wt ∈ Rd×d and bt ∈ Rd are the
parameters of the system. We notice that including t−v in Φ has the role of encoding the time elapsed
since the previous event involving node v. This represents a force that may smoothly update the
node’s current state during the time interval to prevent the staleness problem [Kazemi et al., 2020].

As discussed in Haber and Ruthotto [2017] and Gravina et al. [2023], a non-dissipative propagation
is directly linked to the sensitivity of the solution of the ODE to its initial condition, thus to the
stability of the system. Such sensitivity is controlled by the Jacobian’s eigenvalues of Eq. 3. Given
λi(J(t)) the i-th eigenvalue of the Jacobian, when Re(λi(J(t))) = 0 for i = 1, ..., d the initial
condition is effectively propagated into the final node representation, making the system both stable
and non-dissipative5. The next proposition ensures that the employment of anti-symmetric weight
matrices constrains the Jacobian’s eigenvalues to be imaginary, allowing a stable and non-dissipative
behavior of the ODE in Eq. 3.
Proposition 1. Provided that the weight matrix Wt is anti-symmetric6 and the aggregation function
Φ does not depend on hu(t), the Jacobian matrix resulting from the ODE in Eq. 3 has purely
imaginary eigenvalues, i.e.,

Re(λi(J(t))) = 0,∀i = 1, ..., d.

See proof in Appendix A.

Now that we have defined the conditions under which the ODE in Eq. 3 is stable and non-dissipative,
i.e., it can propagate long-range dependencies between nodes in the C-TDG, we observe that com-
puting the analytical solution of an ODE is usually infeasible. It is common practice to rely on a
discretization method to compute an approximate solution by multiple applications of the method
over a discrete set of points in the time interval [ts, te]. This process is visually summarized at the
bottom of Figure 2. For simplicity, we employ the forward Euler’s method to discretize Eq. 3 for the
i-th Cauchy sub-problem, yielding the following node state update equation for the node u at step ℓ:

hℓ
u = hℓ−1

u + ϵσ
(
(Wℓ −W⊤

ℓ − γI)hℓ−1
u +Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

)
+ bℓ

)
, (4)

with ϵ > 0 being the discretization step size. We notice that the anti-symmetric weight matrix
(Wℓ −W⊤

ℓ ) is subtracted by the term γI to preserve the stability of the forward Euler’s method7.
5This result holds also when the eigenvalues of the resulting Jacobian are still bounded in a small neighbor-

hood around the imaginary axis [Gravina et al., 2023].
6A matrix M ∈ Rd×d is anti-symmetric (i.e., skew-symmetric) if M⊤ = −M.
7The interested reader is referred to [Ascher and Petzold, 1998] for an in-depth analysis on the stability of

the forward Euler method.

4



We refer to I as the identity matrix and γ to a hyper-parameter that regulates the stability of the
discretized diffusion. We note that the resulting neural architecture contains as many layers as the
discretization steps, i.e., L = te/ϵ.

As previously discussed for the ODE, the number of iterations in the discretization (i.e., the terminal
time te) plays a crucial role in the propagation. Specifically, few iterations result in a localized
event propagation. Consequently, the non-dissipative event propagation does not reach each node
in the graph, causing a truncated non-dissipative propagation. CTAN allows scaling the radius of
propagation of information depending on the number of discretization steps. Crucially, we notice that,
even with few discretization steps, it is still possible to propagate information from a node u to z (if a
path of length P connects u and z). As an example, let’s consider the situation depicted in the left
segment of Figure 2, where nodes u and v establish a connection at some time t, and our objective
is to transmit this information to node z. In this scenario, we assume L = 1, thus the propagation
is truncated before z. Upon the arrival of the event at time t, this is initially relayed (due to the
constraint of L = 1) to node k, which then captures and retains this information. If a future event at
time t+ τ involving node k occurs, its state is propagated, ultimately reaching node z. Consequently,
the information originating from node u successfully traverses the structure to reach node z. More
formally, if it exists a sequence of (at least P/L) successive events, such that each future i-th event
is propagated to an intermediate node at distance iP/L from u, then u is able to directly share its
information with z. Therefore, even with a limited number of discretization steps, the non-dissipative
behavior enables scaling the single event propagation to cover a larger portion of the C-TDG. We
also notice that if the number of iterations is at least equal to the longest shortest path in the C-TDG,
then each event is always propagated throughout the whole graph.

We name the overall framework defined above Continuous-Time Graph Anti-Symmetric Network
(CTAN). Note that Φ in Eq. 3 and 4 can be any function that aggregates nodes and edges states.
Then, CTAN can leverage the aggregation function that is more adequate for the specific task. As an
exemplification of this, in Section 4 we leverage the aggregation scheme based on [Shi et al., 2021]:

Φ
(
{hv(t), euv, t

−
v , t}v∈N t

u

)
=

∑
v∈N t

u∪{u}

αuv

(
Vnh

ℓ−1
v +Veêuv

)
(5)

where êuv = euv∥ (V(t− t−v )) is the new edge representation computed as the concatenation
between the original edge attributes and a learned embedding of the elapsed time from the previous
neighbor interaction, and αuv = softmax

(
q⊤K√

d

)
is the attention coefficient with d the hidden size of

each head, q = Vqh
ℓ−1
u , and K = Vkh

ℓ−1
v +Veêuv . We use (V(t− t−v )) as a force that smoothly

updates the node’s current state to prevent the staleness problem.

Despite CTAN being designed from the general perspective of layer-dependent weights, it can easily
be exploited as a recursive method with weight sharing between layers. Moreover, it is possible to
employ the latter version with fixed and randomized weights to reduce the computational cost of
learning. In Section 4 we use weight sharing to prove the efficacy of our method.

4 Experiments

We evaluate CTAN on two novel tasks which present long-range dependencies and on sev-
eral popular benchmarks for C-TDGs. We release openly the code implementing our
methodology and reproducing our empirical analysis at https://github.com/gravins/
non-dissipative-propagation-CTDGs.

Shared Experimental Settings In the following experiments, we consider weight sharing of CTAN
parameters across the neural layers. We compare CTAN against four popular dynamic graph network
methods: DyRep [Trivedi et al., 2019], JODIE [Kumar et al., 2019], TGAT [Xu et al., 2020], and
TGN [Rossi et al., 2020]. These related methods are used across all tasks considered. To ensure
fair comparison and efficient implementation, we re-implement these methods in our framework,
based on the original works’ repositories. With the same purpose, we reused the graph convolution
operators in the original literature, considering for all methods the aggregation function defined in
Eq. 5. We designed each model as a combination of two components: (i) the DGN (i.e., CTAN or
a baseline) which is responsible to compute the nodes’ representations; (ii) the readout that maps
the output of the DGN into the output space. The readout is a 2-layer MLP, used in all models with

5

https://github.com/gravins/non-dissipative-propagation-CTDGs
https://github.com/gravins/non-dissipative-propagation-CTDGs


the same architecture. We performed rigorous hyper-parameter tuning via grid search, considering
a fixed parameter budget based on the number of graph convolutional layers (GCLs). Specifically,
for the maximum number of GCL in the grid, we select the embedding dimension so that the total
number of parameters matches the budget; such embedding dimension is used across every other
configuration. We report more detailed information on each task in their respective subsections in the
following. Detailed information about hyper-parameter grids and training of models are reported in
Appendix D. We note that, in the following subsections, while we not directly investigate the optimal
terminal time te within the hyper-parameter space, we implicitly address this aspect through the
choice of the step size ϵ and the maximum number of layers L, as they jointly determine the terminal
time, i.e., te = ϵL.

4.1 Long range tasks

Given the lack of available datasets containing long-range interactions in the C-TDG setting, we
introduce two temporal tasks which contain long-range interaction (LRI). The first is a classification
task on path graphs [Bondy and Murty, 1976] and the second an extension to the temporal domain of
the classification task PascalVOC-SP introduced in the Long Range Graph Benchmark [Dwivedi
et al., 2022].

4.1.1 Sequence classification on temporal path graph

Setup We consider a classification task on a temporal interpretation of a path graph [Bondy and
Murty, 1976]. In our interpretation, the nodes of the path graph appear sequentially over time from
first to last, i.e., each event in the C-TDG connects each node to the previous one in the path graph
(see Appendix C for a reference to our dataset). The objective of the task is to predict the feature
associated to the source node in the first event after having traversed the entire temporal path graph,
i.e., after reaching the last event in the stream. This task corresponds to predicting the information
attached to the first node having appeared in the network, after propagating it (incrementally, in
time) through the entire C-TDG, making the task similar to a classical sequence classification task.
To be consistent with the setup used in the C-TDG domain, events are forwarded one at time to
update neighboring nodes representations. After the model processes the last event in the graph, the
output prediction for the whole graph is computed by a readout that takes as input only the updated
embedding of the destination node of the last event in the C-TDG. We set the feature of the first
source node to be either 1 or -1, and we use random features for intermediate nodes and edges to make
the task more complex. In this task it is fundamental to propagate the initial information through the
entire to graph to make accurate predictions, thus capturing long-range interactions. We considered
graphs of different sizes (from paths of length 3 to 20) to test how long information is propagated, i.e.,
the longer the graph, the more the model needs to be capable of propagating information over time
to complete the task. During training, we optimize the binary cross-entropy loss over two classes
corresponding to the two possible signals (1/-1) placed on the initial node. Each experimental run
is repeated 10 times with different random seeds to ensure multiple weight initializations. The best
performing configuration is chosen based on the validation loss. We report in Appendix D more
training details and the grid of hyper-parameters employed for this experiment. We observe that the
grid is computed considering a budget of ∼20k trainable parameters per model.

Results The test accuracy on the path graph task is provided in Figure 3 (and Table 5 in tabular
form). We notice that CTAN exhibits exceptional performance in comparison to reference state-of-
the-art methods. More interestingly, our method achieves consistent results across different path

3 5 7 9 11 13 15 20
Graph size

40

50

60

70

80

90

100

Ac
cu

ra
cy

DyRep
JODIE
TGAT
TGN
Our

Figure 3: Mean test set accuracy with respect to
the temporal path graph size. Results are averaged
over 10 random weight initializations.

graph lengths. This result highlights the capa-
bility of our method to propagate information
seen on the first node throughout long paths,
while baseline models struggle in solving such
a task because the information is lost through
the time-steps, i.e., in practice, informative gra-
dients vanish over time. All literature methods
experience sharp drops in performance, bringing
them closer to the performance level of a random
guesser as path size increases. We believe that
the difficulty of baselines in information propa-

6



gation lies in their inherent limitations. TGAT,
for instance, lacks a dedicated memory mechanism and instead computes projections of input features,
restricting its information propagation range to the number of layers present (we test a maximum of 5
layers, which matches the longest path graph where TGAT can solve the task). Differently, DyRep
relies on a single layer of graph convolution, which makes it susceptible to over-squashing. The
only competitive model is JODIE, which is capable of effectively propagating information up to
a graph size equal to 13. Nonetheless, as known widely argued [Bengio et al., 1994, Chang et al.,
2019], RNN-based architectures like JODIE inherently struggle to maintain long-term dependencies,
affecting their ability to propagate information in C-TDGs. These results indicate that CTAN better
captures and models long range information in C-TDGs.

4.1.2 Classification on Temporal Pascal-VOC

Setup As a second LRI task, we consider edge classification on a temporal interpretation of the
PascalVOC-SP dataset, which has been previously employed by Dwivedi et al. [2022] as a benchmark
to show the efficacy of capturing LRI in static graphs. Here, we adapt the task to the C-TDG domain.
Specifically, we forward edges one at a time and predict the class of the destination node. We generate
temporal graphs starting from the dataset of rag-boundary graphs extracted from Pascal VOC
2011 provided in Dwivedi et al. [2022] (more details are provided in Appendix C). We consider two
degrees of SLIC superpixels compactness, i.e., 10 and 30. We observe that a smaller compactness
means fewer patches, then less information included in each patch and more to be propagated. During
training, we optimize the F1-score as in Dwivedi et al. [2022]. To benchmark the ability of models to
propagate information through the graph, we test model performance for an increasing number of
GCLs. Fewer graph convolutions require models to store and transmit relevant information along
node embeddings rather than relying on effectively aggregating information from increasingly larger
neighborhoods. Each experimental run is repeated 5 times with different random seeds to consider
multiple weight initializations. Best configurations are chosen based on the validation loss (cross-
entropy). Appendix D provides further training and model selection details. We observe that the grid
is computed considering a budget of trainable parameters per model equal to ∼40k.

Results Table 1 reports the average F1-score on the Temporal PascalVOC-SP test. Note that
DyRep and JODIE, in their original definition, do not support a variable number of GCLs, hence
the results of such models are presented under “1 GCL" in the tables for simplicity. CTAN
largely outperforms reference methods for smaller GCL numbers, even with sizeable improvements.
We observe that for SLIC compactness equal to 30, CTAN achieves a 65% and 16% improve-
ment against the 2nd best performing model (i.e., TGAT), for one and three GCLs, respectively.

Table 1: Results of the classification on the Temporal PascalVOC task,
for increasing number of GCLs. The performance metric is the mean test
set F1-score, averaged over 5 different random weights initializations for
each model configuration. Models have a maximum budget of learnable
parameters equal to ∼40k.

Temporal Pascal VOC (sc=10) Temporal Pascal VOC (sc=30)
no. GCLs 1 3 5 1 3 5

DyRep 5.29±0.47 - - 5.23±0.11 - -
JODIE 6.33±0.41 - - 5.76±0.35 - -
TGAT 5.39±0.19 6.53±0.58 8.23±0.73 6.04±0.26 8.79±0.29 10.38±0.7
TGN 6.04±0.27 6.55±0.46 7.51±0.8 5.59±0.24 7.26±0.82 7.9±1.31

Our 7.89±0.33 8.53±1.06 8.88±0.98 9.98±0.33 10.16±0.52 10.36±0.47

Interestingly, TGAT
slightly outperforms
CTAN in one setup
when considering five
GCLs. This is in line
with the excellent re-
sults of computationally
expensive Transformers-
based models in the
static case [Dwivedi
et al., 2022], corrobo-
rating the advantages of
self-attention blocks in
modeling long-range dependencies between far away nodes. This result also suggests that the
majority of the relevant information necessary to solve the Temporal Pascal VOC task may lie
within neighborhoods five hops away. Nevertheless, the results indicate how CTAN is capable of
propagating relevant information across the time-steps to achieve accurate predictions, even when the
model is only allowed to extract information from limited, very local neighborhoods.

4.2 Benchmark tasks

Setup For the C-TDG benchmarks we consider four well-known datasets proposed by Kumar et al.
[2019], which are Wikipedia, Reddit, LastFM, and MOOC. Our experiment focuses on the tasks of

7



future edge prediction, whose objective is to predict the probability of an edge occurring between two
nodes at a given time. As an additional baseline with respect to those used for the long range tasks, we
consider EdgeBank [Poursafaei et al., 2022], which is memorization-based method without learning
that simply stores previously observed edges from a fixed-size time-window from the immediate past,
and predicts stored edges as positive. We evaluated EdgeBank with different time windows spanning
from a size of 1% of the training set to infinite size, i.e., all observed edges are stored in memory. We
performed hyper-parameter tuning via grid search by optimizing the area under the roc curve (AUC).
Results for the best configuration are provided as average on 5 random initializations of the training.
Appendix D provides additional experimental details. The grid is computed considering a budget of
∼140k trainable parameters per model.

Results Table 2 reports the average test AUC on the C-TDG benchmarks. CTAN shows re-
markable performance compared to literature models, ranking mainly first across datasets. CTAN
achieves a score that on average is 4.7% better than its competitors. Considering only base-
lines with learnable parameters, our method improves the performance of the runner-up model
by 1.6% of AUC. Secondly, we notice that CTAN is faster than literature models (see Ap-
pendix E). Our method has a speedup on average of 1.3× to 2.2× on the four benchmarks
when one layer of graph convolutions is considered, and 1.5× to 1.9× when five layers are used.

Table 2: Mean test set AUC and std in percent averaged over 5
random weight initializations. Each model have a maximum
budget of learnable weights equal to ∼140k. The higher, the
better.

Wikipedia Reddit LastFM MOOC

EdgeBank1% tr set 71.03 71.92 77.59 61.29
EdgeBank50% tr set 90.29 94.82 94.06 69.63
EdgeBank∞ 91.82 96.42 94.72 70.85

DyRep 88.64±0.15 97.51±0.10 77.89±1.39 81.87±2.47
JODIE 94.68±1.05 96.34±0.83 69.76±2.74 81.90±9.03
TGAT 94.91±0.25 98.18±0.05 81.53±0.34 87.61±0.15
TGN 95.60±0.18 98.23±0.10 79.18±0.79 90.74±0.99

Our 97.55±0.09 98.61±0.04 83.81±0.92 92.47±0.78

Finally, it’s worth noting that Edge-
Bank exhibits improved performance
as the size of the time window
increases. For instance, in the
Wikipedia dataset, we observe that
expanding the window size allows
EdgeBank to obtain a significant gain
of more than 20 points in AUC. It is
reasonable to assume that this find-
ing shows the importance of a non-
dissipative behavior of the method
even on real-world tasks, since more
information need to be retained and
propagated from the past to improve the final performance. Our results demonstrate that CTAN is
able to better capture and exploit such information.

5 Conclusion

We have presented Continuous-Time Graph Anti-Symmetric Network (CTAN), a new framework
based on stable and non-dissipative ODEs for learning long-range interactions in C-TDGs. Differently
from previous approaches, CTAN’s formulation allows scaling the radius of effective propagation
of information in C-TDGs and reimagines state-of-the-art static DGNs as a discretization of non-
dissipative ODEs for C-TDGs. To the best of our knowledge, CTAN is the first framework to address
the long-range propagation problem in C-TDGs, while bridging the gap between ODEs and C-TDGs.

Our experimental investigation reveals, at first, that when it comes to capturing long-range depen-
dencies in a task, our framework significantly surpasses state-of-the-art DGNs for C-TDGs. Our
experiments indicate that CTAN is capable of propagating relevant information incrementally across
time to achieve accurate predictions, even when the model is only allowed to extract information from
very local neighborhoods, i.e., by using only a single or few layers. Thus, CTAN enables scaling the
extent of information propagation in C-TDG data structures without increasing the number of layers
nor incurring in dissipative behaviors. Moreover, our results indicate that CTAN is quite effective
across various graph benchmarks in both real and synthetic scenarios. In essence, CTAN showcased
its ability to explore long-range dependencies (even with limited resources), suggesting its potential
as a crucial step toward mitigating the over-squashing problem in C-TDGs.

We believe that CTAN lays down the basis for further investigations of the problem of over-squashing
and long-range interaction learning in the C-TDG domain. Looking ahead to future developments,
we plan to extend this study to explore alternative architectures resulting from different discretization
methods, such as adaptive multi-step schemes [Ascher and Petzold, 1998]. Additionally, we aim
to assess the framework’s impact in the realm of efficient neural networks, such as in Reservoir
Computing [Nakajima and Fischer, 2021].

8



References
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk.

SLIC superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2274–2282, 2012.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=i80OPhOCVH2.

U.M. Ascher, R.M.M. Mattheij, and R.D. Russell. Numerical solution of boundary value problems
for ordinary differential equations. Classics in applied mathematics. Society for Industrial and
Applied Mathematics (SIAM), United States, unabridged, corr. republication. edition, 1995. ISBN
0-89871-354-4.

Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, USA, 1st
edition, 1998. ISBN 0898714125.

Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction to
deep learning for graphs. Neural Networks, 129:203–221, 2020. ISSN 0893-6080. doi: https:
//doi.org/10.1016/j.neunet.2020.06.006. URL https://www.sciencedirect.com/science/
article/pii/S0893608020302197.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181.

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier, New York, 1976.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International Conference on Machine
Learning, pages 1407–1418. PMLR, 2021.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. AntisymmetricRNN: A dynamical system
view on recurrent neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=ryxepo0cFX.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022.

Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for graph neural
networks motivated by partial differential equations. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=wWtk6GxJB2x.

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes challenge: A retrospective. International journal of
computer vision, 111:98–136, 2015.

Claudio Gallicchio. Euler state networks: Non-dissipative reservoir computing. arXiv preprint
arXiv:2203.09382, 2022.

Paul Glendinning. Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear
Differential Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press,
1994. doi: 10.1017/CBO9780511626296.

9

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://www.sciencedirect.com/science/article/pii/S0893608020302197
https://www.sciencedirect.com/science/article/pii/S0893608020302197
https://openreview.net/forum?id=ryxepo0cFX
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://openreview.net/forum?id=wWtk6GxJB2x


Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN: a stable architecture
for Deep Graph Networks. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=J3Y7cgZOOS.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. CoRR, abs/1705.03341,
2017. URL http://arxiv.org/abs/1705.03341.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation Learning for Dynamic Graphs: A Survey. J. Mach. Learn. Res., 21
(1), jan 2020. ISSN 1532-4435.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural Controlled Differential
Equations for Irregular Time Series. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting Dynamic Embedding Trajectory in
Temporal Interaction Networks. In Proceedings of the 25th ACM SIGKDD KDD. ACM, 2019.

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming Graph Neural Networks.
In Proceedings of the 43rd International ACM SIGIR, page 719–728. Association for Computing
Machinery, 2020. ISBN 9781450380164. doi: 10.1145/3397271.3401092.

K. Nakajima and I. Fischer. Reservoir Computing: Theory, Physical Implementations, and Applica-
tions. Natural Computing Series. Springer Nature Singapore, 2021. ISBN 9789811316876. URL
https://books.google.it/books?id=AQc8EAAAQBAJ.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, , and Reihaneh Rabbany. Towards Better
Evaluation for Dynamic Link Prediction. In Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal Graph Networks for Deep Learning on Dynamic Graphs. In ICML 2020
Workshop on Graph Representation Learning, 2020.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent Ordinary Differential Equations
for Irregularly-Sampled Time Series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.

T Konstantin Rusch, Benjamin P Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael M
Bronstein. Graph-coupled oscillator networks. arXiv preprint arXiv:2202.02296, 2022.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked Label
Prediction: Unified Message Passing Model for Semi-Supervised Classification. In Zhi-Hua Zhou,
editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-
21, pages 1548–1554. International Joint Conferences on Artificial Intelligence Organization, 8
2021. doi: 10.24963/ijcai.2021/214. URL https://doi.org/10.24963/ijcai.2021/214.
Main Track.

Amauri H Souza, Diego Mesquita, Samuel Kaski, and Vikas K Garg. Provably expressive temporal
graph networks. In NeurIPS, 2022.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. DyRep: Learning
Representations over Dynamic Graphs. In ICLR, 2019.

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion process in
linear graph convolutional networks. CoRR, abs/2102.10739, 2021. URL https://arxiv.org/
abs/2102.10739.

10

https://openreview.net/forum?id=J3Y7cgZOOS
http://arxiv.org/abs/1705.03341
https://books.google.it/books?id=AQc8EAAAQBAJ
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://doi.org/10.24963/ijcai.2021/214
https://arxiv.org/abs/2102.10739
https://arxiv.org/abs/2102.10739


Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, ed-
itors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 6861–6871. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/wu19e.html.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representa-
tion learning on temporal graphs. In ICLR, 2020.

A Proof of Proposition 1

Let us consider an aggregation function Φ that does not depend on the term hu(t). The Jacobian
matrix of Eq. 3 is defined as

J(t) = diag
[
σ′ (Wthu(t) + Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

)
+ bt

)]
Wt. (6)

Thus, it is the result of a matrix multiplication between invertible diagonal matrix and a weight matrix.
Imposing A = diag

[
σ′ (Wthu(t) + Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

)
+ bt

)]
, then the Jacobian can be

rewritten as J(t) = AWt.

Let us now consider an eigenpair of AWt, where the eigenvector is denoted by v and the eigenvalue
by λ. Then:

AWtv = λv,

Wtv = λA−1v,

v∗Wtv = λ(v∗A−1v) (7)

where ∗ represents the conjugate transpose. On the right-hand side of Eq. 7, we can notice that the
(v∗A−1v) term is a real number. If the weight matrix Wt is anti-symmetric (i.e., skew-symmetric),
then it is true that W∗

t = W⊤
t = −Wt. Therefore, (v∗Wtv)

∗ = v∗W∗
tv = −v∗Wtv. Hence, the

v∗Wtv term on the left-hand side of Eq. 7 is an imaginary number. Thereby, λ needs to be purely
imaginary, and, as a result, all eigenvalues of J(t) are purely imaginary.

B Related work

Deep Graph Network for C-TDGs Nowadays, most of the DGNs tailored for learning C-TDGs
can be generalized within the Temporal Graph Network (TGN) framework [Rossi et al., 2020]. This
architecture comprises three main modules: a message module, which is responsible for computing
a message that encodes the incoming event; a memory module, which stores the node’s history;
and a graph propagation module, which aggregates information from the local neighborhood to
produce the final node representation. Usually, the memory module is implemented as a Recurrent
Neural Network (RNN) and the graph propagation module as a DGN for the processing of static
graphs. Many state-of-the-art architectures [Kumar et al., 2019, Trivedi et al., 2019, Xu et al., 2020,
Ma et al., 2020, Souza et al., 2022] fit this framework, with later methods outperforming earlier
ones thanks to advances in the local message passing part or even in the encoding of positional
features. While recent methods often provide improved results, none of them explicitly models
long-range dependencies between nodes or events in the C-TDG. As increasingly evidenced both
in sequence-model architectures [Chang et al., 2019], and in the static graph case [Dwivedi et al.,
2022], propagating information across various time steps is extremely beneficial for learning; also as
evidenced by the long-range experiments in Section 4.

CTAN, instead, provably enables effective long-range propagation by design. Note that our approach
does not require the co-existence of memory and graph propagation module, as in the TGN framework.
CTAN stores all necessary information within the node embeddings themselves as computed by the
graph convolution, while achieving non-dissipative propagation by design. This makes CTAN a more
lightweight and faster architecture. As TGN allows for different graph propagation modules, the

11

https://proceedings.mlr.press/v97/wu19e.html


general formulation of the aggregation function Φ in Eq. 4 allows extending state-of-the-art DGNs
for static graphs to the domain of C-TDGs through the lens of non-dissipative and stable ODEs.

Lastly, We note a distinction between CTAN and DyRep in their approaches. DyRep utilizes a
dissipative one-hop aggregation method to update node embeddings, restricting event propagation
to a local neighborhood and constraining the model’s capacity to propagate and maintain long-term
dependencies among nodes. In contrast, CTAN employs a versatile non-dissipative ODE, enabling the
utilization of various aggregation functions and facilitating the propagation of long-range information.
Additionally, CTAN enables scaling the radius of propagation of information depending on the
number of discretization step, thus it allows considering the specific range of node interactions that is
more adequate for the specific task.

Continuous Dynamic Models Neural Differential Equations have emerged as a class of neural
networks suitable for learning continuous dynamics of systems. Chen et al. [2018] and Chang et al.
[2019] parameterize the continuous dynamic of RNNs through an ordinary differential equation.
Similarly, Gallicchio [2022] draws a connection with Reservoir Computing. Despite the similarity
with RNNs, such architectures have shown the ability to naturally incorporate data that arrive at
arbitrary times [Chen et al., 2018, Rubanova et al., 2019]. Inspired by the NeuralODE approach,
GDE [Poli et al., 2019] links DGNs for static graphs with ODEs. In this scenario, the inter-layer
dynamic of DGN’s node representation is designed as a continuous information processing system
defined by an ODE, which, starting from the input configuration of the nodes’ states, computes the
final nodes’ representations. In the static graph domain, ODE-based architectures have been proposed
with different aims, such as reducing the computational complexity of message passing [Wu et al.,
2019, Wang et al., 2021], or mitigating the over-smoothing phenomena [Eliasof et al., 2021, Rusch
et al., 2022].

To the best of our knowledge, we are the first to propose an ODE-based architecture suitable for
C-TDGs that can effectively propagate long-range information between nodes.

C Datasets description and statistics

Table 3 contains the statistics of the employed datasets. In the following, we describe the datasets and
their generation.

Table 3: Statistics of the datasets used in our experiments. We report the total number of nodes and
edges in the dataset for the temporal path graph (i.e., T-PathGraph) and temporal Pascal VOC (i.e.,
T-PascalVOC).

# Nodes # Edges #Edge ft. Split

T-PathGraph 3,000 - 20,000 2,000 - 19,000 1 70%-15%-15%
T-PascalVOC10 2,671,704 2,660,352 14 70%-15%-15%
T-PascalVOC30 2,990,466 2,906,113 14 70%-15%-15%
Wikipedia 9,227 157,474 172 70%-15%-15%, Chronological
Reddit 11,000 672,447 172 70%-15%-15%, Chronological
LastFM 2,000 1,293,103 2 70%-15%-15%, Chronological
MOOC 7,144 411,749 4 70%-15%-15%, Chronological

Sequence classification on temporal path graphs To craft a temporal long-range problem, we
first introduced a sequence classification problem on path graphs [Bondy and Murty, 1976], which is
a simple linear graph consisting of a sequence of nodes where each node is connected to the previous
one. In the temporal domain, the nodes of the path graph appear sequentially over time from first to
last (e.g., bottom-to-top in Figure 4).

We define the task objective as the prediction of the feature seen in the first node (colored in orange
in Figure 4) by making the prediction leveraging only the last node representation (colored in red in
Figure 4) computed at the end of the sequence, i.e., when the last event appears. Note that this task is
akin to the sequence classification task designed in [Chang et al., 2019], with the addition of a graph
convolution. We set the feature of the first node to be either 1 or −1, while we set every other node
and edge feature to be sampled uniformly in the range [−1, 1]. In other words, the feature xu0

of the

12



Figure 4: The illustration of the sequence classification task on a temporal path graph consisting of 5
nodes. The first node (colored in orange) has an initial feature that can be either 1 or −1. All the
other nodes and edges have a feature set to random value sampled uniformly in [−1, 1]. At the end of
the sequence, the representation computed for the last node (colored in red) is used to predict the
original value of the first node. At each timestamp, the faded portion of the graph corresponds to
historical information.

first node u0 contains a signal to be remembered as noise is added through the propagations steps
along the graph. Formally, we create a C-TDG: G = {ot | t ∈ [t0, tn]}, such that

ot = (t, E⊕, ut, ut+1,xut ,xut+1 , eut,ut+1),

where xu0 ∼ Bernoulli(0.5)8, and xuj ∼ U[−1,1],∀j > t0 and eut,ut+1 ∼ U[−1,1],∀t.
For this task we considered 8 temporal graph path datasets with different sizes, ranging from n = 3
to n = 20, with n the number of nodes. For every graph size we generate 1,000 different graphs, and
we split the dataset into train/val/test with the ratios 70%-15%-15%.

Temporal Pascal-VOC We use the PascalVOC-SP [Dwivedi et al., 2022] dataset to design a
new temporal long-range task for edge classification. PascalVOC-SP is a node classification dataset
composed of graphs created from the images in the Pascal VOC 2011 dataset [Everingham et al., 2015].
A graph is derived from each image by extracting superpixel nodes using the SLIC algorithm [Achanta
et al., 2012] and constructing a rag-boundary graph to interconnect these nodes. Each node in a
graph corresponds to one region of the image belonging to a particular class, see Figure 5 for an
example. PascalVOC-SP contains long-range interactions between spatially distant image patches,
evidenced by its average shortest path length of 10.74 and average diameter of 27.62 [Dwivedi et al.,
2022].

To craft a temporal task, we consider that nodes in a rag-boundary graph appear from the top-left
to the bottom-right of the image, sequentially. We do so by selecting the top-leftmost node, i.e., the
one closest (by means of L1 norm) to the origin in image coordinates. From this node, we traverse
the graph with a Breadth-First-Search, visiting each node exactly once. The order of edge traversal
corresponds to the timestamp of edge appearance in the temporal task. We set the task’s objective
to be the prediction of the class of the node that is being visited by the current edge. Note that the
traversal removes a large number of edges from the initial graph, making the propagation of class
information more difficult, see Figure 5.

Neighborhoods are constructed based on coordinates, connecting a node with its 8 spatially closest
neighbors. Nodes have 12 features extracted by channel-wise statistics on the image (mean, std,
max, min) and 2 features defining the spatial location of the superpixel; we normalize these spatial
features in the [0, 1] range. We consider two SLIC superpixels compactness of 10 and 30 (smaller
compactness means fewer patches). To allow for batching, we fix the number of nodes in each
graph, allowing batching of edges that occur at the same timestep across different graphs together.
To do so, we discard rag-boundary graphs with fewer nodes than the limit, and discard excess

8Note that we sample 1 or -1 rather than 0 or 1 to make the problem balanced around zero.

13



Original image SP and r̀ag-boundary  ̀graph Static r̀ag-boundary  ̀graph Temporal r̀ag-boundary  ̀graph

T
im

e
 

Figure 5: Construction of the Temporal PascalVOC-SP dataset. The SLIC algorithm extracts patches
from an image. We create the rag-boundary graph connecting neighboring patches based on spatial
closeness. We construct a temporal graph by traversing from the topleftmost node with BFS. The
goal of the task is to predict the class of the destination node at each visited edge - in the figure, either
’potted plant’ (red) or ’background’ (blue). For clarity in this visualization, the compactness of the
SLIC algorithm is low.

nodes on graphs with more nodes than the limit according to time. This cuts a small number of
nodes corresponding to image patches on the bottom-right of the image. In practice, for the two
compactness levels 10 and 30, we set the number of minimum nodes per graph to be 434 and 474,
which gives us 6,156 and 6,309 temporal graphs (out of the total 11,355 images in the dataset). The
resulting temporal datasets have 2,660,352 and 2,906,113 edges respectively.

C-TDG benchmarks For the C-TDG benchmarks we consider four well-known datasets proposed
by Kumar et al. [2019]:

• Wikipedia: one month of interactions (i.e., 157,474 interactions) between user and
Wikipedia pages. Specifically, it corresponds to the edits made by 8,227 users on the
1,000 most edited Wikipedia pages;

• Reddit: one month of posts (i.e., interactions) made by 10,000 most active users on 1,000
most active subreddits, resulting in a total of 672,447 interactions;

• LastFM: one month of who-listens-to-which song information. The dataset consists of 1000
users and the 1000 most listened songs, resulting in 1,293,103 interactions.

• MOOC: it consists of actions done by students on a MOOC online course. The dataset
contains 7,047 students (i.e., users) and 98 items (e.g., videos and answers), resulting in
411,749 interactions.

Since the datasets do not contain negative instances, we perform negative sampling by randomly
sampling non-occurring links in the graph, as follows: (i) during training we sample negative
destinations only from nodes that appear in the training set, (ii) during validation we sample them
from nodes that appear in training set or validation set and (iii) during testing we sample them from
the entire node set.

For all the datasets, we considered the same chronological split into train/val/test with the ratios
70%-15%-15% as proposed by Xu et al. [2020].

D Explored hyper-parameter space

In Table 4 we report the grids of hyper-parameters employed in our experiments by each method. We
recall that the hyper-parameters ϵ, γ, and ψ refer only to our method.

E Complete results

In Table 5 we report the results on the sequence classification task on temporal path graphs, and
in Table 6 we show the complete results on the link prediction task, including the performance of
EdgeBank with different time window sizes. The average time per epoch (measured in seconds) for
each model on the four considered link prediction datasets are presented in Table 7. In this evaluation,

14



Table 4: The grid of hyper-parameters employed during model selection for the following three tasks:
Sequence classification on temporal path graphs, Temporal Pascal-VOC, and Link Prediction – here,
abbreviated as and color-coded in (Seq, red), (Pasc, green), and (Link, blue), respectively. For Sec and
Pasc, we conducted 5 runs and 10 runs with different random seeds for different weight initializations
for each configuration, whereas for Link, we conducted 5 runs only for the configuration that resulted
in the best performance in the initial run. For the three tasks, the models were configured to have a
maximum number of learnable parameters of ∼20k, ∼40k, and ∼140k, respectively. Training was
conducted for 20 epochs, 200 epochs, and 1000 epochs, respectively. For Seq and Pasc, we employed
a scheduler halving the learning rate with a patience of 5 epochs, 20 epochs, respectively, whereas
for Link we used early stopping with a patience of 50 epochs. For all tasks, the neighbor sampler size
was set to 5. The batch size was set to 128, 256, and 256, respectively. We used the loss, F1-score,
and AUC on the validation set to optimize for the hyper-parameters.

Hyper-parameter Method Values
Seq Pasc Link

optimizer Adam
learning rate 3 · 10−4 3 · 10−4 10−4, 10−5

weight decay 10−7 10−5 10−6

n. GCLs 1, 3, 5
σ tanh
ϵ 1, 0.5, 10−1, 10−2 1, 0.5, 10−1, 10−2 0.5, 10−1, 10−2, 10−3

γ 1, 0.5, 10−1, 10−2 1, 0.5, 10−1, 10−2 0.5, 10−1, 10−2, 10−3

ψ concat, ψ = tanh(hi−1(te)||x(i))
time dim 1 1 16

memory dim (= DGN dim)

TGN 19, 9 21, 10 33, 20
DyRep 53, 26 74, 37 118, 87
JODIE 69, 34 97, 48 164, 122
TGAT 24, 12 24, 12 33, 23
CTAN 53, 26 74, 37 128, 96

Table 5: Results of the sequence classification on path graph long-range task, for increasing graph
length n. The performance metric is the mean test set accuracy score, averaged over 10 different
random weights initializations for each model configuration. Models have a maximum budget of
learnable parameters equal to ∼20k.

n=3 n=5 n=7 n=9 n=11 n=13 n=15 n=20

DyRep 100.0±0.0 49.2±2.1 51.0±1.76 47.93±2.73 44.87±0.89 46.73±1.55 48.6±2.48 50.47±2.88

JODIE 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 98.53±4.64 97.4±7.99 60.0±14.91 50.87±2.46

TGAT 100.0±0.0 100.0±0.0 50.67±4.12 47.87±2.72 42.67±2.15 43.53±0.83 50.53±2.15 49.07±1.55

TGN 100.0±0.0 100.0±0.0 60.2±13.2 48.13±1.63 45.07±1.64 44.4±0.64 48.67±2.76 50.13±2.17

Our 100.0±0.0 100.0±0.0 100.0±0.0 99.93±0.21 99.6±0.56 98.67±1.89 93.47±8.78 88.93±12.06

each model has the same embedding dimension and number of GCLs. Similarly, Figure 6 shows
the average time per epoch of each model on the Wikipedia dataset. Here, the time is reported with
respect to a varying embedding size and similar number of GCLs.

15



Table 6: Mean test set AUC and std in percent averaged over 5 random weight initializations. Each
model have a maximum budget of learnable weights equal to ∼140k. The higher, the better.

Wikipedia Reddit LastFM MOOC

EdgeBank1% tr set 71.03 71.92 77.59 61.29
EdgeBank5% tr set 81.65 85.07 86.75 63.93
EdgeBank10% tr set 85.26 89.07 89.87 65.18
EdgeBank25% tr set 88.31 92.92 92.74 67.49
EdgeBank50% tr set 90.29 94.82 94.06 69.63
EdgeBank75% tr set 91.11 95.63 94.55 70.46
EdgeBank100% tr set 91.52 96.08 94.69 70.80
EdgeBank∞ 91.82 96.42 94.72 70.85

DyRep 88.64±0.15 97.51±0.10 77.89±1.39 81.87±2.47

JODIE 94.68±1.05 96.34±0.83 69.76±2.74 81.90±9.03

TGAT 94.91±0.25 98.18±0.05 81.53±0.34 87.61±0.15

TGN 95.60±0.18 98.23±0.10 79.18±0.79 90.74±0.99

Our 97.55±0.09 98.61±0.04 83.81±0.92 92.47±0.78

Table 7: Mean time (in seconds) and std averaged over 10 epochs. Each model is run with a
embedding dimension equal to 100 on an Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz. The
subscript 5L means that the model has 5 GCLs, while 1L means 1 layer.

Wikipedia Reddit LastFM MOOC

1 layer

DyRep 27.07±0.32 161.43±0.96 216.88±2.83 53.32±0.56

JODIE 20.62±0.24 131.71±0.85 176.61±3.02 43.92±0.68

TGAT 11.56±0.14 67.83±0.64 139.79±20.78 33.92±0.50

TGN 30.92±0.25 196.87±1.35 289.22±30.38 53.46±0.62

Our 11.16±0.11 64.48±0.56 123.19±11.33 34.42±0.50

5 layer

TGAT 101.26±0.46 895.35±5.46 862.47±217.38 73.77±1.29

TGN 127.99±0.60 1099.19±3.91 1034.24±221.04 95.45±1.07

Our 60.16±0.20 532.36±9.87 495.18±111.13 56.19±0.63

10 50 100 150 200
Embedding dim.

10

20

30

40

Ti
m

e 
(s

)

DyRep
JODIE
TGAT
TGN
Our

10 50 100 150 200
Embedding dim.

50

100

150

200

250

Ti
m

e 
(s

)

TGAT
TGN
Our

(a) (b)

Figure 6: Average time per epoch (measured in seconds) and std with respect to the embedding size
computed on the Wikipedia dataset, averaged over 10 epochs. The experiments where carried on on
an Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz. On the left (a), each model has 1 DGN layer
(when possible), while on the right (b) the models have 5 GCLs.

16


	Introduction
	Preliminaries
	Continuous-Time Graph Anti-Symmetric Network
	Experiments
	Long range tasks
	Sequence classification on temporal path graph
	Classification on Temporal Pascal-VOC

	Benchmark tasks

	Conclusion
	Proof of Proposition 1
	Related work
	Datasets description and statistics
	Explored hyper-parameter space
	Complete results

