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ABSTRACT

Hardware security verification is a challenging and time-consuming task. Design
engineers may use formal verification, linting, and functional simulation tests,
coupled with analysis and a deep understanding of the hardware design being
inspected. Large Language Models (LLMs) have been used to assist during this
task, either directly or in conjunction with existing tools. We improve the state
of the art by proposing MARVEL, a multi-agent LLM framework for a unified
approach to decision-making, tool use, and reasoning. MARVEL mimics the
cognitive process of a designer looking for security vulnerabilities in RTL code.
It consists of a supervisor agent that devises the security policy of the system-
on-chips (SoCs) using its security documentation. It delegates tasks to validate
the security policy to individual executor agents. Each executor agent carries
out its assigned task using a particular strategy. Each executor agent may use
one or more tools to identify potential security bugs in the design and send
the results back to the supervisor agent for further analysis and confirmation.
MARVEL includes executor agents that leverage formal tools, linters, simulation
tests, LLM-based detection schemes, and static analysis-based checks. We test
our approach on a known buggy SoC based on OpenTitan from the Hack@DATE
competition. We find that of the 51 issues reported by MARVEL, 19 are valid se-
curity vulnerabilities, 14 are concrete warnings, and 18 are hallucinated reports.

1 INTRODUCTION

Detection of hardware security vulnerabilities in Register-Transfer Level (RTL) designs is a time-
consuming and challenging process (Dessouky et al., 2019). Considerable research efforts have
been dedicated to making this validation process easier. These include using deterministic meth-
ods like formal verification (Iyer et al., 2019; Sturton et al., 2019; Ray et al., 2019), information flow
tracking (Hu et al., 2021; Brant et al., 2021), fuzzing (Muduli et al., 2020; Tyagi et al., 2022), and,
more recently, non-deterministic methods involving the use of large language models (LLMs) (Ah-
mad et al., 2025; Fu et al., 2023; Tarek et al., 2025). LLMs have been used as debuggers/linters (Fang
et al., 2025). They may use guidelines for the detection of bugs, such as Common Weakness
Enumerations (CWEs), or may use external information (outside of source code), such as design
specifications, to aid in detection (Tarek et al., 2024; Akyash & Kamali, 2024). They may use exter-
nal tools such as linters, formal verification, and/or simulators to assist them in debugging (Xu
et al., 2025). While these approaches are promising, they require a preset action plan. The LLM’s
decision-making process may help determine whether a segment of code is insecure, but it does
not control the workflow for tool use or information gathering. This gap in autonomous think-
ing can be addressed by using LLMs in an agentic workflow. Giving an LLM the ability to plan,
call tools, and control information flow lets it act like a human analyst and make human-like
decisions (Wang et al., 2024). This better simulates the thought process of an RTL designer or
verification engineer while debugging a digital design. Bug-hunting might involve multiple tools
to iteratively localize the cause of a misbehaving design. This process can be emulated in a
multi-agent framework (Li et al., 2024).

MARVEL is a multi-agent framework that implements a unified approach to decision-making,
tool usage, and reasoning towards the goal of RTL bug detection. It uses a Supervisor-Executor
architecture (LangGraph, 2024). The supervisor manages communication and coordination
among specialized executor agents. Each executor uses a unique bug detection strategy coupled
with the tools required to implement its strategy. Linter Agent, Assertion Agent, CWE Agent,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Similar Bug Agent, Anomaly Agent, and a Simulator Agent are the executor agents. The supervisor
agent identifies the security objectives relevant to the design by traversing through directories,
source code, and design specification documents. Then it calls one executor agent at a time to
identify vulnerabilities that violate security objectives. The supervisor may use multiple executors
before determining whether the security objective is satisfied. In this process, security bugs are
identified, and a report is provided to the user summarizing the security issues. An overview of the
multi-agent supervisor-executor flow is shown in Figure 1.

Figure 1: Supervisor-Executor Architecture.

While a similar strategy has been used for auto-
mated bug repair for software (Lee et al., 2024), re-
search efforts for hardware description languages
(HDLs) do not present a comprehensive approach.
Unlike software bugs, RTL bugs are deeply tied to
hardware semantics such as clocking and concur-
rency, which make them harder to detect and re-
pair with traditional software-centric approaches.
Moreover, the consequences of RTL bugs can prop-
agate to silicon, where fixes are expensive and time-
consuming. We develop solutions for RTL by integrating RTL static analysis tools and handling
the unique challenges faced with HDLs. These include identifying hardware security objectives,
using hardware CWEs, forming security assertions, and reasoning about the outputs from a digital
design perspective. MARVEL integrates with digital workflows and leverages existing infrastructure
to provide RTL vulnerability detection. The key contributions of this work are:

• First multi-agent bug detection framework (MARVEL) for hardware designs (Section 2).

• Evaluation of MARVEL on the Hack@DATE 2025 OpenTitan SoC (Section 4.1).

• Architecture analysis to evaluate the benefits of each agent in MARVEL (Section 4.2).

• Open-sourcing implementation and results for the community through our repository.

2 MARVEL
We propose MARVEL, i.e., Multi-Agent RTL Vulnerability Extraction using LLMs. We implement
MARVEL with a Supervisor-Executor architecture. This architecture decomposes the larger verifi-
cation task into multiple sub-tasks and allows each executor to specialize for a given task (e.g.,
writing and running assertions). The supervisor orchestrates the analysis to ensure cohesion and
a logical sequence of actions. The components of MARVEL are shown in Figure 2.
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Figure 2: MARVEL’s Multi-Agentic Framework. Purple denotes LLM assistants, Orange denotes
tools, and Blue denotes RAG databases. The Supervisor Agent can list directories, read from files,
and assign tasks to executor agents. From the responses, it may decide to continue assigning tasks
or determine that the security analysis is complete. Simulator, Similar Bug, CWE, Assertion, Linter,
and Anomaly agents are executor agents, each responsible for a specific security verification task.

2.1 OVERVIEW

LLM-based agents are typically explained using four elements: Profile, Memory, Planning, and
Action. Not only does MARVEL use these modules holistically, but all seven agents of MARVEL
utilize these components individually as well. Each agent consists of an assistant and tools. The
assistant is an LLM agent with a specific objective, responsible for decision-making, capable of
calling one or more tools. The tools are responsible for carrying out the assistant’s recommended
actions when called and replying with the result or with an error message.
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Profile: describes the roles of an agent, which are usually indicated in the prompts to the LLM.
This may include priming the LLM as a domain expert and providing it with its overall big picture
task. For MARVEL, all agents (supervisor and executors) are profiled using system prompts.
Memory: stores information obtained from the environment and leverages the recorded memories
to facilitate future actions. Short-term memory is the information present in the context window
that the LLM is provided in the prompt. Long-term memory is external vector storage that agents
can query and retrieve from. Retrieval Augmented Generation (RAG) is used by the respective
agents to retrieve relevant information from these databases. For MARVEL, the external vector
storages are i) CWE Database used by the CWE Agent, ii) known Bug Database used by the Similar
Bug Agent, and iii) Lint Rules Database used by the Linter Agent.
Planning: is the decision-making process based on the information available to the LLMs in the
context window. LLMs use this reasoning ability to make judgments about the workflow path to
take, the tools to use, and when to conclude that a task is done. For the supervisor agent, this
consists in deciding which executor agent to use, making a conclusion about a reported security
issue, and deciding when it is time to produce the final report. For each executor agent, the
corresponding assistant does this planning, determining whether the tool needs to be called and
whether there is enough information to report back to the supervisor.
Action: translates the agent’s decisions into specific outcomes. This can be done through using
external tools or by the LLMs themselves. The tools for the supervisor agent include executor
agents, and the tools for the executor agents are the linter, formal, simulator, and clustering tools.

2.2 SUPERVISOR AGENT

The supervisor orchestrates the executor agents to perform the security analysis. The supervisor
agent’s system prompt is shown in Figure 3. Beyond coordination, the supervisor agent is also
responsible for identifying relevant security properties from the design documentation to create a
test plan and call upon the executor agents accordingly. The supervisor can explore the hardware
design by listing folder content and reading files to achieve this. Files can be retrieved with and
without annotated line numbers. The latter is helpful for code files, helping the agent report buggy
line numbers. The executor agents return short reports describing potential issues; the supervisor
can then accept an issue, escalate the analysis by invoking additional executor agents, or inspect
the code directly to refine or validate the finding. Ultimately, the supervisor agent produces a
report on the security issues in the design. The system prompt hints at the order and use of
executor agents, but the supervisor agent may call them in any order and any number of times.

Supervisor’s System Prompt
You are a supervisor agent in a multi-agent system focused on identifying
hardware security vulnerabilities in RTL code. Your objective is to analyze
the given SoC and generate a detailed security report.
You have access to the following tools: <tool_list>.
Each tool specializes in a specific task:
<tools description> Instructions for analysis:
- Read the documentation to identify security features and register interface
policies.
- Use Verilator, Assertion, Anomaly and Linter agents to uncover initial issues.
- If a bug is detected but not localized, use the CWE Agent to further inspect
the related security aspect in the surrounding RTL.
- After detecting any bugs, use the Similar Bug Agent to scan similar files (of
the same or of different IPs) for similar vulnerabilities.
Output Format:
<output_format_instructions> When your analysis is complete, end your response
with "END".

Figure 3: Supervisor Agent’s System Prompt. It is instructed to analyze given SoC for security bugs.
It is provided information about the executor agents and is tasked to produce a security report.

2.3 LINTER AGENT

The linter agent automates lint-based security analysis by (i) identifying lint checks relevant to
a given security objective identified by the supervisor agent and (ii) analyzing and filtering the
warnings and errors produced by the linting process. These two capabilities enable the agent
to focus the analysis on the security intent and design context, thereby reducing the high false-
positive rate typically observed in lint tools. To implement these capabilities, the linter agent is
composed of three components: the linter assistant, the lint tags retriever, and the lint checker.
Given a security objective and a source code file, the linter assistant coordinates the workflow.
It can invoke the lint tags retriever or the lint checker in any sequence, up to a maximum of six
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iterations. The lint tags retriever maps the security objective to a set of relevant lint checks by
searching an indexed description of available lint rules and selecting at most 20 tags per query.
The linter assistant then uses the retrieved tags to call the lint checker, which runs lint analysis on
the provided code and returns any violations. If violations are found, the linter assistant performs
an additional reasoning step to filter out false positives. We instantiate this architecture using
Synopsys’s VC SpyGlass Lint tool (Lint, 2022). The lint tags retriever operates over a database
of 1255 SpyGlass lint rules (each represented by an identifier and a short description), and the
lint checker executes SpyGlass with the selected tags and target module. Any errors produced
by the tool, such as unknown tag names or incorrect module specifications, are returned to the
linter assistant for debugging. An example of the linter agent’s operation on the ADC Control FSM
module is shown in Section A.1.1.

2.4 ASSERTION AGENT

The assertion agent automates assertion-based security analysis by (i) generating meaningful
SystemVerilog assertions tailored to a given security objective and (ii) checking these assertions
against the RTL to identify security violations. This enables targeted formal analysis that directly
connects the semantics of the security objective to observable design behavior. To implement
these capabilities, the assertion agent consists of two components: the assertion assistant and
the assertion checker. Given a security objective and a source code file, the assertion assistant
creates relevant SystemVerilog concurrent assertions based on a canonical assertion structure
and the semantics of the security objective. The assertion agent may call the assertion checker
repeatedly, up to six iterations, until a falsified assertion is produced or no further progress can
be made. After each check, the assertion assistant inspects the results to determine whether the
generated assertions uncovered a security issue, whether new assertions should be formed for
deeper refinement, or whether an error in assertion syntax or binding requires correction. We
instantiate this architecture using Synopsys’ Formal Property Verification (FPV) tool (Formal,
2024). The assertion checker binds the generated assertions to the RTL, gathers the necessary
design dependencies, populates a Tcl template with the appropriate top module, clock, and reset
signals, and executes FPV. The results file, containing any falsified assertions, is then returned to
the assertion assistant. If the tool encounters issues—such as syntactically invalid assertions or
incorrect bindings—an exception message is sent back for debugging. An example flow of the
assertion agent for the hmac_reg_top module is shown in Section A. 1.2.

2.5 CWE AGENT

The CWE agent supports vulnerability classification by (i) identifying the CWE most relevant
to a given security objective and RTL module, and (ii) retrieving detailed descriptions and ex-
amples to contextualize potential weaknesses. This allows the agent to map design-level issues
to standardized hardware-relevant CWEs, providing consistent terminology for reporting and
remediation. To implement these capabilities, the CWE agent consists of two components: the
CWE assistant and the CWE details retriever. Given a security objective and a source code file, the
CWE assistant coordinates the workflow and may invoke the details retriever up to six times. The
assistant first determines which CWE category is most relevant to the suspected security issue and
then augments this classification by assessing whether the RTL exhibits behaviors consistent with
that CWE. The details retriever performs two main operations: it identifies a candidate CWE-ID
based on the security objective, and it then retrieves the corresponding extended description,
examples, and repair patterns. We instantiate this architecture using information from MITRE’s
CWE database. We construct a text file in which each segment contains a CWE identifier and its
description. This file is chunked using a recursive character splitter into segments of size 50, with
no overlap, and with a custom separator that delineates individual CWEs. These chunks are stored
in a vector database, allowing the retriever to identify the most relevant CWE based on embedding
similarity, selecting a single best match. Once identified, the retriever augments the CWE with its
extended description and examples, and this enriched output is returned to the CWE assistant. An
example of a CWE agent run is shown in Section A.1.3.

2.6 SIMILAR BUG AGENT

The similar bug agent automates the detection of recurring bug patterns by (i) identifying RTL
lines semantically similar to a known buggy line and (ii) evaluating whether these analogous lines
also constitute bugs. This enables pattern-based vulnerability discovery, where issues identified
once can be efficiently propagated across the design. To implement these capabilities, the agent
consists of the similar bug assistant and the similar bug tool. Given a buggy reference line and
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a target RTL file, the assistant coordinates the analysis and may repeatedly invoke the similar
bug tool until the search completes or additional context is required. The assistant first requests
candidate lines that are semantically similar to the known bug and then determines whether these
candidates reflect the same underlying issue. When ambiguous, the assistant may inspect the
surrounding code to refine its judgment before producing a final list of confirmed buggy locations.
We instantiate this architecture using an embedding-based semantic search approach. The similar
bug tool reads the RTL source file, splits it into individual lines, and embeds each line using
OpenAI embeddings. These embeddings are stored in an in-memory vector store, over which a
retriever returns the top ten lines most similar to the input bug based on embedding similarity.
The tool annotates each matched line with its line number and returns them to the assistant. If
no similar lines are found or if the tool encounters an error (e.g., missing file), a corresponding
message is sent back. Otherwise, the assistant inspects the similar lines and produces a report for
the supervisor agent. An example of the similar bug agent’s operation is shown in Section A.1.4.

2.7 ANOMALY AGENT

The anomaly detection agent detects unexpected or atypical RTL constructs by (i) grouping
semantically similar lines of code and (ii) identifying outliers that may indicate potential security
vulnerabilities. This enables pattern-independent detection of suspicious behavior that may not
be captured by lint rules, assertions, or known bug patterns. To implement these capabilities,
the agent consists of the anomaly detector assistant and the RTL clustering tool. Given a security
objective and an RTL source file, the assistant orchestrates the analysis and may repeatedly invoke
the clustering tool as needed. The assistant examines anomalous constructs returned by the tool
and determines whether they plausibly represent security-relevant issues, taking into account the
surrounding design context when necessary. We instantiate this architecture using an embedding-
based clustering approach. The RTL clustering tool first extracts all assign statements from
the RTL, then generates embeddings for each using OpenAI’s text-embedding-3-small
model. These embeddings are clustered using DBSCAN with cosine similarity as the distance
metric, grouping semantically related constructs and flagging outliers as anomalies. The tool
returns both the anomalous lines and the clusters they were compared against. If no anomalies
are found or if an error occurs (e.g., missing file), a corresponding message is sent back to the
assistant. Otherwise, the assistant analyzes the anomaly data to determine whether any of the
outliers represent potential security vulnerabilities and produces its final assessment. An example
flow of the anomaly agent on the HMAC Register Top module is shown in Section A.1.5.

2.8 SIMULATOR AGENT

The simulator agent identifies potential security issues in RTL through dynamic analysis by
(i) selecting and executing relevant simulation tests and (ii) interpreting failing behaviors to
determine whether they correspond to security-related bugs. This enables the agent to uncover
issues that manifest only under specific execution conditions and may not be caught by static
analysis. To support these capabilities, the simulator agent comprises the simulator assistant and
the Verilator tool. Given the name of a target IP block, the assistant coordinates the simulation
workflow and may call the Verilator tool iteratively until no further analysis is required. The
assistant examines failing test outputs and determines whether the observed behaviors represent
security vulnerabilities, optionally requesting additional simulation runs if the diagnostics are
inconclusive. We instantiate this architecture using Verilator as the simulation backend. The
Verilator tool operates in two stages: it first retrieves all available software tests associated with
the target IP by issuing a filtered bazel query. Then it runs these tests under Verilator using a
bazel test command. The tool returns the simulation output, including logs for any failing
tests. If no tests are found or the simulation run fails, a message is sent to the assistant. Otherwise,
the assistant analyzes the failing behaviors to determine whether they reflect security-relevant
issues and provides a final summary of identified concerns, including explanations and references
to the affected RTL. An example of a simulator agent run is shown in Section A.1.6.

3 EXPERIMENTAL SETUP
3.1 BENCHMARK

We evaluate MARVEL on a vulnerable OpenTitan earlgrey System-on-Chip (SoC) design (lowRISC
contributors, 2023) obtained from the finals of the Hack@DATE 2025 competition. Hack@DATE is
a premier hardware security capture-the-flag competition. They provide contestants with an SoC
design with manually inserted vulnerabilities akin to those found in real, deployed products. The
earlgrey SoC is a high-quality, open-source Root-of-Trust design that provides robust hardware
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security features. It utilizes the Ibex RISC-V processor as its main core. It integrates intellectual
property (IP) block peripherals, including crypto accelerators for AES, system management units
for clock, power, and reset, and I/O protocols such as SPI. The SoC has an array of security features,
including end-to-end data integrity, secure boot, and first-order masking of side-channels.
The IPs we analyze with MARVEL are summarized in Table 1. We report the total number of
files, design files, design LoC and number of bugs for each IP. Design files only include those
used to implement the IP (i.e., excludes test files), and design LoC is the line count in those files,
excluding comments and whitespace. We select these 12 IPs because they represent a wide range
of functionality, spanning cryptography (e.g., AES), I/O (e.g., ADC), and system management (e.g.,
lifecycle controller). Bugs are spread unevenly across the selected IPs, which allows us to evaluate
the effectiveness of MARVEL on IPs with zero, a few and up to ten bugs.

Table 1: IPs from OpenTitan earlgrey SoC used to evaluate MARVEL, their design size and number
of bugs. Bugs were identified by comparing the buggy SoC with the open source implementation.

Design IP Description Total Files Design Files Design LoC # Bugs

adc_ctrl Control/filter logic for dual A-to-D Converter. 59 7 4159 2
aes Cryptographic accelerator for AES Standard. 203 37 10425 9

csrng
Supports deterministic (DRNG) and true random number
generation (TRNG) compliant with FIPS and CC. 69 12 5722 2

entropy_src FIPS and CC compliant entropy source used by csrng. 91 20 7750 0
hmac SHA-2 hash-based authentication code generator. 80 4 3613 3

keymgr
The key manager implements the hardware component of
the identities and root keys strategy of OpenTitan. 75 14 5257 1

kmac Keccak-based message authentication code. 202 16 7571 0

lc_ctrl
Controller to manage product device lifecycle and associated
functionality/access control. 101 11 4027 3

otbn Co-processor for asymmetric crypto operations like ECC. 440 24 8279 7
otp_ctrl Controller for the One-Time Programmable (OTP) memory. 136 15 8612 10

prim
Basic blocks used to implement the design; They are often
technology-dependent and can have multiple implementations. 501 164 14988 2

tlul
Main system bus to interface the main processor core with
peripherals; implements the TileLink protocol. 87 21 2628 0

3.2 FRAMEWORK IMPLEMENTATION

We implemented MARVEL in Python, modeling the agentic framework using LangGraph. The
implementation is open source at repository. MARVEL is fully automated. The flow is independent
of the LLMs used, and can be transitioned to different models as they get released.

For our implementation, we use the same model for every agent, as this simplifies and constrains
our design space. We considered Gemini 2.5 Pro, GPT-4.1, GPT-5 as possible model options. Gem-
ini 2.5 Pro is Google’s flagship model. GPT-4.1 is OpenAI’s best non-reasoning model and provides
the largest context window (1M), while GPT-5 is OpenAI’s most advanced reasoning model. We set
the default temperature of 0.15 for all models. Picking a small, non-zero value provides flexibility
in the responses while ensuring that they remain conservative enough for the detailed tasks. We
do not study prompt optimization; instead, we focus on the efficacy of the framework for security
verification. For model selection, we performed small-scale experimentation on 3 IPs (adc_ctrl,
aes, otp_ctrl). We selected these IPs because they cover I/O, crypto, and memory functionality.
Figure 4 illustrates the number of reported security issues, number of actions, and runtime for
both models. We classify every reported security issue as a Bug (a correct, actionable vulnerability
in the RTL), Warning (a partially correct or security-relevant condition identified by the agent,
but not an exploitable vulnerability), or Hallucination (an incorrect finding). Bugs are strict true
positives, Warnings are soft true positive signals, and Hallucinations are false positives. We used
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Figure 4: Results using reasoning (Gemini 2.5 Pro and GPT-5) and non-reasoning (GPT-4.1) models.

content analysis sessions, similar to prior work in software engineering (Catolino et al., 2019), to
perform this classification. Two authors of this work independently reviewed each bug report and
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the relevant design files. This includes RTL files, documentation, and test logs. When necessary,
the OpenTitan repository (lowRISC contributors, 2023) was used as a golden reference. Then,
a discussion was held to resolve any differences and reach a consensus. GPT-5 found 2× more
Bugs in adc_ctrl and aes compared to Gemini 2.5 and GPT-4.1. Critically, GPT-5’s precision is
significantly higher than both other models across the board, and it hallucinates less. The action
count is comparable for both models, with a slight increase across the board for GPT-5. This
translates into higher runtime for GPT-5, due to the generation of reasoning tokens. Still, GPT-5
runtime remains reasonable, with a max of 40 minutes, which is a reasonable runtime given no
human intervention is needed. Based on these observations, we use GPT-5 for our evaluation.

4 RESULTS
4.1 EVALUATION

Overview For each of the 12 IPs, we evaluate the security properties and issues identified by
MARVEL. The results are summarized in Table 2. All security properties identified by the supervisor
agent were correctly formulated. We classify reported security properties and issues similarly
to Section 3.2. The correctness of the identified security was determined by consulting the SoC
documentation. The full list of identified issues, with descriptions taken from the generated reports
and their respective classifications, is reported in Section A.2 and Section A.3. We additionally
report precision, recall, and F1-score for each IP. These metrics provide a complementary view of
performance: precision reflects how often reported findings are correct (Bug or Warning), recall
captures how many true issues MARVEL uncovers, and F1 summarizes the tradeoff between the
two. Performance varies across IPs, with MARVEL achieving perfect scores on three of them and
worst scores on four. This suggests that hallucinations can lead the framework into unproductive
analysis paths. All correctly identified bugs were also correctly localized. The run times span
18-53 minutes. The runtime depends on tool calls, with simulation and assertion verification
being the two most time-consuming. The average cost per run is approximately $3. The kind of
analysis carried out by MARVEL would require many hours for an experienced security engineer,
highlighting the potential of LLMs to speed up hardware security evaluations. The findings are
well distributed through all the IPs and the number of reported issues and hallucinations is
relatively small, highlighting that MARVEL is effective at filtering the noisy outputs of the base
tools. Assuming an engineering effort of 20 minutes per finding, the most expensive IP analysis
would take 140 minutes, a small fraction of the typical man-months of security verification efforts.
Moreover, integrating this analysis during design reduces the number of findings per run.

Table 2: Results summary for the 12 Design IPs in buggy OpenTitan earlgrey SoC. The Security
Issues Localized includes only the correctly identified security issues (i.e., we ignore false positives).

Design IP
Runtime

[min.]
Security Properties

Identified
Security Issues

Identified

Bug Warning Hallucination Prec. Recall F1

adc_ctrl 25 10 2 0 0 1.00 1.00 1.00
aes 40 10 4 1 0 1.00 0.44 0.62
csrng 37 9 0 2 4 0.00 0.00 0.00
entropy_src 27 16 0 3 1 0.00 0.00 0.00
hmac 26 10 3 0 0 1.00 1.00 1.00
keymgr 27 22 1 0 0 1.00 1.00 1.00
kmac 36 11 0 2 5 0.00 0.00 0.00
lc_ctrl 18 12 3 1 3 0.50 1.00 0.67
otbn 22 16 4 0 0 1.00 0.57 0.73
otp_ctrl 29 13 1 0 1 0.50 0.10 0.17
prim 22 10 1 1 1 0.50 0.50 0.50
tlul 53 9 0 4 3 0.00 0.00 0.00

Overall 362 148 19 14 18 0.51 0.49 0.50

Supervisor Actions The initial prompt contains the path to the SoC base directory. From the
example sequences of action in Section A.5, we see that the supervisor starts by exploring the
SoC file structure and reading the documentation files to identify the security properties. Then
it starts calling the available tools to check the identified security properties. The agent might
inspect design files based on the tools’ feedback to confirm and localize the bugs. Figure 5 shows
the normalized and absolute number of actions performed by the supervisor agent. In every run,
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Figure 5: Normalized and Absolute Supervisor Action Distribution, Overall and for single IPs.

the supervisor agent calls each tool at least once. Prim has one of the lowest runtimes and the
highest number of actions. This is due to the high number of file reads and directory listings; Prim
has multiple basic blocks and has the most files in the SoC.
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Figure 6: Roles of agents in bugs re-
ported by MARVEL. Determinator,
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Executor Agent Contribution The roles of each
agent in bugs reported by MARVEL are illustrated
in Figure 6. Here, we focus on the actions that con-
tributed to a result in the final report. Agents might
not find any issues, in this case, the action does not
contribute to the report. If the agent is used to de-
termine and localize a confirmed security issue, it is
described as the Determinator and Localizer. If it is
used to identify the bug but is not the final determina-
tor, it is a Helper. If it raises a warning, it is defined as
a warner. If it is used in the flow of incorrectly identi-
fying a security issue, it is defined as a False Identifier.
More than one agent might count as Helper, Warner,
or False Identifier. The CWE and Anomaly agents have the highest number of false identifications,
with 8 and 11, respectively. These agents are not based on EDA tools.
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Figure 7: Agent activity frequency for each security
objective and file category tuple for agents requiring
a security objective and file category.

Executor Orchestration We investigated
the supervisor’s ability to call executor
agents based on file type and security ob-
jectives. Figure 7 shows the frequency of
each file type–security objective pair as ex-
amined by the supervisor. The highest fre-
quency is for the tuple access control and
interface files (which implement most of
the access control logic), followed by FSM
security for FSM and control logic files. Tu-
ples that do not make design sense, like
entropy on interface modules, are never
explored. The supervisor can accurately
identify the security objectives, at least for
some file categories. Section A.4 explains
how we assigned security objectives and
files to the respective classes.

4.2 ARCHITECTURE ANALYSIS

Benefits of Multi-Agent Architecture We studied the benefits of the multi-agent, supervisor-
executor framework by comparing it to a single-agent setup. For the single-agent setup, we used
GPT-5 and exposed all tools through the tool-calling API. Results are illustrated in Figure 8. The
agent’s system prompt is shown in Section A.6. MARVEL is as good or better than the single agent
at identifying security issues. On benchmarks where neither found any confirmed security issues,
MARVEL raises warnings, whereas the single-agent setup provides only conclusive error reports.

Executor Agent Ablation This study explores the effectiveness of each executor agent.
First, we ran the supervisor agent, excluding one executor agent at a time. Then we ran
the supervisor agent with only one executor at a time. We did this analysis on a sub-
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Figure 8: Comparison between MARVEL’s multi-agent and single-agent setup on issues found.
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set of IPs. We selected the same subset used for model selection in Section 3.2. Fig-
ure 9 and Figure 10 show the number of bugs, warnings, and hallucinations reported,
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Figure 10: Ablation study: Supervisor plus a single Executor.
% is for true positive ratios.

together with the True Positive to
False Positive ratiofor the respective
ablation studies. Both single ex-
ecutors and all-but-one runs have
a lower True Positive ratio. Inspect-
ing the actual bugs, we found that
some bugs are less likely to be found
when a specific executor is missing,
like FSM bugs when the Linter agent
is excluded. For the single executor
we attribute the lower true positive
ratio to the supervisor agent being
able to filter out false positives by using multiple tools. The different tools may identify the same
simple problems, as the LLM can access the source and perform code analysis.

5 DISCUSSION

Benefits of the Supervisor-Executor architecture of MARVEL have been demonstrated through
the interaction and coordination between agents. Based on the Design IP and their documentation,
MARVEL was able to derive security objectives relevant to the IP accurately. The supervisor agent
is then able to call on the executor agents according to the file type and security objective as shown
in Figure 7. If one agent fails to provide helpful information or returns an error, the supervisor
executes another agent until sufficient information is obtained to make a judgment about the
violation of the security objective under consideration. Logs of the agentic flow revealed that
MARVEL was able to iteratively improve calls to a tool until the syntactically correct call was
made. An example can be found in Section A.5. The multiple calls in a row to the assertion
agent on the same file are due to the tool call failing, and the supervisor agent attempting to
correct the format and assertions. This highlights the benefit of an agentic approach, which
allows the supervisor to correct its actions. A single-shot approach without the ability to iterate
would result in unrecoverable failing tool calls. We demonstrated the use of hardware description
language (HDL) specific tools, including VC SpyGlass Lint as the linter, VC Formal as the assertion
tool, and Verilator as the simulator. LLMs can automate scripting these tools using templates,
demonstrating that multi-agentic systems can be used for hardware code debugging.

Limitations From a security perspective, the strict true positive rate of 51% (discarding warnings)
characterizes MARVEL’s ability to identify actionable vulnerabilities. Considering warnings as
weak positives raises the relaxed true positive rate to 64.7%, giving a more realistic picture of the
system’s utility for vulnerability triage. While a 51% precision is meaningful given the high cost of
post-tape-out bugs, the 35.3% hallucination rate indicates substantial room for improvement. By
open-sourcing our research, we aim to establish a foundation for systematically incorporating
generative AI into security verification pipelines and driving these error rates down. Evaluating

9
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the “quality" of the Supervisor’s is difficult, as there is no optimal sequence. Our evaluation scope
is limited to the efficacy and benefits of the multi-agent framework and tools. We used GPT-5 for
each agent and did not explore multi-model composition or prompt optimization. Full multi-seed
evaluations of MARVEL across all IPs are computationally costly, but its reliance on tool-grounded
signals (lint, simulation logs, documentation) limits stochastic effects and makes single runs
reliable, especially at temperature 0.15. We limit our benchmark to an OpenTitan-based SoC. The
hardware security domain suffers from a lack of available data, and SoCs from the Hack@Event
competitions are the best available source for real-world hardware bugs. The results observed
should generalize to other designs, as we do not do any finetuning or design-specific optimizations.
Finally, data leakage has minimal impact on MARVEL’s effectiveness as the Hack@Date SoC and
bug list are not public.

Related Works Prior work has explored LLMs for RTL debugging and vulnerability discovery,
but important gaps remain. FLAG (Ahmad et al., 2025) used earlier LLMs for fault localization
and showed that naive prompting can surface many candidates but suffers from very high false-
positive rates. Surveys such as Saha et al. (2024) document promising LLM applications (insertion,
verification, mitigation) but do not provide an end-to-end, tool-driven workflow for hardware.
SV-LLM (Saha et al., 2025) moves toward an agentic setup and improves detection by fine-tuning
on vulnerability examples, but it relies on heavy model specialization, does not expose its dataset
or framework, and lacks tight runtime integration with verification tools. Self HW Debug (Akyash
& Kamali, 2024) proposes an agentic flow to identify specific vulnerabilities. The framework is
limited to five specific CWEs. Our work differs in substantial ways. First, MARVEL does not focus
on explicit vulnerabilities. The security objectives are identified by the supervisor agent from
the design documentation. The executor agents receive security objectives from the supervisor
and adapt their execution to them using RAG. MARVEL is designed to be modular and retrieval-
augmented (CWE and lint-tag retrievers), making it straightforward to extend with new executors
or swap models without changing the orchestration logic. These features reduce false positives,
improve actionable localization, and make our approach more practical for integration into
verification pipelines than prior LLM-only or fine-tuned systems.

Future Work Research has started investigating prompt formation as an optimization prob-
lem (Pryzant et al., 2023). In this work, we focused on evaluating the effectiveness of our multi-
agent framework and did not explore prompt optimization. MARVEL uses the same model for
every agent to constrain the design space. Using different models may improve performance or
cost. A natural extension of MARVEL would be to add more executor agents. This could include
using other techniques used for RTL security bug detection, like Information Flow Tracking (Hu
et al., 2021) and Fuzzing (Rostami et al., 2024). Another direction for exploring multi-agent systems
for RTL security bug detection would be to employ an architecture where executor agents can
communicate directly with each other. Alternatively, a multiple hierarchy could have agents
between the supervisor and executor agents that are primed to use broad categories of tools. A
Static Analysis agent could control flow between the Linter, Assertion, and Anomaly agents, and
a Known Bug agent could include the CWE and Similar Bug agents. Other improvements could
include a separate localizer agent that uses non-LLM-based techniques to localize bugs based on
information from the Supervisor Agent. These could include embedding and keyword searches.

6 CONCLUSION
We introduced MARVEL, a multi-agent LLM framework for automated detection of RTL security
vulnerabilities. Our results show that each agent contributes to the security analysis at least as
a helper. MARVEL reported 51 potential security issues, of which we manually evaluated 19 as
confirmed issues and 14 as relevant security warnings. All 19 confirmed issues were also correctly
localized to the relevant file and lines. To quantify overall performance, we report strict precision,
recall, and F1-score as summarized in Table 2. MARVEL achieves an overall precision of 0.51, a
recall of 0.49, and an F1-score of 0.50. The per-IP metrics exhibit a highly skewed distribution:
some IPs contain few real issues and achieve perfect scores (1.00 precision, recall, and F1). In
contrast, others present more challenging conditions and yield 0–0–0 outcomes. This reflects the
heterogeneous nature of the designs and highlights that MARVEL performs well when actionable
issues are present, but remains sensitive to design complexity and noise in more demanding
settings. Our work highlights LLMs’ potential to speed up hardware security evaluations. Yet they
augment, not replace, human expertise for key applications, as experienced professionals must
conduct the final assessment and critical decisions. While promising, false positives remain a
limitation; future work will focus on reducing hallucinations and expanding executor capabilities.
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7 REPRODUCIBILITY STATEMENT

Our code and results are available to reviewers through an anonymized repository. We note that
our framework, although open-source, utilizes proprietary tools. To run it successfully, users need
licenses for these tools. Unfortunately, we cannot provide the source code of our benchmark, as the
Hack@DATE 2025 SoC has not been made publicly available by the organizers of the competition.
Individuals can reach out to the organizers to ask for the SoC source code.

8 ETHICAL CONSIDERATIONS

Ethical considerations must be taken into account when working with cybersecurity. The possibil-
ity of malicious use of the tool should be taken into consideration. This includes both the use of
methods to find vulnerabilities with harmful intent and changes to system prompts that may allow
the objective to be changed from bug detection to bug insertion. In both scenarios, the user would
need to access design files, which in the hardware domain are accessible by trusted employees. In
the hardware domain, these scenarios are less of a concern than in the software domain.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 ILLUSTRATIVE EXAMPLES FOR EXECUTOR AGENTS

This section includes examples of the executor agents’ detection of security issues not covered in
the main pages of this manuscript.

A.1.1 EXAMPLE FOR LINTER AGENT

Instruction to Linter Assistant from Supervisor Agent
Are there FSM related security concerns with the provided RTL:
<RTL source code> <Design filepath> <Top module>
Identify relevant lint tags for the RTL to be checked for.
Then run the tests using the linting tool.
From the output of the linting tool, determine if there are security issues in
the RTL.

Tool call from Linter Assistant
Tool Call: retrieve_relevant_lint_tags
Arguments: query: FSM security

Message from Lint Tags Retriever to Linter Assistant
LINT_FSM_UNREACHABLE_STATES: Do not have unreachable states in FSMs
LINT_FSM_WITHOUT_EXIT_STATE: Do not have states without exit in FSMs
...

Tool call from Linter Assistant
Tool Call: lint_checker_tool
Arguments:
- design_filepath: <path-to-adc-ip>/adc_ctrl_fsm.sv
- top_module: adc_ctrl_fsm
- lint_tags: [... ‘MissingFsmStateTransition’,
‘LINT_FSM_WITHOUT_INITIAL_STATE’, ‘LINT_FSM_UNREACHABLE_STATES’,...]

Message from Lint Checker Tool to Linter Assistant
Successfully executed lint checker tool
Report Summary:
Tag : LINT_FSM_UNREACHABLE_STATES
Description : State ‘LP_PWRUP’ is unreachable
LineNumber : 306
Statement : LP_PWRUP: begin
...

Message from Linter Assistant to Supervisor Agent
The linting tool has identified several security concerns related to the
finite state machine (FSM) in the provided RTL code. Here are the details
of the findings:
**LINT_FSM_UNREACHABLE_STATES**:
- **Description**: State ‘LP_PWRUP‘ is unreachable.
- **Severity**: Error
- **Line Number**: 306
- **Details**: This state cannot be reached from any other state, which can
lead to unexpected behavior in the FSM.

Figure 11: Example linter agent flow for Improper FSM on ADC Control FSM module. Linter
assistant receives instructions to find FSM security concerns. It calls the lint tags retriever to
obtain FSM-related tags and then calls the lint checker to execute the lint tags on the ADC Control
FSM. From the output of the checker tool (LINT_FSM_UNREACHABLE_STATES tag violated),
the assistant determines that state LP_PWRUP is unreachable and points to line 306 as the bug
location.
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A.1.2 EXAMPLE FOR ASSERTION AGENT

Instruction to Assertion Assistant from Supervisor Agent
Are there security concerns related to the wipe secret operation in the
provided RTL?
Is the wipe secret operation occurring at the appropriate conditions?
<RTL source code> <Design filepath> <Top module>
Form relevant system verilog assertions for the RTL to be checked for.
These system verilog assertions should be in a dict with the key as the name
and the value as the assertion string.
An example assertions object to be sent to assertion checker tool is:
<Example Assertions>
From the output of the assertion checker tool, determine if there are security
issues in the RTL.
If there are no falsified assertions in the output from the assertion checker
tool, that means there are no verified security issues in the RTL.

Tool call from Assertion Assistant
Tool Call: assertion_checker_tool
Arguments:
- design_filepath: <path-to-hmac-ip>/hmac_reg_top.sv
- top_module: hmac_reg_top
- clock_signal: clk_i
- reset_signal: rst_ni
- reset_active: 0
- assertions: {‘assertion_wipe_secret’: "property p_wipe_secret;
@(posedge clk_i) disable iff (!rst_ni) (wipe_secret_we && !reg_error)
|-> (reg2hw.wipe_secret.q == 32’h0); endproperty assertion_wipe_secret:
assert property (p_wipe_secret);", ‘assertion_wipe_secret_condition’:
‘property p_wipe_secret_condition; @(posedge clk_i) disable iff (!rst_ni)
(wipe_secret_we && !reg_error) |-> (addr_hit[8] && reg_we); endproperty
assertion_wipe_secret_condition: assert property (p_wipe_secret_condition);’}

Message from Assertion Checker Tool to Assertion Assistant
Successfully executed: assertion checker tool
Output: There are no falsified properties.

Message from Assertion Assistant to Supervisor Agent
The assertion checker tool did not find any falsified assertions, which means
there are no verified security issues related to the "wipe secret" operation
in the provided RTL. The "wipe secret" operation is occurring under the
appropriate conditions, and the secret is being wiped correctly when the
operation is triggered without any register errors.

Figure 12: Assertion Agent flow for wipe secret security objective for HMAC Register module.
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A.1.3 EXAMPLE FOR CWE AGENT

Instruction to CWE Assistant from Supervisor Agent
Are there security concerns related to hardware child block instantiations in
the provided RTL?
<RTL source code>
Identify the CWE relevant to the security issue for the given RTL.
Obtain details of the CWE.
Then determine if there are security issues relevant to the identified CWE in
the RTL.

Tool call from CWE Assistant
Tool Call: cwe_details_retriever_tool
Arguments: security_issue: hardware child block instantiations

Message from CWE Details Retriever to CWE Assistant
CWE-1276: Hardware Child Block Incorrectly Connected to Parent System
Signals between a hardware IP and the parent system design are incorrectly
connected causing security risks.
<Extended Description> <Example 1> <Example 2>

Message from CWE Assistant to Supervisor Agent
In the provided RTL code, we need to ensure that all child block
instantiations are correctly connected to the parent system. Let’s examine
the instantiations and connections:
1. **prim_blanker Instantiations**:
- ‘prim_blanker #(.Width(WLEN)) u_operand_a_blanker‘ and ‘u_operand_b_blanker‘
are instantiated with the enable signal hardcoded to ‘1’b1‘. This is correct
if the intention is to always enable these blankers, but it should be verified
against the design specifications.

Figure 13: Example CWE Agent flow on OTBN MAC Bignum module

A.1.4 EXAMPLE FOR SIMILAR BUG AGENT

Instruction to Similar Bug Assistant from Supervisor Agent
This bug was previously found in another file of this design: DIP_CLEAR:
data_in_prev_d = data_in;
Please check the RTL code in the file <path-to-IP>/ip/aes/rtl/aes_cipher_core.sv
for similar bugs.

Tool call from Similar Bug Assistant
Tool Calls: similar_bug_tool
Args:
- bug: DIP_CLEAR: data_in_prev_d = data_in;
- ip_file: <path-to-IP>/ip/aes/rtl/aes_cipher_core.sv

Message from Similar Bug Tool to Similar Bug Assistant
Successfully executed: similar_bug_tool// Found similar bug in
<path-to-IP>/aes/rtl/aes_cipher_core.sv at line 585: .data_out_clear_i (
data_out_clear_i ),
KEY_DEC_CLEAR: key_dec_d = key_expand_out;
Found similar bug in <path-to-IP>/aes/rtl/aes_cipher_core.sv at line 442:
KEY_FULL_CLEAR: key_full_d = key_expand_out;
Found similar bug in <path-to-IP>/aes/rtl/aes_cipher_core.sv at line 251:
STATE_CLEAR: state_d = add_round_key_out;
Found similar bug in <path-to-IP>/aes/rtl/aes_cipher_core.sv at line 234:
logic[3:0][3:0][7:0] data_in_mask;
Found similar bug in <path-to-IP>/aes/rtl/aes_cipher_core.sv at line 249:
STATE_INIT: state_d = state_init_i;
<continues>

Tool call from Similar Bug Assistant
To better understand the context, I’ll read the file to examine these lines
more closely:
Tool Calls: read_file_with_line_numbers
Args:
- file_path: <path-to-IP>/ip/aes/rtl/aes_cipher_core.sv

Message from Read File Tool to Similar Bug Assistant
Successfully executed: read_file_with_line_numbers <file-content>

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Message from Similar Bug Assistant to Supervisor Agent
After carefully analyzing the results, I found a few lines that might be
similar to the original bug, but they are not exact matches:
1. Line 461: ‘KEY_DEC_CLEAR: key_dec_d = key_expand_out;‘
- This is in a key decryption context, which is different from the original
bug.
2. Line 442: ‘KEY_FULL_CLEAR: key_full_d = key_expand_out;‘
- This is in a full key context, which is different from the original bug.
3. Line 251: ‘STATE_CLEAR: state_d = add_round_key_out;‘
- This is in a state context, which is different from the original bug.
None of these lines are exact matches to the original bug ‘DIP_CLEAR:
data_in_prev_d = data_in;‘. The lines found are similar in structure (using
a clear/reset state and assigning a value), but they are in different contexts
(key, state) and do not involve ‘data_in_prev_d‘.

Therefore, I cannot confidently identify any buggy lines that are direct
matches to the original bug in this file.

Figure 14: Example Similar Bug Agent flow for a similar bug previously found in aes_core.sv.

A.1.5 EXAMPLE FOR ANOMALY AGENT

Instruction to Anomaly Assistant from Supervisor Agent
Are there security concerns related to the wipe secret operation in the
provided RTL?
<RTL source code> <Design filepath> <Top module>
Use the anomaly detector tool to identify lines in the design RTL that are
anomalous.
Then determine whether the identified anomalous line(s) represent a security
issue or not.

Tool call from Anomaly Assistant
Tool Call: anomaly_detector_tool
Arguments:
- design_filepath: <path-to-hmac-ip>/hmac_reg_top.sv

Message from Anomaly Detector Tool to Anomaly Assistant
Successfully executed:
Anomaly Detector tool
Output:
Here are clusters of similar verilog constructs in the RTL file:
Cluster 0:
assign status_re = addr_hit[6] & reg_re & !reg_error; assign wipe_secret_we
= addr_hit[8] & reg_we & reg_error; assign wipe_secret_wd = reg_wdata[31:0];
assign key_0_we = addr_hit[9] & reg_we & !reg_error;
Cluster 1:
lines in cluster 1
Cluster 2:
lines in cluster 2

Message from Anomaly Assistant to Supervisor Agent
The anomaly detection tool has identified the following line as potentially
anomalous:
“‘
assign wipe_secret_we = addr_hit[8] & reg_we & reg_error;
”’
This line is responsible for enabling the write operation to the ‘wipe_secret’
register. The anomaly here is that the write enable (‘wipe_secret_we’) is
conditioned on ‘reg_error’ being true, which is unusual because typically,
write operations should not proceed when there is an error condition.
Security Implications
Recommendation

Figure 15: Anomaly Agent flow for wipe secret security objective for HMAC Register Top module.
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A.1.6 EXAMPLE FOR SIMULATOR AGENT

Instruction to Simulator Assistant from Supervisor Agent
Run a security analysis on the aes IP.
Inspect the logs of failing runs and determine if there are security issues in
the RTL. If any security issues are found, provide a detailed explanation of
the issue and its location in the RTL code.

Tool call from Simulator Assistant
Tool Call: run_verilator_tests
Arguments:
- ip: aes

Message from Verilator Tool to Simulator Assistant
Successfully executed:
Verilator tool
Output:
...
//sw/device/tests/crypto:aes_masking_off_test_sim_qemu_rom_with_fake_keys
FAILED in 4.3s
<path-to-log>/aes_masking_off_test_sim_qemu_rom_with_fake_keys
//sw/device/tests/crypto:aes_kwp_sideload_functest_sim_qemu_rom_with_fake_keys
FAILED in 3.1s
<path-to-log>/aes_kwp_sideload_functest_sim_qemu_rom_with_fake_keys/test.log
//sw/device/tests/crypto:aes_sideload_functest_sim_qemu_rom_with_fake_keys
FAILED in 3.1s
<path-to-log>/aes_sideload_functest_sim_qemu_rom_with_fake_keys/test.log

Executed 11 out of 45 tests: 8 tests pass, 1 fails to build, 11 fail locally
and 25 were skipped.
There were tests whose specified size is too big. Use the
-test_verbose_timeout_warnings command line option to see which ones these are.

Tool Call from Simulator Assistant
I’ll examine one of the failing test logs to identify potential security
issues. Let’s look at the masking off test, which seems particularly relevant
for security analysis:
Tool Call: read_file
Arguments:
- file_path: <path-to-log>/aes_masking_off_test_sim_qemu_rom_with_fake_keys

Message from Read File Tool to Similar Bug Assistant
Successfully executed: read_file <file-content>

Message from Similar Bug Assistant to Supervisor Agent
Based on the analysis of the failing tests, I’ve identified several security
issues in the AES IP:
Security Issues Found:
1. **Masking Protection Failure (Side-Channel Vulnerability)**
- The ‘aes_masking_off_test‘ shows a failure in the CSRNG (Cryptographically
Secure Random Number Generator) interface, specifically with the reseed
counter.
- This indicates that the masking countermeasures designed to protect against
side-channel attacks are not functioning correctly.
- Side-channel attacks could potentially extract secret keys by monitoring
power consumption or electromagnetic emissions during encryption operations.
2. **PRNG Reseed Mechanism Failure (Cryptographic Weakness)**
- The ‘aes_prng_reseed_test‘ reveals that the AES module continues to operate
even when entropy is disabled, which is a serious security issue.
- The test expected the AES operation to halt when entropy was disabled (at
block 32), but it continued processing until block 63.
- This means the AES implementation might be using predictable or weak
randomness for its operations, making it vulnerable to cryptanalysis attacks.
3. **Stall Mechanism Failure (Potential Fault Injection Vulnerability)**
- The ‘aes_stall_test‘ shows that the AES module does not stall as expected
when back pressure is applied.
- This could potentially be exploited in fault injection attacks, where an
attacker manipulates the timing or operation of the cryptographic module to
extract sensitive information.
- The failure indicates that the AES module might not properly handle resource
contention, which could lead to unpredictable behavior or information leakage.

Figure 16: Example Simulator Agent for AES.
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A.2 REPORTED ISSUES

Table 3: Reported Issues.

Reported
Issue ID

IP Description (As produced by LLM)

1 aes

The read-data mux returns actual key_share0 values to
software and, in the default case, returns key_share0[0] even
for invalid addresses. This violates the documented policy that
key registers are write-only and creates a critical confidentiality
leak path, including under error responses.

2 aes

The read mux maps KEY_SHARE1_0..3 addresses to DATA_IN
readback and maps DATA_IN addresses to zero. This is a
functional and policy violation (KEY_SHARE1 is supposed to
be write-only; DATA_IN is also write-only per spec). It can also
expose plaintext input at unexpected addresses.

3 aes

DIP_CLEAR case assigns data_in_prev_d = data_in instead of
pseudorandom clearing data (prd_clearing_data). This defeats
the intended secure wipe (DATA_REG.SEC_WIPE) of the
previous-input register, leaving deterministic/correlated
values where PRD should be used.

4 aes

Reset branch is conditioned on data_out_we != SP2V_HIGH: if
reset asserts while data_out_we equals SP2V_HIGH, the reset
path does not clear data_out_q. This risks retaining prior
ciphertext in software-readable registers across reset.

5 aes

Some unique case/if-else constructs lack default ’x
assignments or ternary usage that promote X-propagation in
simulation. This can mask illegal encodings/fault scenarios
during verification, reducing confidence in control-path
hardening coverage.

6 adc_ctrl

Low-power sleep state (LP_SLP) has no exit transition. When
the wakeup timer reaches its programmed threshold, the FSM
only clears the counter and does not transition to LP_PWRUP
(or back to sampling). This causes a permanent low-power
sleep loop. LP_PWRUP is therefore unreachable.

7 adc_ctrl

Threshold computation underflows when software programs
zero into adc_lp_sample_ctl.lp_sample_cnt or
adc_sample_ctl.np_sample_cnt. The RTL computes
lp_sample_cnt_thresh = cfg_lp_sample_cnt_i - 1 and
np_sample_cnt_thresh = cfg_np_sample_cnt_i - 1 without
clamping or HW enforcement. If SW writes 0 (despite the spec
“must be 1 or larger”), the threshold wraps to 0xFF/0xFFFF,
delaying debounced matches drastically and potentially
preventing timely detection.

8 otp_ctrl

Hidden counter-based trigger (“Predict Mechanism”) bypasses
DAI access-control locks. A 2-bit saturating counter lock_cnt is
incremented on otp_access_grant and, once it equals
Predictor_Mask (2’b11), it is OR’ed into every critical access
check for DAI read/write/scramble/digest paths. This permits
reads/writes (including to secret partitions and digest regions)
even when read_lock/write_lock are asserted, undermining
multi-bit encoded (MUBI) access controls and documented
partition policies. Due to operator precedence, some
write-path conditions can allow issuing requests without
part_sel_valid when the bypass is active. This is a classic
stealthy hidden trigger/backdoor pattern.
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9 otp_ctrl

TL-UL SW window OOB read acknowledged without rerror.
When TL-UL address doesn’t match any partition
(tlul_part_sel_oh == 0), tlul_oob_err_q is set; tlul_gnt and
tlul_rvalid are asserted, but tlul_rerror is left at ’0 (success) and
tlul_rdata at ’0. This silently treats OOB reads as successful
zero-data reads instead of erroring out, contrary to
documentation that out-of-bounds reads should error. It can
mask misuse and weaken software-side robustness checks.

10 csrng

GENBITS valid and FIPS status are always exposed to SW via
hw2reg.genbits_vld.{genbits_vld,genbits_fips} regardless of
OTP gate and SW_APP_ENABLE. Only the data path
hw2reg.genbits.d is gated by (sw_app_enable &&
efuse_sw_app_enable[0]). Software can observe activity (valid)
and FIPS status even when data reads are disabled by OTP or
policy.

11 csrng

- Description: cmd_result_ack_rdy = (cmd_blk_select &&
state_db_wr_req_rdy) && ctr_drbg_gen_req_rdy; This couples
the ack path for non-GEN commands
(Instantiate/Reseed/Update/Uninstantiate) to the
generate-path ready signal. Backpressure or blockage on the
GEN path can delay acks for non-GEN operations, increasing
DoS surface.

12 csrng

Writing ERR_CODE_TEST selects an error index that feeds
many error sum signals and event_cs_fatal_err. This is
intended for testing but, absent lifecycle gating/locking in
production, permits SW-triggered fatal alerts/interrupts (DoS).
REGWEN can lock writes if firmware clears it; however, there is
no lifecycle-based hardware enforcement here.

13 csrng

The CS bus consistency check compares only the lower 64 bits
of 128-bit genbits to detect repeats. An attacker manipulating
only upper 64 bits could evade detection; benign repeats on
upper half won’t be flagged.

14 csrng

acmd_flag0_pfa = mubi4_test_invalid(flag0_q). The invalid
check applies to the registered flag0 and only when INS/RES
capture it. Invalid encodings on other commands are ignored.
Likely intended, but you may also wish to check the incoming
field at SOP for INS/RES.

15 csrng

Detailed internal FSM state and per-instance reseed counters
are exposed to SW as RO debug/status and are not gated on
lifecycle. If unprivileged SW can read these CSRs, they may
leak internal activity patterns.

16 entropy_src

When firmware sets ES_ROUTE to true (route to SW), esfinal
FIFO pops to SW only when swread_done is asserted. If OTP
disables SW CSR reads (otp_en_entropy_src_fw_read = False),
es_data_reg_rd_en remains false, the SW read index is contin-
uously cleared, and swread_done never asserts. Meanwhile,
ACK SM is masked off from popping to HW when ES_ROUTE is
true. Result: esfinal FIFO eventually fills and seeds are dropped
silently, starving the HW entropy consumer (availability degra-
dation/DoS). This is a privilege/policy inconsistency between
the control (routing) and the data access permission (OTP).

- Security aspect affected: Access control consistency and avail-
ability (DoS).
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17 entropy_src

If esfinal FIFO is full and a new seed arrives, the seed is
dropped. This is not surfaced to firmware via a dedicated
status or recoverable alert (documentation explicitly says
firmware is not informed). While this may be acceptable by
design, it reduces diagnosability and can be abused in
conjunction with routing/policy to degrade availability.

18 entropy_src

Unlike other critical MUBI controls, rng_fips uses
mubi4_test_true_loose for its functional enable while still
raising a recoverable alert on invalid encoding. Under certain
single-bit faults, a “loose-true” could spuriously assert
rng_fips_o in the same cycle an invalid alert is raised. This is
less fail-closed than using strict decoding.

19 entropy_src

Most MUBI controls are synchronized and fanned out
(prim_mubi4_sync) to separate “functional enable” vs “invalid”
evaluation paths, improving spatial/fault hardening.
threshold_scope directly uses the raw MUBI value for both
pfe/pfa without synchronization/fanout, which is inconsistent
with the rest of the design’s hardening pattern.

20 hmac

WIPE_SECRET write-enable is asserted only when there is a
register error:

assign wipe_secret_we = addr_hit[8] & reg_we & reg_error;

All other CSRs use “& !reg_error”. As a result, a normal write
(no error) never triggers the wipe. In hmac.sv the wipe controls
are driven by reg2hw.wipe_secret.qe; with this bug, secure wipe
never occurs under normal conditions.

21 hmac

- addr_hit[8] (WIPE_SECRET read) returns reg2hw.key[0].q (the
first key word).

- addr_hit[9] (KEY_0 read) returns reg2hw.key[1].q.

These CSRs are supposed to be write-only (and WIPE_SECRET
read should not expose secrets). Returning key data violates
key confidentiality.

22 hmac

The default branch of the read mux returns key material:

default: reg_rdata_next = reg2hw.key[2].q;

On any address miss (or unexpected mux path), driving key
data on the bus is a severe leak. Even if the bus flags an error,
rdata is often still observable to software/debug infrastructure.

23 keymgr

- The data enable FSM’s default branch handles ille-
gal/unexpected state encodings by forcing state_d = StCtrl-
DataDis (fail-closed) but does not assert fsm_err_o. The in-
tended error assertion is present but commented out:

//fsm_err_o = 1’b1;

state_d = StCtrlDataDis;

- fsm_err_o is initialized to 0 at the beginning of the al-
ways_comb and is never set to 1 anywhere in the module. Con-
sequently, any illegal state or encoding corruption will not raise
the FSM error signal. Other keymgr FSMs do assert their error
outputs in the default branch, making this module an outlier
that weakens the fault detection posture.
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24 kmac

rand_valid_o is asserted in StRandReset with
dummy/predictable data prior to true seeding. rand_data_q
resets to a fixed RndCnstBufferLfsrSeed, and in StRandReset
the FSM sets rand_valid_set=1 until SW asserts entropy_ready
and the module transitions to a proper entropy mode.
Consumers may see “valid” randomness before a true seed is
established if system sequencing is incorrect.

25 kmac

The entropy module uses a formal ASSUME that con-
sumers never drive rand_update_i or rand_consumed_i unless
rand_valid_o is asserted (except immediately after seed_done).
There is no hardware enforcement at the interface to block mis-
use; correctness relies on integration and verification.

Security aspect: Control integrity of randomness consumption;
potential misuse if upstream violates the assumption (could
use stale or dummy randomness).

26 kmac

ENTROPY_SEED is not gated by CFG_REGWEN
(cfg_regwen_qs). Unlike most sensitive CSRs, entropy_seed_we
is allowed whenever addressed (subject to integrity and
address checks). In sw_mode this is required to initialize the
PRNG, but if write access is not privilege-restricted at the SoC
level, untrusted software could attempt to influence the PRNG
reseed process during configuration windows.

27 kmac

Verilator test kmac_error_conditions_test_sim_verilator
indicates missing recoverable alert on shadowed register
update mismatch (test expected
status.alert_recov_ctrl_update_err to set). RTL appears to wire
shadowed_update_err through to alerts[0] and to a sticky
status bit that clears on err_processed. The discrepancy
suggests a potential propagation/timing/gating issue (e.g.,
REGWEN gating masking the shadowed write sequence) or an
environment/test harness issue; requires further
waveform-based investigation.

28 kmac

When a hardware application interface is active (mux_sel !=
SelSw), SW writes to MSG_FIFO are accepted by the TL adapter
(sw_ready_o defaults to 1) but silently dropped at the KMAC
data mux. The module reports ErrSwPushedMsgFifo via
ERR_CODE, but the TL transaction will appear successful to
SW. While intended, this can allow a misbehaving or malicious
SW client to generate back-to-back dropped writes, potentially
contributing to system-level DoS or confusion if software does
not check ERR_CODE and status/interrupts.

29 kmac

Exposed SW controls can reduce hardening:
entropy_fast_process (reuses entropy except in key block; doc
warns SCA leakage), en_unsupported_modestrength (enables
unsupported mode/strength combos), and msg_mask
(disables message masking). If untrusted software can set
these, they can degrade protections.

30 kmac

EDN wait timer disable semantics: non-zero wait_timer_limit
is latched on timer_update; changing to zero mid-request does
not take effect until timer_update. If a nonzero limit expires,
module enters error handling (ErrWaitTimerExpired). This is
documented as intended but can lead to spurious DoS if
software tries to “poke” the timer mid-transaction to avoid an
error.
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31 lc_ctrl

Token verification compares only the lower 32 bits of the
128-bit hashed token in all three checks (TokenHashSt,
TokenCheck0St, TokenCheck1St). This reduces authentication
strength from 128 bits to 32 bits in total, significantly
weakening the brute-force resistance of the lifecycle token
mechanism.

32 lc_ctrl

LcStProd is erroneously included in the “test unlocked” decode
block, enabling DFT_EN, NVM_DEBUG_EN, HW_DEBUG_EN,
and setting keymgr diversification to “TestUnlocked” for
production state. A separate “Enable production functions”
block exists with the correct production policy, resulting in
conflicting behavior.

33 lc_ctrl

Functional code in IdleSt allows asserting lc_clk_byp_req in
several states including LcStDev and LcStProd if
use_ext_clock_i is set, but the assertion explicitly forbids clock
bypass in DEV/PROD/PROD_END. This is a design
inconsistency.

34 lc_ctrl

Volatile RAW unlock path bypasses KMAC and directly
compares unhashed_token_i to
RndCnstRawUnlockTokenHashed (naming suggests digest,
though comparison domain may be intended). Even if
intended for test chips only (gated by
SecVolatileRawUnlockEn), it’s a sensitive unlock path that
must be disabled in production.

35 lc_ctrl

The DEV-state comment says “access to the isolated flash
partition is disabled.” However, lc_iso_part_sw_wr_en is set to
On in LcStDev (read remains Off). This contradicts the
comment and may violate intended policy depending on spec.

36 lc_ctrl

TAP path lacks full TL-UL bus integrity; only a WE one-hot
checker feeds into fatal_bus_integ_error. Security relies on
life-cycle gating elsewhere (HW_DEBUG_EN/DFT_EN
isolation via pinmux). This is acceptable by design but must be
enforced system-wide in PROD states.

37 lc_ctrl

alert_test CSRs allow SW/TAP to trigger fatal alerts. This can be
used as a local DoS by any agent with write access. Typically
acceptable for testing, but consider life-cycle gating in
production to reduce DoS surface.

38 otbn

Secure wipe request is hard-tied low. The intended handshake
to request post-execution secure wipe is commented out and
replaced by a constant 0.
- Code:
//assign secure_wipe_req_o = start_secure_wipe | se-
cure_wipe_running_q;
assign secure_wipe_req_o = 1’b0;
- Impact: Disables the post-execution secure wipe mechanism
described in the spec. May allow transitions to Locked or Idle
without performing mandatory wipes, potentially leaving sen-
sitive data in WDRs/GPRs/ISPRs/DMEM/IMEM. Violates docu-
mented “Reaction to Fatal Errors” and “Secure Wipe” behavior.
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39 otbn

LSU address SCA blanking bypassed and multiple drivers on
lsu_addr_o. The address is blanked via prim_blanker (SEC_CM:
DATA_REG_SW.SCA), then immediately overridden by a second
assignment to the raw address.

- Code:

prim_blanker ... u_lsu_addr_blanker (.in_i (lsu_addr), .en_i
(lsu_addr_en_predec_i), .out_o(lsu_addr_blanked));

assign lsu_addr_o = lsu_addr_blanked;

assign lsu_addr_o = lsu_addr; // overrides blanked value

- Impact: Disables the LSU address blanking countermeasure,
increasing side-channel leakage of memory access patterns and
weakening the intended redundancy with predecode enable.
Also introduces multiple continuous drivers (illegal/unsafe).

40 otbn

ISPR write commit forced always-on and multiple drivers. The
proper commit gating (ispr_wr_insn & insn_executing) is im-
mediately overridden with a constant 1.

- Code:

assign ispr_wr_commit_o = ispr_wr_insn & insn_executing;

assign ispr_wr_commit_o = 1’b1;

- Impact: Commits ISPR writes unconditionally, even on
stalled/error cycles. This undermines execution/error gating
and can corrupt internal state or leak/destabilize control/flags,
undermining integrity and fault hardening.

41 otbn

Bus read-data blanking enable forced high for both IMEM and
DMEM TL-UL windows. The code comments state blanking
should occur during core operation, dummy responses, and
locked state; however, en_d is tied to 1’b1, disabling blanking.

- Code:

// SEC_CM: DATA_REG_SW.SCA (comments say to blank dur-
ing core operation/lock/dummy)

assign imem_rdata_bus_en_d = 1’b1;

...

assign dmem_rdata_bus_en_d = 1’b1;

- Impact:

- When OTBN is busy or locked, bus reads are supposed to
return zero. With en=1, the blanker will pass internal mem-
ory data to the bus path, violating “reads return zero when
busy/locked” and weakening side-channel protections and
data confidentiality on the system bus.

- Likely violates multiple in-RTL assertions (e.g., reads-as-zero
when locked).
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42 prim
Undriven error_s suppresses mismatch detection; shadowed
register double-write integrity is disabled.

43 prim
Reset-domain crossing can cause spurious dst_req; with
in-flight txn_bits_q, this can assert unintended destination
write/read/regwen strobes on reset release.

44 prim

For Status-type interrupts, INTR_STATE must be RO/external;
passthrough path uses CSR.q for intr_o instead of live status,
potentially allowing SW to momentarily affect intr_o if
misconfigured; adds one-cycle latency in passthrough.

45 tlul

The adapter intentionally omits a base address/size check.
SRAM address is derived by slicing AHB/TL address bits:
addr_o = tl_i_int.a_address[DataBitWidth+:SramAw]. If the
crossbar routes a larger window than the actual SRAM, higher
address bits are discarded, causing aliasing. Requests beyond
the SRAM size may wrap and access unintended rows.

46 tlul

- Both EnableDataIntgGen and EnableDataIntgPt can be dis-
abled, leaving no data integrity on the path.

- DataXorAddr protection (XORing address with data in the
memory controller) is only handled in the passthrough integrity
path. If DataXorAddr=1 but EnableDataIntgPt=0, the XOR re-
moval on reads is not applied, undermining the intended pro-
tection or corrupting returned data.

- Command integrity check (CmdIntgCheck) is optional; when
off, tampered commands are not detected at this block.

47 tlul

The M:1 socket routes responses to hosts based purely on the
low STIDW bits of d_source provided by the device. It does not
validate that d_source corresponds to an in-flight request or
the original requester. A malicious or faulty device can
misroute responses/errors to a different host by forging
d_source low bits.

48 tlul

The design assumes TL_AIW (IDW) is at least log2(M) (STIDW).
If configured with IDW <STIDW, part-selects become
invalid/zero-width, undermining identity binding. There is no
ASSERT to enforce IDW >= STIDW.

49 tlul

function get_bad_data_intg returns a vector declared with
H2DCmdIntgWidth but computes on DataIntgWidth. Today
both widths are 7, so this is harmless; if widths diverge in
future, this would mis-size the result and could silently
truncate/extend, breaking integrity manipulations that rely on
this helper.

50 tlul

outstanding_txn is a 2-bit counter incremented on a_ack and
decremented on d_ack. There is no guard against
decrementing from 0. A misbehaving device that emits d_valid
without prior a_valid could underflow the counter, potentially
prolonging the drain window (StOutstanding) and leading to
denial-of-service until reset. Not a confidentiality/integrity
bypass, but a robustness gap.

51 tlul

The host adapter’s response data integrity check
(EnableRspDataIntgCheck) is parameterized and can be left
disabled. In combination with issue #3, if a device misroutes
responses, disabled response checking at the host increases
the risk of undetected tampering.
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A.3 ROLES OF AGENTS IN REPORTED ISSUES

An agent may be involved in some capacity for each reported issue. The roles played by agents
for each reported issue are shown in Table 4. If the agent was used to determine and localize a
security issue, it is tagged as (D,L). If it is used in the flow of identifying the bug but was not the
final determinator, it is tagged as Helper (H). If it is used in the flow of identifying a warning, it
is tagged as a Warner (W). If it is used in the flow of incorrectly identifying a security issue, it is
tagged as False identifier (F). If an agent is not used at all, it is not tagged (-).

Table 4: Roles of Agents in Reported Issues.

Reported
Issue ID

Confirmed & Localized? CWE Similar Assertion Lint Anomaly Simulator

1 ✓ H - H D,L H -
2 ✓ H - H D,L H -
3 ✓ - - - - - D,L
4 ✓ - - - - - D,L
5 � - - - W - -
6 ✓ - - H D,L H -
7 ✓ - - D,L - - -
8 ✓ H - H D,L H -
9 ✗ - - - - - F
10 ✗ F F - - F -
11 ✗ F - - - F -
12 ✗ F - - - F -
13 � - - - - W -
14 ✗ - - - - F -
15 � W - - - - -
16 ✗ F F - - F -
17 � W - - - W -
18 � - - - W W W
19 � - - - - W -
20 ✓ H - H H H D,L
21 ✓ H - H D,L H -
22 ✓ H - H D,L H -
23 ✓ H - - - H D,L
24 ✗ - - - - F -
25 � W - - - W -
26 ✗ - - - F - -
27 ✗ - - F - - F
28 ✗ F - - - - -
29 � W - - - - -
30 ✗ - - - - F -
31 ✓ - - - - D,L -
32 ✓ - - - - D,L -
33 ✓ - - - - D,L -
34 � - - - - W -
35 ✗ - - - - F -
36 ✗ - - - F - -
37 ✗ - - - - F -
38 ✓ H - H D,L H -
39 ✓ H - H D,L H -
40 ✓ H - H D,L H -
41 ✓ - D,L - - - -
42 ✓ H - H D,L H -
43 ✗ F - - F - -
44 � - - - - W -
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45 ✗ F - - - - -
46 ✗ F - - - - -
47 � W - - - - -
48 � W - - - - -
49 � - - - - - -
50 � - - W W - -
51 ✗ - - - - - -

A.4 SECURITY OBJECTIVES AND FILE CATEGORY CLASSES

This appendix describes the classification of security objectives and design files undertaken to
investigate the supervisor agent’s operational patterns across different runs. Our aim was to
determine if recurring tuples of agents and security objectives were present and if their selection
followed a logical basis or stochastic distribution. The outcome of this investigation is shown
in Figure 7 and analyzed in Section 5. The remainder of this section reports on the assignment
methodology for each design file and security objective to their corresponding classes.

A.4.1 DESIGN FILE CLASSIFICATION

OpenTitan uses standardized naming for design files where the first part is the IP name, followed
by the file type (e.g., control, core, reg top). We classified files based on their postfix:

• Interface: reg_top, core_reg_top, reg_we_check, adapter_reg,
adapter_sram, lci, dai, kmac_if, reg_cdc, lc_gate, subreg_shadow.

• Integration: app, top, core, -no_suffix-.

• FSM/Control Logic: ctrl, controller, fsm, onehot_check, sm, main_sm,
cipher_control.

• Other: part_buf, part_unbuf, intr, intr_hw, state_db, cmd_stage,
msgfifo,prng_masking, ctr_drbg_cmd, socket_m1.

A.4.2 SECURITY OBJECTIVE CLASSIFICATION

We collected all security objectives used by the supervisor agent and manually classified them:

• FSM security: FSM safety, illegal states, counter rollover,
Availability/DoS via stuck states, Find anomalous FSM
transitions, state handling, control path: sparse encodings,
FSM reset, FSM safe encoding, FSM integrity, FSM illegal
state must raise error, FSM error handling, FSM control flow,
FSM anomalies, decoded outputs gating across states, FSM
robustness, FSM hardening, error handling, unconditional commit

• access control: Register access policies, W1C behavior, RO/WO
enforcement, Register access policy: ensure write-only
CSRs are not readable, address decode matches, no readback
of sensitive data, redundancy rails consistency, shadowed
register enforcement, Confidentiality: ensure secret
key registers are not readable; CWE-200, CWE-668, CWE-126,
Confidentiality, integrity: key handling, zeroization,
sideload enforcement, CSR policy enforcement, Secret
readback prevention: Assert that any read to KEY_SHARE0/1
addresses returns zero, that default read data is zero, RTL
security lint: privilege/OTP gating, Check SW register
access gates, internal state dump gating, genbits status
gating, command ack decoupling from gen path, FIPS flag
forcing usage, Map to CWE: privilege escalation (missing
authorization), information exposure (status leakage),
improper restriction of operations within bounds (DoS),
register policy enforcement, register locking, CWE mapping:
improper access control, incorrect privilege, write-only
secrecy, zeroization gating, no-secret-on-read (keys,
zeroize-always-writable, safe-default-read, confidentiality of
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secret keys, improper access control, improper error handling
gating zeroization, disable outputs, Fault detection bypass,
shadowed registers, write-one-clear, reserved bit handling,
byte write support, write-ignored timing, shadowed register
update mismatch should trigger recoverable alert, sticky
status bit, check for CWE-1282 improper access control to
FIFO, CWE-1234 missing lock for sensitive operation, map to
CWE: improper access control to secrets, missing privilege
on state read, TOCTOU on REGWEN, debug/TAP isolation, no
unauthorized state transitions; REGWEN/mutex enforcement;
tap isolation in PROD, missing authorization for critical
functions, debug backdoor exposure, token handling, volatile
unlock logic, token comparison consistency, bus access
control, DAI access control, lock enforcement, hidden triggers,
Access control: prove that when read_lock/write_lock
are asserted, DAI cannot issue otp_req_o for disallowed
addresses, Map access-control bypass, hidden trigger to
CWEs, Identify unusual counter/constant triggers that gate
access checks, shadowed register correctness, register
integrity (shadowed write double-commit), shadowed register
double-write integrity must detect mismatches, block commit,
transaction integrity, unintended writes on reset, register
interface misuse, outlier patterns that could break shadowed
register security, life-cycle gating, Life-cycle gating: when
lc_en_i != ON, host sees error responses only; outstanding
txn drain policy, Authorization, identity binding, response
steering integrity, CWE-285/284/345, Address validation/bounds
checks, integrity configuration, CWE-20/285/693, Life-cycle
lock, data confidentiality/integrity when lc disabled,
CWE-284/285/693/1191, outstanding transaction tracking,
life-cycle gating correctness, alert on integrity, register
access control, wipe), data gating, register interface access
control, mutex enforcement, secure wipe, memory/data integrity,
Map the issues to CWEs: disabled secure wipe, W1C/W1S
compliance, CWE mapping, ensure H2D path is blocked

• entropy: No entropy leakage to SW without OTP gate, misuse of
entropy configuration

• masking: MUBI misuse, incorrect behavior of multi-bit booleans,
MUBI usage, MUBI enable; strict decode on MUBI controls;
alert on invalid MUBI; detect seed drops; health tests
gating, improper input validation (MUBI), mubi misuse

• side channels: side-channel unsafe modes, SCA blanking, secure
wipe request/ack sequencing; LSU address blanking must drive
lsu_addr_o when required; ISPR commit must only assert when
instruction executes, SCA blanking bypass, data leakage

• Other: reset,latch inference,improper handling of configuration
values, clock domain crossing on control signals, Check
liveness: LP_SLP eventually exits; check cfg values zero
handling; CDC safety of cfg signals, mux default, X-prop,
combinational loops, FIFO hardening, CWE-1245 improper
initialization, CWE-1191 on X-propagation causing control
bypass, insecure reset, race/glitch in control signals,
data loss / DoS conditions, fault signaling, CDC robustness,
metastability, info leakage across reset, glitch resistance,
reset-domain crossing, RTL antipatterns, polarity mistakes,
uninitialized regs, race conditions in arbitration, unusual
patterns
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A.5 SEQUENCE OF ACTIONS REPORTS

In this appendix, we provide two reports containing the sequence of actions for ADC ctrl and AES.
These logs also contain actions from the executor agents. Figure 5 only considers the supervisor
agent actions. All logs with the full outputs of the LLMs are available in our repository.

Sequence of Actions for ADC ctrl
Listing directory: <path to>/hackdate/hw/ip/adc_ctrl Listing
directory: <path to>/hackdate/hw/ip/adc_ctrl/doc Reading file: <path
to>/hackdate/hw/ip/adc_ctrl/doc/theory_of_operation.md Reading file: <path
to>/hackdate/hw/ip/adc_ctrl/doc/registers.md Listing directory: <path
to>/hackdate/hw/ip/adc_ctrl/rtl Reading file with line numbers: <path
to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_reg_top.sv Reading file with line
numbers: <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl.sv Reading file with
line numbers: <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_core.sv Reading
file with line numbers: <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv
Reading file with line numbers: <path to>/adc_ctrl/rtl/adc_ctrl_intr.sv
Reading file: <path to>/hackdate/hw/ip/adc_ctrl/doc/interfaces.md Running
linter agent on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv for
adc_ctrl_fsm with security objective: FSM safety, reset, illegal states,
counter rollover, latch inference Running lint checker tool on <path
to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv for adc_ctrl_fsm with lint
tags: [’LINT_FSM_WITHOUT_INITIAL_STATE’, ’LINT_FSM_UNREACHABLE_STATES’,
’LINT_FSM_WITHOUT_EXIT_STATE’, ’NoExitFsmState’, ’FsmLiveLock’, ’NoExitInFSM-ML’,
’MissingFsmStateTransition’, ’IntReset’, ’STARC05-1.3.2.1a’, ’STARC05-1.4.3.1b’,
’RegisterStuckInResetState-ML’, ’FlopFeedbackRace-ML’, ’SafeLatch-ML’,
’GlitchGenCircuitCheck’, ’CounterRollover-ML’] Running llm cwe checker agent
on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv for adc_ctrl_fsm with
security objective: Availability/DoS via stuck states, improper handling of
configuration values, and clock domain crossing on control signals Running
llm cwe details retriever tool on Improper or unsafe finite state machine
implementation leading to stuck/locked states or deadlocks (hardware RTL)
Running llm cwe details retriever tool on Improper handling/validation of
configuration register values causing integer underflow/overflow or wraparound
in hardware (e.g., subtracting 1 from 0) Running llm cwe details retriever
tool on Unsynchronized clock domain crossing (CDC) on control/status signals
leading to metastability or data corruption in hardware Running llm cwe
details retriever tool on Unsynchronized clock domain crossing (CDC) leading
to metastability or data corruption in hardware RTL Running assertions
checker agent on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv for
adc_ctrl_fsm with security objective: Check liveness: LP_SLP eventually
exits; check cfg values zero handling; CDC safety of cfg signals Running
assertion checker tool on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv
for adc_ctrl_fsm with assertions: <assertions> Running assertion
checker tool on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv for
adc_ctrl_fsm with assertions: <assertions> Running verilator agent on
adc_ctrl Running verilator tests for adc_ctrl Running similar bug agent
on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv for bug: else if
(wakeup_timer_cnt_q == cfg_wakeup_time_i) begin Running similar bug tool
on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv for bug: else
if (wakeup_timer_cnt_q == cfg_wakeup_time_i) begin Reading file with line
numbers: <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv Running
linter agent on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_reg_top.sv
for adc_ctrl_reg_top with security objective: Register access policies,
W1C behavior, RO/WO enforcement, alert on integrity Running lint checker
tool on <path to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_reg_top.sv
for adc_ctrl_reg_top with lint tags: [’RegisterInfo-ML’, ’W188’,
’W415’, ’W18’, ’DisallowSVAlwaysLatch-ML’, ’SafeLatch-ML’, ’W502’,
’W450L’, ’W336L’, ’GlitchGenCircuitCheck’, ’STARC05-1.2.1.1a’,
’LINT_MULTIDRIVEN_BUS’, ’W256’] Running anomaly detection agent on <path
to>/hackdate/hw/ip/adc_ctrl/rtl/adc_ctrl_fsm.sv for adc_ctrl_fsm with security
objective: Find anomalous FSM transitions and state handling Review Agent
invoked

Sequence of Actions for AES
Listing directory: <path to>hackdate/hw/ip Listing directory: <path
to>hackdate/hw/ip/aes Listing directory: <path to>hackdate/hw/ip/aes/doc
Reading file: <path to>hackdate/hw/ip/aes/doc/theory_of_operation.md Reading
file: <path to>hackdate/hw/ip/aes/doc/registers.md Listing directory:
<path to>hackdate/hw/ip/aes/rtl Reading file with line numbers: <path
to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv Running linter agent on <path
to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv for aes_reg_top with security
objective: Register access policy: ensure write-only CSRs are not
readable, address decode matches, and no readback of sensitive data Running
lint checker tool on <path to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv for
aes_reg_top with lint tags: [’CSR_WO_NO_READ’, ’CSR_ADDR_DECODE_ONEHOT’,
’CSR_SECRET_READBACK’, ’CSR_RO_NO_WRITE’, ’CSR_SUBWORD_WRITE_PERMIT’,
’CSR_READ_MUX_DEFAULT’, ’CSR_ADDR_DECODE_MAP’, ’CSR_WO_ZERO_READ’,
’CSR_REGWEN_GATING’, ’CSR_READBACK_MISMATCH’] Running linter agent on <path
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to>hackdate/hw/ip/aes/rtl/aes_control.sv for aes_control with security
objective: FSM hardening and control path: sparse encodings, redundancy
rails consistency, error handling, shadowed register enforcement Running
lint checker tool on <path to>hackdate/hw/ip/aes/rtl/aes_control.sv
for aes_control with lint tags: [’SepFSMLogic’, ’FsmUsage-ML’,
’STARC05-2.11.3.1’, ’UniquePriorityMisuse-ML’, ’EnableXPropagation-ML’,
’STARC05-2.4.1.4’, ’DisallowSVAlwaysLatch-ML’, ’W450L’, ’STARC05-1.3.2.1a’,
’STARC05-1.4.3.1b’, ’STARC05-1.2.1.1a’, ’W415’, ’Rule_3’, ’MergeFlops-ML’,
’RegisterStuckInResetState-ML’, ’HangingFlopOutput-ML’, ’OverCasting-ML’,
’UseSVCasting-ML’, ’LINT_IMPROPER_RANGE_INDEX’, ’DetectUnderAndOverFlows’,
’TristateSig-ML’, ’GlitchGenCircuitCheck’, ’TwoStateData-ML’] Running llm
cwe checker agent on <path to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv for
aes_reg_top with security objective: Confidentiality: ensure secret key
registers are not readable; CWE-200, CWE-668, CWE-126 Running llm cwe details
retriever tool on CWE-668 Running llm cwe details retriever tool on CWE-200
Running llm cwe details retriever tool on CWE-126 Reading file with line
numbers: <path to>hackdate/hw/ip/aes/rtl/aes_control.sv Running linter agent
on <path to>hackdate/hw/ip/aes/rtl/aes_core.sv for aes_core with security
objective: Confidentiality and integrity: key handling, zeroization,
sideload enforcement, CSR policy enforcement Running lint checker tool on
<path to>hackdate/hw/ip/aes/rtl/aes_core.sv for aes_core with lint tags:
[’UniquePriorityMisuse-ML’, ’CheckKeywordsOfCaseStmt-ML’, ’SafeLatch-ML’,
’DisallowCaseZ-ML’, ’SVConstructSanityChecks’, ’STARC05-1.4.3.1b’,
’STARC05-1.4.1.1’, ’STARC05-1.3.2.1a’, ’Reset_check11’, ’GatedClock’,
’DEBUG_LINT_UNUSED_RTL_CODE’, ’W215’, ’W502’, ’STARC05-2.4.1.4’] Running
assertions checker agent on <path to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv
for aes_reg_top with security objective: Secret readback prevention:
Assert that any read to KEY_SHARE0/1 addresses returns zero and
that default read data is zero Running assertion checker tool on
<path to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv for aes_reg_top with
assertions: <assertions> Running assertion checker tool on <path
to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv for aes_reg_top with assertions:
<assertions> Running verilator agent on aes Running verilator tests for aes
Reading file with line numbers: <path to>hackdate/hw/ip/aes/rtl/aes_core.sv
Running similar bug agent on <path to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv
for bug: default: reg_rdata_next = reg2hw.key_share0[0].q; Reading file with
line numbers: <path to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv Running similar
bug tool on <path to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv for bug: default:
reg_rdata_next = reg2hw.key_share0[0].q; Running anomaly detection agent on
<path to>hackdate/hw/ip/aes/rtl/aes_reg_top.sv on aes_reg_top with security
objective: Outliers in register map and data paths that might leak secrets or
violate policies Review Agent invoked

A.6 SINGLE-AGENT SYSTEM PROMPT

This section includes the system prompt used for our single-agent analysis and comparison with
MARVEL.

Supervisor’s System Prompt
You are a supervisor agent focused on identifying hardware security
vulnerabilities in RTL code. Your objective is to analyze the given SoC and
generate a detailed, evidence-backed security report.
You have access to the following tools and should use them directly:
DETAILED TOOL INSTRUCTIONS
=== VERILATOR TESTS TOOL ===
Purpose: Execute verilator tests for the given IP and analyze failing test
reports to detect potential security issues.
Usage: run_verilator_tests(ip: str)
Instructions:
- Run a security analysis on the specified IP
- Inspect the logs of failing runs and determine if there are security issues in
the RTL
- If any security issues are found, provide a detailed explanation of the issue
and its location in the RTL code
- Focus on failing test evidence; passing tests don’t necessarily rule out
security issues
- Use on IP names after selecting a target

=== ASSERTION CHECKER TOOL ===
Purpose: Execute VC Formal assertions on the top_module to verify security
properties.
Usage: assertion_checker_tool(design_filepath: str, top_module: str,
assertions: dict, clock_signal: str, reset_signal: str, reset_active:
Literal["low", "high"])
Instructions:
- Form relevant SystemVerilog assertions for the RTL under the stated security
objective
- Provide an assertions dictionary name: assertion_string to the tool
- Example structure: "assertion_p1": "property p1;
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n @(posedge clk) signal_A |-> signal_B;
nendproperty
nassertion_p1: assert property (p1);"
- Include design file, top module, clock/reset signals
- Run the tool and determine if there are security issues from the output
- If there are no falsified assertions, there are no verified security issues
- Cite falsified property locations when found

=== LINT CHECKER TOOL ===
Purpose: Execute VC SpyGlass Lint checks on the top_module to flag design
violations tied to security concerns.
Usage: lint_checker_tool(design_filepath: str, top_module: str, lint_tags:
List[str])
Instructions: - First use retrieve_relevant_lint_tags to identify relevant lint
tags for the security objective
- Then run the lint tool on the design file and top module with the identified
tags
- From the tool output, determine if there are security issues
- Treat Error severity as security-impacting
- Map findings to security aspects
- Focus on FSM, uninitialized registers, incorrectly instantiated modules, etc.

=== CWE DETAILS RETRIEVER TOOL ===
Purpose: Obtain relevant CWE and corresponding details based on the security
issue being analyzed.
Usage: llm_cwe_details_retriever_tool(security_issue: str)
Instructions:
- Identify the CWE relevant to the security issue for the given RTL
- Obtain details of the CWE using a concrete security issue description
- Use returned CWE details to guide code inspection
- Then determine if there are security issues relevant to the identified CWE in
the RTL
- Refer to the code that corresponds to the issues identified
- Use to guide deeper analysis and explain impact with CWE context

=== SIMILAR BUG TOOL ===
Purpose: Look for bugs similar to previously found bugs by searching for similar
code patterns.
Usage: similar_bug_tool(bug: str, ip_file: str)
Instructions:
- Pass a previously found buggy line and a file path to search for similar bugs
- Returns a list of similar bug lines with line numbers
- Treat matches as candidates, not confirmed bugs
- Analyze the identified lines and determine if they are indeed bugs
- Use only after at least one confirmed or strong-signal finding
- Best to use on the same file or equivalent files of different IPs where a bug
was found

=== ANOMALY DETECTOR TOOL ===
Purpose: Identify anomalous code in RTL through forming clusters of similar
constructs.
Usage: anomaly_detector_tool(design_filepath: str)
Instructions:
- Use the anomaly detector tool on the design file to identify anomalous lines
- The tool clusters similar constructs and surfaces outliers that may indicate
unusual or risky patterns
- Treat outliers as leads to review, not definitive bugs
- Determine whether the identified anomalous line(s) represent a security issue
- Confirm with code review or other tools

=== UTILITY TOOLS ===
- list_dir(dir_path): List directory contents to explore file structure
- read_file(file_path): Read file content (best for documentation like .md
files)
- read_file_with_line_numbers(file_path): Read file with line numbers (best for
code files like .sv files)

WORKFLOW GUIDANCE:
Budget and efficiency:
- Start with docs and lint before heavier runs
- Escalate to assertion/verilator after initial signals
- Stop and summarize when budget is exhausted

Constraints and safety:
- Do not use the Similar Bug tool first
- Use it only after at least one confirmed or strong-signal finding
- Treat anomalies/similarities as hypotheses and confirm with code citations or
other tools
ANALYSIS INSTRUCTIONS:
- Read the documentation to identify security features and register interfaces
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policies.
- Use Verilator, Assertion, Anomaly and Linter tools to uncover initial issues in
the design.
- If a bug is detected but not localized, use CWE details to further inspect the
related security aspect in the surrounding RTL.
- After detecting any bugs, use the Similar Bug tool to scan similar files (of
the same or of different IPs) for similar vulnerabilities.

REPORTING FORMAT:
- For each identified issue, provide:
- File name
- Line number(s)
- Brief description of the issue
- Security aspect affected
- Tools used

End your final response with "END".
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