
One-Line-of-Code Data Mollification Improves
Optimization of Likelihood-based Generative Models

Ba-Hien Tran
Department of Data Science

EURECOM, France
ba-hien.tran@eurecom.fr

Giulio Franzese
Department of Data Science

EURECOM, France
giulio.franzese@eurecom.fr

Pietro Michiardi
Department of Data Science

EURECOM, France
pietro.michiardi@eurecom.fr

Maurizio Filippone
Department of Data Science

EURECOM, France
maurizio.filippone@eurecom.fr

Abstract

Generative Models (GMs) have attracted considerable attention due to their tremen-
dous success in various domains, such as computer vision where they are capable
to generate impressive realistic-looking images. Likelihood-based GMs are at-
tractive due to the possibility to generate new data by a single model evaluation.
However, they typically achieve lower sample quality compared to state-of-the-art
score-based Diffusion Models (DMs). This paper provides a significant step in the
direction of addressing this limitation. The idea is to borrow one of the strengths
of score-based DMs, which is the ability to perform accurate density estimation in
low-density regions and to address manifold overfitting by means of data mollifi-
cation. We propose a view of data mollification within likelihood-based GMs as
a continuation method, whereby the optimization objective smoothly transitions
from simple-to-optimize to the original target. Crucially, data mollification can be
implemented by adding one line of code in the optimization loop, and we demon-
strate that this provides a boost in generation quality of likelihood-based GMs,
without computational overheads. We report results on real-world image data sets
and UCI benchmarks with popular likelihood-based GMs, including variants of
variational autoencoders and normalizing flows, showing large improvements in
FID score and density estimation.

1 Introduction

Generative Models (GMs) have attracted considerable attention recently due to their tremendous
success in various domains, such as computer vision, graph generation, physics and reinforcement
learning [see e.g., 37, 39, 75, 76, and references therein]. Given a set of data points, GMs attempt to
characterize the distribution of such data so that it is then possible to draw new samples from this.
Popular approaches include Variational Autoencoders (VAEs), Normalizing Flows (NFs), Generative
Adversarial Networks (GANs), and score-based Diffusion Models (DMs).

In general, the goal of any GMs is similar to that of density estimation with the additional aim to do
so by constructing a parametric mapping between an easy-to-sample-from distribution ps and the
desired data distribution pdata. While different GMs approaches greatly differ in their optimization
strategy and formulation, the underlying objectives share some similarity due to their relation to
the optimal transport problem, defined as arg minπ

∫
‖x− y‖2dπ(x,y). Here π is constrained to

belong to the set of joint distributions with marginals ps, pdata, respectively [19, 42]. This unified

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

perspective is explicitly investigated for GANs and VAEs [19] for example, whereas other works
study NFs [50]. Similarly, DMs can be connected to Schrodinger Bridges [8], which solve the
problem of entropy-regularized optimal transport [55]. Given that extensions of the regularized
optimal transport case are available also for other generative models [65, 58], we should expect that,
in principle, any technique should allow generation of samples with similar quality, provided it is
properly tuned. However, this is not true in practice. The different formulations lead to a variety of
properties associated with GMs, and pros and cons of each formulation can be understood through
the so-called GM tri-lemma [84]. The three desirable properties of GMs are high sample quality,
mode coverage, and fast sampling, and it has been argued that such goals are difficult to be satisfied
simultaneously [84] .

The state-of-the-art is currently dominated by score-based DMs, due to their ability to achieve high
sample quality and good mode coverage. However, generating new samples is computationally
expensive due to the need to simulate stochastic differential equations. Likelihood-based GMs are
complementary, in that they achieve lower sample quality, but sampling requires one model evaluation
per sample and it is therefore extremely fast. While some attempts have been made to bridge the gap
by combining GANs with DMs [84] or training GANs with diffusions [82], these still require careful
engineering of architectures and training schedules. The observation that all GMs share a common
underlying objective indicates that we should look at what makes DMs successful at optimizing their
objective. Then, the question we address in this paper is: can we borrow the strengths of score-based
DMs to improve likelihood-based GMs, without paying the price of costly sample generation?

One distinctive element of score-based DMs is data mollification, which is typically achieved by
adding Gaussian noise [69] or, in the context of image data sets, by blurring [61]. A large body
of evidence points to the manifold hypothesis [63], which states that the intrinsic dimensionality
of image data sets is much lower than the dimensionality of their input. Density estimation in
this context is particularly difficult because of the degeneracy of the likelihood for any density
concentrated on the manifold where data lies [43]. Under the manifold hypothesis, or even when
the target density is multi-modal, the Lipschitz constant of GMs has to be large, but regularization,
which is necessary for robustness, is antagonist to this objective [64, 9]. As we will study in detail in
this paper, the process of data mollification gracefully guides the optimization mitigating manifold
overfitting and enabling a desirable tail behavior, yielding accurate density estimation in low-density
regions. In likelihood-based GMs, data mollification corresponds to some form of simplification of
the optimization objective. This type of approach, where the level of data mollification is annealed
throughout training, can be seen as a continuation method [83, 47], which is a popular technique in
the optimization literature to reach better optima.

Strictly speaking, data mollification in score-based DMs and likelihood-based GMs are slightly
different. In the latter, the amount of noise injected in the data is continuously annealed throughout
training. At the beginning, the equivalent loss landscape seen by the optimizer is much smoother, due
to the heavy perturbation of the data, and a continuous reduction of the noise level allows optimization
to be gracefully guided until the point where the level of noise is zero [83, 47]. DMs, instead, are
trained at each step of the optimization process by considering all noise levels simultaneously, where
complex amortization procedures, such as self-attention [70], allow the model to efficiently share
parameters across different perturbation levels. It is also worth mentioning that score-based DMs
possess another distinctive feature in that they perform gradient-based density estimation [69, 28].
It has been conjectured that this can be helpful to avoid manifold overfitting by allowing for the
modeling of complex densities while keeping the Lipschitz constant of score networks low [64]. In
this work, we attempt to verify the hypothesis that data mollification is heavily responsible for the
success of score-based DMs. We do so by proposing data mollification for likelihood-based GMs,
and provide theoretical arguments and experimental evidence that data mollification consistently
improves their optimization. Crucially, this strategy yields better sample quality and it is extremely
easy to implement, as it requires adding very little code to any existing optimization loop.

We consider a large set of experiments involving VAEs and NFs and some popular image data sets.
These provide a challenging test for likelihood-based GMs due to the large dimensionality of the
input space and to the fact that density estimation needs to deal with data lying on manifolds. The
results show systematic, and in some cases dramatic, improvements in sample quality, indicating that
this is a simple and effective strategy to improve optimization of likelihood-based GMs models. The
paper is organized as follows: in § 2 we illustrate the challenges associated with generative modeling
when data points lie on a manifold, particularly with density estimation in low-density regions and

2

manifold overfitting; in § 3 we propose data mollification to address these challenges; § 4 reports the
experiments with a discussion of the limitations and the broader impact, while § 5 presents related
works, and § 6 concludes the paper.

2 Challenges in Training Deep Generative Models

We are interested in unsupervised learning, and in particular on the task of density estimation. Given a
datasetD consisting ofN i.i.d samplesD ∆

= {xi}Ni=1 with xi ∈ RD, we aim to estimate the unknown
continuous generating distribution pdata(x). In order to do so, we introduce a model pθ(x) with
parameters θ and attempt to estimate θ based on the dataset D. A common approach to estimate θ is
to maximize the likelihood of the data, which is equivalent to minimizing the following objective:

L(θ)
∆
= −Epdata(x) [log pθ(x)] . (1)

There are several approaches to parameterize the generative model pθ(x). In this work, we focus on
two widely used likelihood-based Generative Models (GMs), which are Normalizing Flows (NFs)
[52, 39] and Variational Autoencoders (VAEs) [36, 59]. Although NFs and VAEs are among the
most popular deep GMs, they are characterized by a lower sample quality compared to GANs and
score-based DMs. In this section, we present two major reasons behind this issue by relying on the
manifold hypothesis.

2.1 The Manifold Hypothesis and Density Estimation in Low-Density Regions

The manifold hypothesis is a fundamental concept in manifold learning [63, 73, 1] stating that
real-world high-dimensional data tend to lie on a manifold M characterized by a much lower
dimensionality compared to the one of the input space (ambient dimensionality) [48]. This has
been verified theoretically and empirically for many applications and datasets [51, 48, 57, 72]. For
example, [57] report extensive evidence that natural image datasets have indeed very low intrinsic
dimension relative to the high number of pixels in the images.

Data distribution Estimated distribution

Figure 1: Left: Histogram of samples from
data distribution pdata(x) and its true scores
∇x log pdata(x); Right: Histogram of of sam-
ples from the estimated distribution pθ(x) and
its scores∇x log pθ(x). In the low density re-
gions, the model is unable to capture the true
density and scores.

The manifold hypothesis suggests that density estima-
tion in the input space is challenging and ill-posed. In
particular, data points on the manifold should be associ-
ated with high density, while points outside the manifold
should be considered as lying in regions of nearly zero
density [45]. This implies that the target density in the
input space should be characterized by high Lipschitz
constants. The fact that data is scarce in regions of
low density makes it difficult to expect that models can
yield accurate density estimation around the tails. These
pose significant challenges for the training of deep GMs
[9, 45, 69]. Recently, diffusion models [69, 25, 70] have
demonstrated the ability to mitigate this problem by
gradually transforming a Gaussian distribution, whose
support spans the full input space, into the data distribu-
tion. This observation induces us to hypothesize that the
data mollification mechanism in score-based DMs is responsible for superior density estimation in
low-density regions.

To demonstrate the challenges associated with accurate estimation in low-density regions, we consider
a toy experiment where we use a REAL-NVP flow [14] to model a two-dimensional mixture of
Gaussians, which is a difficult test for NFs in general. Details on this experiment are provided in the
Appendix D. Fig. 1 depicts the true and estimated densities, and their corresponding scores, which
are the gradient of the log-density function with respect to the data [28]. Note that the use of “score”
here is slightly different from that from traditional statistics where score usually refers to the gradient
of the log-likelihood with respect to model parameters. As it can be seen in the figure, in regions of
low data density, pθ(x) is completely unable to model the true density and scores. This problem is
due to the lack of data samples in these regions and may be more problematic under the manifold
hypothesis and for high-dimensional data such as images. In § 4, we will demonstrate how it is
possible to considerably mitigate this issue by means of data mollification.

3

2.2 Manifold Overfitting

The manifold hypothesis suggests that overfitting on a manifold can occur when the model pθ(x)
assigns an arbitrarily large likelihood in the vicinity of the manifold, even if the distribution does
not accurately capture the true distribution pdata(x) [10, 43]. This issue is illustrated in Fig. 2 of
[43] and it will be highlighted in our experiment (§ 4.1), where the true data distribution pdata(x)
is supported on a one-dimensional curve manifoldM in two-dimensional space R2. Even when
the model distribution pθ(x) poorly approximates pdata(x), it may reach a high likelihood value by
concentrating the density around the correct manifoldM. If pθ(x) is flexible enough, any density
defined onM may achieve infinite likelihood and this might be an obstacle for retrieving pdata(x).

A theoretical formalization of the problem of manifold overfitting appears in [43] and it is based on
the concept of Riemannian measure [56]. The Riemannian measure on manifolds holds an analogous
role to that of the Lebesgue measure on Euclidean spaces. To begin, we establish the concept of
smoothness for a probability measure on a manifold.
Definition 1. LetM be a finite-dimensional manifold, and p be a probability measure onM. Let g
be a Riemannian metric onM and µ(g)

M the corresponding Riemannian measure. We say that p is
smooth if p� µ

(g)
M and it admits a continuous density p :M→ R>0 with respect to µ(g)

M .

We now report Theorem 1 from [43] followed by a discussion on its implications for our work.
Theorem 1. (Gabriel Loaiza-Ganem et al. [43]). Let M ⊂ RD be an analytic d-dimensional
embedded submanifold of Rd with d < D, µD is the Lebesgue measure on RD, and p† a smooth
probability measure onM. Then there exists a sequence of probability measures

{
p

(t)
θ

}∞
t=0

on RD
such that:

1. p(t)
θ → p† as t→∞.

2. ∀t ≥ 0, p
(t)
θ � µD and p(t)

θ admits a density p(t)
θ : RD → R>0 with respect to µD such

that:
(a) limt→∞ p

(t)
θ (x) =∞, ∀x ∈M.

(b) limt→∞ p
(t)
θ (x) = 0, ∀x /∈ cl(M), where cl(·) denotes closure in RD.

Theorem 1 holds for any smooth probability measure supported inM. This is an important point
because this includes the desired pdata, provided that this is smooth too. The key message in [43] is
that, a-priori, there is no reason to expect that for a likelihood-based model to converge to pdata out
of all the possible p†. Their proof is based on convolving p† with a Gaussian kernel with variance
σ2
t that decreases to zero as t → ∞, and then verify that the stated properties of p(t)

θ hold. Our
analysis, while relying on the same technical tools, is instead constructive in explaining why the
proposed data mollification allows us to avoid manifold overfitting. The idea is as follows: at time
step t = 0, we select the desired pdata convolved with a Gaussian kernel with a large, but finite,
variance σ2(0) as the target distribution for the optimization. Optimization is performed and p(0)

θ
targets this distribution, without any manifold overfitting issues, since the dimensionality of the
corrupted data is non-degenerate. At the second step, the target distribution is obtained by convolving
pdata with the kernel with variance σ2(1) < σ2(0), and again manifold overfitting is avoided. By
iteratively repeating this procedure, we can reach the point where we are matching a distribution
convolved with an arbitrarily small variance σ2(t), without ever experiencing manifold overfitting.
When removing the last bit of perturbation we fall back to the case where we experience manifold
overfitting. However, when we operate in a stochastic setting, which is the typical scenario for the
GMs considered here, we avoid ending up in solutions for which the density is degenerate and with
support which is exactly the data manifold. Another way to avoid instabilities is to adopt gradient
clipping. Note that, as mentioned in [43] and verified by ourselves in earlier investigations, a small
constant amount of noise does not provide any particular benefits over the original scheme, whereas
gradually reducing the level of data mollification improves optimization dramatically.

2.3 Data Mollification as a Continuation Method

We can view the proposed data mollification approach as a continuation method [83, 47]. Starting
from the target objective function, which in our case is L(θ) in Eq. 4 (or a lower bound in the
case of VAEs), we construct a family of functions H(θ, γ) parameterized by an auxiliary variable

4

γ ∈ [0, 1] so thatH(θ, 0) = L(θ). The objective functionsH(θ, γ) are defined so that the higher γ
the easier is to perform optimization. In our case, when γ = 1 we operate under a simple regime
where we target a Gaussian distribution, and likelihood-based GMs can model these rather easily. By
annealing γ from 1 to 0 with a given schedule, the sequence of optimization problems with objective
H(θ, γ) is increasinly more complex to the point where we target L(θ). In essence, the proposed
data mollification approach can be seen as a good initialization method, as the annealing procedure
introduces a memory effect in the optimization process, which is beneficial in order to obtain better
optima.

3 Generative Models with Data Mollification

Motivated by the aforementioned problems with density estimation in low-density regions and
manifold overfitting, we propose a simple yet effective approach to improve likelihood-based GMs.
Our method involves mollifying data using Gaussian noise, gradually reducing its variance, until
recovering the original data distribution pdata(x). This mollification procedure is similar to the reverse
process of diffusion models, where a prior noise distribution is smoothly transformed into the data
distribution [69, 25, 70]. As already mentioned, data mollification alleviates the problem of manifold
overfitting and it induces a memory effect in the optimization which improves density estimation in
regions of low density.

Training Iteration

Figure 2: Illustration of Gaussian mollification,
where x̃t is the mollified data at iteration t.

Algorithm 1: Gaussian mollification
1 for t← 1, 2, ..., T do
2 x ∼ pdata(x) // Sample training data

3 x̃t = αtx + σtε // Mollify data with

αt, σ
2
t ← γ(t/T) and ε ∼ N (0, I)

4 θt ← UPDATE(θt−1, x̃t) // Train model

Gaussian Mollification. Given that we train the model pθ(x) for T iterations, we can create a
sequence of progressively less smoothed versions of the original data x, which we refer to as mollified
data x̃t. Here, t ranges from t = 0 (the most mollified) to t = T (the least mollified). For any
t ∈ [0, T], the distribution of the mollified data x̃t, conditioned on x, is given as follows:

q(x̃t |x) = N (x̃t;αtx, σ
2
t I), (2)

where αt and σ2
t are are positive scalar-valued functions of t. In addition, we define the signal-to-

noise ratio SNR(t) = α2
t /σ

2
t . and we assume that it monotonically increases with t, i.e., SNR(t) ≤

SNR(t+ 1) for all t ∈ [0, T − 1]. In other words, the mollified data x̃t is progressively less smoothed
as t increases. In this work, we adopt the variance-preserving formulation used for diffusion models
[67, 25, 32], where αt =

√
1− σ2

t and σ2
t = γ(t/T). Here, γ(·) is a monotonically decreasing

function from 1 to 0 that controls the rate of mollification. Intuitively, this procedure involves
gradually transforming an identity-covariance Gaussian distribution into the distribution of the data.
Algorithm 1 summarizes the proposed Gaussian mollification procedure, where the red line indicates
a simple additional step required to mollify data compared with vanilla training using the true data
distribution.

Noise schedule. The choice of the noise schedule γ(·) has an impact on the performance of the
final model. In this work, we follow common practice in designing the noise schedule based on the
literature of score-based DMs [49, 26, 7]. In particular, we adopt a sigmoid schedule [31], which has
recently been shown to be more effective in practice compared to other choices such as linear [25] or
cosine schedules [49].

5

Iteration 5000 Iteration 20000Iteration 0Estimated distributionTarget distribution

scoresTrue

Figure 4: The first column shows the target distribution and the true scores. The
second column depicts the estimated distributions of the Gaussian Mixture Model
(GMM) , which yield MMD2 of 15.5 and 2.5 for the vanilla (top) and mollification
(bottom) training, respectively. The remaining columns show histogram of samples
from the true (top row) and mollified data (bottom row), and estimated scores.

2.3

4.61

M
M

D
2

[lo
g]

0 5000 10000 15000 20000

1.15

1.38

Iteration

Tr
ai

ni
ng

lo
ss

[lo
g]

Vanilla Mollification

Figure 5: The learning
curves of the GMM exper-
iments.

The sigmoid schedule γ(t/T) [31] is defined through
the sigmoid function:

sigmoid
(
− t/T

τ

)
, (3)

where τ is a temperature hyper-parameter. This func-
tion is then scaled and shifted to ensure that γ(0) = 1
and γ(1) = 0. We encourage the reader to check
the implementation of this schedule, available in Ap-
pendix C. Fig. 3 illustrates the sigmoid schedule and
the corresponding log(SNR) with different values of
τ . We use a default temperature of 0.7 as it demon-
strates consistently good results in our experiments.

0 0.5 1

0

0.5

1

t/T

σ
2

0 0.5 1

0

10

t/T

lo
g
(S
N
R

)

Figure 3: Illustration of sigmoid schedule and the
corresponding log(SNR). The temperature values
from 0.2 to 0.9 are progressively shaded, with the
lighter shade corresponding to lower temperatures.

4 Experiments

In this section, we demonstrate emprically the effectiveness of our proposal through a wide range of
experiments on synthetic data, and some popular real-world tabular and image data sets. Appendix D
contains a detailed description of each experiment to guarantee reproducibility.

4.1 2D Synthetic Data Sets

We begin our experimental campaign with two 2D synthetic data sets. The two-dimensional nature
of these data sets allows us to demonstrate the effectiveness of Gaussian mollification in mitigating
the challenges associated with density estimation in low-density regions and manifold overfitting.
Here, we consider pθ(x) to be a REAL-NVP flow [14], which comprises five coupling bijections,
each consisting of a two-hidden layer multilayer perceptron (MLP). To assess the capability of
pθ(x) to recover the true data distribution, we use Maximum Mean Discrepancy (MMD) [21] with a
radial basis function (RBF) kernel on a held-out set. In these experiments, we employ the Gaussian
mollification strategy presented in the previous section and compare the estimated density with the
vanilla approach where we use the original training data without any mollification.

Mixture of Gaussians. First, we consider a target distribution that is a mixture of two Gaussians,
as depicted in Fig. 4. As discussed in § 2.1, the vanilla training procedure fails to accurately estimate
the true data distribution and scores, particularly in the low-density regions. The estimated densities
and the mollified data during the training are depicted in Fig. 4. Initially, the mollification process
considers a simpler coarse-grained version of the target density, which is easy to model. This is
demonstrated by the low training loss at the beginning of the optimization, as depicted in Fig. 5.
Subsequently, the method gradually reduces the level of noise allowing for a progressive refinement
of the estimated versions of the target density. This process uses the solution from one level of

6

mollification as a means to guiding optimization for the next. As a result, Gaussian mollification
facilitates the recovery of the modes and enables effective density estimation in low-density regions.
The vanilla training procedure, instead, produces a poor estimate of the target density, as evidenced
by the trace-plot of the MMD2 metric in Fig. 5 and the visualization of the scores in Fig. 4.

Von Mises distribution. We proceed with an investigation of the von Mises distribution on the unit
circle, as depicted in Fig. 6, with the aim of highlighting the issue of manifold overfitting [43]. In
this experiment, the data lies on a one-dimensional manifold embedded in a two-dimensional space.
The vanilla training procedure fails to approximate the target density effectively, as evidenced by the
qualitative results and the substantially high value of MMD2 (≈ 383.44) shown in Fig. 6. In contrast,
Gaussian mollification gradually guides the estimated density towards the target, as depicted in Fig. 6,
leading to a significantly lower MMD2 (≈ 6.13). Additionally, the mollification approach enables the
estimated model not only to accurately learn the manifold but also to capture the mode of the density
correctly.

4.2 Image Experiments

Table 1: FID score on CIFAR10 and CELEBA dataset (lower is better). The small colored numbers indicate
improvement or degration of the mollification training compared to the vanilla training.

MODEL
CIFAR10 CELEBA

VANILLA
GAUSSIAN

MOLLIFCATION
BLURRING

MOLLIFICATION
VANILLA

GAUSSIAN
MOLLIFICATION

BLURRING
MOLLIFICATOIN

REAL-NVP [14] 131.15 121.75 ↓ 7.17% 120.88 ↓ 7.83% 81.25 79.68 ↓ 1.93% 85.40 ↑ 5.11%

GLOW [34] 74.62 64.87 ↓ 13.07% 66.70 ↓ 10.61% 97.59 70.91 ↓ 27.34% 74.74 ↓ 23.41%

VAE[36] 191.98 155.13 ↓ 19.19% 175.40 ↓ 8.64% 80.19 72.97 ↓ 9.00% 77.29 ↓ 3.62%

VAE-IAF [35] 193.58 156.39 ↓ 19.21% 162.27 ↓ 16.17% 80.34 73.56 ↓ 8.44% 75.67 ↓ 5.81%

IWAE [4] 183.04 146.70 ↓ 19.85% 163.79 ↓ 10.52% 78.25 71.38 ↓ 8.78% 76.45 ↓ 2.30%

β-VAE [24] 112.42 93.90 ↓ 16.47% 101.30 ↓ 9.89% 67.78 64.59 ↓ 4.71% 67.08 ↓ 1.03%

HVAE [5] 172.47 137.84 ↓ 20.08% 147.15 ↓ 14.68% 74.10 72.28 ↓ 2.46% 77.54 ↑ 4.64%

Setup. We evaluate our method on image generation tasks on CIFAR10 [40] and CELEBA 64 [41]
datasets, using a diverse set of likelihood-based GMs. The evaluated models include the vanilla VAE
[36], the β-VAE [24], and the VAE-IAF [35] which employs an expressive inverse autoregressive
flow for the approximate posterior. To further obtain flexible approximations of the posterior of
latent variables as well as a tight evidence lower bound (ELBO), we also select the Hamiltonian-VAE
(HVAE) [5] and the importance weighted VAE (IWAE) [4]. For flow-based models, we consider
the REAL-NVP [14] and GLOW [34] models in our benchmark. We found that further training the
model on the original data after the mollification procedure leads to better performance. Hence, in
our approach we apply data mollification during the first half of the optimization phase, and we
continue optimize the model using the original data in the second half. Nevertheless, to ensure a
fair comparison, we adopt identical settings for the vanilla and the proposed approaches, including
random seed, optimizer, and the total number of iterations.

Target distribution

Figure 6: The progression of the estimated densities for the von Mises distribution from the vanilla (bottom
row) and our mollification (top row) approaches.

7

Blurring mollification. Even though Gaussian mollification is motivated by the manifold hypoth-
esis, it is not the only way to mollify the data. Indeed, Gaussian mollification does not take into
account certain inductive biases that are inherent in natural images, including their multi-scale nature.
Recently, [61, 27, 11] have proposed methods that incorporate these biases in diffusion-type genera-
tive models. Their approach involves stochastically reversing the heat equation, which is a partial
differential equation (PDE) that can be used to erase fine-scale information when applied locally to
the 2D plane of an image. During training, the model first learns the coarse-scale structure of the
data, which is easier to learn, and then gradually learns the finer details. It is therefore interesting
to assess whether this form of data mollification is effective in the context of this work compared
to the addition of Gaussian noise. Note, however, that under the manifold hypothesis, this type of
mollification produces the opposite effect to the addition of Gaussian noise in that at time t = 0
mollified images lie on a 1D manifold and they are gradually transformed to span the dimension of
the data manifold; more details on blurring mollification can be found in Appendix B.

Image generation. We evaluate the quality of the generated images using the popular Fréchet
Inception Distance (FID) score [22] computed on 50K samples from the trained model using the
pytorch-fid 1 library. The results, reported in Table 1, indicate that the proposed data mollification
consistently improves model performance compared to vanilla training across all datasets and models.
Additionally, mollification through blurring, which is in line with recent results from diffusion models
[61], is less effective than Gaussian mollification, although it still enhances the vanilla training in most
cases. We also show intermediate samples in Fig. 8 illustrating the progression of samples from pure
random noise or completely blurred images to high-quality images. Furthermore, we observe that
Gaussian mollification leads to faster convergence of the FID score for VAE-based models, as shown
in Fig. 7. We provide additional results in Appendix E. As a final experiment, we consider a recent
large-scale VAE model for the CIFAR10 data set, which is a deep hierarchical VAE (NVAE) [78].
By applying Gaussian mollification without introducing any additional complexity, e.g., step-size
annealing, we improve the FID score from 53.64 to 52.26.

0 50 100 150 200

5.07

5.53

5.99

VAE

Epoch

V
A

E
-F

ID
[lo

g]

0 20 40 60 80

4.61

5.76

Epoch

G
LO

W
-F

ID
[lo

g]

Vanilla Gauss. Blurring

Figure 7: The progression of FID
on CIFAR10 dataset.

Epoch 0 Epoch 10 Epoch 20 Epoch 80

Figure 8: Intermediate samples generated from REAL-NVP flows [14],
which are trained on CELEBA dataset employed with Gaussian (top row)
and blurring mollification (bottom row).

Choice of noise schedule. We ablate on the choice
of noise schedule for Gaussian mollification. Along
with the sigmoid schedule, we also consider the linear
[25] and cosine [49] schedules, which are also popu-
lar for diffusion models. As shown in Table 2, our
method consistently outperforms the vanilla approach
under all noise schedules. We also observe that the
sigmoid schedule consistently produced good results.
Therefore, we chose to use the sigmoid schedule in all
our experiments.

Table 2: FID score on CIFAR10 w.r.t. different
choices of noise schedule.

MODEL VANILLA SIGMOID COSINE LINEAR

REAL-NVP 191.98 121.75 118.71 123.93

GLOW 74.62 64.87 71.90 74.36

VAE 191.98 155.13 154.71 156.47

β-VAE 112.42 93.90 92.86 93.14

IWAE 183.04 146.70 146.49 149.16

1https://github.com/mseitzer/pytorch-fid

8

https://github.com/mseitzer/pytorch-fid

Comparisons with the two-step approach in [43]. Manifold overfitting in likelihood-based GMs
has been recently analyzed in [43], which provides a two-step procedure to mitigate the issue. The first
step maps inputs into a low-dimensional space to handle the intrinsic low dimensionality of the data.
This step is then followed by likelihood-based density estimation on the resulting lower-dimensional
representation. This is achieved by means of a generalized autoencoder, which relies on a certain set
of explicit deep GMs, such as VAEs. Here, we compare our proposal with this two-step approach;
results are reported in Table 3. To ensure a fair comparison, we use the same network architecture
for our VAE and their generalized autoencoder, and we rely on their official implementation 2.
Following [43], we consider a variety of density estimators in the low-dimensional space such as NFs,
Autoregressive Models (ARMs) [77], Adversarial Varitional Bayes (AVB) [46] and Energy-Based
Models (EBMs) [16]. We observe that Gaussian mollification is better or comparable with these
variants. In addition, our method is extremely simple and readily applicable to any likelihood-based
GMs without any extra auxilary models or the need to modify training procedures.

Table 3: Comparisons of FID scores on CIFAR10 between mollitication and two-step methods.

VANILLA VAE
MOLLIFICATION TWO-STEP

VAE+GAUSSIAN VAE + BLURRING VAE+NF VAE+EBM VAE+AVB VAE+ARM

191.98 155.13 175.40 208.80 166.20 153.72 203.32

4.3 Density Estimation on UCI Data Sets

We further evaluate our proposed method in the context of density estimation tasks using UCI data sets
[17], following [68]. We consider three different types of normalizing flows: masked autorgressive
flows (MAF) [53], REAL-NVP [14] and GLOW [34]. To ensure a fair comparison, we apply the
same experimental configurations for both the vanilla and the proposed method, including random
seeds, network architectures, optimizer, and the total number of iterations. Table 1 shows the average
log-likelihood (the higher the better) on the test data. Error bars correspond to the standard deviation
computed over 4 runs. As it can be seen, our proposed Gaussian mollification approach consistently
and significantly outperforms vanilla training across all models and all datasets.

Table 4: The average test log-likelihood (higher is better) on the UCI data sets. Error bars correspond to the
standard deviation over 4 runs.

DATASET
MAF [53] REAL-NVP [14] GLOW [34]

VANILLA MOLLIFICATION VANILLA MOLLIFICATION VANILLA MOLLIFICATION

RED-WINE -16.32 ± 1.88 -11.51 ± 0.44 -27.83 ± 2.56 -12.51 ± 0.40 -18.21 ± 1.14 -12.37 ± 0.33

WHITE-WINE -14.87 ± 0.24 -11.96 ± 0.17 -18.34 ± 2.77 -12.30 ± 0.16 -15.24 ± 0.69 -12.44 ± 0.36

PARKINSONS -8.27 ± 0.24 -6.17 ± 0.17 -14.21 ± 0.97 -7.74 ± 0.27 -8.29 ± 1.18 -6.90 ± 0.24

MINIBOONE -13.03 ± 0.04 -11.65 ± 0.09 -20.01 ± 0.22 -13.96 ± 0.12 -14.48 ± 0.10 -13.88 ± 0.08

Limitations. One limitation is that this work focuses exclusively on likelihood-based GMs. On
image data, the improvements in FID score indicate that the performance boost is generally substantial,
but still far from being comparable with state-of-the-art DMs. While this may give an impression
of a low impact, we believe that this work is important in pointing to one of the successful aspects
characterizing DMs and show how this can be easily integrated in the optimization of likelihood-based
GMs. A second limitation is that, in line with the literature on GMs for image data, where models are
extremely costly to train and evaluate, we did not provide error bars on the results reported in the
tables in the experimental section. Having said that, the improvements reported in the experiments
have been shown on a variety of models and on two popular image data sets. Furthermore, the
results are supported theretically and experimentally by a large literature on continuation methods for
optimization.

Broader impact. This work provides an efficient way to improve a class of GMs. While we focused
mostly on images, the proposed method can be applied to other types of data as shown in the density

2https://github.com/layer6ai-labs/two_step_zoo

9

https://github.com/layer6ai-labs/two_step_zoo

estimation experiments on the UCI datasets. Like other works in this literature, the proposed method
can have both positive (e.g., synthesizing new data automatically or anomaly detection) and negative
(e.g., deep fakes) impacts on society depending on the application.

5 Related work

Our work is positioned within the context of improving GMs through the introduction of noise to the
data. One popular approach is the use of denoising autoencoders [81], which are trained to reconstruct
clean data from noisy samples. Building upon this, [2] proposed a framework for modeling a Markov
chain whose stationary distribution approximates the data distribution. In addition, [80] showed a
connection between denoising autoencoders and score matching, which is an objective closely related
to recent diffusion models [67, 25]. More recently, [45] introduced a two-step approach to improve
autoregressive generative models, where a smoothed version of the data is first modeled by adding a
fixed level of noise, and then the original data distribution is recovered through an autoregressive
denoising model. In a similar vein, [44] recently attempted to use Tweedie’s formula [62] as a
denosing step, but surprisingly found that it does not improve the performance of NFs and VAEs. Our
work is distinct from these approaches in that Gaussian mollification guides the estimated distribution
towards the true data distribution in a progressive manner by means of annealing instead of fixing
a noise level. Moreover, our approach does not require any explicit denoising step, and it can be
applied off-the-shelf to the optimization of any likelihood-based GMs without any modifications.

6 Conclusion

Inspired by the enormous success of score-based Diffusion Models (DMs), in this work we hypothe-
sized that data mollification is partially responsible for their impressive performance in generative
modeling tasks. In order to test this hypothesis, we introduced data mollification within the optimiza-
tion of likelihood-based Generative Models (GMs), focusing in particular on Normalizing Flows
(NFs) and Variational Autoencoders (VAEs). Data mollification is extremely easy to implement and
it has nice theoretical properties due to its connection with continuation methods in the optimization
literature, which are well-known techniques to improve optimization. We applied this idea to chal-
lenging generative modeling tasks involving imaging data and relatively large-scale architectures as a
means to demonstrate systematic gains in performance in various conditions and input dimensions.
We measured performance in quality of generated images through the popular FID score.

While we are far from closing the gap with DMs in achieving competing FID score, we are confident
that this work will serve as the basis for future works on performance improvements in state-of-the-art
models mixing DMs and likelihood-based GMs, and in alternative forms of mollification to improve
optimization of state-of-the-art GMs. For example, it would be interesting to study how to apply
data mollification to improve the training of GANs; preliminary investigations show that the strategy
proposed here does not offer significant performance improvements, and we believe this is due to the
fact that data mollification does not help in smoothing the adversarial objective. Also, while our study
shows that the data mollification schedule is not critical, it would be interesting to study whether it
is possible to derive optimal mollification schedules, taking inspiration, e.g., from [30]. We believe
it would also be interesting to consider mixture of likelihood-based GMs to counter problems due
to the union of manifolds hypothesis, whereby the intrinsic dimension changes over the input [3].
Finally, it would be interesting to investigate other data, such as 3D point cloud data [85] and extend
this work to deal with other tasks, such as supervised learning.

Acknowledgments and Disclosure of Funding

MF gratefully acknowledges support from the AXA Research Fund and the Agence Nationale de la
Recherche (grant ANR-18-CE46-0002 and ANR-19-P3IA-0002).

References
[1] Y. Bengio, A. C. Courville, and P. Vincent. Representation Learning: A Review and New

Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:1798–1828,
2012.

10

[2] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski. Deep Generative Stochastic Networks Trainable
by Backprop. In Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, pages 226–234, Bejing, China,
22–24 Jun 2014. PMLR.

[3] B. C. Brown, A. L. Caterini, B. L. Ross, J. C. Cresswell, and G. Loaiza-Ganem. Verifying
the Union of Manifolds Hypothesis for Image Data. In International Conference on Learning
Representations, 2023.

[4] Y. Burda, R. Grosse, and R. Salakhutdinov. Importance Weighted Autoencoders. In International
Conference on Learning Representations, 2015.

[5] A. L. Caterini, A. Doucet, and D. Sejdinovic. Hamiltonian Variational Auto-Encoder. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[6] C. Chadebec, L. Vincent, and S. Allassonniere. Pythae: Unifying Generative Autoencoders in
Python - A Benchmarking Use Case. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 21575–21589. Curran Associates, Inc., 2022.

[7] T. Chen. On the Importance of Noise Scheduling for Diffusion Models. arXiv preprint
arXiv:2301.10972, 2023.

[8] T. Chen, G.-H. Liu, and E. Theodorou. Likelihood Training of Schrödinger Bridge using
Forward-Backward SDEs Theory. In International Conference on Learning Representations,
2022.

[9] R. Cornish, A. Caterini, G. Deligiannidis, and A. Doucet. Relaxing Bijectivity Constraints with
Continuously Indexed Normalising Flows. In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
2133–2143. PMLR, 13–18 Jul 2020.

[10] B. Dai and D. Wipf. Diagnosing and Enhancing VAE Models. In International Conference on
Learning Representations, 2019.

[11] G. Daras, M. Delbracio, H. Talebi, A. Dimakis, and P. Milanfar. Soft Diffusion: Score Matching
with General Corruptions. Transactions on Machine Learning Research, 2023.

[12] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulkumaran, and
M. Shanahan. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders.
arXiv preprint arXiv:1611.02648, 2016.

[13] L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear Independent Components Estimation.
In International Conference on Learning Representations, 2015.

[14] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density Estimation Using Real NVP. In International
Conference on Learning Representations, 2017.

[15] H. M. Dolatabadi, S. Erfani, and C. Leckie. Invertible Generative Modeling using Linear
Rational Splines. In Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
4236–4246. PMLR, 26–28 Aug 2020.

[16] Y. Du and I. Mordatch. Implicit Generation and Modeling with Energy Based Models. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[17] D. Dua and C. Graff. UCI Machine Learning Repository, 2017.

[18] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural Spline Flows. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[19] A. Genevay, G. Peyr, and M. Cuturi. GAN and VAE from an Optimal Transport Point of View.
arXiv preprint arXiv:1706.01807, 2017.

11

[20] M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE: Masked Autoencoder for
Distribution Estimation. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 881–889, Lille,
France, 07–09 Jul 2015. PMLR.

[21] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A Kernel Two-Sample
Test. Journal of Machine Learning Research, 13(25):723–773, 2012.

[22] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs Trained by a
Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[23] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs Trained by a
Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6626–6637, 2017.

[24] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerch-
ner. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In
International Conference on Learning Representations, 2017.

[25] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In Advances in Neural
Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[26] E. Hoogeboom, J. Heek, and T. Salimans. simple diffusion: End-to-end Diffusion for High
Resolution Images. arXiv preprint arXiv:2301.11093, 2023.

[27] E. Hoogeboom and T. Salimans. Blurring Diffusion Models. In International Conference on
Learning Representations, 2023.

[28] A. Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching. Journal
of Machine Learning Research, 6(24):695–709, 2005.

[29] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 448–456,
Lille, France, 07–09 Jul 2015. PMLR.

[30] H. Iwakiri, Y. Wang, S. Ito, and A. Takeda. Single Loop Gaussian Homotopy Method for
Non-convex Optimization. In Advances in Neural Information Processing Systems, volume 35,
pages 7065–7076. Curran Associates, Inc., 2022.

[31] A. Jabri, D. Fleet, and T. Chen. Scalable Adaptive Computation for Iterative Generation. arXiv
preprint arXiv:2212.11972, 2022.

[32] D. Kingma, T. Salimans, B. Poole, and J. Ho. Variational Diffusion Models. In Advances in
Neural Information Processing Systems, volume 34, pages 21696–21707. Curran Associates,
Inc., 2021.

[33] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

[34] D. P. Kingma and P. Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[35] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved
Variational Inference with Inverse Autoregressive Flow. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

[36] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In International Conference
on Learning Representations, 2014.

[37] D. P. Kingma and M. Welling. An Introduction to Variational Autoencoders. Foundations and
Trends in Machine Learning, 12(4):307–392, 2019.

12

[38] A. Klushyn, N. Chen, R. Kurle, B. Cseke, and P. van der Smagt. Learning Hierarchical Priors in
VAEs. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[39] I. Kobyzev, S. J. D. Prince, and M. A. Brubaker. Normalizing Flows: An Introduction and
Review of Current Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(11):3964–3979, 2021.

[40] A. Krizhevsky and G. Hinton. Learning Multiple Layers of Features from Tiny Images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

[41] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep Learning Face Attributes in the Wild. In 2015
IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015, pages 3730–3738. IEEE Computer Society, 2015.

[42] A. Liutkus, U. Simsekli, S. Majewski, A. Durmus, and F.-R. Stöter. Sliced-Wasserstein Flows:
Nonparametric Generative Modeling via Optimal Transport and Diffusions. In Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 4104–4113. PMLR, 09–15 Jun 2019.

[43] G. Loaiza-Ganem, B. L. Ross, J. C. Cresswell, and A. L. Caterini. Diagnosing and Fixing
Manifold Overfitting in Deep Generative Models. Transactions on Machine Learning Research,
2022.

[44] G. Loaiza-Ganem, B. L. Ross, L. Wu, J. P. Cunningham, J. C. Cresswell, and A. L. Caterini.
Denoising Deep Generative Models. In I Can’t Believe It’s Not Better Workshop at NeurIPS
2022, 2022.

[45] C. Meng, J. Song, Y. Song, S. Zhao, and S. Ermon. Improved Autoregressive Modeling with
Distribution Smoothing. In International Conference on Learning Representations, 2021.

[46] L. Mescheder, S. Nowozin, and A. Geiger. Adversarial Variational Bayes: Unifying Variational
Autoencoders and Generative Adversarial Networks. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 2391–2400. PMLR, 06–11 Aug 2017.

[47] H. Mobahi and J. W. Fisher. A theoretical analysis of optimization by gaussian continuation. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, page
12051211. AAAI Press, 2015.

[48] H. Narayanan and S. Mitter. Sample Complexity of Testing the Manifold Hypothesis. In
Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010.

[49] A. Q. Nichol and P. Dhariwal. Improved Denoising Diffusion Probabilistic Models. In Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8162–8171. PMLR, 18–24 Jul 2021.

[50] D. Onken, S. W. Fung, X. Li, and L. Ruthotto. OT-Flow: Fast and Accurate Continuous
Normalizing Flows via Optimal Transport. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9223–9232, 2021.

[51] A. Ozakin and A. Gray. Submanifold Density Estimation. In Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc., 2009.

[52] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Normal-
izing Flows for Probabilistic Modeling and Inference. Journal of Machine Learning Research,
22(57):1–64, 2021.

[53] G. Papamakarios, T. Pavlakou, and I. Murray. Masked Autoregressive Flow for Density Estima-
tion. In Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

13

[54] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[55] M. Pavon, G. Trigila, and E. G. Tabak. The Data-Driven Schrödinger Bridge. Communications
on Pure and Applied Mathematics, 74(7):1545–1573, 2021.

[56] X. Pennec. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measure-
ments. Journal of Mathematical Imaging and Vision, 25:127–154, 2006.

[57] P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein. The Intrinsic Dimension of
Images and Its Impact on Learning. In International Conference on Learning Representations,
2021.

[58] D. Reshetova, Y. Bai, X. Wu, and A. Özgür. Understanding Entropic Regularization in GANs.
In 2021 IEEE International Symposium on Information Theory (ISIT), pages 825–830. IEEE,
2021.

[59] D. Rezende and S. Mohamed. Variational Inference with Normalizing Flows. In Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 1530–1538, Lille, France, 07–09 Jul 2015. PMLR.

[60] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop
and Conference Proceedings, pages 1278–1286. JMLR.org, 2014.

[61] S. Rissanen, M. Heinonen, and A. Solin. Generative Modelling with Inverse Heat Dissipation.
In International Conference on Learning Representations, 2023.

[62] H. Robbins. An Empirical Bayes Approach to Statistics. In Proceedings of the 3rd Berkeley
Symposium on Mathematical Statistics and Probability, 1956, volume 1, pages 157–163, 1956.

[63] S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding.
Science, 290(5500):2323–2326, 2000.

[64] A. Salmona, V. De Bortoli, J. Delon, and A. Desolneux. Can Push-forward Generative Mod-
els Fit Multimodal Distributions? In Advances in Neural Information Processing Systems,
volume 35, pages 10766–10779. Curran Associates, Inc., 2022.

[65] M. Sanjabi, J. Ba, M. Razaviyayn, and J. D. Lee. On the Convergence and Robustness of
Training GANs with Regularized Optimal Transport. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

[66] C. K. Sø nderby, T. Raiko, L. Maalø e, S. r. K. Sø nderby, and O. Winther. Ladder Variational
Autoencoders. In Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[67] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep Unsupervised Learning
using Nonequilibrium Thermodynamics. In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 2256–
2265, Lille, France, 07–09 Jul 2015. PMLR.

[68] J. Song and S. Ermon. Bridging the Gap Between f-GANs and Wasserstein GANs. In Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 9078–9087. PMLR, 13–18 Jul 2020.

[69] Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.
In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

14

[70] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based
Generative Modeling through Stochastic Differential Equations. In International Conference on
Learning Representations, 2021.

[71] V. Stimper, D. Liu, A. Campbell, V. Berenz, L. Ryll, B. Schölkopf, and J. M. Hernández-Lobato.
normflows: A PyTorch Package for Normalizing Flows. arXiv preprint arXiv:2302.12014,
2023.

[72] P. Tempczyk, R. Michaluk, L. Garncarek, P. Spurek, J. Tabor, and A. Golinski. LIDL: Local
Intrinsic Dimension Estimation Using Approximate Likelihood. In Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 21205–21231. PMLR, 17–23 Jul 2022.

[73] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A Global Geometric Framework for Nonlinear
Dimensionality Reduction. Science, 290(5500):2319–2323, 2000.

[74] J. Tomczak and M. Welling. VAE with a VampPrior. In Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of
Machine Learning Research, pages 1214–1223. PMLR, 09–11 Apr 2018.

[75] B.-H. Tran, S. Rossi, D. Milios, P. Michiardi, E. V. Bonilla, and M. Filippone. Model Selection
for Bayesian Autoencoders. In Advances in Neural Information Processing Systems, volume 34,
pages 19730–19742. Curran Associates, Inc., 2021.

[76] B.-H. Tran, B. Shahbaba, S. Mandt, and M. Filippone. Fully Bayesian Autoencoders with Latent
Sparse Gaussian Processes. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 34409–34430.
PMLR, 23–29 Jul 2023.

[77] B. Uria, I. Murray, and H. Larochelle. RNADE: The Real-valued Neural autoregressive
Density-estimator. In Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013.

[78] A. Vahdat and J. Kautz. NVAE: A Deep Hierarchical Variational Autoencoder. In Advances in
Neural Information Processing Systems, volume 33, pages 19667–19679. Curran Associates,
Inc., 2020.

[79] R. van den Berg, L. Hasenclever, J. M. Tomczak, and M. Welling. Sylvester Normalizing Flows
for Variational Inference. In Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 393–402.
AUAI Press, 2018.

[80] P. Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, 23:1661–1674, 2011.

[81] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and Composing Robust
Features with Denoising Autoencoders. In Proceedings of the 25th International Conference on
Machine Learning, pages 1096–1103, 2008.

[82] Z. Wang, H. Zheng, P. He, W. Chen, and M. Zhou. Diffusion-GAN: Training GANs with
Diffusion. In International Conference on Learning Representations, 2023.

[83] A. Witkin, D. Terzopoulos, and M. Kass. Signal matching through scale space. In Proceedings
of the Fifth AAAI National Conference on Artificial Intelligence, AAAI’86, page 714719. AAAI
Press, 1986.

[84] Z. Xiao, K. Kreis, and A. Vahdat. Tackling the Generative Learning Trilemma with Denoising
Diffusion GANs. In International Conference on Learning Representations, 2022.

[85] G. Yang, X. Huang, Z. Hao, M. Liu, S. J. Belongie, and B. Hariharan. PointFlow: 3D Point
Cloud Generation With Continuous Normalizing Flows. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,
2019, pages 4540–4549. IEEE, 2019.

15

A A Primer on Normalizing Flows and VAEs

Given a dataset D consisting of N i.i.d samples D ∆
= {xi}Ni=1 with xi ∈ RD, we aim at estimating

the unknown continuous generating distribution pdata(x). In order to do so, we introduce a model
pθ(x) with parameters θ and attempt to estimate θ based on the dataset D. A common approach to
estimate θ is to maximize the likelihood of the data, which is equivalent to minimizing the following
objective:

L(θ)
∆
= −Epdata(x) [log pθ(x)] . (4)

Optimization for this objective can be done through a stochastic gradient descent algorithm using
minibatches of samples from pdata(x).

A.1 Normalizing Flows

In flow-based generative models [52, 39], the generative process is defined as:

z ∼ pφ(z); x = fψ(z), (5)

where z ∈ RD is a latent variable, and pφ(z) is a tractable base distribution with parameters φ, such
as an isotropic multivariate Gaussian. The function fψ : RD → RD is invertible, such that given any
input vector x we have z = f−1

ψ (x). A Normalizing Flow (NF) [59] defines a sequence of invertible
transformations f = f1 ◦ f2 ◦ · · · fK , such that the relationship between x and z can be written as:

x
f1←→ h1

f2←→ h2 · · ·
fK←→ z, (6)

where hk = f−1
k (hk−1;ψk) and ψk are the parameters of the transformation fk. For the sake of

simplicity, we define h0
∆
= x and hK

∆
= z. The likelihood of the model given a datapoint can be

computed analytically using the change of variables as follows:

log pθ(x) = log pφ(z) + log |det(∂z/∂x)| (7)

= log pφ(z) +

K∑
k=1

log |det(∂hk/∂hk−1)| , (8)

where log |det(∂hk/∂hk−1)| is the logarithm of absolute value of the determinant of the Jacobian
matrix ∂hk/∂hk−1. This term accounts for the change of measure when going from hk−1 to hk
using the transformation fk. The resulting NF model is then characterized by the set of parameters
θ = {φ} ∪ {ψk}Kk=1, which can be estimated using the maximum likelihood estimation (MLE)
objective Eq. 4.

Though NFs allow for exact likelihood computation, they require fk to be invertible and to have a
tractable inverse and Jacobian determinant. This restricts the flexibility to certain transformations that
can be used within NFs [see e.g., 52, 39, and references therein], such as affine coupling [13, 14],
invertible convolution [34], spline [18, 15], or inverse autoregressive transformations [35].

A.2 Variational Autoencoders

Variational Autoencoders (VAEs) [36, 59] introduce a low-dimensional latent variable z ∈ RP , with
P � D, to the generative process as follows:

z ∼ p(z); x ∼ pθ(x | z). (9)

Here, p(z) is a tractable prior distribution over the latent variables z, and pθ(x | z), which is also
known as a decoder, is usually implemented by a flexible neural network parameterized by θ. Different
from NFs, VAEs employ a stochastic transformation pθ(x | z) to map z to x. Indeed, NFs can be
viewed as VAEs where the decoder and encoder are modelled by Dirac deltas pθ(x | z) = δ

(
fθ(x)

)
and qφ(z |x) = δ

(
f−1
θ (x)

)
respectively, using a restricted family of transformations fθ.

The marginal likelihood of VAEs is intractable and given by:

pθ(x) =

∫
pθ(x | z)p(z)dz. (10)

16

A variational lower bound on ther marginal likelihood can be obtained by introducing a variational
distribution qφ(z |x), with parametersφ, which acts as an approximation to the the unknown posterior
p(z |x):

log pθ(x) ≥ Eqφ(z |x)[log pθ(x | z)]− KL [qφ(z |x) ‖ p(z)]︸ ︷︷ ︸
LELBO(θ,φ)

, (11)

where, LELBO(θ,φ) is known as the ELBO, and the expectation can be approximated by using Monte
Carlo samples from qφ(z |x). This objective can be optimized with stochastic optimization w.r.t.
parameters θ and φ in place of Eq. 4.

To tighten the gap between the ELBO and the true marginal likelihood, VAEs can be employed with
an expressive form of the approximate posterior qφ(z |x) such as importance weighted sampling [4]
or normalizing flows [35, 79]. In addition, to avoid the over regularization offect induced by the prior
p(z), one can utilize a flexible prior such as multi-modal distributions [12, 74], hierarchical forms
[66, 38], or simply reweighing the KL divergence term in the ELBO [24].

B Details on Blurring Mollification

Recently, [61, 27, 11] have proposed appproaches to destroy information of images using blurring
operations for diffusion-type generative models. Their approach involves stochastically reversing the
heat equation, which is a PDE that can be used to erase fine-scale information when applied locally
to the 2D plane of an image. In particular, the Laplace PDE for heat diffusions is as follows:

∂

∂t
x̃(i, j, t) = ∆x̃(i, j, t), (12)

where we consider the initial state of the system to be x, the true image data. This PDE can
be effectively solved by employing a diagonal matrix within the frequency domain of the cosine
transform, provided that the signal is discretized onto a grid. The solution to this equation at time t
can be effectively computed by:

x̃t = Atx = VDtV
>x, (13)

Here, V> and V denote the discrete cosine transformation (DCT) and inverse DCT, respectively; the
diagonal matrix Dt is the exponent of a weighting matrix for frequencies Λ so that Dt = exp(Λt).
We refer the reader to Appendix A of [61] for the specific definition of Λ. We can evaluate Eq. 13
in the Fourier domain, which is fast to compute, as the DCT and inverse DCT require O(N logN)
operations. The equivalent form of Eq. 13 in the Fourier domain is as follows:

ũt = exp(Λt)u, (14)

where u = V>x = DCT(x). As Λ is a diagonal matrix, the above Fourier-space model is fast to
evaluate. A Python implementation of this blurring mollification is presented in Algorithm 2.

We follow [61] to set the schedule for the blurring mollification. In particular, we use a logarithmic
spacing for the time steps tk, where t0 = σ2

B,max/2 and tT = σ2
B,min/2 = 0.52

/2, corresponding to
sub-pixel-size blurring. Here, σ2

B,max is the effective lengthscale-scale of blurring at the beginning of
the mollification process. Following [61], we set this to half the width of the image.

Algorithm 2: Python code for blurring mollification

1 import numpy as np
2 from scipy.fftpack import dct , idct
3
4 def blurring_mollify(x, t):
5 # Assuming the image u is an (KxK) numpy array
6 K = x.shape [-1]
7 freqs = np.pi*np.linspace(0,K-1,K)/K
8 frequencies_squared = freqs[:,None]**2 + freqs[None ,:]**2
9 x_proj = dct(u, axis=0, norm=’ortho ’)

10 x_proj = dct(x_proj , axis=1, norm=’ortho ’)
11 x_proj = np.exp(-frequencies_squared * t) * x_proj
12 x_mollified = idct(x_proj , axis=0, norm=’ortho ’)
13 x_mollified = idct(x_mollified , axis=1, norm=’ortho ’)
14 return x_mollified

17

C Implementation of Noise Schedules

Algorithm 3 shows the Python code for the noise schedules used in this work. For the sigmoid
schedule, following [7], we set the default values of start and end to 0 and 3, respectively.

Algorithm 3: Python code for noise schedules

1 import numpy as np
2
3 def sigmoid(x):
4 # Sigmoid function.
5 return 1 / (1 + np.exp(-x))
6
7 def sigmoid_schedule(t, T, tau=0.7, start=0, end=3, clip_min =1e-9):
8 # A scheduling function based on sigmoid function with a temperature tau.
9 v_start = sigmoid(start / tau)

10 v_end = sigmoid(end / tau)
11 return (v_end - sigmoid ((t/T * (end - start) + start) / tau)) / (v_end - v_start)
12
13 def linear_schedule(t, T):
14 # A scheduling function based on linear function.
15 return 1 - t/T
16
17 def cosine_schedule(t, T, ns=0.0002 , ds =0.00025):
18 # A scheduling function based on cosine function.
19 return np.cos (((t/T + ns) / (1 + ds)) * np.pi / 2)**2

D Experimental Details

D.1 Data sets

Synthetic data sets.

• Mixture of Gaussians: We consider a mixture of two Gaussians with means µk =
(2 sin(πk), 2 cos(πk)) and covariance matrices Σk = σ2I, where σ = 2

3 sin(π/2). We
generate 10K samples for training and 10K samples for testing from this distribution.

• Von Mises distribution: We use a von Mises distribution with parameters κ = 1, and then
transform to Cartesian coordinates to obtain a distribution on the unit circle in R2. We
generate 10K training samples and 10K testing from this distribution.

Image data sets. We consider two image data sets including CIFAR10 [40] and CELEBA [41].
These data sets are publicly available and widely used in the literature of generative models. We use
the official train/val/test splits for both data sets. The resolution of CIFAR10 is 3 × 32 × 32. For
CELEBA, we pre-process images by first taking a 148 × 148 center crop and then resizing to the
3× 64× 64 resolution.

UCI data sets. We consider four data sets in the UCI repository [17]: RED-WINE, WHITE-WINE,
PARKINSONS, and MINIBOONE. 10% of the data is set aside as a test set, and an additional 10%
of the remaining data is used for validation. To standardize the features, we subtract the sample mean
from each data point and divide by the sample standard deviation.

D.2 Software and Computational Resources

We use NVIDIA P100 and A100 GPUs for the experiments, with 16GB and 80GB of memory
respectively. All models are trained on a single GPU except for the experiments with NVAE model
[78], where we employ two A100 GPUs. We use PyTorch [54] for the implementation of the
models and the experiments. Our experiments with VAEs and NFs are relied on the pythae [6] and
normflows [71] libraries, respectively.

18

D.3 Training Details

D.3.1 Toy examples.

In the experiments on synthetic data sets, we use a REAL-NVP flow [14] with 5 affine coupling
layers consisting of 2 hidden layers of 64 units each. We train the model for 20000 itereations using
an Adam optimizer [33] with a learning rate of 5 · 10−4 and a mini-batch size of 256.

D.3.2 Imaging experiments.

REAL-NVP. We use the multi-scale architecture with deep convolutional residual networks in the
coupling layers as described in [14]. For the CIFAR10 data set, we use 4 residual blocks with 32
hidden feature maps for the first coupling layers with checkerboard masking. For the CELEBA data
set, 2 resdiual blocks are employed. We use an Adam optimizer [33] with a learning rate of 10−3 and
a mini-batch size of 64. We train the model for 100 and 80 epochs on the CIFAR10 and CELEBA
data sets, respectively. For the mollification training, we perturb the data for 50 and 40 epochs for
CIFAR10 and CELEBA, respectively.

GLOW. We use a multi-scale architecture as described in [34]. The architecture has a depth level
of K = 20, and a number of levels L = 3. We use the AdaMax [33] optimizer with a learning rate
of 3 · 10−4 and a mini-batch size of 64. We train the model for 80 and 40 epochs on the CIFAR10
and CELEBA data sets, respectively. For the mollification training, we perturb the data for 50 and 20
epochs for CIFAR10 and CELEBA, respectively.

Table 5: Neural network architectures used for VAEs in our experiments. Here, CONV(n,s,p) and CONVT(n,s,p)

respectively denotes convolutional layer and transposed convolutional layers with n filters, a stride of s and a
padding of p, whereas FCn represents a fully-connected layer with n units, and BN denotes a batch-normalization
layer.

CIFAR10 CELEBA

ENCODER: x ∈ R3×32×32

→ CONV(128,4,2) → BN → RELU
→ CONV(256,4,2) → BN → RELU
→ CONV(512,4,2) → BN → RELU
→ CONV(1024,4,2) → BN → RELU
→ FLATTEN → FC256×2

x ∈ R3×64×64

→ CONV(128,4,2) → BN → RELU
→ CONV(256,4,2) → BN → RELU
→ CONV(512,4,2) → BN → RELU
→ CONV(1024,4,2) → BN → RELU
→ FLATTEN → FC256×2

DECODER: z ∈ R256 → FC8×8×1024

→ CONVT(512,4,2) → BN → RELU
→ CONVT(256,4,2) → BN → RELU
→ CONVT(3,4,1)

z ∈ R256 → FC8×8×1024

→ CONVT(512,5,2) → BN → RELU
→ CONVT(256,5,2) → BN → RELU
→ CONVT(128,5,2) → BN → RELU
→ CONVT(3,4,1)

VAEs. We use convolutional networks for both the encoder and decoder of VAEs [36, 60]. Table 5
shows the details of the network architectures. We use an Adam optimizer [33] with a learning rate of
3 · 10−4 and a mini-batch size of 128. We train the model for 200 and 100 epochs on the CIFAR10
and CELEBA data sets, respectively. For the mollification training, we perturb the data for 100 and
50 epochs for CIFAR10 and CELEBA, respectively. The addtional details of the variants of VAEs are
as follows:

• VAE-IAF [35]: We use a 3-layer MADE [20] with 128 hidden units and RELU activation
for each layer and stack 2 blocks of Masked Autoregressive Flow to create the flow for
approximating the posterior.

• β-VAE [24]: We use a coefficient of β = 0.1 for the Kullback-Leibler divergence (KL) term
in the ELBO objective.

• IWAE [4]: We use a number of importance samples of K = 5.

• HVAE [5]: We set the number of leapfrog steps to used in the integrator to 1. The leapfrog
step size is adaptive with an initial value of 0.001

19

NVAE. We use the default network architecture as described in [78]. We train the model on
the CIFAR10 for 300 epochs with an AdaMax optimizer [33] with a learning rate of 10−3 and a
mini-batch size of 200. For the mollification training, we perturb the data for first 150 epochs.

D.4 UCI experiments

For MAF models [53], we employ 5 autoregressive layers, each composed of a feedforward neural
network utilizing masked weight matrices [20]. This neural networks consists of 512 hidden units and
employ the tanh activation function. For REAL-NVP [14] and GLOW [34] models, we implement 5
coupling layers, each comprising two feedforward neural networks with 512 hidden units to handle
the scaling and shift functions. The first neural network utilizes the tanh activation function, while the
latter employs a rectified linear activation function. We introduce batch normalization [29] after each
coupling layer in REAL-NVP and after each autoregressive layer in MAF. All models are trained
with the Adam optimizer [33] for 150 epochs with a learning rate of 10−4 and a mini-batch size of
100. For mollification training, we employ Gaussian mollification during the entire training process.

D.5 Evaluation Metrics

Maximum Mean Discrepancy. The MMD between two distributions pdata and pθ is defined as
follows [21]:

MMD(pdata, pθ) = sup
‖h‖H≤1

[
Epdata [h]− Epθ [h]

]
, (15)

whereH denotes a reproducing kernel Hilbert space (RKHS) induced by a characteristic kernel K.
The MMD has the closed form:

MMD2(pdata, pθ) = Ex,x′∼pdata [K(x,x′)] +Ex,x′∼pθ [K(x,x′)]−2Ex∼pdata,x′∼pθ [K(x,x′)], (16)

which can be estimated by using samples from pdata and pθ. In our experiments, we use 10K test
samples from the true data distribution pdata and 10K samples from the model distribution pθ for
estimating the MMD score.

We employ the popular RBF kernel for the MMD, which is defined as follows:

K(x,x′) = σ2 exp
(
− ‖x− x′‖2

2l

)
, (17)

with a lengthscale l = 1 and variance σ2 = 10−4.

FID score. To assess the quality of the generated images, we employed the widely used Fréchet
Inception Distance [23]. The FID measures the Fréchet distance between two multivariate Gaussian
distributions, one representing the generated samples and the other representing the real data samples.
By comparing their distribution statistics, we can assess the similarity between the generated and real
data distributions. The FID score is defined as follows:

FID = ‖µreal − µgen‖2 + Tr(Σreal + Σgen − 2
√

ΣrealΣgen). (18)

The distribution statistics are obtained from the 2048-dimensional activations of the pool3 layer of
an Inception-v3 network. We use the pytorch-fid 3 library for calculating the FID score in our
experiments.

E Addtional Results

Table 6 and Table 7 illustrate uncurated samples from the trained models. Fig. 9 and Fig. 10 show the
progression of FID scores during training on the CIFAR10 and CELEBA datasets, respectively.

3https://github.com/mseitzer/pytorch-fid

20

https://github.com/mseitzer/pytorch-fid

Table 6: Uncurated samples from the models trained on the CIFAR10 dataset.

VANILLA GAUSS. MOLLIFICATION BLUR. MOLLIFICATION

REAL-NVP

GLOW

VAE

VAE-IAF

IWAE

β-VAE

HVAE

21

Table 7: Uncurated samples from the models trained on the CELEBA dataset.

VANILLA GAUSS. MOLLIFICATION BLUR. MOLLIFICATION

REAL-NVP

GLOW

VAE

VAE-IAF

IWAE

β-VAE

HVAE

22

0 50 100 150 200

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

VAE

0 50 100 150 200

4.61

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

β-VAE

0 50 100 150 200

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

IWAE

0 50 100 150 200

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

VAE-IAF

0 50 100 150 200

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

HVAE

0 20 40 60 80

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

GLOW

Figure 9: The progression of FID scores during training on the CIFAR10 dataset.

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

VAE

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

β-VAE

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

IWAE

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

VAE-IAF

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

HVAE

10 20 30 40

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

GLOW

Figure 10: The progression of FID scores during training on the CELEBA dataset.

23

	Introduction
	Challenges in Training Deep Generative Models
	The Manifold Hypothesis and Density Estimation in Low-Density Regions
	Manifold Overfitting
	Data Mollification as a Continuation Method

	Generative Models with Data Mollification
	Experiments
	2D Synthetic Data Sets
	Image Experiments
	Density Estimation on UCI Data Sets

	Related work
	Conclusion
	A Primer on Normalizing Flows and VAEs
	Normalizing Flows
	Variational Autoencoders

	Details on Blurring Mollification
	Implementation of Noise Schedules
	Experimental Details
	Data sets
	Software and Computational Resources
	Training Details
	Toy examples.
	Imaging experiments.

	UCI experiments
	Evaluation Metrics

	Addtional Results

