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ABSTRACT

Neural networks (NNs), despite their success and wide adoption, still struggle to
extrapolate out-of-distribution (OOD), i.e., to inputs that are not well-represented
by their training dataset. Addressing the OOD generalization gap is crucial when
models are deployed in environments significantly different from the training set,
such as applying Graph Neural Networks (GNNs) trained on small graphs to large,
real-world graphs. One promising approach for achieving robust OOD gener-
alization is the framework of neural algorithmic alignment, which incorporates
ideas from classical algorithms by designing neural architectures that resemble
specific algorithmic paradigms (e.g. dynamic programming). The hope is that
trained models of this form would have superior OOD capabilities, in much the
same way that classical algorithms work for all instances. We employ sparsity
regularization as a tool for analyzing the role of algorithmic alignment in achieving
OOD generalization, focusing on graph neural networks (GNNs) applied to the
canonical shortest path problem. We prove that GNNs, trained to minimize a
sparsity-regularized loss over a small set of shortest path instances, are guaranteed
to extrapolate to arbitrary shortest-path problems, including instances of any size.
In fact, if a GNN minimizes this loss within an error of ϵ, it computes shortest
path distances up to O(ϵ) on instances. Our empirical results support our theory by
showing that NNs trained by gradient descent are able to minimize this loss and
extrapolate in practice.

1 INTRODUCTION

Neural networks (NNs) have demonstrated remarkable versatility across domains, yet a persistent
and critical challenge remains in their ability to generalize to out-of-distribution (OOD) inputs, i.e.,
inputs that differ distributionally from their training data. This challenge is pervasive in machine
learning and arises whenever a model is applied to situations that are not represented in the training
data. For instance, a medical diagnosis model trained on North American patients may struggle to
generalize when applied to patients in the UK due to differences in underlying population distributions.
This issue has motivated entire subfields, such as distribution shift, transfer learning, and domain
adaptation (10; 32; 23).
Graphs, in particular, highlight this challenge as they can vary dramatically in size, connectivity, and
topological features. Graph neural networks (GNNs) (27; 11) have seen tremendous development
in the past decade (44; 35), and have been broadly applied to a wide range of domains, from social
network analysis (9; 4) and molecular property prediction (7; 36; 34) to combinatorial optimization
(1; 15). However, these applications often involve scenarios where the graphs encountered in practice
are significantly larger, more complex, or structurally distinct from those in training. The case of size
generalization, where we hope to generalize to graphs larger than seen in training, is an especially
severe case of the OOD generalization problem as the graphs belong to distinct spaces, making the
training and test distributions disjoint.
Empirical evidence shows that a powerful route to OOD generalization is algorithmic align-
ment—designing a model’s architecture to match a target algorithmic framework (39; 2). Such
alignment biases the network to finding solutions that resemble algorithms, and thus, inherits proper-
ties of algorithms like size independence that can aid OOD generalization. Despite many empirical
successes, theoretical guarantees for this approach remain extremely limited.
The primary challenge to OOD guarantees is the very expressivity that makes neural networks
successful: highly expressive models can fit the training distribution while realizing hypotheses
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that fail off-distribution. (See (42) for an example with GNNs, and interesting discussion on the
challenges of size generalization.) Consequently, capacity-based generalization bounds are ill-suited
to distribution shift and to size generalization. Existing positive results typically assume a tightly
controlled relation between train and test. For example, they embed graphs of different sizes into a
shared limit space (graphons) and bound their distance (24; 17; 16; 21), or impose explicit discrepancy
bounds between the two distributions (23; 22)—thereby narrowing applicability. We instead ask, can
OOD generalization guarantees be achieved without any assumptions on the data? We answer this
question in the affirmative by taking an approach that focuses on analyzing a model’s inductive bias.
In particular, our introduction of explicit regularization makes the effect of algorithmic alignment on
inductive bias explicit and analyzable, rendering OOD guarantees tractable.

By combining algorithmic alignment and sparsity (which lend strong inductive biases), we
demonstrate that it is possible to train GNNs that provably overcome OOD generalization
challenges for the canonical task of computing shortest paths. In particular, we show that
training a GNN on just a few well selected small graphs can yield a model that generalizes
provably well to arbitrarily large graphs, marking the first result of this kind.

Message-passing graph neural networks are popular architectures for handling data in the form of
graphs (cf. surveys (11; 45)). At a high level, they operate by assigning each node v an embed-
ding—say, a vector hv ∈ Rd—and then iteratively updating these embeddings until they contain a
solution to the problem at hand. During each step, each node updates its embedding based on the
embeddings of its neighbors and the weights of the edges connecting them. More precisely, letting
h
(ℓ)
v denote the embedding after ℓ update steps,

h(ℓ)
v = f up

(
h(ℓ−1)
v , f combine

(
{h(ℓ−1)

u ⊕ wuv : u ∈ N (v)}
))

, (1)

where ⊕ denotes concatenation, wuv is the weight of the edge between u and v, the set N (v) is the
neighborhood of v, and where f combine and f up are functions realized by feedforward neural nets. In
this way, after ℓ update steps, each node’s embedding can incorporate information from other nodes
up to ℓ hops away. Since we focus only on message-passing graph neural networks in this work, we
refer to them simply as GNNs henceforth. As this model applies to graphs with any number of nodes,
a key question is: when and how do GNNs perform well on inputs of varying size?
Neural algorithmic alignment is a well-studied framework aiming to design neural architectures
that align structurally with specific algorithmic paradigms for the purpose of improving the OOD
generalization abilities of a NN. For instance, an astonishingly vast range of practical algorithms are
based on dynamic programming, an algorithmic strategy that exploits self-reducibility in problems:
that is, expressing the solution to the problem in terms of solutions to smaller problems of the same
type. Shortest paths admit such a decomposition: if the shortest path from s to t goes through node u,
then it consists of the shortest path from s to u, followed by the shortest path from u to t, two smaller
subproblems. Interestingly, dynamic programs appear to be well-aligned with graph neural networks
(37; 3).
The Bellman-Ford (BF) algorithm for shortest-path computations is the canonical example in the
algorithmic alignment literature, highlighting the connection between dynamic programming and
message-passing GNNs. In each iteration k of BF, the shortest path distances from each node to
the source that are achievable with at most k steps are computed using the shortest path distances
achievable with at most (k − 1) steps. For a specific node v, the distance d

(k)
v is updated as

d(k)v = min
{
d(k−1)
u + w(u,v) : u ∈ N (v)

}
, (2)

where w(u,v) is the weight of the edge connecting u to v. This iterative update process closely mirrors
the message-passing mechanism in GNNs, where node features are updated layer by layer based on
aggregated information from their neighbors.

Contribution. Our work provides theoretical guarantees and empirical validation of out-of-
distribution generalization, and marks a significant advancement in understanding the benefits of
neural algorithmic alignment. While many prior studies have highlighted the expressivity of NNs, the
structural similarity of GNNs and classical algorithmic control flows, and their capacity to mimic
algorithmic behavior, they typically fall short of providing rigorous guarantees on generalization,
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Figure 1: Diagram showing L GNN layers. The node features are represented by rectangles. At
each layer, node features are updated according to neighboring node features and the weights of the
adjoining edges.

particularly in the OOD setting. In contrast, we show that, by using sparsity regularized training
regime, GNNs aligned with the BF algorithm provably extrapolate to arbitrary graphs, regardless of
size or structure.
We use sparsity to elucidate the connection between GNNs and the Bellman-Ford (BF) algorithm
and demonstrate how it provides guaranteed OOD generalization. In particular, we show that if a
GNN minimizes a sparsity-regularized loss over a particular small set of shortest-path instances,
then the GNN exactly implements the BF algorithm and hence works on arbitrary graphs, regardless
of size. Furthermore, if the GNN minimizes the loss up to some error, then it generalizes with at
worst proportional error. In this sense, a small sparsity-regularized loss over a specific set instances
serves as a certificate guaranteeing the model’s ability to generalize to arbitrary graphs. Furthermore,
we empirically validate that gradient-based optimization indeed finds these BF-aligned solutions,
highlighting the practical viability of leveraging algorithmic alignment for enhanced generalization.
This work moves algorithmic alignment beyond intuitive analogies or expressivity-based arguments.
Moreover, our results highlight the unique potential of algorithmic alignment to bridge data-driven
and rule-based paradigms, offering a principled framework for tackling generalization challenges
in NNs. We believe that our approach combining regularization with algorithmic alignment to analyze
OOD generalization will prove useful in other settings. Indeed, subsequent work of (5) has used a
similar approach to get OOD generalization guarantees for GNNs in solving the heat equation.

1.1 RELATED WORK

Neural algorithmic alignment. Data-dependent approaches to solving combinatorial optimization
problems have surged in the past few years (1) with GNNs among the most popular architectures
used. Early work on GNNs for algorithmic tasks was primarily empirical (15; 13) or focused on
representational results (26; 19). The idea of neural algorithmic alignment emerged as a conceptual
framework for designing suitable GNNs, by selecting architectures that could readily capture classical
algorithms for similar tasks. This framework has sample complexity benefits (37) and promising
empirical results (28; 8; 38). It has also gained traction as a way of understanding the theoretical
properties of a given model in terms of its behavior for simple algorithmic tasks (such as BF shortest
paths or dynamic programming as a whole) (29; 31; 30; 6). Our work is the first to establish, both
theoretically and empirically, that a NN will converge to the correct parameters which implement a
specific algorithm.

Size generalization. Size generalization of graph neural networks has been studied empirically, in a
variety of settings including classical algorithmic tasks (29), physics simulations (25), and efficient
numerical solvers (20). There is also work on generalization properties of infinite-width GNNs (the
so-called neural tangent kernel regime); for the simple problem of finding max degree in a graph,
(39) show that graph neural networks in the NTK regime with max readout can generalize to out-of-
distribution graphs. Complementary graphon approaches use graph limits combined with continuity
of GNNs to understand size generalization (24; 17; 16; 21). Beyond size generalization in GNNs,
there is a parallel literature on Transformers that analyzes extrapolation to longer sequences, often
called length generalization (instead of size generalization). Current work on length generalization
asks whether models trained on short sequences of simple arithmetic problems such as addition and
modular addition can correctly solve longer problems of the same type (43; 12; 18; 14). Within
this line, RASP and C-RASP model attention as discrete programs, yielding logic equivalences and
depth hierarchies that attempt to explain when such programs extrapolate (33; 43; 41; 40). Although
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these works offer empirically grounded frameworks for size generalization, they provide no formal
guarantees. In contrast, we give conditions for provable size generalization.

2 EXTRAPOLATION GUARANTEES

2.1 MODEL

Updated 
node

 feature

Figure 2: Visual representation of the ℓ-th layer of a MinAgg
GNN operating on a graph G, where fagg,(ℓ) is the aggre-
gation MLP and fup,(ℓ) is the update MLP. Only nodes in
the neighborhood N (v) of v are used in the update, so the
output at v is independent of x and y.

In graph neural networks, each node
(and possibly edge) is associated with
a vector, and in each layer of process-
ing, these vectors are updated based
on the vectors of neighboring nodes
and adjacent edges. An attributed
undirected graph is of the form G =
(V,E,Xv, Xe), where Xe = {xe :
e ∈ E} are the edge embeddings and
Xv = {xv : v ∈ V } are the node
embeddings. In our case, the edge
embeddings will simply be fixed non-
negative edge weights, x(u,v) = wuv,
with self-loops set to zero, x(u,u) = 0.
The initial conditions and final an-
swer are therefore contained in the
node embeddings Xv. For instances
of shortest path problems, we take
xv = 0 if v is the source node and
use xv = β to indicate nodes with in-
finite distance to the source, where β
is some number greater than the sum of edge weights. The space of graphs we consider is then

G =

{
G = (V,E,Xv, Xe) :

∑
e∈E

xe < β

}
.

The embedding of node v at step ℓ is denoted h
(ℓ)
v and follows the update rule in Eq. 1 above. (When

referring to specific graphs we use h
(ℓ)
v (G) and x(u,v)(G).)

The fup,(ℓ) function is an MLP that takes two vectors as input: the current embedding of node v, and
a vector representing the aggregated information from v’s neighbors. It outputs the new embedding of
v. Here N (v) denotes the neighbors of node v, and we take them to include v itself. The f combine,(ℓ)

function combines the embeddings of v’s neighbors, and the edge weights, into a single vector. A
common choice is to apply some MLP fagg,(ℓ) to each (neighbor, edge weight) pair and to then take
the sum, or max, or min, of these |N (v)| values. We adopt the min. This design choice aligns the
network with the structure of the BF algorithm, while still representing a broad and expressive class
of GNNs.
Definition 2.1. An L-layer Min-Aggregation Graph Neural Network (MinAgg GNN) with d-
dimensional hidden layers is a map Aθ : G → G which is computed by layer-wise node-updates (for
all ℓ ∈ [L]) defined as

h(ℓ)
v = fup,(ℓ)

(
min

u∈N (v)
{fagg,(ℓ)(h(ℓ−1)

u ⊕ x(u,v))} ⊕ h(ℓ−1)
v

)
(3)

where fagg,(ℓ) : Rdℓ−1+1 → Rd and fup,(ℓ) : Rd+dℓ−1 → Rdℓ are L-layer ReLU MLPs, and
d0 = dK = 1. Given an input G = (V,E,Xv, Xe) the initialization is h(0)

u = xu.

For simplicity, we assume that dℓ = d for L > ℓ > 0. This assumption is made to reduce the
number of hyperparameters needed in the analysis, but is made without loss of generality – all
of our results hold with general dℓ. Furthermore, the choice to make all MLP’s have L layers is
also made for simplicity of presentation (again, without loss of generality). Let Γ be a map which
implements a single step of the BF algorithm. If G = (V,E,Xe, Xv) is an attributed graph, then
Γ(G) = (V,E,Xe, X

′
v) such that for any v ∈ V ,

x′
v = min{xu + x(u,v) : u ∈ N (v) ∪ {v}}.
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Figure 3: Graphs used in the training sets Hsmall and GK .

We aim to train a GNN to learn K iterations of Γ, which we denote by ΓK .

2.2 TOY EXAMPLE

We begin with a toy example that introduces the main ideas. Suppose we look at perhaps the simplest
possible GNN that is capable of computing shortest paths. It has updates of the form

h(1)
v = σ(w2 min

u∈N (v)
{σ(W1(xu ⊕ x(v,u) + b1))}+ b2) (4)

Notice that there are just five parameters in this model: b1, b2, W11, W12, and w2. The BF algorithm
can be simulated by this GNN, as b1 = b2 = 0 and W11 = W12 = w2 yields Eq. 2. Interestingly,
there are many parameter choices that implement the BF update: all that is needed is that w2W11 =
w2W12 = 1 and w2b1 + b2 = 0. Now, let’s consider training this model using a small collection of
eight graphs, each a path consisting of just one or two edges. Specifically, let Hsmall = H0 ∪ H1

with

H0 = {P (0)
1 (ai) : i ∈ {1, . . . , 4}} and H1 = {P (1)

2 (ai, 0) : i ∈ {5, . . . , 8}} (5)

where P
(m)
k denotes a path graph as defined in Fig. 3. The labeled training set is then Hsmall =

{(G,Γ(G)) : G ∈ Hsmall}.

Theorem 2.2. Let 0 < ϵ < 1. If ∀G ∈ Hsmall and ∀u ∈ V (G), a 1-layer GNN Aθ with update
given by Eq. 4 computes a node feature satisfying |h(1)

u (G)− xu(Γ(G))| < ϵ
20 , then for any G′ ∈ G

and v ∈ V (G′)

(1− ϵ)xv(Γ(G
′))− ϵ ≤ h(1)

v (G′) ≤ (1 + ϵ)xv(Γ(G
′)) + ϵ.

This theorem shows that if the GNN in Eq. 4 achieves low loss on Hsmall then it must implement the
Γ operator (a BF step) up to proportionally small error.

Proof Sketch. Recall that σ(·) is the ReLU activation function, which effectively divides the input
space into two halfspaces. This means that the output of the model on any of the input graphs is one
of just 4 possible linear functions of the input. The number of input graphs is enough to cover all
these cases, so if there is small error on Hsmall, the model must simplify to

h(1)
v = w2( min

u∈N (v)
W1(xu ⊕ x(v,u) + b1) + b2) (6)

for most training instances. It is now straightforward to show small error is only achieved if w2W11

and w2W12 are close to 1 and w2b1 + b2 is close to zero. These conditions guarantee that the BF
algorithm is approximately identified.

2.3 MAIN RESULT

Now we move to our main result. This time, we consider a full MinAgg GNN as given by Def. 2.1.
To train this model, we again use a small number of simple graphs. The training set contains

GK = Gscale,K ∪ {P (0)
1 (1), P

(1)
2 (1, 0), H

(0)
K } (7)

5
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where Gscale,K contains all path graphs of the form P
(1)
K+1(a, 0, . . . , 0, b, 0, . . . , 0) for (a, b) ∈

{0, 1, . . . , 2K} × {0, 2K + 1}} (b is the weight of the kth edge). The training instance H
(0)
K ,

is shown in Fig. 3. The labeled set is GK = {(G,ΓK(G)) : G ∈ GK}.
For each graph in the training set G ∈ Gtrain, we compute the loss only over the set of nodes reachable
from the source V ∗(G) (the total number of reachable nodes is |Gtrain|∗). The regularized loss we
use Lreg is

Lreg(Gtrain,Aθ) = LMAE(Gtrain,Aθ) + η∥θ∥0, (8)

where LMAE is
1

|Gtrain|∗
∑

G∈Gtrain

∑
v∈V ∗(G)

|xv(Γ
K(G))− hK

v (G)|.

Theorem 2.3. Consider a training set Gtrain with M total reachable nodes and GK ⊂ Gtrain. For
L ≥ K > 0, if an L-layer MinAgg GNN Aθ with m-layer MLPs achieves a loss Lreg(Gtrain,Aθ)
within ϵ of its global minimum, where 0 < ϵ < η < 1

2M(mL+mK+K) , then on any G ∈ G the features
computed by the MinAgg GNN satisfy

(1−Mϵ)xv(Γ
K(G)) ≤ h(L)

v (G) ≤ (1 +Mϵ)xv(Γ
K(G))

for all v ∈ V (G).

This theorem shows that low regularized loss implies that an L layer MinAgg GNN correctly
implements ΓK (i.e., K-steps of BF), where the error in implementing this operator is proportional to
the distance of the loss from optimal. We later show in experiments that this low loss can be achieved
via L1-regularized gradient descent. Here we allow for the training set Gtrain to be larger than GK .
However, these additional training examples dilute the training signal from GK , and so the strongest
bounds are given if Gtrain = GK .

Proof Sketch.

1. Implementing BF: mL +mK +K non-zero parameters are sufficient for the MinAgg
GNN to perfectly implement K steps of the BF algorithm.

2. Sparsity Constraints: Next, we show that small loss on GK necessitates at least mL +
mK +K non-zero parameters. Specifically, we show the following.

• High accuracy on P
(0)
1 (1) can only be achieved if each layer of fup,(ℓ) has at least one

non-zero entry. This requires mL non-zero parameters.
• High accuracy on H

(0)
K requires K layers where fagg,(ℓ) depends on both the node and

edge components of its input. This means that each layer of fagg,(ℓ) has at least one
non-zero entry, and the first layer of fagg,(ℓ) has two non-zero entries. This requires
mK +K non-zero parameters.

We use this fact to derive that the minimum value of Lreg is η(mL+mK +K). The BF
implementation reaches the minimum value of Lreg since it achieves perfect accuracy with
mL+mK +K non-zero parameters.

3. Simplifying the Updates: Using the above sparsity structure, we can simplify the
MinAgg GNN updates to an equivalent update where the intermediate dimensions
are always 1 and there are K updates instead of the previous m updates: h

(k)

v =

µ(k) minu∈N (v)

{
h
(k−1)

v + ν(k)x(u,v)

}
where µ(k), ν(k), h

(k)

v ∈ R.
4. Parameter Constraints and Approximation: If Lreg is within ϵ of its minimum, the

parameters µ(k), ν(k) must be constrained to avoid poor training accuracy on certain graphs.
These constraints ensure node features approximate BF’s intermediate values, and compiling
these errors completes the proof.

6
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(a) Error metrics for models trained with LMSE,L1 .
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(b) Error metrics for models trained with LMSE.
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(c) Model parameters summaries for model trained with
LMSE,L1 .
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(d) Model parameters summaries for model trained with
LMSE.

Figure 4: Performance metrics and parameter updates for a two-layer MinAgg GNN trained on a
two steps of the BF algorithm. The dotted line in (a) and (b) is the global minimum of Eq. (8). In (a)
and (b), we track the change in the train loss, test loss, and Lreg over each optimization step for the
models trained with LMSE,L1 and LMSE. The final test loss for the model trained with LMSE,L1 is
0.006 while the final test loss for the model trained with LMSE is 0.288. (c) and (d) show changes in
model parameters over each optimization step with and without L1 regularization, respectively. Each
curve has been smoothed with a truncated Gaussian filter with σ = 20.

3 EXPERIMENTS

Our main theoretical results (Theorems 2.2 and 2.3) state that a trained model with a sufficiently low
L0-regularized loss approximates the BF procedure. We now empirically show how to find such a
low-loss trained model by applying gradient descent to a L1-regularized loss LMSE,L1

given by

1

|Gtrain|∗
∑

G∈Gtrain

∑
v∈V ∗(G)

(xv(Γ
K(G))− hK

v (G))2

︸ ︷︷ ︸
LMSE

+ ∥θ∥1. (9)

This training loss LMSE,L1
is a practical proxy for the L0 regularized loss Lreg. To see the effect

of sparsity regularization (L1-term), we also train a comparison model using the unregularized loss
LMSE (bracketed terms in Eq. (9)). We show that models trained with LMSE,L1

find sparse and
generalizable solutions for BF; while models trained without sparsity regularization (with LMSE)
have worse generalization.

Additional setup. We verify our theoretical results empirically using a two-layer MinAgg GNN
trained on two steps of BF. Specifically, we show that converging to a low value of Lreg indicates
better performance – particularly in improving generalization to larger test graphs. We additionally
show that with L1 regularization, the trained model parameters approximately implement a sparse
BF step. In our experiments, we configure the MinAgg GNN with two layers and 64 hidden units in
both the aggregation and update functions. The first layer has an output dimension of eight, while the
second layer outputs a single value. In the supplement, we present additional results evaluating the
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Single Iterated
# of nodes No L1-reg. With L1-reg. No L1-reg. With L1-reg.

100 0.0202 ± 0.0055 0.0014 ± 0.0002 0.0617 ± 0.0111 0.0036 ± 0.0002
500 0.0242 ± 0.0231 0.0015 ± 0.0002 0.0881 ±0.0080 0.0036 ± 0.0002
1K 0.0183 ± 0.0066 0.0035± 0.0005 0.0951 ± 0.0127 0.0092 ± 0.0030

Table 1: Measuring Etest as the number of nodes per graph increases. We test models trained with
LMSE,L1

and models trained with LMSE. For each model, we examine Etest (first two columns): for
two steps of BF (a single forward pass of each model) and (last two columns): for six steps of BF
(where each model is iterated three times). Each test set consists of Erdös–Rényi graphs generated
with the corresponding sizes listed with p such that the expected degree np = 5. For both models,
there is little variation in Etest as the graph size increases. However, for the iterated version of each
model, Etest for the model trained with LMSE,L1

remains accurate, while the unregularized model
shows a significantly larger test error when iterated 3 times (i.e, comparing third column with first
column).

performance of several other model configurations on one and two steps of BF. To evaluate trained
models, we use the following three error metrics:

1. Empirical training error (EMSE): This error EMSE is the same as LMSE and tracks the
model’s accuracy on the training set. Gtrain consists of GK where K = 2 as well as four
three-node path graphs initialized at step zero of BF and four five-node path graphs initialized
at step two of BF. We include these extra graphs to provide examples for the initial and final
two steps of the BF algorithm. Empirically, we observe that this expanded training set eases
model convergence.

2. Test error (Etest): We compute the average multiplicative error of the model predictions
compared to the ground-truth BF output over a test set Gtest:

Etest(Gtest) =
1

|Gtest|
∑

G∈Gtest

∑
v∈V (G)

∣∣∣1− xv(Γ
K(G))

hK
v (G)

∣∣∣.
Gtest consists 200 total graphs. In order to test the generalization ability of each model,
we construct Gtest from 3-cycles, 4-cycles, complete graphs (with up to 200 nodes), and
Erdös-Rényi graphs generated using p = 0.5.

3. L0-regularized error (Ereg): This metric, which is Lreg (see Eq. 8) evaluated on Gtrain,
shows how the model’s performance satisfies the conditions of Theorem 2.3.

Furthermore, we also track a summary of the model parameters per epoch. For a detailed discussion
of the model parameter summary see the supplement. In brief, at each layer, we track biases, the
parameters which scale the node features, and the parameters which scale the edge features. For the
sparse implementation of two-steps of BF, the node and edge parameter updates both have the same
single non-zero positive value a in the first layer. In the second layer, the node and edge parameter
updates both have a single non-zero positive value but the edge parameter update converges to 1
while the node parameter update converges to 1/a.

Results. Fig. 4 shows the results of training on two steps of BF. Here (a) and (b) show LMSE,L1

(i.e, the model trained with regularized loss) achieves a low value of Lreg and a correspondingly a
low test error, Ltest (in the supplement, we show that this small value of Lreg satisfies the conditions
of Theorem 2.3). In contrast, the model trained with LMSE (i.e., regularized loss) has significantly
higher Lreg and Ltest. Although both models achieve values of EMSE below 0.10, we see that the
train error does not necessarily indicate if a sparse implementation of Bellman-Ford has been learned.
As such, Fig. 4 (a) and (b) experimentally validates Theorem 2.3 by demonstrating that low values
of Lreg yield better generalization on test graphs with different sizes and topologies from the train
graphs. In Fig. 4 (c) and (d), we elucidate the effect of L1 regularization with regards to achieving
low values of Lreg and show that that the model trained with LMSE,L1

indeed approximates a sparse
implementation of BF. To further illustrate that achieving low values of Lreg implies that the BF GNN
model will learn to implement Bellman-Ford, we provide parameter heatmaps for models trained with
L1 regularization and without in Fig. 5. We observe that the model trained with L1 regularization
implements exactly the parameters for Bellman-Ford suggested from our theory.
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In Table 1, we further assess the generalization ability of the L1-regularized model on sparse Erdös-
Renyí graphs of increasing sizes as compared to the unregularized model. Interestingly, when
we use the trained 2-step MinAgg GNN as a primitive module and iterate it 3 times (to estimate
2× 3 = 6 BF steps), the test error of our L1-regularized model does not accumulate while the error
by the un-regularized model increases by roughly a factor of 3. Again, L1 regularization improves
generalization. By iteratively applying the trained 2-step BF multiple times, we obtain an neural
model to approximate general shortest paths with guarantees.

4 DISCUSSION

(a) (b)-regularized model  Un-regularized model

Figure 5: Example of the parameter heatmaps
for both the L1-regularized model and the
un-regularized model. Our Bellman-Ford
model update per node feature is defined as
σ(W

(ℓ)
(up) min{σ(W (ℓ)

(agg)(xu + x(u,v) + b
(ℓ)
(agg)) :

u ∈ N (v)} + b
(ℓ)
(up). Notice that our L1 regular-

ized model only has 6 non-zero parameters (exactly
as suggested by our theoretical results) while the
un-regularized model does not.

We show that algorithmic alignment can fun-
damentally enhance out-of-distribution (OOD)
generalization. By training GNNs with a
sparsity-regularized loss on a small set of
shortest-path instances, we obtain models that
correctly implement the BF algorithm. This
result provides a theoretical guarantee that the
learned network can generalize OOD to graphs
of sizes and structures beyond those encoun-
tered during training. This is one of the first
results where a neural model, when trained to
sufficiently low loss, can guarantee OOD size
generalization for a non-linear algorithm.
A key challenge in machine learning research
lies in comparing neural networks with similar
expressivity but different generalization behav-
iors. This challenge centers on understanding
the inductive biases that guide models toward
particular solutions. Sparsity regularization cre-
ates a setting where the influence of architecture
choice on inductive bias is clear and easy to an-
alyze. Indeed, our work demonstrates how this
regularization interacts with the GNN architec-
ture to bias the GNN toward implementing the
Bellman-Ford algorithm. By making inductive biases explicit and quantifiable, we gain insight into
why algorithmic alignment is effective at promoting neural networks to generalize beyond their
training distribution, a critical capability for real-world applications.

Extensions. As our BF-aligned GNN correctly implements K steps, we can extend this capability
by recurrently iterating the network. (See the last column of Table 1.) This approach allows the
network to solve shortest-path problems that require more than K iterations. Such scalability enables
generalization to shortest-path computations that require arbitrary computational costs.
Furthermore, the ability to learn a single algorithmic step is valuable in broader contexts of neural
algorithmic reasoning. This modular design means that the MinAgg GNN can serve as a subroutine
within more complex neural architectures that aim to solve higher-level tasks. For instance, in neural
combinatorial optimization or graph-based decision-making tasks, shortest-path computations are
often just one component of a larger process. By ensuring the network reliably implements each step
of the BF algorithm, we create a reusable building block that can be integrated into more sophisticated
models. This supports the goal of developing NNs that can reason algorithmically, enabling them to
solve increasingly complex problems through the composition of learned algorithmic steps.

Conclusion. Our work opens an exciting new direction for research by raising the question of
when low training loss can serve as a guarantee for out-of-distribution generalization in other tasks
or architectures. While our results focus on the BF algorithm and message-passing GNNs, they
suggest the potential for similar guarantees in other instances of alignment, such as different (dynamic
programming based) graph algorithms, sequence-to-sequence tasks, or architectures like transformers
and recurrent neural networks. Investigating the structural and algorithmic properties that enable
such guarantees could provide a unified framework for designing NNs that generalize reliably across
diverse tasks and input domains.
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A DEFINITIONS AND NOTATION

We begin with definitions and notations we utilize in our proof. To ensure the supplementary
material is easy to navigate and reader-friendly, we reiterate some definitions from the main text.
We take [n] = {1, 2, . . . , n} and use x⊕ y to denote the concatenation of the vectors x and y. The
neighborhood of a node v is denoted N (v) and we use the convention v ∈ N (v). When referring to
the ith component of x we write xi or [x]i.

Given a source node s ∈ V , let d(t)(s, v) denote the length of the t-step shortest path from s to v. If no
such path exists, d(t)(s, v) = β and β is some large number. We define a single t-step Bellman-Ford
instance to be a attributed graph G(t) = (V,E,Xv, Xe) where Xv = {xv = d(t)(s, v) : v ∈ V } for
some s ∈ V . For every 0-step Bellman-Ford instance G(0) = (V,E,Xv, Xe), xs = 0 for the source
node s ∈ V and xu = β for all other nodes u ∈ V . Throughout this manuscript, t-step BF instances
are always denoted by a superscript (t). Recall that all edge weights considered in this manuscript
are non-negative.
Let Γ be a map which implements a single step of the BF algorithm. If G = (V,E,Xe, Xv) is an
attributed graph, then Γ(G) = (V,E,Xe, X

′
v) such that for any v ∈ V ,

x′
v = min{xu + x(u,v) : u ∈ N (v)}.

Let ΓK be K iterations of Γ. Note that applying ΓK to a 0-step Bellman-Ford instance G(0) yields
the K-step shortest path from s to v, i.e., ΓK(G(0)) = G(K). Although we restrict our training set to
BF instances, our extrapolation guarantees show that the MinAgg GNN approximates the operator
ΓK on any graph in

G =

{
G = (V,E,Xv, Xe) :

∑
e∈E

xe < β

}
.

Define a length-k path graph instance as P
(t)
k (a1, . . . , ak) = (V,E,Xv, Xe) where V =

{v0, v1, . . . , vk} and E = {(vi−1, vi) | i ∈ {1, . . . , k}}. Let x(vi−1,vi) = ai, xv0 = 0 (i.e. the
source node is s = v0) and xvi = d(t)(s, vi) for i > 0.
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Definition A.1. An L-layer MinAgg GNN with d-dimensional hidden layers is a map Aθ : G → G
which is computed by layer-wise node-updates (for all ℓ ∈ [L]) defined as

h(ℓ)
v = fup,(ℓ)

(
min

u∈N (v)
{fagg,(ℓ)(h(ℓ−1)

u ⊕ x(u,v))} ⊕ h(ℓ−1)
v

)
(10)

where fagg,(ℓ) : Rdℓ−1+1 → Rd and fup,(ℓ) : Rd+dℓ−1 → Rdℓ are L-layer ReLU MLPs, and
d0 = dK = 1. Given an input G = (V,E,Xv, Xe) the initialization is h(0)

u = xu. The MinAgg GNN
Aθ has output Aθ(G) = (V,E,X ′

v = {h(ℓ)
v : v ∈ V }, Xe). A simple L-layer MinAgg GNN instead

uses the layer-wise update

h(ℓ)
v = fup,(ℓ)

(
min

u∈N (v)
{fagg,(ℓ)(h(ℓ−1)

u ⊕ x(u,v))}
)
. (11)

We refer to the first dℓ−1 components of the domain of fagg,(ℓ) as its node component, and we refer
to the last component of the domain of fagg,(ℓ) as its edge component.
A K-step training set Gtrain is a set of tuples where for each element (G(t),ΓK(G(t))) ∈ Gtrain the
graph G(t) is a t-step BF instance. For a graph G = (V,E,Xv, Xe) let V ∗(G) = {v ∈ V : xv ̸= β}
be the set of reachable nodes and let |Gtrain|∗ =

∑
G(t)∈Gtrain

|V ∗(G(t))| be the total number of
reachable nodes in the training set. For each graph G we consider the training loss over the subset of
vertices V ∗(G) because the choice of the feature at unreachable nodes β is arbitrary and so should
not be included when providing supervision for shortest path problems.

Definition A.2. An m-layer ReLU MLP is a function fθ : Rd0 → Rdm parameterized by θ = {Wj :
Wj ∈ Rdj×dj−1 , j ∈ [m]} ∪ {bj : bj ∈ Rdj , j ∈ [m]} where for all j ∈ [m],

x(0) = x,

x(j) = σ(Wjx
(j−1) + bj),

and fθ(x) = x(m). Here, σ is the rectified linear unit (ReLU) activation function.

The MinAgg GNN is parameterized by the set of weights

θ =

L⋃
ℓ=1

(θup,(ℓ) ∪ θagg,(ℓ)),

where θup,(ℓ) and θagg,(ℓ) denote the parameters of the update and aggregation MLPs at layer ℓ,
respectively.
We also formalize the definition of path graph instances. A 0-step path graph instance
P

(0)
k (a1, . . . , ak) consists of a graph (V,E,Xv, Xe) where the vertex set is V = {v0, v1, . . . , vk},

the edge set is E = {(vi−1, vi) : i ∈ {1, . . . , k}}, and the edge weights are defined as x(vi−1,vi) = ai
for i ∈ {1, . . . , k}. The node features are initialized as xv0 = 0 for the source node v0, while all
other nodes vi for i > 0 are initialized with xvi = β, representing an unreachable state.

B WARM-UP: SINGLE LAYER GNNS IMPLEMENT ONE STEP OF BF

We start with the simple setting of a single layer GNN with shallow and narrow MLP components.
This example provides key insights on why a perfectly (or almost perfectly) trained model can
generalize. We analyze the general case of a multilayer GNN with wide and deep MLPs in Sec. C.
Although the general case is more sophisticated technically, the approach follows similar intuitions.
In particular, we later show that sparsity regularization can be used to reduce the analysis of GNN
with wide and deep MLPs trained on a single BF step to the simple model analyzed in this section.
We start by by proving Theorem B.1, which shows how perfect accuracy on Hsmall requires certain
restrictions on parameters of the simple MinAgg GNN. Next, in Corollary B.2 we show that such
restrictions guarantee the parameters implement the BF algorithm. Finally, we extend this analysis to
evaluate how MinAgg GNNs approximately minimizing the training loss perform on arbitrary graphs
in Theorem 2.2
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Suppose we have a simple 1-layer Bellman-Ford GNN, Aθ, where fup,(0) : R → R and fagg,(0) :
R2 → R are single layer MLPs. To be explicit:

h(1)
u = σ(w2 min{σ(W1(xv ⊕ x(u,v) + b1)) : v ∈ N (u) ∪ {u}}+ b2), (12)

where σ is ReLU, W1 ∈ R1×2, and w2, b1, b2 ∈ R.
We consider the training set

Hsmall = {(P (0)
1 (ai), P

(1)
1 (ai)) : i ∈ {1, . . . , 4}} ∪ {(P (1)

2 (ai, 0), P
(2)
2 (ai, 0)) : i ∈ {5, . . . , 8}}.

(13)
For concreteness we take ai = 2i, and we utilize these specific choices of edge weights in the proof
of Theorem 2.2. However, any choice of ai satisfying ai ̸= aj if i ̸= j and ai > 0 is sufficient for
the other results in this section.
Theorem B.1. If, ∀(H(t),Γ(H(t))) ∈ Hsmall,

Aθ(H
(t)) = Γ(H(t)),

i.e. the computed node features are h(1)
u (H(t)) = xu(Γ(H

(t))) for all u ∈ V (H(t)), then w2W1 = 1
and w2b1 + b2 = 0.

Proof. First, note that from the definition of P (0)
1 (ai), the source node is s = v0 so xv0 = 0, and

xv1(P
(0)
1 (ai)) = β. Additionally, given the training example (P

(0)
1 (ai), P

(1)
1 (ai)) ∈ Hsmall, recall

that P (0)
1 (ai) is the input to Aθ (1-layer Bellman-Ford GNN). By the definition of Aθ, the computed

node feature for v1 ∈ V (P
(0)
1 (ai)) is

h(1)
v1 = σ(w2 min{σ(W1(xv1 ⊕ x(v1,v1)) + b1), σ(W1(xv0 ⊕ x(v0,v1)) + b1)}+ b2)

= σ(w2 min{σ(W11β + b1), σ(W12ai + b1)}+ b2)

where σ is the ReLU activation function. Since

Aθ(P
(0)
1 (a1)) = P

(1)
1 (a1)

...

Aθ(P
(0)
1 (a4)) = P

(1)
1 (a4),

for each v1 ∈ V (P
(1)
1 (ai)), xv1(P

(1)
1 (ai)) = ai so h

(1)
v1 (P

(0)
1 (ai)) = ai. Therefore,

a1 = σ(w2 min{σ(W11β + b1), σ(W12a1 + b1)}+ b2)

...
a4 = σ(w2 min{σ(W11β + b1), σ(W12a4 + b1)}+ b2).

Suppose σ(W11β+b1) = min{σ(W11β+b1), σ(W12ai+b1)} and σ(W11β+b1) = min{σ(W11β+
b1), σ(W12aj + b1)} for i ̸= j. Then ai = aj when i ̸= j which is a contradiction. Therefore, there
can be at most one i for which ai = σ(w2σ(W11β + b1) + b2). WLOG, assume that

ai = σ(w2σ(W12ai + b1) + b2)

where i ∈ [3]. Since ai > 0 and σ is the ReLU function, we have that ai = w2σ(W12ai+b1)+b2 for
i ∈ [3]. Suppose W12ai+ b1 ≤ 0 and W12aj + b1 ≤ 0 for i, j ∈ [3] where i ̸= j. Then ai = aj = b2
which is a contradiction. WLOG, assume that W12ai+ b1 > 0 for i ∈ [2]. Then, we get the following
system of linear equations

a1 = w2W12a1 + w2b1 + b2

a2 = w2W12a2 + w2b1 + b2.

These linear equations are only satisfied when w2W12 = 1 and w2b1 + b2 = 0.

Now, consider {(P (1)
2 (ai, 0), P

(2)
2 (ai, 0)) : ai ∈ R+, i ∈ {5, . . . , 8}, ai ̸= aj}. From the def-

inition of P
(1)
2 (ai, 0), we know that s = v0, xv0(P

(1)
2 (ai, 0)) = 0, xv1(P

(1)
2 (ai, 0)) = ai,

14
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xv2(P
(1)
2 (ai, 0)) = β, x(v0,v1) = ai, and x(v1,v2) = 0. Since Aθ(P

(1)
2 (ai, 0)) = P

(2)
2 (ai, 0),

the computed node feature for v2 ∈ V (P
(1)
2 (ai, 0)) is

h(1)
v2 = ai = σ(w2 min{σ(W1(xv2 ⊕ x(v2,v2)) + b1), σ(W1(xv1 ⊕ x(v1,v2)) + b1)}+ b2)

= σ(w2 min{σ(W11β + b1), σ(W11ai + b1)}+ b2)

for i ∈ {5, . . . , 8}. Similar to above, we have that σ(W11β+ b1) = min{σ(W11β+ b1), σ(W11ai +
b1)} can only occur for one i ∈ {5, . . . , 8}. Again, WLOG we can assume that a8 = σ(w2σ(W11β+
b1) + b2) and ai = σ(w2σ(W11ai + b1) + b2) for i ∈ {5, 6, 7}. Then, using a similar system of
linear equations as above, we get that w2W11 = 1.

Corollary B.2. Let Aθ be a simple 1-layer Bellman-Ford GNN, as given in Eq. (12). If Aθ(H
(t)) =

Γ(H(t)) for all (H(t),Γ(H(t))) ∈ Hsmall, then for any G ∈ G the MinAgg GNN outputs Aθ(G) =
Γ(G) which means for any v ∈ V (G)

h(1)
v = min{xu + x(u,v) : u ∈ N (v)}.

Proof. If Aθ(H
(t)) = Γ(H(t)) for all (H(t),Γ(H(t))) ∈ Hsmall then, by Theorem B.1, we know

that w2W1 = 1 and w2b1 + b2 = 0. First, suppose w2 < 0. Since w2W1 = 1, we know that
W11 = W12 and W11,W12 < 0. Consider (P (0)

1 (ai), P
(1)
1 (ai)) ∈ Hsmall. Recall that ai > 0. For

any i ∈ {1, . . . , 4}, we have that v1 ∈ V (P
(0)
1 (ai)) gets the computed node feature

h(1)
v1 = σ(w2 min{σ(W11xs +W12x(s,v1) + b1), σ(W11xv1

+W12x(v1,v1) + b1)}+ b2)

= σ(w2 min{σ(W11ai + b1), σ(W11β + b1)}+ b2)

Since 0 ≤ ai ≪ β, W11β + b1 ≤ W11ai + b1 so

min{σ(W11ai + b1), σ(W11β + b1)} = σ(W11β + b1)

Then
h(1)
v1 = σ(w2σ(W11β + b1) + b2)

for v1 ∈ P
(0)
1 (ai) for any i ∈ {1, . . . , 4}. However, this is a contradiction because Aθ(P

(0)
1 (ai)) =

P
(1)
1 (ai) for i ∈ {1, . . . , 4} and ai ̸= aj for i ̸= j. Therefore, w2 > 0 so W11,W12 > 0.

Suppose w2b1 < 0. Because w2 > 0, b1 < 0. Additionally, since w2b1 < 0 and we know that
w2b1 + b2 = 0, we have that b2 > 0. Then consider (P (0)

1 (a1), P
(1)
1 (a1)) = (P

(0)
1 (0), P

(1)
1 (0)) ∈

Hsmall. Then, v1 ∈ V (P
(0)
1 (0)) gets the updated node feature

h(1)
v1 = σ(w2 min{σ(b1), σ(W11β + b1)}+ b2) = b2.

This is contradiction because Aθ(P
(0)
1 (a1)) = P

(1)
1 (a1) which means that the computed node feature

h
(1)
v1 should be a1 = 0.

Now, given G(m) ∈ G, then given v ∈ V (G(m)), the updated node feature for v ∈ V (Aθ(G
(m))) is

h(1)
v = σ(w2 min{σ(W11xu +W12x(v,u) + b1) : u ∈ N (v)}+ b2)

= σ(min{w2σ(W11(xu + x(v,u)) + b1) : u ∈ N (v)}+ b2)

= σ(min{σ(w2W11(xu + x(v,u)) + w2b1) : u ∈ N (v)}+ b2) since w2 > 0

= σ(min{σ(w2W11(xu + x(v,u)) + w2b1) + b2 : u ∈ N (v)})
= σ(min{σ(xu + x(v,u) + w2b1) + b2 : u ∈ N (v)})
= σ(min{xu + x(v,u) + w2b1 + b2 : u ∈ N (v)}) since xu + x(v,u) + w2b1 ≥ 0

= σ(min{xu + x(v,u) : u ∈ N (v)})
= min{xu + x(v,u) : u ∈ N (v)}.

Lemma B.3. Consider two points (x1, y1), (x2, y2) ∈ R2 such that |x1| < D and |x2−x1| > 2 and
an affine function f(x) = ax+ b. Suppose |f(x1)− y1| < ϵ and |f(x2)− y2| < ϵ. If a0 = y2−y1

x2−x1

and b0 = y1 − a0x1 are the slope and y-intercept of a line passing through (x1, y1) and (x2, y2)
then |a0 − a| < ϵ and |b0 − b| < 2(1 +D)ϵ.
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Proof. First, a = f(x2)−f(x1)
x2−x1

implies

|a0 − a| =
∣∣∣∣ y2 − y1
x2 − x1

− f(x2)− f(x1)

x2 − x1

∣∣∣∣
=

1

|x2 − x1|
|(y2 − f(x2))− (y1 − f(x1))|

≤ 1

|x2 − x1|
(|y2 − f(x2)|+ |(y1 − f(x1))|)

≤ 2ϵ

|x2 − x1|
≤ ϵ.

Now, since b = f(x1)− ax1 we have

|b0 − b| = |y1 − a0x1 − (f(x1)− ax1)|
= |(y1 − f(x1))− x1(a0 − a)|
≤ |y1 − f(x1)|+ |x||a0 − a|
< (1 +D)ϵ.

We now restate Theorem 2.2 with additional details and provide a proof.

Theorem B.4. Let 0 < ϵ < 1. If ∀(H(t),Γ(H(t))) ∈ Hsmall, a MinAgg GNN Aθ that, for
u ∈ V (G(t)), computes a node feature satisfying |h(1)

u (G(t))− xu(Γ(G
(t)))| < ϵ

20 . Then

(i) ∥w2W1 − 1∥1 < ϵ and |w2b1 + b2| < 20ϵ

(ii) w2,W11,W12 ≥ 0

(iii) For G ∈ G and v ∈ V (G)

(1− ϵ)xv(G)− ϵ ≤ h(1)
v (G) ≤ (1 + ϵ)xv(G) + ϵ

Proof. (i) We first show part (i) i.e. if |h(t)
u (G(t)) − xu(Γ(G

(t)))| < ϵ
20 , for any

(G(t),Γ(G(t)) ∈ Hsmall, then ∥w2W1−1∥ < ϵ and |w2b1+ b2| < 20ϵ. Let ϵ0 = ϵ
20 . Given

the definition of Aθ, the computed node feature for v1 ∈ V (P
(0)
1 (ai)) for i ∈ {1, . . . , 4} is

h(1)
v1 = σ[w2 min{σ(W11β + b1), σ(W12ai + b1)}]

Since |h(1)
v1 (P

(0)
1 (ai))− xv1(P

(1)
1 (ai))| < ϵ0,

|σ(w2 min(σ(W11β + b1), σ(W12a1 + b1)) + b2)− a1| < ϵ0

...
|σ(w2 min(σ(W11β + b1), σ(W12a4 + b1)) + b2)− a4| < ϵ0

Suppose σ(W11β + b1) = min{σ(W11β + b1), σ(W12ai + b1)} and σ(W11β + b1) =
min{σ(W11β+b1), σ(W12aj +b1)} for i ̸= j. Then |σ(w2σ(W11β+b1)+b2)−ai| < ϵ0
and |σ(w2σ(W11β + b1) + b2)− aj | < ϵ0 so |ai − aj | < 2ϵ0 < 2. This is a contradiction
because for any i ̸= j, |ai − aj | ≥ 2.
Suppose that σ(W11β+ b1) = min{σ(W11β+ b1), σ(W12ai1 + b1)} and σ(W11β+ b1) =
min{σ(W11β + b1), σ(W12ai2 + b1)} for i1, i2 ∈ {1, 2, 3, 4} for i1 ̸= i2. This implies
that |ai1 − ai2 | < 2 which is a contradiction. Thus, w.l.o.g. we can assume that for
i ∈ {1, 2, 3}, σ(W12ai + b1) = min{σ(W11β + b1), σ(W12ai + b1)}. Additionally,
suppose W12ai + b1 < 0 and W12aj + b1 < 0 for i ̸= j and i, j ∈ {1, 2, 3}. Then,
hv1(P

(0)
1 (ai)) = σ(b2) and hv1(P

(0)
1 (aj)) = σ(b2) so |σ(b2)−ai| < ϵ0 and |σ(b2)−aj | <

ϵ0. From here, we get that |ai − aj | < 2, which is a contradiction. Therefore, we assume
that σ(W12ai + b1) = min{σ(W11β + b1), σ(W12ai1 + b1)} and W12ai + b1 > 0 for
i = {1, 2}.
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Then we have
|(a1w2W12 + w2b1 + b2)− a1| ≤ ϵ0

and
|(a2w2W12 + w2b1 + b2)− a2| ≤ ϵ0.

Note that f(a) = aw2W12 + w2b1 + b2 is an affine function with slope m = w2W12 and
intercept w2b1 + b2. As |a1|, . . . , |a4| < 9 and |ai − aj | > 2, by Lemma B.3,

|w2W11 − 1| < ϵ0 <
ϵ

2
|w2b1 + b2| < 2 · (1 + 9)ϵ0 = 20ϵ0 = ϵ.

A parallel method using Hsmall with ai = 2i for i ∈ {5, 6, 7, 8} follows for bounding
|w2W11 − 1| < ϵ

2 .

(ii) Now, we turn our attention to part (ii) and show that w2,W11,W12 ≥ 0. Suppose w2 < 0,
which implies W11,W12 < 0 as otherwise w2W11, w2W12 < 0 and |w2W1−1| > ϵ (recall
0 < ϵ < 1). The computed node feature for v1 ∈ V (P

(0)
1 (ai)) is then

h(1)
v1 = σ(w2 min{σ(W11xs +W12x(s,v1) + b1), σ(W11xv1 +W12x(v1,v1) + b1)}+ b2)

= σ(w2 min{σ(W11ai + b1), σ(W11β + b1)}+ b2)

= σ(w2σ(W11β + b1)}+ b2).

Note that the above inequality follows from the fact that W11ai + b1 > W11β + b1 since
ai < β and W11 < 0. For v1 ∈ V (P

(0)
1 (ai)) for all i ∈ {1, 2, 3, 4}, h(1)

v1 = σ(w2σ(W11β+
b1)} + b2). However, this is a contradiction, since |ai − aj | ≥ 2 for all i ̸= j where
i, j ∈ {1, . . . , 4}. Thus, w2,W11,W12 ≥ 0.

(iii) We will now show that given any G ∈ G and v ∈ V (G), a neural network with the weights
given in part (i) will approximately yield a single step of Bellman-Ford i.e.

(1− ϵ)h(1)
v (G)− ϵ ≤ h(1)

v (G) ≤ (1 + ϵ)xv(G) + ϵ.

Since ∥w2W1−1∥1 < ϵ from part (i), we know that |w2W11−1| < ϵ and |w2W12−1| < ϵ.
Additionally, we know that for any G ∈ G and v ∈ V (G),

h(1)
v (G) = σ(w2 min{σ(W11xu +W12x(u,v) + b1) : u ∈ N (v)}+ b2)

From (ii), we know that W11 ≥ 0, W12 ≥ 0, and W11xu + W12x(u,v) + b1 > 0 so the
ReLU activation function σ can be removed from the aggregation MLP i.e.,

h(1)
v (G) = σ(w2 min{W11xu +W12x(u,v) + b1 : u ∈ N (v)}+ b2).

Suppose
u′ = argminu∈N (v){W11xu +W12x(u,v) + b1}

and
u∗ = argminu∈N (v){xu + x(u,v)}.

Note that xv(Γ(G)) = xu∗ + x(u∗,v). Then,

h(1)
v (G) = σ(w2(W11xu′ +W12x(u′,v) + b1) + b2)

≤ σ(w2W11xu∗ + w2W12x(u∗,v) + w2b1 + b2)

≤ σ((1 + ϵ)(xu∗ + x(u∗,v)) + w2b1 + b2)

Note that if w2b1 + b2 ≤ 0, then

h(1)
v (G) ≤ σ((1+ϵ)(xu∗+x(u∗,v))+w2b1+b2) ≤ σ((1+ϵ)(xu∗+x(u∗,v))) = (1+ϵ)(xu∗+x(u∗,v)).

If w2b1 + b2 > 0, then

h(1)
v (G) ≤ σ((1 + ϵ)(xu∗ + x(u∗,v)) + w2b1 + b2)

≤ (1 + ϵ)(xu∗ + x(u∗,v)) + ϵ

= (1 + ϵ)xv(Γ(G)) + ϵ.
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In both cases, h(1)
v (G) ≤ (1 + ϵ)xv(Γ(G)) + ϵ.

Now, we consider the lower bound and show that (1− ϵ)xv(Γ(G))− ϵ < h
(1)
v (G). By the

definition of u∗,
xu∗ + xu∗,v ≤ xu′ + x(u′,v)

Note that because 0 < ϵ < 1, we have 0 < 1− ϵ < 1 and 1
1−ϵ > 1. We will consider two

cases: when w2b1 + b2 ≥ 0 and when w2b1 + b2 < 0. Let w2b1 + b2 > 0. Then

xu∗ + xu∗,v ≤ xu′ + x(u′,v) + w2b1 + b2

≤
(1− ϵ

1− ϵ

)
xu′ +

(1− ϵ

1− ϵ

)
x(u′,v) +

(1− ϵ

1− ϵ

)
(w2b1 + b2)

≤
( 1

1− ϵ

)
· (1− ϵ)xu′ +

( 1

1− ϵ

)
· (1− ϵ)x(u′,v) +

( 1

1− ϵ

)
(w2b1 + b2)

≤
( 1

1− ϵ

)(
(1− ϵ)xu′ + (1− ϵ)x(u′,v) + w2b1 + b2

)
≤

( 1

1− ϵ

)
· (w2W11xu′ + w2W12x(u′,v) + w2b1 + b2)

=
( 1

1− ϵ

)
· hv(G)

Therefore,
(1− ϵ)(xu∗ + xu∗,v) = (1− ϵ)xv(Γ(G)) ≤ hv(G).

Let w1b1 + b2 < 0. We know that

w1W11xu′ + w2W12x(u′,v) + w2b1 + b2 ≤ w1W11xu′ + w1W12x(u′,v) + w2b1 + b2 + ϵ

Since |w1b1 + b2| < ϵ, w1b1 + b2 + ϵ > 0. Therefore,

xu∗ + xu∗,v ≤ xu′ + x(u′,v) + w2b1 + b2 + ϵ

≤
(1− ϵ

1− ϵ

)
xu′ +

(1− ϵ

1− ϵ

)
x(u′,v) +

(1− ϵ

1− ϵ

)
((w2b1 + b2) + ϵ)

≤
(1− ϵ

1− ϵ

)
xu′ +

(1− ϵ

1− ϵ

)
x(u′,v) +

( 1

1− ϵ

)
((w2b1 + b2) + ϵ)

≤
( 1

1− ϵ

)
(hv(G) + ϵ)

Thus,
(1− ϵ)(xu∗ + xu∗,v)− ϵ ≤ hv(G)

C SPARSITY REGULARIZED DEEP GNNS IMPLEMENT BF

In this section we analyze GNNs that are large both in their number of layers and the size of their
respective MLPs. The key to showing these complex GNNs implement the BF algorithm is the
introduction of sparsity regularization to the loss. With this type of regularization we can show
any solution that approximates the global minimum must have only a few non-zero parameters.
Furthermore, any GNN with so few non-zero parameters can solve shortest path problems only via
the BF algorithm. In short, although the model is over-parameterized, solutions approximating the
global minimum are not.
Our overarching approach is as follows. We first give an implementation of BF by GNN with a small
number of non-zero parameters S. Next, we show that, on our constructed training set, any GNN with
less than S non-zero parameters has large error. This allows us to conclude that the global minimum
of the sparsity regularized loss must have exactly S non-zero parameters. This sparsity allows us to
simplify the MinAgg GNN update to include only a few parameters. We then derive approximations
to these parameters which show the MinAgg GNN must be implementing BF algorithm, up to some
scaling factor.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A key strategy in this section is to track the dependencies of the functions fagg,(ℓ) and fup,(ℓ) on their
components. In particular, we say a function f depends on a component or set of components if it is
not constant over these components. Note that inputs to these functions are always non-negative (they
are always proceeded by a ReLU), so by constant we mean constant over all non-negative values.
The precise definitions are as follows.
Definition C.1. For ℓ ∈ [L] the function fagg,(ℓ) depends on its node component iff it is not constant
over its first dℓ−1 components, i.e., there exits x, y ∈ Rdℓ−1+1

≥0 with x ̸= y and xdℓ−1+1 = ydℓ−1+1

such that
fagg,(ℓ)(x) ̸= fagg,(ℓ)(y).

The function fagg,(ℓ) depends on its edge component iff it is not constant over its edge component
(the (dℓ−1 + 1)th component). That is, there exits x, y ∈ Rdℓ−1+1

≥0 with x ̸= y and xi = yi for
i ∈ {1, . . . , dℓ−1} such that

fagg,(ℓ)(x) ̸= fagg,(ℓ)(y).

Definition C.2. For ℓ ∈ [L] the function fup,(ℓ) depends on its aggregation component iff it is not
constant over its first d components, i.e., there exits x, y ∈ Rd+dℓ−1

≥0 with x ̸= y and xi = yi for
i ∈ {d+ 1, . . . , dℓ−1} such that

fup,(ℓ)(x) ̸= fup,(ℓ)(y).

The function fup,(ℓ) depends on its skip component iff it is not constant over its last dℓ−1 components,
i.e., there exits x, y ∈ Rd+dℓ−1

≥0 with x ̸= y and xi = yi for i ∈ {1, . . . , d} such that

fup,(ℓ)(x) ̸= fup,(ℓ)(y).

Our approach proceeds by showing that requisite dependencies can only be achieved if there is some
minimal number of non-zero entries in θ.

C.1 IMPLEMENTING BF

We begin by showing there is a choice of parameters that makes the MinAgg GNN implement K
steps of the BF algorithm.
Lemma C.3. Let L ≥ K > 0. For an L-layer MinAgg GNN Aθ with m-layer update and aggregation
MLPs and parameters θ, there is an assignment of θ with mL+mK +K non-zero values such that
Aθ implements K steps of the BF algorithm, i.e., for any G ∈ G

Aθ(G) = ΓK(G).

Proof. We proceed by assigning parameters to Aθ such that Aθ simulates K steps of Bellman-Ford,
i.e., for any G ∈ G, Aθ(G) = ΓK(G). For ℓ ∈ [L], let fagg,(ℓ) : Rdℓ−1+1 → Rd and fup,(ℓ) :
Rd+dℓ−1 → Rd be the m-layer update and aggregation MLPs respectively. Note that d0 = dL = 1,
and for ℓ ∈ {1, . . . , L − 1} the hidden layer dimension is dℓ = d, for some arbitrary d ≥ 1.
The parameters for fagg,(ℓ) and fup,(ℓ) are {(W agg,(ℓ)

j , b
agg,(ℓ)
j )}j∈[m] and {(W up,(ℓ)

j , b
up,(ℓ)
j )}j∈[m],

respectively, where for j ∈ [m],

W
agg,(ℓ)
j ∈ Rd

agg,(ℓ)
j ×d

agg,(ℓ)
j−1

b
agg,(ℓ)
j ∈ Rd

agg,(ℓ)
j

W
up,(ℓ)
j ∈ Rd

up,(ℓ)
j ×d

up(ℓ)
j−1

b
up,(ℓ)
j ∈ Rd

up,(ℓ)
j .

The dimension of these parameters are

d
agg,(ℓ)
j =

{
dℓ−1 + 1 if j = 0

d otherwise

d
up,(ℓ)
j =


dℓ−1 + d if j = 0

dℓ if j = m

d otherwise
.
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Now we give values of these parameters that make Aθ implement the BF algorithm. Let bup,(ℓ)j = 0

and b
agg,(ℓ)
j = 0 for all ℓ ∈ [L] and j ∈ [m]. Set

W
agg,(1)
1 =

1 1
...

...
0 0


and for ℓ ∈ {2, . . . ,K}

W
agg,(ℓ)
1 =


1 0 . . . 0 1
0 0 . . . 0 0
...

...
...

0 0 . . . 0

 . (14)

This choice makes W agg,(ℓ)
1 sum the edge weight and first component of the node feature into the

first component of the resulting vector. That is, [W agg,(ℓ)
1 (h

(ℓ−1
v ⊕ x(v,u))]1 = [h

(ℓ−1)
v ]1 + x(v,u).

Next, set

W
agg,(ℓ)
j =


1 0 . . . 0

0
. . .

...
...
0 . . . 0

 for ℓ ∈ [K] and j ∈ {2, . . . ,m},

W
up,(ℓ)
j =


1 0 . . . 0

0
. . .

...
...
0 . . . 0

 for ℓ ∈ [K] and j ∈ [m].

Finally, for ℓ ∈ {K + 1, . . . , L}, let

W
agg,(ℓ)
j = 0 for j ∈ [m]

W
up,(ℓ)
1 =


0 0 . . . 1

0
. . .

...
...
0 . . . 0



W
up,(ℓ)
j =


1 0 . . . 0

0
. . .

...
...
0 . . . 0

 for j ∈ {2, . . . ,m}.

Given the above assignments of W agg,(ℓ)
j and W

up,(ℓ)
j , the final L−K layers implement the identity

on the first component of the node feature, i.e., [h(ℓ)
v ]1 = [h

(ℓ−1)
v ]1 for ℓ ∈ {K + 1, . . . , L}. Since

edge weights are always non-negative and there are no negative parameters in the above, the ReLU
activations can be ignored. Then, for all v ∈ V and for ℓ ≤ K, we get

[h(ℓ)
v ]1 = min{[h(ℓ−1)

u ]1 + x(u,v) | u ∈ N (v)}

which is the BF algorithm update. This implies, by the correctness of the BF algorithm, that [h(K)
v ]1

is the K-step shortest path distance. The last L − K layers of the GNN implement the identity
function so h

(L)
v = [h

(L)
v ]1 = [h

(K)
v ]1 is also the K-step shortest path distances. Perfect accuracy is

then achieved on all K-step shortest path instances.

We later show that the requirement L ≥ K is indeed necessary (Corollary C.13).
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C.2 TRAINING SET

Our training set is comprised of multiple parts, which we describe in this subsection. The first set of
training instances is used to regulate how the MinAgg GNN scales features throughout computation.

Definition C.4. For k ∈ [K], define Hk,K as

Hk,K = {P (1)
K+1(a, 0, . . . , 0, b, 0, . . . , 0) : (a, b) ∈ {0, 1, . . . , 2K} × {0, 2K + 1}}

where P
(1)
K+1(a, 0, . . . , 0, b, 0, . . . , 0) is the attributed K-edge path graph with weight a for the first

edge, weight b for the (k + 1)th edge, and weight zero for all other edges.

Next, we define graph that is used to show the MinAgg GNN must have at least K steps that depend
on both edge weights and neighboring node features. If these conditions are not met, then the MinAgg
GNN is not expressive enough to compute the shortest path distances in this graph.

Definition C.5. Let H(0),K be a 0-step BF instance with 2K + 2 vertices

V = {v0, v1, . . . vK} ∪ {u0, u1, . . . , uK},

edges

E = {(vi−1, vi) | i ∈ [K]}∪{(ui−1, ui) | i ∈ [K]}∪{{(ui−1, vi) | i ∈ [K]}∪{(vi−1, ui) | i ∈ [K]},

edge features Xe given by

x(w,q) =

{
1 if (w, q) = (uk−1, vk) or (w, q) = (vk−1, uk) for k ∈ [K]

0 otherwise
,

and initial node features Xv given by

xw =

{
0 if w = v0
β otherwise

.

We also write H
(K)
K = ΓK(H

(0)
K ).

The complete training set also includes P (0)
1 (1), P

(1)
2 (1, 0).

Definition C.6. For K > 1, we let

Gscale,K = ∪K≥k>1Hk,K

GK = Gscale,K ∪ {P (0)
1 (1), P

(1)
2 (1, 0), H

(0)
K }

GK = {(G(t),Γ(G(t))) : G(t) ∈ GK}.

Note the distinction here between GK which is a set of graphs and GK , which contains pairs of graphs
(an input graph and a target graph).

C.3 SPARSITY STRUCTURE

Here we show that the training set GK requires a MinAgg GNN to have a minimal sparsity to achieve
good performance. Furthermore, this non-zero parameters must follow a particular structure.

Definition C.7. An isomorphism between two attributed graphs G = (V,E,Xv, Xe) and G′ =
(V ′, E′, X ′

v, X
′
e) is a bijection ϕ : V → V ′ satisfying

(u, v) ∈ E if and only if (ϕ(u), ϕ(v)) ∈ E′

and

xv = x′
ϕ(v) ∀v ∈ V

x(v,u) = x′
(ϕ(v),ϕ(u)) ∀(v, u) ∈ E.

Fact C.8. Suppose ϕ is an isomorphism between two attributed graphs G = (V,E,Xv, Xe) and
G′ = (V ′, E′, X ′

v, X
′
e). Then ϕ is also an isomorphism between Aθ(G) and Aθ(G

′).
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Definition C.9. For an L-layer MinAgg GNN Aθ, we say that a layer ℓ ∈ [L] is message passing
if the aggregation function fagg,(ℓ) depends on its node component. A edge-dependent message
passing layer is a message passing layer for which fagg,(ℓ) also depends on its edge component. A
layer is stationary if it is not message passing

The update at each node can only depend on neighboring node features through the node component
of the aggregation function. Thus, for stationary layers, each updated node feature only depends on
the previous value of the node feature and the value of adjacent edges.

Fact C.10. Consider a MinAgg GNN Aθ such that its ℓth layer is stationary. Then, taking θ to be
fixed, the feature h

(ℓ)
v is only a function of h(ℓ−1)

v and x(u,v) for u ∈ N (v).

The importance of message passing layers is that these are the only layers for which an updated node
depends on the previous features of its neighboring nodes. This is made precise by the following
statement.

Claim C.11. Consider a MinAgg GNN Aθ acting on a graph G = (V,E,Xv, Xe) and consider
two nodes v, w ∈ V such that v is j steps away from w. Suppose for some ℓ ∈ [L] there are k

layers in [ℓ] that are message passing with k < j. Then the feature h(ℓ)
v (G) is independent of xw(G).

That is, for any graph G′ = (V,E,Xv, X
′
e) that differs from G only in the feature xw(G

′), we have
h
(ℓ)
v (G) = h

(ℓ)
v (G′). Similarly, for any edge (u,w) ∈ E if both u and w are j steps away from v

then h
(ℓ)
v (G) is independent of x(u,w)(G).

Proof. We proceed by induction so assume the statement holds for j − 1. Note the base case of
j = 1 is immediate from Fact C.10 as this implies no message passing has occurred. Suppose v is j
steps away from w. Let ℓ′ be the largest ℓ in {1, . . . , ℓ} that is message passing. By definition of the
MinAgg GNN,

h(ℓ′)
v = fup,(ℓ′)

(
min{fagg,(ℓ′)(h(ℓ′−1)

u ⊕ x(u,v)) : u ∈ N (v)}
)
. (15)

Every node in N (v) is at least j−1 steps from w and there are at most k−1 message passing steps in
[ℓ′ − 1]. Invoking the inductive hypothesis for j − 1 yields that h(ℓ′−1)

u for u ∈ N (v) is independent
of xu(G). Thus, since every variable in the expression for h(ℓ′)

v is independent of xu(G), the feature
h
(ℓ′)
v is independent as well. Finally, if h(ℓ′)

v is independent of xu(G) then by Fact C.10, h(ℓ)
v is also

independent of xu(G) since all the layers between ℓ′ and ℓ are stationary. (If ℓ is message passing
then ℓ′ = ℓ.)

A parallel argument can be used to show independence of h(ℓ)
v from x(u,w) in the case that v is j

steps away from both u and w

Lemma C.12. An L-layer MinAgg GNN Aθ satisfies

h(L)
vK (H

(0)
K ) ̸= h(L)

uK
(H

(0)
K )

only if it has at least K edge-dependent message passing layers.

Proof. We proceed by proving claim (∗), regarding the output of the MinAgg GNN on H
(0)
K . This

claim is shown through two cases. Note that since in this proof only the graph H
(0)
K is considered, we

suppress notation referring to the graph for simplicity.

Claim (∗) Let k′ ∈ [K] and ℓ ∈ [L]. If for all k ≥ k′,

h(ℓ−1)
vk

= h(ℓ−1)
uk

,

and fagg,(ℓ) is not edge-dependent message passing, then for all k ≥ k′,

h(ℓ)
vk

= h(ℓ)
uk

.

If fagg,(ℓ) is not edge-dependent message passing, then it either does not depend on its node compo-
nent or does not depend on its edge component.
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Case I: fagg,(ℓ) does not depend on its node component. For k ≥ k′,

h(ℓ)
vk

= fup,(ℓ)
(
min{fagg,(ℓ)(h(ℓ−1)

w ⊕ x(w,vk)) : w ∈ {vk−1, uk−1, vk, vk+1, uk+1}} ⊕ h(ℓ−1)
vk

)
= fup,(ℓ)

(
min{fagg,(ℓ)(· ⊕ 0), fagg,(ℓ)(· ⊕ 1)} ⊕ h(ℓ−1)

vk

)
where a center dot · is used to indicate the lack of dependence on the node feature. (Any
value can replace · and the expression does not change since fagg,(ℓ) is constant over
its node component.) The key here is that since fagg,(ℓ) does not depend on its node
component, only the set of edge weights incident on vk, which is {0, 1}, effects the value
of

min{fagg,(ℓ)(h(ℓ−1)
w ⊕ x(w,vk)) : w ∈ {vk−1, uk−1, vk, vk+1, uk+1}}.

Similarly, for uk we have

h(ℓ)
uk

= fup,(ℓ)
(
min{fagg,(ℓ)(h(ℓ−1)

w ⊕ x(w,uk)) : w ∈ {vk−1, uk−1, uk, vk+1, uk+1}} ⊕ h(ℓ−1)
uk

)
= fup,(ℓ)

(
min{fagg,(ℓ)(· ⊕ 0), fagg,(ℓ)(· ⊕ 1)} ⊕ h(ℓ−1)

uk

)
and since h

(ℓ−1)
vk = h

(ℓ−1)
vk , we get h(ℓ)

uk = h
(ℓ)
vk .

Case II: fagg,(ℓ) does not depend on its edge component.
For k ≥ k′,

h(ℓ)
vk

= fup,(ℓ)
(
min{fagg,(ℓ)(h(ℓ−1)

w ⊕ x(w,vk)) : w ∈ {vk−1, uk−1, vk, vk+1, uk+1}} ⊕ h(ℓ−1)
vk

)
= fup,(ℓ)

(
min{fagg,(ℓ)(h(ℓ−1)

w ⊕ ·) : w ∈ {vk−1, uk−1, vk, vk+1, uk+1}} ⊕ h(ℓ−1)
vk

)
and

h(ℓ)
uk

= fup,(ℓ)
(
min{fagg,(ℓ)(h(ℓ−1)

w ⊕ x(w,uk)) : w ∈ {vk−1, uk−1, uk, vk+1, uk+1}} ⊕ h(ℓ−1)
uk

)
= fup,(ℓ)

(
min{fagg,(ℓ)(h(ℓ−1)

w ⊕ ·) : w ∈ {vk−1, uk−1, uk, vk+1, uk+1}} ⊕ h(ℓ−1)
uk

)
.

However, since h
(ℓ−1)
vk = h

(ℓ−1)
uk , the minimums in the expressions for h(ℓ)

vk and h
(ℓ)
uk are

taken over the same set and so h
(ℓ)
uk = h

(ℓ)
vk .

Now that we have proved claim (∗) we proceed by induction to show that for any ℓ′ ∈ [L] if there
are k′ edge-dependent message passing layers in [ℓ′] then h

(ℓ′)
uk = h

(ℓ′)
vk for all k > k′. This holds

for the base case of k′ = 0 since at initialization h
(0)
vk = h

(0)
uk for all k ∈ [K], and (∗) yields that

h
(ℓ′)
vk = h

(ℓ′)
uk since no layer in [ℓ′] is edge-dependent message passing. Now suppose the inductive

hypothesis holds for k′ − 1 edge-dependent message passing layers. That is, suppose that for any
ℓ′ ∈ [L] if there are k′ − 1 edge-dependent message passing layers in [ℓ′] then h

(ℓ′)
uk = h

(ℓ′)
vk for all

k > k′ − 1. Now suppose for some ℓ′ ∈ [L] there are k′ edge-dependent message passing layers in
[ℓ′], and let ℓ∗ be the last such layer. Then h

(ℓ∗−1)
vk = h

(ℓ∗−1)
uk for all k > k′ − 1 by the inductive

hypothesis. F or all k > k′,

h(ℓ∗)
vk

= fup,(ℓ∗)
(
min{fagg,(ℓ∗)(h(ℓ∗−1)

w ⊕ x(w,vk)) : w ∈ {vk−1, uk−1, vk, vk+1, uk+1}} ⊕ h(ℓ∗−1)
vk

)
and

h(ℓ∗)
uk

= fup,(ℓ∗)
(
min{fagg,(ℓ∗)(h(ℓ∗−1)

w ⊕ x(w,uk)) : w ∈ {vk−1, uk−1, uk, vk+1, uk+1}} ⊕ h(ℓ∗−1)
uk

)
.

Recall that x(w,w) is always zero for any node w. The minimums in these expressions are then taken
over the sets

Sv = {h(ℓ∗−1)
vk−1

⊕x(vk−1,vk), h
(ℓ∗−1)
uk−1

⊕x(uk−1,vk), h
(ℓ∗−1)
vk

⊕0, h(ℓ∗−1)
vk+1

⊕x(vk+1,vk), h
(ℓ∗−1)
uk+1

⊕x(uk+1,vk)}

and

Su = {h(ℓ∗−1)
vk−1

⊕x(vk−1,uk), h
(ℓ∗−1)
uk−1

⊕x(uk−1,uk), h
(ℓ∗−1)
uk

⊕0, h(ℓ∗−1)
vk+1

⊕x(vk+1,uk), h
(ℓ∗−1)
uk+1

⊕x(uk+1,uk)}
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respectively. Note, by the inductive hypothesis, h
(ℓ∗−1)
vk−1 = h

(ℓ∗−1)
uk−1 , h

(ℓ∗−1)
vk = h

(ℓ∗−1)
uk , and

h
(ℓ∗−1)
vk+1 = h

(ℓ∗−1)
uk+1 , since k − 1 > k′ − 1. Furthermore, for all i ∈ [K], we have x(vi−1,ui) =

x(ui−1,vi) = 1 and x(vi−1,vi) = x(ui−1,ui) = 0. Thus,

Sv = Su = {h(ℓ∗−1)
uk−1

⊕ 0, h(ℓ∗−1)
uk−1

⊕ 1, h(ℓ∗−1)
uk

⊕ 0, h(ℓ∗−1)
uk+1

⊕ 0, h(ℓ∗−1)
uk+1

⊕ 1}.

so h
(ℓ∗)
uk = h

(ℓ∗)
vk for k > k′. Finally, the remaining layers ℓ ∈ {ℓ∗ + 1, . . . , ℓ′} are not edge-

dependent message passing, so claim (∗) gives that h(ℓ)
uk = h

(ℓ)
vk is maintained for k > k′, completing

the induction.
Taking the inductive hypothesis that we just proved with ℓ′ = L and k′ < K gives that if there are
are less than K edge-dependent message passing layers then h

(L)
uK = h

(L)
vK .

Note xvK (H
(K)
K ) ̸= xuK

(H
(K)
K ), so any MinAgg GNN with less than K message passing layers can

not achieve perfect accuracy on H
(0)
K . In particular, since a MinAgg GNN with less than K layers

must also have less than K message passing layers, this lemma demonstrates that K layers are indeed
necessary for a MinAgg GNN to have perfect accuracy on K-step shortest path problems.
Corollary C.13. Any MinAgg GNN with less than K layers has non-zero error on the training pair
(H

(0)
K , H

(K)
K ).

Lemma C.14. An L-layer GNN Aθ has output satisfying

h(L)
v0 (P

(0)
1 (1)) ̸= h(L)

v1 (P
(0)
1 (1)) (16)

only if for all ℓ ∈ [L] the function fup,(ℓ) is not constant.

Proof. Suppose fup,(ℓ) is constant for some ℓ ∈ [L]. Then the node features after the ℓth layer are
identical: h(ℓ)

v0 = h
(ℓ)
v1 . Consider the attributed graph at this layer G(ℓ) = (V,E,X

(ℓ)
v , Xe) with node

features xv = h
(ℓ)
v . This graph has

ϕ : v0 7→ v1

v1 7→ v0

as an automorphism. By Fact C.8, Aθ(G) must also have ϕ as an automorphism. Thus, since
isomorphisms respect node features (Def. C.7), h(L)

v0 = h
(L)
ϕ(v0)

= h
(L)
v1 .

We are now ready to show that any MinAgg GNN achieving small loss on a training set that includes
P

(0)
1 (1) and H

(0)
K must have a specific sparsity structure.

Lemma C.15. For K ≥ 1, let Gtrain be a set containing pairs of training instances (G(t),ΓK(G(t))
where Gtrain contains M total reachable nodes and

{(H(0)
K , H

(K)
K ), (P

(0)
1 (1), P

(K)
1 (1))} ⊂ Gtrain.

For L ≥ K > 0, consider an L-layer MinAgg GNN Aθ with m-layer MLPs and parameters θ. Given
regularization coefficient 0 < η < 1

2M(mL+mK+K) and error 0 ≤ ϵ < η, then the loss

Lreg = LMAE(Gtrain,Aθ) + η∥Θ∥0 (17)

has a minimum value of η(mL+mK+K) and if the loss achieved by Aθ is within ϵ of this minimum
then Aθ has exactly mL+mK +K non-zero parameters, K message passing layers, and for all
layers fup,(ℓ) is non-constant. In particular, for all j ∈ [m] and ℓ ∈ [L]

∥W up,(ℓ)
j ∥0 = 1,

and b
up,(ℓ)
j = b

agg,(ℓ)
j = 0. For each of the K message passing layers ℓk ∈ [L],

∥W agg,(ℓ)
1 ∥0 = 2

∥W agg,(ℓ)
j ∥0 = 1 for m ≥ j > 1

where the two non-zero entries in W
agg,(ℓ)
1 share the same row.
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Proof. First, the BF implementation given by Lemma C.3 shows there is a choice of parameters
that achieves perfect accuracy with mL+mK +K non-zero values. This implementation achieves
a loss of Lreg = η(mL + mK + K). Thus, Aθ can not have more than mL + mK + K non-
zero values as this would mean a loss at least η > ϵ greater than the loss achieved by the BF
implementation. We now derive the sparsity structure that any MinAgg GNN achieving a loss no less
than η(mL+mK +K) + ϵ must achieve. We show at the end of the proof that η(mL+mK +K)
is indeed the global minimum of the loss.

Note that |xv0(P
(K)
1 (1)) − xv1(P

(K)
1 (1))| = 1 and |xvK (H

(K)
K ) − xuK

(H
(K)
K )| = 1. If

h
(L)
v0 (P

(0)
1 (1)) = h

(L)
v1 (P

(0)
1 (1)) then

Lreg ≥ LMAE(Gtrain, Aθ)

≥ |xv0(P
(K)
1 (1))− h

(L)
v0 (P

(0)
1 (1))|+ |xv1(P

(K)
1 (1))− h

(L)
v1 (P

(0)
1 (1))|

M

≥ 1

M
≥ η(mL+mK +K) + ϵ,

where the last inequality follows from ϵ < 1
2M(mL+mK+K) and η(mL+mK +K) < 1

2M . We can
then conclude that any MinAgg GNN with loss less than or equal to η(mL+mK +K) + ϵ must
satisfy h

(L)
vk (H

(0)
K ) ̸= h

(L)
uk (H

(0)
K ) and h

(L)
v0 (P

(0)
1 (1)) ̸= h

(L)
v1 (P

(0)
1 (1)) so by lemmas C.12 and C.14,

any such MinAgg GNN has at least K edge-dependent message passing layers and for all ℓ ∈ [L] the
update function fup,(ℓ) is nonconstant.
Next, we analyze the sparsity required to achieve K edge-dependent message passing layers and
nonconstant fup,(ℓ).

• If fup,(ℓ) is non constant, then for all j ∈ [m] and ℓ ∈ [L]

∥W up,(ℓ)
j ∥0 ≥ 1 (18)

so there must be at least mL non-zero entries coming from fup,(ℓ).

• If ℓ is a edge-dependent message passing layer then fagg,(ℓ) is nonconstant and so for all
j ∈ [m] and ℓ ∈ [L]

∥W agg,(ℓ)
j ∥0 ≥ 1. (19)

Also, since fagg,(ℓ) is edge-dependent message passing it depends on both its node and its
edge component so W

agg,(ℓ)
1 must have two columns that have non-zero entries, giving

∥W agg,(ℓ)
1 ∥0 ≥ 2. (20)

Thus, the total number of non-zero entries coming from fagg,(ℓ) is at least mK +K since
there are at least K edge-dependent message passing layers.

Combining the contributions from fup,(ℓ) and fagg,(ℓ) we have that Aθ has at least mL+mK +K
non-zero parameters. However, at the start of the proof we showed that mL + mK + K is also
an upper bound on the number of non-zero parameters, so there must be exactly mL +mK +K
non-zero parameters. Additionally, we can see that there can not be more than K message passing
layers as this would require additional non-zero parameters. Furthermore, if only mL+mK +K

parameters are non-zero then inequalities (18) - (20) must be tight and, also, bup,(ℓ)j = b
agg,(ℓ)
j = 0.

Finally, we remark that the non-zero entries in W
agg,(ℓ)
1 must share a row since W agg,(ℓ)

2 has only one
non-zero entry. Thus, if the non-zero entries in W

agg,(ℓ)
1 do not share a row, either edge dependence

or node dependence is lost.
Furthermore, any MinAgg GNN that achieves a loss less than or equal to η(mL+mK +K) + ϵ
must have exactly mL+mK +K non-zero parameters. This implies that η(mL+mK +K) is the
minimum of the loss.

We can now limit our analysis to MinAgg GNNs with exactly K message passing layers. For these
MinAgg GNNs let the kth message passing layer be ℓk ∈ [L] where k ∈ [K].
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Message
passing

Stationary 

Figure 6: A diagram showing an example of a MinAgg GNN with the sparsity structure given by
Lemma C.15. Bold black connections in the neural network indicate non zero parameters, while grey
lines indicate zero parameters.

C.4 BOUNDING GNN EXPRESSIVITY

The following section aims to bound the expressiveness of Aθ under certain conditions that are more
challenging to analyze. The benefit is that with sufficiently many training examples we can restrict
our analysis to more straightforward cases, as for must training instances, these challenging to analyze
conditions do not arise.
Lemma C.16. Consider P (1)

K+1(x, a2, . . . , aK+1) where a2, . . . , aK+1 are taken to be fixed and view

the computed node feature h
(L)
vK : R → R solely as a function of the first edge weight x, which is

variable. Consider a MinAgg GNN Aθ with exactly K message passing layers. If for the kth message
passing layer ℓk ∈ [L] there is a region Dk ⊂ R such that the feature h

(ℓk)
vk+1(x) is constant on Dk,

i.e., takes the same value for all x ∈ Dk, then h
(ℓK)
vK+1(x) is also constant over Dk.

Proof. We proceed by induction, so consider k′ ∈ [K] with k′ ≥ k and assume that h
(ℓk′−1)
vk′ (x) is

constant over Dk. We aim to show h
(ℓk′ )
vk′+1

(x) is constant over Dk. This is true for the base case of

k′ = k by the assumption in the theorem statement that h(ℓk)
vk+1(x) is constant on Dk. Now we prove

the general case, so take k′ > k. Since,

h(ℓk′ )
vk′+1

= fup,(ℓk′ )
(
min{fagg,(ℓk′ )(h(ℓk′−1)

u ⊕x(u,v)) : u ∈ {vk′ , vk′+1, vk′+2}}⊕h(ℓk′−1)
vk′+1

)
, (21)

h
(ℓk′ )
vk′+1

(x) is a function solely of h
(ℓk′−1)
vk′+1

(x), h(ℓk′−1)
vk′+2

(x), and, h(ℓk′−1)
vk′ (x). (All edge weights

other than that of (v0, v1) are taken to be constant, and k′ > k ≥ 1 so there is no dependence on
x(v0,v1) in the expression.) The feature h

(ℓk′−1)
vk′ (x) is constant over Dk by the inductive hypothesis.

Furthermore, h(ℓk′−1)
vk′ (x) is constant over Dk by Fact C.10 since all layers in {ℓk′−1+1, . . . , ℓk′ −1}

must be stationary. Note that while the stationary layers may change the node feature at vk′ so
that h

(ℓk′−1)
vk′ (x) ̸= h

(ℓk′−1)
vk′ (x), these two features h

(ℓk′−1)
vk′ (x) and h

(ℓk′−1)
vk′ are still both constant

functions of x on Dk. In P
(1)
K+1(x, a2, . . . , aK+1) only the first edge weight x(v0,v1) and the second
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node feature xv1 depend on x. Thus, by Claim C.11, if j ∈ [K] with j > k′ then h
(ℓk′ )
vj+1 (x) is constant

across all x ≥ 0 as vj+1 is more than k′ steps from v1. It then follows that the features h
(ℓk′−1)
vk′+1

(x)

and h
(ℓk′−1)
vk′+2

(x) are both constant. Also, h(ℓk′−1)
vk′+1

(x) and h
(ℓk′−1)
vk′+2

(x) are both constant since the

layers in {ℓk′−1 +1, . . . , ℓk′ − 1} must be stationary. We can then conclude h(ℓk′ )
vk′+1

(x) is constant on
Dk, since it depends only on variables which are constant on Dk, completing the inductive argument.
Since we have proved h

(ℓk′ )
vk′+1

(x) is constant on Dk for all k′ ≥ k, we have that h(ℓK)
vK+1(x) is constant.

Finally, since h
(m)
vK+1(x) only depends on h

(ℓK)
vK (x), as all layers following ℓk are stationary, we have

that h(m)
vK (x) is constant on Dk

Definition C.17. A GNN Aθ has 1-dimensional aggregation if for all message passing steps ℓk ∈ [L]

∥W up,(ℓk)
0 ∥0 = 1.

One dimensional aggregation implies that the output of fup,(ℓ) only depends on one component of
the vector produced by min. Furthermore, the value of this one component is determined by which
vector in the set

{fagg,(ℓk)(h(ℓk)
u , x(u,v)) | u ∈ N (v)} (22)

is minimal in that component.

Definition C.18. Consider P
(1)
K+1(a1, a2, . . . , aK+1) and a MinAgg GNN Aθ with exactly K

message passing layers and 1-dimensional aggregation. We say that Aθ is path derived on
P

(1)
K+1(a1, a2, . . . , aK+1) if for the kth message passing step ℓk,

h(ℓk)
vk+1

:= fup,(ℓk)
(
min{fagg,(ℓk)(h(ℓk−1)

u , x(u,vk+1)) | u ∈ {vk+1} ∪N(vk+1)} ⊕ h(ℓk−1)
vk+1

)
= fup,(ℓk)

(
fagg,(ℓk)(h(ℓk−1)

vk
, x(vk,vk+1))⊕ h(ℓk−1)

vk+1

)
.

Corollary C.19. Consider P (1)
K+1(x, a2, . . . , aK+1) where a2, . . . , aK+1 are taken to be fixed and

view the computed node feature h(L)
vK+1 : R → R solely as a function of the first edge weight x, which

is variable. Consider a MinAgg GNN Aθ with exactly K message passing layers and 1-dimensional
aggregation. If D ⊆ R contains all x such that Aθ is not path derived on P

(1)
K+1(x, a2, . . . , aK+1)

and
Ypd = {h(L)

vK+1
(x) : x ∈ D} (23)

then |Ypd| ≤ K.

Proof. For k ∈ [K], consider the subset Dk ⊆ R such that x ∈ Dk if and only if

fup,(ℓk)
(
min{fagg,(ℓk)(h(ℓk−1)

u , x(u,vk+1)) | u ∈ {vk+1} ∪N(vk+1)} ⊕ h(ℓk−1)
vk+1

)
̸= fup,(ℓk)

(
fagg,(ℓk)(h(ℓk−1)

vk+1
, x(vk,vk+1))⊕ h(ℓk−1)

vk+1

)
.

Since Aθ has 1-dimensional aggregation, for x ∈ Dk,

h(ℓk)
vk+1

= fup,(ℓk)
(
min{fagg,(ℓk)(h(ℓk−1)

vk+1
, x(vk+1,vk+1)), f

agg,(ℓk)(h(ℓk−1)
vk+2

, x(vk+2,vk+1))} ⊕ h(ℓk−1)
vk+1

)
and we have either

h(ℓk)
vk+1

= fup,(ℓk)
(
fagg,(ℓk)(h(ℓk−1)

vk+1
, x(vk+1,vk+1))⊕ h(ℓk−1)

vk+1

)
or,

h(ℓk)
vk+1

= fup,(ℓk)
(
fagg,(ℓk)(h(ℓk−1)

vk+2
, x(vk+2,vk+1))⊕ h(ℓk−1)

vk+1

)
.

since there is only one component of fagg,(ℓk)(h
(ℓk−1)
vk+1 , x(vk+1,vk+1)) and

fagg,(ℓk)(h
(ℓk−1)
vk+2 , x(vk+2,vk+1)) that is not identically zero.
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By Claim C.11, h(ℓk−1)
vk+1 (x) and h

(ℓk−1)
vk+2 (x) are constant functions of x (vk+1 and vk+2 are both more

than k − 1 steps away from v1 and (v0, v1), and at step ℓk − 1 only k − 1 message passing steps
have occurred). Then, h(ℓk)

vk+1(x) must be constant over x ∈ Dk since it only depends on features
that are constant. By Lemma C.16, h(L)

vK+1(x) is constant on Dk and must take some value qk. Let
Q = {qk | k ∈ [K]} and note |Q| ≤ K.

Suppose h
(L)
vK+1(x) is not path derived. Then there exists some k ∈ [K] such that

fup,(ℓk)
(
min{fagg,(ℓk)(h(ℓk−1)

u , x(u,vk+1)) | u ∈ {vk+1} ∪N(vk+1)} ⊕ h(ℓk−1)
vk+1

)
̸= fup,(ℓk)

(
fagg,(ℓk)(h(ℓk−1)

vk+1
, x(vk,vk+1))⊕ h(ℓk−1)

vk+1

)
.

which implies h(L)
vK+1(x) ∈ Q so Ypd ⊂ Q and |Ypd| ≤ K.

C.5 GLOBAL MINIMUM IS BF

We are now ready to prove Theorem 2.3, which we restate here with additional details.

Theorem C.20. Let Gtrain be a set containing pairs of training instances (G(t),ΓK(G(t))) where
Gtrain contains M total reachable nodes and GK ⊂ Gtrain. For L ≥ K > 0, consider an L-
layer MinAgg GNN Aθ with m-layer MLPs and parameters θ. Given regularization coefficient
0 < η < 1

2M(mL+mK+K) and error 0 ≤ ϵ < η, then the loss

Lreg = LMAE(Gtrain,Aθ) + η∥Θ∥0 (24)

has a minimum value of η(mL+mK+K) and if the loss achieved by Aθ is within ϵ of this minimum
then on any G ∈ G the features computed by the MinAgg GNN satisfy

(1−Mϵ)xv(Γ
K(G)) ≤ h(L)

v (G) ≤ (1 +Mϵ)xv(Γ
K(G))

for all v ∈ V (G).

Proof. Our proof proceeds by first simplifying and reparametrizing the MinAgg GNN update using
the sparsity structure derived Section C.3. Next, we prove approximations to these new parameters,
where we utilize the results of Section C.4 to restrict analysis to cases where computation follows
a simple structure (path-derived cases). We conclude by using these approximations to bound the
error the MinAgg GNN achieves on an arbitrary graph. Key to this final argument is showing that the
features of the MinAgg GNN approximate the node values in the BF algorithm, up to some scaling
factor.

Simplifying the update. We next show that the MinAgg GNN under the sparsity constraints
of Lemma C.15 can be reformulated into a much simpler framework, where all the information
exchanged between message-passing layers is consolidated into a much smaller set of parameters
and where node features are always one dimensional. As {(H(0)

K , H
(K)
K ), (P

(0)
1 (1), P

(K)
1 (1))} ⊂

GK ⊂ Gtrain, Lemma C.15 gives that Aθ has exactly mL + mK + K non-zero parameters, K
edge-dependent message passing layers, and a specific sparsity structure: for all layers ℓ ∈ [L], and
j ∈ [m]

∥W up,(ℓ)
j ∥0 = 1

and for each of the K message passing layers ℓk ∈ [L]

∥W agg,(ℓk)
1 ∥0 = 2

∥W agg,(ℓk)
j ∥0 = 1 for j > 1

where the two non-zero entries in W
agg,(ℓk)
1 must share a row. Furthermore, all bias terms are zero.

We now argue that each of these non-zero parameters must also be non-negative. For ℓ ∈ [L], suppose
that there is some W

up,(ℓ)
j with a negative element. Then σ(W

up,(ℓ)
j x) = 0, where x is a vector

with non-negative entries, is a constant function of x. This implies fup,(ℓ) is constant (it is the zero
function), which contradicts Lemma C.15. Similarly, for any message passing layer ℓk ∈ [L] if there
is some W

agg,(ℓk)
j with a negative element for j > 1 then σ(W

agg,(ℓk)
j x) = 0 is a constant function
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of x which gives that fagg,(ℓk) is constant. Again, we have a contradiction with Lemma C.15, which
says that fagg,(ℓk) must be edge and node dependent.

It remains to show that for messages passing layers ℓk ∈ [L] that the non-zero elements in W
agg,(ℓk)
1

are non-negative. However, we first simplify the update function given the restrictions we have
already derived. By the sparsity of the MinAgg GNN (∥W up,(ℓ)

m ∥0 = 1), at any step ℓ, all node
features h(ℓ)

v have at most 1 non-zero component. We can then simplify the update by reducing the
number of dimensions. In particular we get

h̃(ℓ)
v = γ(ℓ)h̃(ℓ−1)

v

for stationary layers and

h̃(ℓ)
v = γ(ℓ) min{σ(ρ(ℓ)h̃(ℓ−1)

v + τ (ℓ)x(u,v)) : u ∈ N (v)}

for message passing layer where γ(ℓ), ρ(ℓ), τ (ℓ) ∈ R are new parameters that are functions the initial
parameters θ, and h̃

(ℓ)
v ∈ R is a single-dimensional node feature that is equal to the non-zero value

in h
(ℓ)
v (or zero if there is no such value). We have that h̃(0)

v = h
(0)
v = x

(0)
v and h̃

(L)
v = h

(L)
v since

h
(0)
v , h

(L)
v ∈ R. Note that the new parameters do not depend on the input features since they are only

dependent on θ.
We now further simplify by combining the stationary layers with their succeeding message passing
layer. Let ℓ0 = 0. For the kth message passing layer ℓk ∈ [L]

h̃(ℓk)
v = γ(ℓk) min

σ

ρ(ℓk)

 ∏
i∈{ℓk−1+1,...,ℓk−1}

γ(i)

 h̃(ℓk−1)
v + τ (ℓk)x(u,v)

 : u ∈ N (v)


= γ(ℓk) min

{
σ
(
α(ℓk)h̃(ℓ−1)

v + τ (ℓk)x(u,v)

)
: u ∈ N (v)

}
where α(ℓk) = ρ(ℓk)

(∏
i∈{ℓk−1+1,...,ℓk−1} γ

(i)
)
. Note that if for any ℓk ∈ [L] we have h

(ℓk)
v = 0,

then or all succeeding layers ℓ > ℓk, the node feature h
(ℓ)
v is also zero. This is because the min

aggregation at h(ℓk)
v always includes h(ℓk−1)

v , so if h(ℓk−1)
v = 0 then h

(ℓk)
v = 0. We are now ready

to show α(ℓk) > 0 and τ (ℓk) > 0. Suppose α(ℓk) ≤ 0 for some ℓk ∈ [L] and consider the training
instance (P

(1)
2 (1, 0), P

(K+1)
2 (1, 0)). The update at v2 is

h̃(ℓk)
v2 = γ(ℓk) min

{
σ
(
α(ℓ)h̃(ℓk−1)

u

)
: u ∈ {v1, v2}

}
= 0

since h
(ℓk−1)
v ≥ 0 for all v ∈ V . We then also have h̃

(L)
v2 = 0 and since xv2(P

(K+1)
2 (1, 0)) = 1 the

loss is

Lreg ≥ LMAE(Gtrain,Aθ)

> 1/M

> η(mL+mL+K) + ϵ

which is a contradiction.
Now instead suppose τ (ℓk) < 0 for some ℓk ∈ [L] and consider the training instance
(P

(0)
1 (1), P

(K)
1 (1)). Since h

(ℓ)
v0 = 0 for all ℓ ∈ [L], the update at v1 is

h̃(ℓk)
v1 = γ(ℓk) min

{
σ
(
τ (ℓk)x(v0,v1)

)
, σ

(
α(ℓ)h̃(ℓk−1)

v1 + τ (ℓk)x(v1,v1)

)}
= γ(ℓk) min

{
0, σ

(
α(ℓ)h̃(ℓk−1)

v1 + τ(ℓk)x(v1,v1)

)}
= 0.

We then also have h̃
(L)
v1 = 0 and since xv1(P

(K)
1 (1)) = 1 the loss is again greater than η(mL +

mK +K) + ϵ which is a contradiction.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

We can now remove the final ReLU, since its argument is always non-negative:

h̃(ℓk)
v = γ(ℓk) min

{
α(ℓk)h̃(ℓk−1)

v + τ (ℓk)x(u,v) : u ∈ N (v)
}
.

As another simplification, we re-index to k ∈ [K] as follows. Let h
(k)

v = h̃
(ℓk)
v and γ

(ℓk)
= γ(ℓk)for

k ∈ {0, . . . ,K − 1}. However, to account for the effect of the layers succeeding ℓk we take

h
(K)

v = h̃
(L)
v = and γ

(K)
=

∏
i∈{ℓK ,ℓK+1,...,L} γ

(i). Furthermore, for all k ∈ [K], let α
(k)

= α(ℓk)

and τ
(k)

= τ (ℓk). Then

h
(k)

v = γ
(ℓk)

min
{
α
(k)

h
(k−1)

v + τ
(k)

x(u,v) : u ∈ N (v)
}
.

Finally, by letting µ(k) = γ
(k)

/α
(k)

and ν(k) = τ
(k)

/α
(k)

we get

h
(k)

v = µ(k) min
{
h
(k−1)

v + ν(k)x(u,v) : u ∈ N (v)
}
. (25)

Note that we can factor through the min here because α(k) > 0. For the rest of the proof, we focus
on this simplified update, since it has the same output as the MinAgg GNN, i.e., h

(K)

v = h
(L)
v .

Approximating parameters. We proceed by analyzing the output of the MinAgg GNN on an
inputs for which it is path derived. To this end, suppose that Aθ is path derived on some input graph
P

(1)
K+1(a1, . . . , aK+1). Then, by definition of path derived,

h(ℓk)
vk+1

= fup,(ℓk)
(
fagg,(ℓk)(h(ℓk−1)

vk
, x(vk,vk+1))⊕ h(ℓk−1)

vk+1

)
which implies

h
(k)

vk+1
= µ(k)(h

(k−1)

vk
+ ν(k)x(vk,vk+1)).

Next, we prove, for k ∈ {0, . . . ,K},

h
(k)

vk+1
=

 ∏
k≥i≥1

µ(i)

x(v0,v1) +

k∑
s=1

ν(s)

 ∏
k≥i≥s

µ(i)

x(vs,vs+1)

by induction, where the products evaluate to 1 if they are indexed over an empty set. For the base
case we have

h
(0)

v1 = x(v0,v1).

Now for k ∈ [K], suppose

h
(k−1)

vk
=

 ∏
k−1≥i≥1

µ(i)

x(v0,v1) +

k−1∑
s=1

ν(s)

 ∏
k−1≥i≥s

µ(i)

x(vs,vs+1).

Then we have

h
(k)

vk+1
= µ(k)(h

(k−1)

vk
+ ν(k)x(vk,vk+1))

= µ(k)

 ∏
k−1≥i≥1

µ(i)

x(v0,v1) +

k−1∑
s=1

ν(s)

 ∏
k−1≥i≥s

µ(i)

x(vs,vs+1) + ν(k)x(vk,vk+1)


=

 ∏
k≥i≥1

µ(i)

x(v0,v1) +

k−1∑
s=1

ν(s)

 ∏
k≥i≥s

µ(i)

x(vs,vs+1) + ν(k)µ(k)x(vk,vk+1)

=

 ∏
k≥i≥1

µ(i)

x(v0,v1) +

k∑
s=1

ν(s)

 ∏
k≥i≥s

µ(i)

x(vs,vs+1).
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This completes the inductions and yields

h
(K)

vK+1
=

 ∏
K≥i≥1

µ(i)

x(v0,v1) +

K∑
s=1

ν(s)

 ∏
K≥i≥s

µ(i)

x(vs,vs+1)

Given this expression for the output at vK+1 we can now derive bounds on the values of these
parameters. However, we must restrict our focus to instances of the training set for which Aθ is path
derived.
For k ∈ [K], let H 0

k,K contain graphs in Hk,K where the k + 1 edge has weight 0 and let H 1
k,K

contain graphs in Hk,K where the k + 1 edge has weight 2K + 1. It can be checked that for any
G(1), G(1′) ∈ Hk,K ,

|xvK+1
(G(K+1))− xvK+1

(G′(K + 1))| ≥ 1.

Then, it must be that h
(K)

vK+1
(G(1)) ̸= h

(K)

vK+1
(G′(1)) as if these output features are equal

Lreg ≥ LMAE

≥
|h(K)

vK+1
(G(1))− xvK+1

(G(K+1))|+ |h(K)

vK+1
(G′(1))− xvK+1

(G′(K+1))|
M

≥ 1

M
≥ η(mL+mK +K) + ϵ

which violates that |Lreg − η(mL+mK +K)| < ϵ.
Consider the subset J 0

k,K ⊂ H 0
k,K containing all graphs G ∈ H0

k,K for which Aθ is not path derived
on G. By Lemma C.19, if

Y 0
pd = {h(k)

vk+1
(G) : G ∈ J 0

k,K}
then |Y 0

pd| ≤ K and |Jk,K | ≤ K. Similarly, if J 1
k,K ⊂ H1

k,K contains all graphs G ∈ H 1
k,K for

which Aθ is not path derived on G, and

Y 1
pd = {h(k)

vk+1
(G) : G ∈ J 1

k,K}
then |Y 1

pd| ≤ K and |Jk,K | ≤ K.

Using these facts, the pigeon hole principle gives that there must be two graphs G(1)
0 ∈ H 0

k,K \J 0
k,K

and G
(1)
1 ∈ H 1

k,K \ J 1
k,K such that

x(v0,v1)(G
(1)
0 ) = x(v0,v1)(G

(1)
1 ),

i.e., G(1)
0 and G

(1)
1 only differ in the weight of their (k + 1)th edge.

Since error less than ϵ is achieved on Gtrain,

|h(K)

vK+1
(G

(1)
0 )− xvK+1

(G
(K+1)
0 )| ≤ Mϵ

and

|h(K)

vK+1
(G

(1)
1 )− xvK+1

(G
(K+1)
1 )| ≤ Mϵ.

The triangle inequity then gives

|h(K)

vK+1
(G

(1)
0 )− xvK+1

(G
(K+1)
0 )− h

(K)

vK+1
(G

(1)
1 ) + xvK+1

(G
(K+1)
1 )| ≤ 2Mϵ.

Making the substitutions

h
(K)

vK+1
(G

(1)
0 ) =

 ∏
K≥i≥1

µ(i)

x(v0,v1)(G
(1)
0 ) +

K∑
s=1

ν(s)

 ∏
K≥i≥s

µ(i)

x(vs,vs+1)(G
(1)
0 )

h
(K)

vK+1
(G

(1)
1 ) =

 ∏
K≥i≥1

µ(i)

x(v0,v1)(G
(1)
1 ) +

K∑
s=1

ν(s)

 ∏
K≥i≥s

µ(i)

x(vs,vs+1)(G
(1)
1 )

xvK+1
(G

(K+1)
0 ) = x(v0,v1)(G

(1)
0 ) + x(vk,vk+1)(G

(1)
0 )

xvK+1
(G

(K+1)
1 ) = x(v0,v1)(G

(1)
1 ) + x(vk,vk+1)(G

(1)
1 )
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and canceling like terms yields

|ν(k)
 ∏

K≥i≥k

µ(i)

 (x(vk,vk+1)(G
(1)
0 )−x(vk,vk+1)(G

(1)
1 ))−(x(vk,vk+1)(G

(1)
0 )−x(vk,vk+1)(G

(1)
1 ))| ≤ 2Mϵ.

Since |x(vk,vk+1)(G
(1)
0 )− x(vk,vk+1)(G

(1)
1 )| = 2K + 1 ≥ 1, dividing by this factor gives

|ν(k)
 ∏

K≥i≥k

µ(i)

− 1| ≤ 2Mϵ.

We can rewrite the inequality as

1∏
K≥i≥k+1 µ

(i)
(1− 2Mϵ) ≤ ν(k)µ(k) ≤ 1∏

K≥i≥k+1 µ
(i)

(1 + 2Mϵ). (26)

Next we bound the product
∏

K≥i≥1 µ
(i) by considering how the MinAgg GNN scales the edge

weight x(v0,v1). Consider two instances J (1), J ′(1) ∈ H 0
k,K \ J 0

k,K , that is, instances for which Aθ

is path derived (which must exist since |J 0
k,K | ≤ K and |H 0

k,K | = 2K + 1). These instances only
differ in the weight of their first edge. As before,

|h(K)

vK+1
(J (1))− xvK+1

(J (K+1))| ≤ Mϵ

and

|h(K)

vK+1
(J ′(1))− xvK+1

(J ′(K+1))| ≤ Mϵ.

which combine to give

|h(K)

vK+1
(J (1))− xvK+1

(J (K+1))− h
(K)

vK+1
(J ′(1)) + xvK+1

(J ′(K+1))| ≤ 2Mϵ.

Substituting in for these four terms and canceling yields∣∣∣∣∣∣
 ∏

K≥i≥1

µ(i)

 (x(v0,v1)(J
(1))− x(v0,v1)(J

′(1)))− (x(v0,v1)(J
(1))− x(v0,v1)(J

′(1)))

∣∣∣∣∣∣ ≤ 2Mϵ.

Since |x(v0,v1)(J
(1))− x(v0,v1)(J

′(1))| ≥ 1 we can rearrange this inequality as∣∣∣∣∣∣
 ∏

K≥i≥1

µ(i)

− 1

∣∣∣∣∣∣ ≤ 2Mϵ.

and

(1− 2Mϵ) ≤

 ∏
K≥i≥1

µ(i)

 ≤ (1 + 2Mϵ). (27)

Bounding error on arbitrary graphs. Consider an arbitrary graph G ∈ G . We aim to show that the
MinAgg GNN outputs on this graph h

(L)
v = h

(K)

v approximate xv(Γ
K(G)). Let r(0)v = xv(G) and

define

r(k)v = min{r(k−1)
u + x(u,v) | u ∈ N (v)}.

meaning r
(k)
v are the results of applying k steps of the BF algorithm. In particular, r(K)

v (G) =
xv(Γ

K(G))
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We now show that
h
(k)

v ≤ 1 + 2Mϵ∏
K≥i≥k+1 µ

(i)
r(k)v

by induction. The base case

h
(0)

v = r(0)v ≤ 1 + 2Mϵ∏
K≥i≥1 µ

(i)
r(0)v

follows from Eq. 27. Now suppose

h
(k−1)

v ≤ 1 + 2Mϵ∏
K≥i≥k µ

(i)
r(k−1)
v .

Then, using Eq. 26,

h
(k)

v = µ(k) min
{
h
(k−1)

v + ν(k)x(u,v) : u ∈ N (v)
}

≤ µ(k) min

{
(1 + 2Mϵ)r(k−1)

v

1∏
K≥i≥k µ

(i)
+ ν(k)x(u,v) : u ∈ N (v)

}

≤ min

{
(1 + 2Mϵ)r(k−1)

v

1∏
K≥i≥k+1 µ

(i)
+

1∏
K≥i≥k+1 µ

(i)
(1 + 2Mϵ)x(u,v) : u ∈ N (v)

}

=
1 + 2Mϵ∏

K≥i≥k+1 µ
(i)

min
{
r(k−1)
v + x(u,v) : u ∈ N (v)

}
=

1 + 2Mϵ∏
K≥i≥k+1 µ

(i)
r(k)v .

On the other hand, we next show

h
(k)

v ≥ 1− 2Mϵ∏
K≥i≥k+1 µ

(i)
r(k)v

by induction. The base case

h
(0)

v = r(0)v ≥ 1− 2Mϵ∏
K≥i≥1 µ

(i)
r(0)v

again follows from Eq. 27. Now suppose

h
(k−1)

v ≥ 1− 2Mϵ∏
K≥i≥k µ

(i)
r(k−1)
v .

Then, using Eq. 26,

h
(k)

v = µ(k) min
{
h
(k−1)

v + ν(k)x(u,v) : u ∈ N (v)
}

≥ µ(k) min

{
(1− 2Mϵ)r(k−1)

v

1∏
K≥i≥k µ

(i)
+ ν(k)x(u,v) : u ∈ N (v)

}

≥ min

{
(1− 2Mϵ)r(k−1)

v

1∏
K≥i≥k+1 µ

(i)
+

1∏
K≥i≥k+1 µ

(i)
(1− 2Mϵ)x(u,v) : u ∈ N (v)

}

=
1− 2Mϵ∏

K≥i≥k+1 µ
(i)

min
{
r(k−1)
v + x(u,v) : u ∈ N (v)

}
=

1− 2Mϵ∏
K≥i≥k+1 µ

(i)
r(k)v .

Putting the upper bound and lower bound together, taking k = K, and using xv(Γ
K(G)) = r

(K)
v

yields

(1− 2Mϵ)xv(Γ
K(G)) ≤ h

(K)

v ≤ (1 + 2Mϵ)xv(Γ
K(G))
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D ADDITIONAL EXPERIMENTS

We include additional experiments verifying our theoretical claims with different configurations
of the MinAgg GNN including the simple BF-GNN described in Theorem 2.2 as well as several
configurations of the complex BF-GNN utilized in Theorem 2.3. All models are trained on 8 NVidia
A100 GPUs using the AdamW optimizer with a learning rate of 0.001. We evaluate each model using
the metrics described in Section 3.

D.1 SIMPLE MINAGG GNN

We show in Appendix C.5 that, with gradient descent, a simple MinAgg GNN will converge to the
parameter configuration described in Theorem 2.2. The simple MinAgg GNN is trained with the
specified train set in Theorem 2.2: four single-edge graphs initialized at step 0 and two double-edge
graphs initialized at step 1. Recall that an update for the simple MinAgg GNN is defined as

h(1)
v = σ(w2 min

u∈N (v)
{σ(W1(xu ⊕ x(v,u) + b1))}+ b2)

where w2, b1, b2 ∈ R and W1 ∈ R1×2. From Theorem 2.2, we know that the simple BF-GNN will
implement a single step of Bellman-Ford if w2W11 = w2w12 = 1 and w2b1 + b2 = 0. Therefore,
in Appendix C.5 (a), we see that, via gradient descent, the parameter configurations converge to the
expected values (indicated by the black dotted lines). We further empirically verify the results in
Theorem 2.2 in Appendix C.5(b) by showing that the as the parameter configurations converge to the
expected values, the test error also converges to zero.
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D.2 DEEP MINAGG GNNS

We examine a variety of MinAgg GNN configurations to empirically verify Theorem 2.3. As in
Section 3, we compare models trained with L1 regularization against models trained using just LMSE.
Similar to Section 3, for each model, we track Etest, Etrain, and Ereg throughout optimization. Note
that Etest is evaluated on the same set of test graphs described in Section 3 i.e. Gtest is a set of 200
graphs which are a mix of cycles, complete graphs, and Erdös-Renyí graphs with p = 0.5. Note
that Theorem 2.3 requires Ereg to fall below a certain ϵ threshold (indicated by the red region). For
each of the complex GNN configurations we analyze below, we observe that models trained with L1

regularization satisfy this bound, aligning with Theorem 2.3. Furthermore, to verify that the model
learns the correct parameters which implement Bellman-Ford, we also track a summary of the model
parameters per epoch, defined as follows. This is the same as the model parameters from Section 3 in
the main text, but here we provide more detail. Recall the definition of MinAgg GNNs in Def. 2.1.
Each layer can be precisely expressed as follows:

σ
(
W up,(ℓ)(min{σ(W agg,(ℓ)(h(ℓ−1)

u ⊕ x(u,v))) + bagg,(ℓ)} ⊕ h(ℓ−1)
v )

)
+ bup,(ℓ)

To analyze parameter dynamics, we visualize the following for each optimization step and each layer:

• Layer ℓ node parameters: Given a node feature in Rd, the first d columns of W agg,(ℓ),
W agg,(ℓ)[:, : d] scale the incoming neighboring node features. The contribution of incoming
neighboring node features to the layer-wise output node feature for v can be summarized as
follows:

d⊕
j=1

( dup⊕
i=1

W up,(ℓ)[i, : dagg]⊙W agg,(ℓ)[:, j]
)
⊕
( dagg+dup⊕

dup

W up,(ℓ)[i, dagg : dagg + dup]
)

where ⊙ is the element-wise product and ⊕ denotes concatenation.

• Layer ℓ edge parameters: Similar to above, we know that the last column, d+1, of W agg,(ℓ)

scales the incoming edge features. Therefore, the contribution of neighoring edges to the
layer-wise output node feature can be summarized as

dup⊕
i=1

W up,(ℓ)[i : dagg]⊙W agg,(ℓ)[:, d+ 1].
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• Layer ℓ biases: We track the bias terms for each layer as bagg,(ℓ) ⊕ bup. Note that for the
sparse implementation of Bellman-Ford that we describe previously, we require that the bias
terms all converge to zero.

Finally, note that we summarize each model’s size generalization ability in Table 2 (analogous to
Table 1 in the main text) in both the setting where we make a single forward pass through the model
and when we use the model as a module and make repeated forward passes through the model. In
Table 1, we see that each of the models trained with L1 regularization achieve significantly lower test
error than those trained without L1 regularization.

D.2.1 ONE LAYER

We configure the single layer GNN with BF-GNN with dagg = 64 and dup = 1. We evaluate LMSE

on Gtrain which is the same as for the simple BF-GNN (four two-node path graphs and four three-node
path graphs starting from step one of Bellman-Ford). Intuitively, the two-node path graphs provide
a signal which controls the edge update feature while the three-node path controls the node update
feature of Bellman-Ford. The results for a single layer BF-GNN are summarized in Appendix C.5.
First, as illustrated in Appendix C.5 (a) and (b), the train error LMSE alone does not capture
the model’s generalization ability. Both the L1-regularized and non-regularized models achieve
low LMSE (0.002 for both the L1 regularized model and the un-regularized model), yet only the
regularized model—where Lreg converges to its minimum value—exhibits low test error.
Furthermore, we verify in Appendix C.5 (b) and (c) that the parameters for the single layer MinAgg
GNN converge to a configuration which approximately implements a single step of Bellman-Ford.
Since we are only considering a single layer MinAgg GNN and the input node feature are the initial
distances to source (d = 1), the node parameter summary that we consider is

W up,(1)[: dagg]⊙W agg,(1)[:, 1]⊕W up,(1)[dagg + d]

where W agg,(1) ∈ Rdagg×2 and W up,(1) ∈ Rdagg+d. Additionally, the edge parameter summary we
consider is

W up,(1)[: dagg]⊙W agg,(1)[:, 2].

Therefore, for a single layer MinAgg GNN, the model parameters which exactly implement Bellman-
Ford has a single k ∈ [64] such that

W up,(1)[k] ·W agg,(1)[k, 1] = W up,(1)[k] ·W agg,(1)[k, 2] = 1.0.

This means there is a single identical positive non-zero value for both the node and edge parameters.
Additionally, all biases are zero. In Appendix C.5 (c), we see that the trained MinAgg GNN using L1

regularization approximately converges to this configuration of parameters. However, the MinAgg
GNN trained without regularization does not achieve this parameter configuration, explaining the
higher test error Etest.
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Table 2: Error (Etest) versus size for all model configurations. The first row of the table contains the
test error for both the single (indicated by 1L) and two-layer (indicated by 2L) model configurations
trained on a single step of Bellman-Ford and the second row contains the test error for all model
configurations trained on two steps of Bellman-Ford. We use ‘reg’ to indicate that the model is trained
with L1 regularization and ‘un-reg’ to indicate a model trained without L1 regularization. Similar to
Table 1, we examine the error for a single pass of each model (one step of BF for the first row and
two steps of BF for the second row) and for three forward passes of each model (three steps of BF for
the first row and six steps of BF for the second row). Each test set consists of Erdös–Rényi graphs
generated with the corresponding sizes listed with p such that the expected degree np = 5. For both
models trained with L1 regularization and without, the error does not change much as the number
of nodes in the test graphs increase. However, when each model is used as a module and iterated,
we see that the L1 regularized model remains accurate while the error for the un-regularized model
increases significantly.

Single
# of nodes 1L, un-reg. 1L, reg. 2L, un-reg. 2L, reg.

One step
100 0.0079 ± 0.0027 0.00006 ±0.00003 0.0569 ± 0.0064 0.0022 ± 0.0002
500 0.0070 ± 0.0025 0.00006 ± 0.00004 0.0560 ±0.0072 0.0022 ± 0.0003
1K 0.0071 ± 0.0026 0.00006 ± 0.00004 0.0558 ± 0.0073 0.0021 ±0.0003

Two steps
100 - - 0.0296 ± 0.002 0.0173 ± 0.001
500 - - 0.0297 ± 0.002 0.0174 ± 0.001
1K - - 0.0308 ± 0.002 0.0180 ± 0.001

Iterated
# of nodes 1L, un-reg. 1L, reg. 2L, un-reg. 2L, reg.

One step
100 0.0320 ± 0.0028 0.00012 ± 0.00004 0.0097 ± 0.0017 0.00133 ± 0.0001
500 0.0289 ± 0.0025 0.00012 ± 0.00006 0.0074 ± 0.0010 0.00147 ±0.0001
1K 0.0290 ± 0.0025 0.00011 ± 0.00001 0.0072 ±0.0013 0.00151 ± 0.0001

Two steps
100 – – 0.0596 ± 0.0131 0.0182 ± 0.0009
500 – – 0.0391 ± 0.0040 0.0197 ± 0.0006
1K – – 0.0367 ± 0.0025 0.0199 ± 0.0007
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D.2.2 TWO LAYER, SINGLE STEP

We configure a two layer GNN with dagg = 64 and dup = 1 for all layers and train it on a single step of
Bellman-Ford. Note that this setup is overparameterized for modeling a single step of Bellman-Ford.
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The results of training on a single step of Bellman-Ford are summarized in Appendix D.1. As with
the single layer MinAggGNN configuration, the train set again consists of four two-node path graphs
and four three-node path graphs with varying edge weights.
First, while LMSE converged to a low error for both models, only the model trained with LMSE,L1

has Lreg converging to a low value. This also corresponds to a significantly lower Ltest, again
demonstrating an overparameterized model’s ability to learn Bellman-Ford under an L1-regularized
training error and generalize to larger graph sizes with lower test error. These results align with our
theoretical results, where the convergence of Lreg to its minimum value provides a certificate for size
generalization.
In Appendix D.1 (b) and (c), we again further verify the size generalization ability of our models
and emphasize the importance of sparsity regularization for size generalization by showing that the
model parameter summaries for the model trained with LMSE,L1

converge to an implementation of a
single step of Bellman-Ford. Since dup,(ℓ) = 1 for both layers, the node parameter summary that we
analyze is again

W up,(ℓ)[: dagg]⊙W agg,(ℓ)[:, 1]⊕W up,(ℓ)[dagg + 1]

and the edge parameter summary is

W up,(ℓ)[: dagg]⊙W agg,(ℓ)[:, 2].

for both layers. Similar to the single layer and single edge case, for the first layer, we expect
that in the sparse implementation of a single step of Bellman, there will only a unique identical
and positive non-zero value for both the node and edge parameter summaries. Therefore, for this
sparse implementation, for any node v in a given input graph, the node feature for v at the first
layer is a(xu′ + x(u′,v) where a > 0 and u′ = argminu∈N (v){xu + x(u,v)}. In the second layer,
W up,(2)[65] = 1/a is the only positive non-zero parameter. Therefore, the final output for v will be
minu∈N (v){xu + x(u,v)}. In Appendix D.1 (b) and (c), we see again that the model trained with L1

regularization (i.e. LMSE,L1
) has its parameters approximately converge to this sparse implementation

of Bellman-Ford. In contrast, the model trained without L1 regularization (i.e. only LMSE) does not
appear to converge such a sparse implementation of Bellman-Ford, which accounts for the higher test
error of the model.

D.2.3 TWO LAYER, TWO STEPS

In the main text, we evaluate the ability of a two layer MinAgg GNN to learn two steps of Bellman-
Ford. Here, we show the ability of the MinAgg GNN to learn two steps of Bellman-Ford in a
somewhat under-parameterized setting as we let dagg = 64 and dup = 1. The results are summarized
in Appendix D.2.1. Similar to the other model configurations evaluated (both in the supplement and
the main text), we see that in Appendix D.2.1 (a) and (b) that the L1 regularized model achieves
much lower Ereg and correspondingly, much lower Etest. The parameter configurations visualized
in Appendix D.2.1 (c) and (d) show that the L1 regularized model with low Ereg converges to the
sparse implementation of two-steps Bellman-Ford, as we have shown theoretically in Theorem 2.3.
Additionally, note in Table 2, the gap between the error for the unregularized model and the error for
the regularized model is much lower than that of Table 1 in the main text.

E LIMITATIONS

We now discuss limitations to our current study. First, we do not provide experiments for graph
neural networks (GNNs) with many layers, and thus our experimental findings may not generalize to
deeper architectures. Second, our approach requires training sets to be explicitly constructed rather
than sampled from a distribution, which may limit the applicability of our results to more general
or practical scenarios. Finally, we focus exclusively on the properties of the global minimum of the
loss and do not discuss optimization dynamics or the process of reaching this minimum, which are
important considerations in real-world training.
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F TABLE OF NOTATION

Symbol Definition
General Notations

[n] The set {1, 2, . . . , n}.
x⊕ y Concatenation of vectors x and y.
xi or [x]i i-th component of vector x.
β A large constant representing the unreachable node feature value.

Graphs and Attributed Graphs
G = (V,E,Xv, Xe) Attributed graph with vertices V , edges E, edge weights Xe, and node attributes

Xv.
Xe, Xv Edge weights {xe : e ∈ E} and node attributes {xv : v ∈ V }.
d(t)(s, v) Length of the t-step shortest path from node s to v; β if no such path exists.
G(t) t-step Bellman-Ford (BF) instance with node features {xv = d(t)(s, v) : v ∈

V }.
Γ Operator implementing a single step of the BF algorithm.
G Set of all edge-weight-bounded attributed graphs.
P

(ℓ)
k (a1, . . . , ak) k-edge path graph at step ℓ with edge weights a1, . . . , ak.

N (v) Neighborhood of node v in the graph.
V ∗(G) Set of reachable nodes in graph G, i.e., nodes with xv ̸= β.

Graph Neural Networks (GNNs)
Aθ L-layer Bellman-Ford Graph Neural Network (MinAgg GNN) parameterized by

θ.
h
(ℓ)
v Hidden feature of node v at layer ℓ in the MinAgg GNN.

Aθ(G) Output graph of MinAgg GNN Aθ after L layers, with updated node features.
dℓ Dimensionality of hidden features at layer ℓ.
fagg, fup MLPs used for aggregation and update operations in MinAgg GNN layers.
W agg

j ,W up
j Weight matrices for aggregation and update MLPs in MinAgg GNN.

baggj , bupj Bias vectors for aggregation and update MLPs in MinAgg GNN.
K Number of message passing steps in the MinAgg GNN.
m Number of layers in the MLPs used for aggregation and update in MinAgg GNN.
L Total number of layers in the MinAgg GNN.
d Dimensionality of hidden features in MinAgg GNN layers.

Training and Loss Functions
Hsmall A set of small training graphs used to analyze GNN performance.
Gtrain Set of training examples for the MinAgg GNN, consisting of input-output graph

pairs.
Lreg Regularized loss function for MinAgg GNN, combining training loss and param-

eter sparsity penalty.
LMAE Mean absolute error loss over the training set.
η Regularization coefficient for sparsity in the MinAgg GNN.
Etest Multiplicative error over the test set.
Ereg Model sparsity combined with mean absolute error over the training set. Same

as Lreg.
Etrain Mean squared error over the training set.

Table 3: Notation table summarizing key symbols and terms.
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G LLM USE

LLMs were used for refining writing, proof reading, and organizing citations.
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