

000 001 002 003 004 005 006 007 008 009 GRAPH NEURAL NETWORKS EXTRAPOLATE OUT-OF- 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DISTRIBUTION FOR SHORTEST PATHS

Anonymous authors

Paper under double-blind review

ABSTRACT

Neural networks (NNs), despite their success and wide adoption, still struggle to extrapolate out-of-distribution (OOD), i.e., to inputs that are not well-represented by their training dataset. Addressing the OOD generalization gap is crucial when models are deployed in environments significantly different from the training set, such as applying Graph Neural Networks (GNNs) trained on small graphs to large, real-world graphs. One promising approach for achieving robust OOD generalization is the framework of *neural algorithmic alignment*, which incorporates ideas from classical algorithms by designing neural architectures that resemble specific algorithmic paradigms (e.g. dynamic programming). The hope is that trained models of this form would have superior OOD capabilities, in much the same way that classical algorithms work for all instances. We employ sparsity regularization as a tool for analyzing the role of algorithmic alignment in achieving OOD generalization, focusing on graph neural networks (GNNs) applied to the canonical *shortest path* problem. We prove that GNNs, trained to minimize a sparsity-regularized loss over a small set of shortest path instances, are **guaranteed to extrapolate** to arbitrary shortest-path problems, including instances of any size. In fact, if a GNN minimizes this loss within an error of ϵ , it computes shortest path distances up to $O(\epsilon)$ on instances. Our empirical results support our theory by showing that NNs trained by gradient descent are able to minimize this loss and extrapolate in practice.

1 INTRODUCTION

Neural networks (NNs) have demonstrated remarkable versatility across domains, yet a persistent and critical challenge remains in their ability to generalize to out-of-distribution (OOD) inputs, i.e., inputs that differ distributionally from their training data. This challenge is pervasive in machine learning and arises whenever a model is applied to situations that are not represented in the training data. For instance, a medical diagnosis model trained on North American patients may struggle to generalize when applied to patients in the UK due to differences in underlying population distributions. This issue has motivated entire subfields, such as distribution shift, transfer learning, and domain adaptation (10; 34; 23).

Graphs, in particular, highlight this challenge as they can vary dramatically in size, connectivity, and topological features. Graph neural networks (GNNs) (29; 11) have seen tremendous development in the past decade (46; 37), and have been broadly applied to a wide range of domains, from social network analysis (9; 4) and molecular property prediction (7; 38; 36) to combinatorial optimization (1; 15). However, these applications often involve scenarios where the graphs encountered in practice are significantly larger, more complex, or structurally distinct from those in training. The case of **size generalization**, where we hope to generalize to graphs larger than seen in training, is an especially severe case of the OOD generalization problem as the graphs belong to distinct spaces, making the training and test distributions disjoint.

Empirical evidence shows that a powerful route to OOD generalization is *algorithmic alignment*—designing a model’s architecture to match a target algorithmic framework (41; 2). Such alignment biases the network to finding solutions that resemble algorithms, and thus, inherits properties of algorithms like size independence that can aid OOD generalization. Despite many empirical successes, theoretical guarantees for this approach remain extremely limited.

The primary challenge to OOD guarantees is the very expressivity that makes neural networks successful: highly expressive models can fit the training distribution while realizing hypotheses

054 that fail off-distribution. (See (44) for an example with GNNs, and interesting discussion on the
 055 challenges of size generalization.) Consequently, capacity-based generalization bounds are ill-suited
 056 to distribution shift and to size generalization. Existing positive results typically assume a tightly
 057 controlled relation between train and test. For example, they embed graphs of different sizes into a
 058 shared limit space (graphons) and bound their distance (26; 17; 16; 21), or impose explicit discrepancy
 059 bounds between the two distributions (23; 22)—thereby narrowing applicability. We instead ask, can
 060 OOD generalization guarantees be achieved **without any assumptions on the data**? We answer this
 061 question in the affirmative by taking an approach that focuses on analyzing a model’s inductive bias.
 062 In particular, our introduction of explicit regularization makes the effect of algorithmic alignment on
 063 inductive bias explicit and analyzable, rendering OOD guarantees tractable.

064 By combining algorithmic alignment and sparsity (which lend strong inductive biases), we
 065 demonstrate that it is possible to train GNNs that provably overcome OOD generalization
 066 challenges for the canonical task of computing shortest paths. In particular, we show that
 067 training a GNN on just a few well selected small graphs can yield a model that generalizes
 068 provably well to arbitrarily large graphs, marking the first result of this kind.

070 Message-passing graph neural networks are popular architectures for handling data in the form of
 071 graphs (cf. surveys (11; 47)). At a high level, they operate by assigning each node v an **embedding**
 072—say, a vector $h_v \in \mathbb{R}^d$ —and then iteratively updating these embeddings until they contain a
 073 solution to the problem at hand. During each step, each node updates its embedding based on the
 074 embeddings of its neighbors and the weights of the edges connecting them. More precisely, letting
 075 $h_v^{(\ell)}$ denote the embedding after ℓ update steps,

$$h_v^{(\ell)} = f^{\text{up}} \left(h_v^{(\ell-1)}, f^{\text{combine}} \left(\{h_u^{(\ell-1)} \oplus w_{uv} : u \in \mathcal{N}(v)\} \right) \right), \quad (1)$$

076 where \oplus denotes concatenation, w_{uv} is the weight of the edge between u and v , the set $\mathcal{N}(v)$ is the
 077 neighborhood of v , and where f^{combine} and f^{up} are functions realized by feedforward neural nets. In
 078 this way, after ℓ update steps, each node’s embedding can incorporate information from other nodes
 079 up to ℓ hops away (see Figure 1). Since we focus only on message-passing graph neural networks in
 080 this work, we refer to them simply as GNNs henceforth. As this model applies to graphs with any
 081 number of nodes, a key question is: when and how do GNNs perform well on inputs of varying size?

082 Neural algorithmic alignment is a well-studied framework aiming to design neural architectures
 083 that align structurally with specific algorithmic paradigms for the purpose of improving the OOD
 084 generalization abilities of a NN. For instance, an astonishingly vast range of practical algorithms are
 085 based on **dynamic programming**, an algorithmic strategy that exploits **self-reducibility** in problems:
 086 that is, expressing the solution to the problem in terms of solutions to smaller problems of the same
 087 type. Shortest paths admit such a decomposition: if the shortest path from s to t goes through node u ,
 088 then it consists of the shortest path from s to u , followed by the shortest path from u to t , two smaller
 089 subproblems. Interestingly, dynamic programs appear to be well-aligned with graph neural networks
 090 (39; 3).

091 The Bellman-Ford (BF) algorithm for shortest-path computations is the canonical example in the
 092 algorithmic alignment literature, highlighting the connection between dynamic programming and
 093 message-passing GNNs. In each iteration k of BF, the shortest path distances from each node to
 094 the source that are achievable with at most k steps are computed using the shortest path distances
 095 achievable with at most $(k-1)$ steps. For a specific node v , the distance $d_v^{(k)}$ is updated as

$$d_v^{(k)} = \min \left\{ d_u^{(k-1)} + w_{(u,v)} : u \in \mathcal{N}(v) \right\}, \quad (2)$$

096 where $w_{(u,v)}$ is the weight of the edge connecting u to v . This iterative update process closely mirrors
 097 the message-passing mechanism in GNNs, where node features are updated layer by layer based on
 098 aggregated information from their neighbors.

099 **Contribution.** Our work provides theoretical guarantees and empirical validation of out-of-
 100 distribution generalization, and marks a significant advancement in understanding the benefits of
 101 neural algorithmic alignment. While many prior studies have highlighted the expressivity of NNs, the
 102 structural similarity of GNNs and classical algorithmic control flows, and their capacity to mimic
 103 algorithmic behavior, they typically fall short of providing rigorous guarantees on generalization,

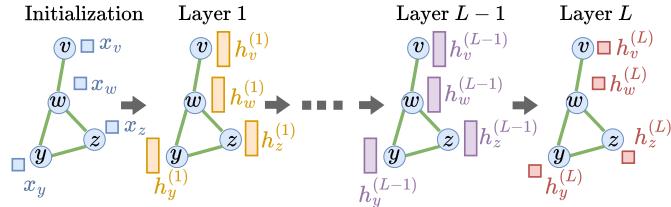


Figure 1: Diagram showing L GNN layers. The node features are represented by rectangles. At each layer, node features are updated according to neighboring node features and the weights of the adjoining edges.

particularly in the OOD setting. In contrast, we show that, by using sparsity regularized training regime, GNNs aligned with the BF algorithm provably extrapolate to arbitrary graphs, regardless of size or structure.

We use sparsity to elucidate the connection between GNNs and the Bellman-Ford (BF) algorithm and demonstrate how it provides guaranteed OOD generalization. In particular, we show that if a GNN minimizes a sparsity-regularized loss over a particular small set of shortest-path instances, then the GNN exactly implements the BF algorithm and hence works on arbitrary graphs, regardless of size. Furthermore, if the GNN minimizes the loss up to some error, then it generalizes with at worst proportional error. In this sense, a small sparsity-regularized loss over a specific set instances serves as a certificate guaranteeing the model’s ability to generalize to arbitrary graphs. Furthermore, we empirically validate that gradient-based optimization indeed finds these BF-aligned solutions, highlighting the practical viability of leveraging algorithmic alignment for enhanced generalization.

This work moves algorithmic alignment beyond intuitive analogies or expressivity-based arguments. Moreover, our results highlight the unique potential of algorithmic alignment to bridge data-driven and rule-based paradigms, offering a principled framework for tackling generalization challenges in NNs. We believe that our approach combining regularization with algorithmic alignment to analyze OOD generalization will prove useful in other settings. Indeed, subsequent work of (5) has used a similar approach to get OOD generalization guarantees for GNNs in solving the heat equation.

1.1 RELATED WORK

Neural algorithmic alignment. Data-dependent approaches to solving combinatorial optimization problems have surged in the past few years (1) with GNNs among the most popular architectures used. Early work on GNNs for algorithmic tasks was primarily empirical (15; 13) or focused on representational results (28; 19). The idea of **neural algorithmic alignment** emerged as a conceptual framework for designing suitable GNNs, by selecting architectures that could readily capture classical algorithms for similar tasks. This framework has sample complexity benefits (39) and promising empirical results (30; 8; 40). It has also gained traction as a way of understanding the theoretical properties of a given model in terms of its behavior for simple algorithmic tasks (such as BF shortest paths or dynamic programming as a whole) (31; 33; 32; 6). Our work is the first to establish, both theoretically and empirically, that a NN will converge to the correct parameters which implement a specific algorithm.

Size generalization. Size generalization of graph neural networks has been studied empirically, in a variety of settings including classical algorithmic tasks (31), physics simulations (27), and efficient numerical solvers (20). There is also work on generalization properties of infinite-width GNNs (the so-called **neural tangent kernel** regime); for the simple problem of finding max degree in a graph, (41) show that graph neural networks in the NTK regime with max readout can generalize to out-of-distribution graphs. Complementary graphon approaches use graph limits combined with continuity of GNNs to understand size generalization (26; 17; 16; 21). Beyond size generalization in GNNs, there is a parallel literature on Transformers that analyzes extrapolation to longer sequences, often called **length generalization** (instead of size generalization). Current work on length generalization asks whether models trained on short sequences of simple arithmetic problems such as addition and modular addition can correctly solve longer problems of the same type (45; 12; 18; 14). Within this line, RASP and C-RASP model attention as discrete programs, yielding logic equivalences and depth hierarchies that attempt to explain when such programs extrapolate (35; 45; 43; 42). Although

162 these works offer empirically grounded frameworks for size generalization, they provide no formal
 163 guarantees. In contrast, we give conditions for provable size generalization.
 164

165 2 EXTRAPOLATION GUARANTEES

166 2.1 MODEL

167 In graph neural networks, each node
 168 (and possibly edge) is associated with
 169 a vector, and in each layer of process-
 170 ing, these vectors are updated based
 171 on the vectors of neighboring nodes
 172 and adjacent edges. An **attributed**
 173 undirected graph is of the form $G =$
 174 (V, E, X_v, X_e) , where $X_e = \{x_e : e \in E\}$ are the edge embeddings and
 175 $X_v = \{x_v : v \in V\}$ are the node
 176 embeddings. In our case, the edge
 177 embeddings will simply be fixed non-
 178 negative edge weights, $x_{(u,v)} = w_{uv}$,
 179 with self-loops set to zero, $x_{(u,u)} = 0$.
 180 The initial node embeddings X_v en-
 181 code the problem input, while the final
 182 node embeddings $h_v^{(L)}$ contain the
 183 computed shortest path distances. For
 184 instances of shortest path problems,
 185 we take $x_v = 0$ if v is the source node
 186 and use $x_v = \beta$ to indicate nodes with
 187 infinite distance to the source, where β is some number greater than the sum of edge weights. The
 188 space of graphs we consider is then
 189

$$190 \mathcal{G} = \left\{ G = (V, E, X_v, X_e) : \sum_{e \in E} x_e < \beta \right\}.$$

194 The embedding of node v at step ℓ is denoted $h_v^{(\ell)}$ and follows the update rule in Eq. 1 above. (When
 195 referring to specific graphs we use $h_v^{(\ell)}(G)$ and $x_{(u,v)}(G)$.)

196 The $f^{up,(\ell)}$ function is an MLP that takes two vectors as input: the current embedding of node v , and
 197 a vector representing the aggregated information from v 's neighbors. It outputs the new embedding of
 198 v . Here $\mathcal{N}(v)$ denotes the neighbors of node v , and we take them to include v itself. The $f^{combine,(\ell)}$
 199 function combines the embeddings of v 's neighbors, and the edge weights, into a single vector. A
 200 common choice is to apply some MLP $f^{agg,(\ell)}$ to each (neighbor, edge weight) pair and to then take
 201 the sum, or max, or min, of these $|\mathcal{N}(v)|$ values. We adopt the min. This design choice aligns the
 202 network with the structure of the BF algorithm, while still representing a broad and expressive class
 203 of GNNs.

204 **Definition 2.1.** An L -layer Min-Aggregation Graph Neural Network (MinAgg GNN) with d -
 205 dimensional hidden layers is a map $\mathcal{A}_\theta : \mathcal{G} \rightarrow \mathcal{G}$ which is computed by layer-wise node-updates (for
 206 all $\ell \in [L]$) defined as

$$208 h_v^{(\ell)} = f^{up,(\ell)} \left(\min_{u \in \mathcal{N}(v)} \{f^{agg,(\ell)}(h_u^{(\ell-1)} \oplus x_{(u,v)})\} \oplus h_v^{(\ell-1)} \right) \quad (3)$$

210 where $f^{agg,(\ell)} : \mathbb{R}^{d_{\ell-1}+1} \rightarrow \mathbb{R}^d$ and $f^{up,(\ell)} : \mathbb{R}^{d+d_{\ell-1}} \rightarrow \mathbb{R}^{d_\ell}$ are L -layer ReLU MLPs, and
 211 $d_0 = d_K = 1$. Given an input $G = (V, E, X_v, X_e)$ the initialization is $h_u^{(0)} = x_u$.

213 For simplicity, we assume that $d_\ell = d$ for $L > \ell > 0$. This assumption is made to reduce the
 214 number of hyperparameters needed in the analysis, but is made without loss of generality – all
 215 of our results hold with general d_ℓ . Furthermore, the choice to make all MLP's have L layers is
 also made for simplicity of presentation (again, without loss of generality). Let Γ be a map which

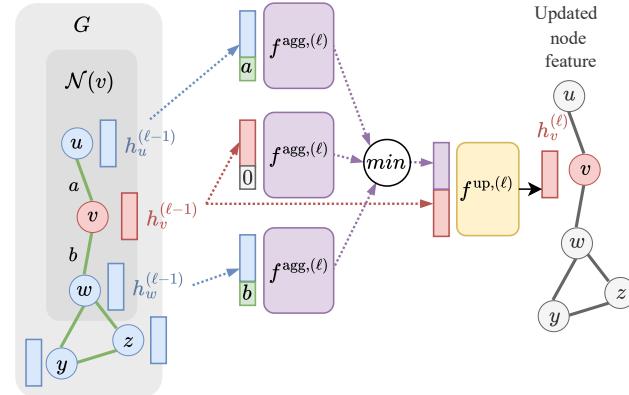
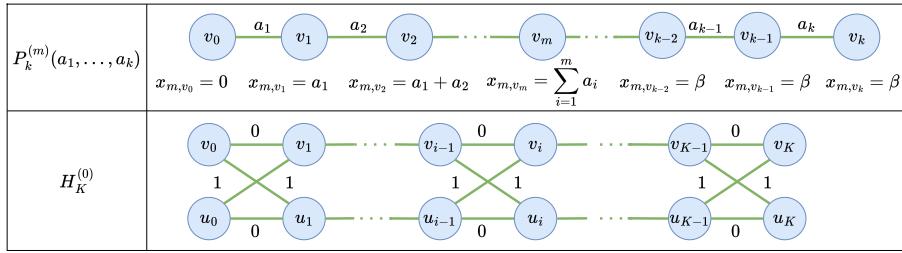


Figure 2: Visual representation of the ℓ -th layer of a MinAgg GNN operating on a graph G , where $f^{agg,(\ell)}$ is the aggregation MLP and $f^{up,(\ell)}$ is the update MLP. Only nodes in the neighborhood $\mathcal{N}(v)$ of v are used in the update, so the output at v is independent of x and y .

is some number greater than the sum of edge weights. The

Figure 3: Graphs used in the training sets $\mathcal{H}_{\text{small}}$ and \mathcal{G}_K .

implements a single step of the BF algorithm. If $G = (V, E, X_e, X_v)$ is an attributed graph, then $\Gamma(G) = (V, E, X_e, X'_v)$ such that for any $v \in V$,

$$x'_v = \min\{x_u + x_{(u,v)} : u \in \mathcal{N}(v) \cup \{v\}\}.$$

We aim to train a GNN to learn K iterations of Γ , which we denote by Γ^K .

2.2 TOY EXAMPLE

We begin with a toy example that introduces the main ideas. Suppose we look at perhaps the simplest possible GNN that is capable of computing shortest paths. It has updates of the form

$$h_v^{(1)} = \sigma(w_2 \min_{u \in \mathcal{N}(v)} \{\sigma(W_1(x_u \oplus x_{(v,u)} + b_1)\}) + b_2) \quad (4)$$

Notice that there are just five parameters in this model: b_1 , b_2 , W_{11} , W_{12} , and w_2 . The BF algorithm can be simulated by this GNN, as $b_1 = b_2 = 0$ and $W_{11} = W_{12} = w_2$ yields Eq. 2. Interestingly, there are many parameter choices that implement the BF update: all that is needed is that $w_2 W_{11} = w_2 W_{12} = 1$ and $w_2 b_1 + b_2 = 0$. Now, let’s consider training this model using a small collection of eight graphs, each a path consisting of just one or two edges. Specifically, let $\mathcal{H}_{\text{small}} = \mathcal{H}_0 \cup \mathcal{H}_1$ with

$$\mathcal{H}_0 = \{P_1^{(0)}(a_i) : i \in \{1, \dots, 4\}\} \quad \text{and} \quad \mathcal{H}_1 = \{P_2^{(1)}(a_i, 0) : i \in \{5, \dots, 8\}\} \quad (5)$$

where $P_k^{(m)}$ denotes a path graph as defined in Fig. 3. The labeled training set is then $\mathcal{H}_{\text{small}} = \{(G, \Gamma(G)) : G \in \mathcal{H}_{\text{small}}\}$.

Theorem 2.2. *Let $0 < \epsilon < 1$. If $\forall G \in \mathcal{H}_{\text{small}}$ and $\forall u \in V(G)$, a 1-layer GNN \mathcal{A}_θ with update given by Eq. 4 computes a node feature satisfying $|h_u^{(1)}(G) - x_u(\Gamma(G))| < \frac{\epsilon}{20}$, then for any $G' \in \mathcal{G}$ and $v \in V(G')$*

$$(1 - \epsilon)x_v(\Gamma(G')) - \epsilon \leq h_v^{(1)}(G') \leq (1 + \epsilon)x_v(\Gamma(G')) + \epsilon.$$

This theorem shows that if the GNN in Eq. 4 achieves low loss on $\mathcal{H}_{\text{small}}$ then it must implement the Γ operator (a BF step) up to proportionally small error.

Proof Sketch. Recall that $\sigma(\cdot)$ is the ReLU activation function, which effectively divides the input space into two halfspaces. This means that the output of the model on any of the input graphs is one of just 4 possible linear functions of the input. The number of input graphs is enough to cover all these cases, so if there is small error on $\mathcal{H}_{\text{small}}$, the model must simplify to

$$h_v^{(1)} = w_2 \left(\min_{u \in \mathcal{N}(v)} W_1(x_u \oplus x_{(v,u)} + b_1) + b_2 \right) \quad (6)$$

for most training instances. It is now straightforward to show small error is only achieved if $w_2 W_{11}$ and $w_2 W_{12}$ are close to 1 and $w_2 b_1 + b_2$ is close to zero. These conditions guarantee that the BF algorithm is approximately identified. \square

270 2.3 MAIN RESULT
271

272 Now we move to our main result. This time, we consider a full MinAgg GNN as given by Def. 2.1.
273 To train this model, we again use a small number of simple graphs. The training set contains

$$274 \quad \mathcal{G}_K = \mathcal{G}_{\text{scale},K} \cup \{P_1^{(0)}(1), P_2^{(1)}(1,0), H_K^{(0)}\} \quad (7)$$

275 where $\mathcal{G}_{\text{scale},K}$ contains all path graphs of the form $P_{K+1}^{(1)}(a, 0, \dots, 0, b, 0, \dots, 0)$ for $(a, b) \in$
276 $\{0, 1, \dots, 2K\} \times \{0, 2K+1\}$ (b is the weight of the k th edge). The training instance $H_K^{(0)}$,
277 is shown in Fig. 3. The labeled set is $\mathcal{G}_K = \{(G, \Gamma^K(G)) : G \in \mathcal{G}_K\}$.
278

279 For each graph in the training set $G \in \mathcal{G}_{\text{train}}$, we compute the loss only over the set of nodes reachable
280 from the source $V^*(G)$ (the total number of reachable nodes is $|\mathcal{G}_{\text{train}}|^*$). The regularized loss we
281 use \mathcal{L}_{reg} is

$$282 \quad \mathcal{L}_{\text{reg}}(\mathcal{G}_{\text{train}}, \mathcal{A}_\theta) = \mathcal{L}_{\text{MAE}}(\mathcal{G}_{\text{train}}, \mathcal{A}_\theta) + \eta \|\theta\|_0, \quad (8)$$

283 where \mathcal{L}_{MAE} is

$$284 \quad \frac{1}{|\mathcal{G}_{\text{train}}|^*} \sum_{G \in \mathcal{G}_{\text{train}}} \sum_{v \in V^*(G)} |x_v(\Gamma^K(G)) - h_v^K(G)|.$$

285 **Theorem 2.3.** Consider a training set $\mathcal{G}_{\text{train}}$ with M total reachable nodes and $\mathcal{G}_K \subset \mathcal{G}_{\text{train}}$. For
286 $L \geq K > 0$, if an L -layer MinAgg GNN \mathcal{A}_θ with m -layer MLPs achieves a loss $\mathcal{L}_{\text{reg}}(\mathcal{G}_{\text{train}}, \mathcal{A}_\theta)$
287 within ϵ of its global minimum, where $0 < \epsilon < \eta < \frac{1}{2M(mL+mK+K)}$, then on any $G \in \mathcal{G}$ the features
288 computed by the MinAgg GNN satisfy

$$289 \quad (1 - M\epsilon)x_v(\Gamma^K(G)) \leq h_v^{(L)}(G) \leq (1 + M\epsilon)x_v(\Gamma^K(G))$$

290 for all $v \in V(G)$.

291 This theorem shows that low regularized loss implies that an L layer MinAgg GNN correctly
292 implements Γ^K (i.e., K -steps of BF), where the error in implementing this operator is proportional to
293 the distance of the loss from optimal. We later show in experiments that this low loss can be achieved
294 via L_1 -regularized gradient descent. Here we allow for the training set $\mathcal{G}_{\text{train}}$ to be larger than \mathcal{G}_K .
295 However, these additional training examples dilute the training signal from \mathcal{G}_K , and so the strongest
296 bounds are given if $\mathcal{G}_{\text{train}} = \mathcal{G}_K$.
297

298 *Proof Sketch.*

301

1. **Implementing BF:** $mL + mK + K$ non-zero parameters are sufficient for the MinAgg
302 GNN to perfectly implement K steps of the BF algorithm.
2. **Sparsity Constraints:** Next, we show that small loss on \mathcal{G}_K necessitates at least $mL +$
303 $mK + K$ non-zero parameters. Specifically, we show the following.
 - High accuracy on $P_1^{(0)}(1)$ can only be achieved if each layer of $f^{\text{up},(\ell)}$ has at least one
304 non-zero entry. *This requires mL non-zero parameters.*
 - High accuracy on $H_K^{(0)}$ requires K layers where $f^{\text{agg},(\ell)}$ depends on both the node and
305 edge components of its input. This means that each layer of $f^{\text{agg},(\ell)}$ has at least one
306 non-zero entry, and the first layer of $f^{\text{agg},(\ell)}$ has two non-zero entries. *This requires
307 $mK + K$ non-zero parameters.*

308 We use this fact to derive that the minimum value of \mathcal{L}_{reg} is $\eta(mL + mK + K)$. The BF
309 implementation reaches the minimum value of \mathcal{L}_{reg} since it achieves perfect accuracy with
310 $mL + mK + K$ non-zero parameters.

3. **Simplifying the Updates:** Using the above sparsity structure, we can simplify the
311 MinAgg GNN updates to an equivalent update where the intermediate dimensions
312 are always 1 and there are K updates instead of the previous m updates: $\bar{h}_v^{(k)} =$
313 $\mu^{(k)} \min_{u \in \mathcal{N}(v)} \{ \bar{h}_v^{(k-1)} + \nu^{(k)} x_{(u,v)} \}$ where $\mu^{(k)}, \nu^{(k)}, \bar{h}_v^{(k)} \in \mathbb{R}$.
4. **Parameter Constraints and Approximation:** If \mathcal{L}_{reg} is within ϵ of its minimum, the
314 parameters $\mu^{(k)}, \nu^{(k)}$ must be constrained to avoid poor training accuracy on certain graphs.
315 These constraints ensure node features approximate BF's intermediate values, and compiling
316 these errors completes the proof.

317
318
319
320
321
322
323

□

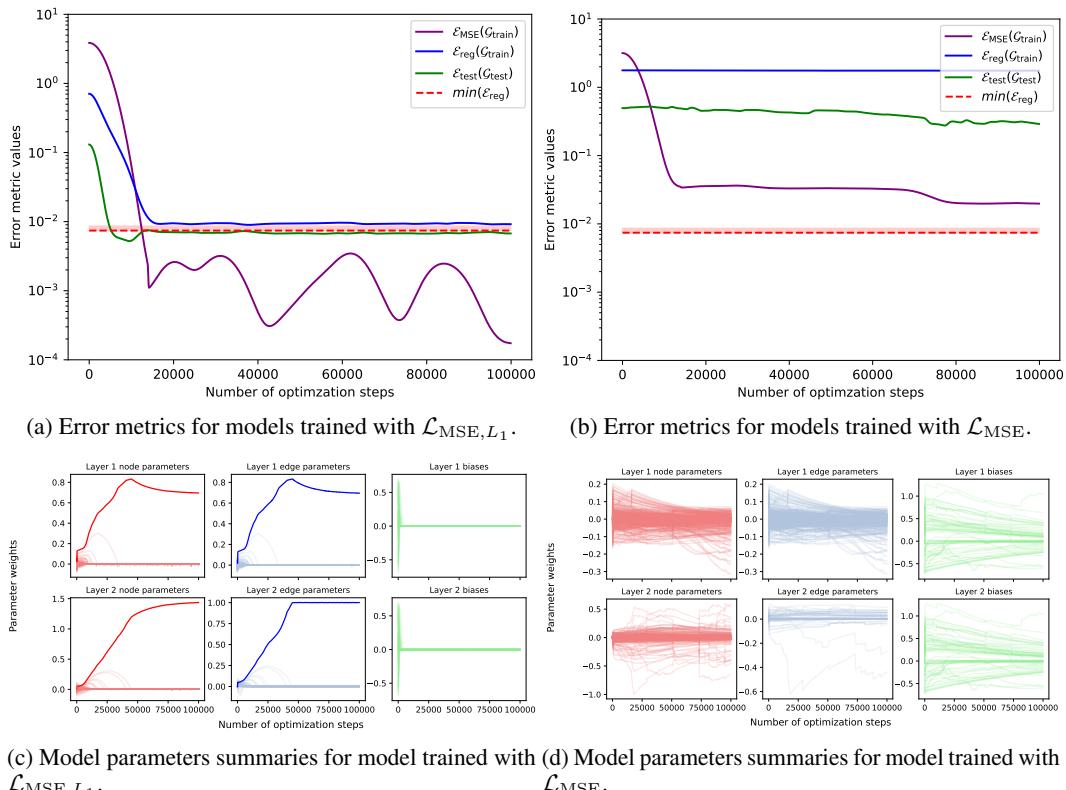


Figure 4: Performance metrics and parameter updates for a two-layer MinAgg GNN trained on a two steps of the BF algorithm. The dotted line in (a) and (b) is the global minimum of Eq. (8). In (a) and (b), we track the change in the train loss, test loss, and \mathcal{L}_{reg} over each optimization step for the models trained with $\mathcal{L}_{\text{MSE}, L_1}$ and \mathcal{L}_{MSE} . The final test loss for the model trained with $\mathcal{L}_{\text{MSE}, L_1}$ is 0.006 while the final test loss for the model trained with \mathcal{L}_{MSE} is 0.288. (c) and (d) show changes in model parameters over each optimization step with and without L_1 regularization, respectively. Each curve has been smoothed with a truncated Gaussian filter with $\sigma = 20$.

3 EXPERIMENTS

Across all configurations, we use a common training set: the constructed set from our theory (Theorem 2.3) augmented with a small number of additional graphs to aid optimization. We then vary the OOD test sets, evaluating extrapolation on unseen graphs spanning different sizes and topologies (cycles, complete graphs, and Erdős–Rényi with $p = 0.5$).

Our main theoretical results (Theorems 2.2 and 2.3) state that a trained model with a sufficiently low L_0 -regularized loss approximates the BF procedure. We now empirically show how to find such a low-loss trained model by applying gradient descent to a L_1 -regularized loss $\mathcal{L}_{\text{MSE}, L_1}$ given by

$$\underbrace{\frac{1}{|\mathcal{G}_{\text{train}}|^*} \sum_{G \in \mathcal{G}_{\text{train}}} \sum_{v \in V^*(G)} (x_v(\Gamma^K(G)) - h_v^K(G))^2}_{\mathcal{L}_{\text{MSE}}} + \|\theta\|_1. \quad (9)$$

This training loss $\mathcal{L}_{\text{MSE}, L_1}$ is a practical proxy for the L_0 regularized loss \mathcal{L}_{reg} . To see the effect of sparsity regularization (L_1 -term), we also train a comparison model using the *unregularized loss* \mathcal{L}_{MSE} (bracketed terms in Eq. (9)). We show that models trained with $\mathcal{L}_{\text{MSE}, L_1}$ find sparse and generalizable solutions for BF; while models trained without sparsity regularization (with \mathcal{L}_{MSE}) have worse generalization.

Additional setup. We verify our theoretical results empirically using a two-layer MinAgg GNN trained on two steps of BF. Specifically, we show that converging to a low value of \mathcal{L}_{reg} indicates

# of nodes	Single		Iterated	
	No L_1 -reg.	With L_1 -reg.	No L_1 -reg.	With L_1 -reg.
100	0.0202 \pm 0.0055	0.0014 \pm 0.0002	0.0617 \pm 0.0111	0.0036 \pm 0.0002
500	0.0242 \pm 0.0231	0.0015 \pm 0.0002	0.0881 \pm 0.0080	0.0036 \pm 0.0002
1K	0.0183 \pm 0.0066	0.0035 \pm 0.0005	0.0951 \pm 0.0127	0.0092 \pm 0.0030

Table 1: Measuring $\mathcal{E}_{\text{test}}$ as the number of nodes per graph increases. We test models trained with $\mathcal{L}_{\text{MSE}, L_1}$ and models trained with \mathcal{L}_{MSE} . For each model, we examine $\mathcal{E}_{\text{test}}$ (first two columns): for two steps of BF (a single forward pass of each model) and (last two columns): for six steps of BF (where each model is iterated three times). Each test set consists of Erdős–Rényi graphs generated with the corresponding sizes listed with p such that the expected degree $np = 5$. For both models, there is little variation in $\mathcal{E}_{\text{test}}$ as the graph size increases. However, for the iterated version of each model, $\mathcal{E}_{\text{test}}$ for the model trained with $\mathcal{L}_{\text{MSE}, L_1}$ remains accurate, while the unregularized model shows a significantly larger test error when iterated 3 times (i.e, comparing third column with first column).

better performance – particularly in improving generalization to larger test graphs. We additionally show that with L_1 regularization, the trained model parameters approximately implement a sparse BF step. In our experiments, we configure the MinAgg GNN with two layers and 64 hidden units in both the aggregation and update functions. The first layer has an output dimension of eight, while the second layer outputs a single value. In the supplement, we present additional results evaluating the performance of several other model configurations on one and two steps of BF. To evaluate trained models, we use the following three error metrics:

1. **Empirical training error** (\mathcal{E}_{MSE}): This error \mathcal{E}_{MSE} is the same as \mathcal{L}_{MSE} and tracks the model’s accuracy on the training set. $\mathcal{G}_{\text{train}}$ consists of \mathcal{G}_K where $K = 2$ as well as four three-node path graphs initialized at step zero of BF and four five-node path graphs initialized at step two of BF. We include these extra graphs to provide examples for the initial and final two steps of the BF algorithm. Empirically, we observe that this expanded training set eases model convergence.
2. **Test error** ($\mathcal{E}_{\text{test}}$): We compute the average multiplicative error of the model predictions compared to the ground-truth BF output over a test set $\mathcal{G}_{\text{test}}$:

$$\mathcal{E}_{\text{test}}(\mathcal{G}_{\text{test}}) = \frac{1}{|\mathcal{G}_{\text{test}}|} \sum_{G \in \mathcal{G}_{\text{test}}} \sum_{v \in V(G)} \left| 1 - \frac{x_v(\Gamma^K(G))}{h_v^K(G)} \right|.$$

$\mathcal{G}_{\text{test}}$ consists 200 total graphs. In order to test the generalization ability of each model, we construct $\mathcal{G}_{\text{test}}$ from 3-cycles, 4-cycles, complete graphs (with up to 200 nodes), and Erdős–Rényi graphs generated using $p = 0.5$.

3. **L_0 -regularized error** (\mathcal{E}_{reg}): This metric, which is \mathcal{L}_{reg} (see Eq. 8) evaluated on $\mathcal{G}_{\text{train}}$, shows how the model’s performance satisfies the conditions of Theorem 2.3.

Furthermore, we also track a summary of the model parameters per epoch. For a detailed discussion of the model parameter summary see the supplement. In brief, at each layer, we track biases, the parameters which scale the node features, and the parameters which scale the edge features. For the sparse implementation of two-steps of BF, the node and edge parameter updates both have the same single non-zero positive value a in the first layer. In the second layer, the node and edge parameter updates both have a single non-zero positive value but the edge parameter update converges to 1 while the node parameter update converges to $1/a$.

Results. Fig. 4 shows the results of training on two steps of BF. Here (a) and (b) show $\mathcal{L}_{\text{MSE}, L_1}$ (i.e, the model trained with regularized loss) achieves a low value of \mathcal{L}_{reg} and a correspondingly a low test error, $\mathcal{L}_{\text{test}}$ (in the supplement, we show that this small value of \mathcal{L}_{reg} satisfies the conditions of Theorem 2.3). In contrast, the model trained with \mathcal{L}_{MSE} (i.e., regularized loss) has significantly higher \mathcal{L}_{reg} and $\mathcal{L}_{\text{test}}$. Although both models achieve values of \mathcal{E}_{MSE} below 0.10, we see that the train error does not necessarily indicate if a sparse implementation of Bellman–Ford has been learned. As such, Fig. 4 (a) and (b) experimentally validates Theorem 2.3 by demonstrating that low values of \mathcal{L}_{reg} yield better generalization on test graphs with different sizes and topologies from the train graphs. In Fig. 4 (c) and (d), we elucidate the effect of L_1 regularization with regards to achieving

432 low values of \mathcal{L}_{reg} and show that that the model trained with $\mathcal{L}_{\text{MSE}, L_1}$ indeed approximates a sparse
 433 implementation of BF. To further illustrate that achieving low values of \mathcal{L}_{reg} implies that the BF GNN
 434 model will learn to implement Bellman-Ford, we provide parameter heatmaps for models trained with
 435 L_1 regularization and without in Fig. 5. We observe that the model trained with L_1 regularization
 436 implements exactly the parameters for Bellman-Ford suggested from our theory.

437 In Table 1, we further assess the generalization ability of the L_1 -regularized model on sparse Erdős-
 438 Renyí graphs of increasing sizes as compared to the unregularized model. Interestingly, when
 439 we use the trained 2-step MinAgg GNN as a primitive module and iterate it 3 times (to estimate
 440 $2 \times 3 = 6$ BF steps), the test error of our L_1 -regularized model *does not accumulate* while the error
 441 by the un-regularized model increases by roughly a factor of 3. Again, L_1 regularization improves
 442 generalization. By iteratively applying the trained 2-step BF multiple times, we obtain an neural
 443 model to approximate general shortest paths with guarantees.

444 4 DISCUSSION

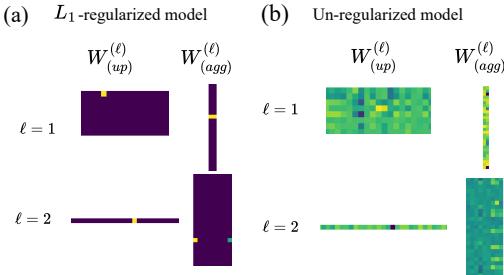
445 We show that algorithmic alignment can funda-
 446 mentally enhance out-of-distribution (OOD)
 447 generalization. By training GNNs with a
 448 sparsity-regularized loss on a small set of
 449 shortest-path instances, we obtain models that
 450 correctly implement the BF algorithm. This
 451 result provides a theoretical guarantee that the
 452 learned network can generalize OOD to graphs
 453 of sizes and structures beyond those encoun-
 454 tered during training. This is one of the first
 455 results where a neural model, when trained to
 456 sufficiently low loss, can **guarantee OOD size**
 457 **generalization** for a non-linear algorithm.

458 A key challenge in machine learning research
 459 lies in comparing neural networks with similar
 460 expressivity but different generalization behav-
 461 iors. This challenge centers on understanding
 462 the inductive biases that guide models toward
 463 particular solutions. Sparsity regularization cre-
 464 ates a setting where the influence of architecture
 465 choice on inductive bias is clear and easy to an-
 466alyze. Indeed, our work demonstrates how this
 467 regularization interacts with the GNN architec-
 468 ture to bias the GNN toward implementing the
 469 Bellman-Ford algorithm. By making inductive biases explicit and quantifiable, we gain insight into
 470 why algorithmic alignment is effective at promoting neural networks to generalize beyond their
 471 training distribution, a critical capability for real-world applications.

472 **Extensions.** As our BF-aligned GNN correctly implements K steps, we can extend this capability
 473 by recurrently iterating the network. (See the last column of Table 1.) This approach allows the
 474 network to solve shortest-path problems that require more than K iterations. Such scalability enables
 475 generalization to shortest-path computations that require arbitrary computational costs.

476 Furthermore, the ability to learn a single algorithmic step is valuable in broader contexts of neural
 477 algorithmic reasoning. This modular design means that the MinAgg GNN can serve as a subroutine
 478 within more complex neural architectures that aim to solve higher-level tasks. For instance, in neural
 479 combinatorial optimization or graph-based decision-making tasks, shortest-path computations are
 480 often just one component of a larger process. By ensuring the network reliably implements each step
 481 of the BF algorithm, we create a reusable building block that can be integrated into more sophisticated
 482 models. This supports the goal of developing NNs that can reason algorithmically, enabling them to
 483 solve increasingly complex problems through the composition of learned algorithmic steps.

484 **Conclusion.** Our work opens an exciting new direction for research by raising the question of
 485 when low training loss can serve as a guarantee for out-of-distribution generalization in other tasks
 or architectures. While our results focus on the BF algorithm and message-passing GNNs, they



500 Figure 5: Example of the parameter heatmaps
 501 for both the L_1 -regularized model and the
 502 un-regularized model. Our Bellman-Ford
 503 model update per node feature is defined as

$$\sigma(W_{(up)}^{(\ell)} \min\{\sigma(W_{(agg)}^{(\ell)}(x_u + x_{(u,v)} + b_{(agg)}^{(\ell)}) : u \in \mathcal{N}(v)\} + b_{(up)}^{(\ell)})$$
 504 Notice that our L_1 regularized model only has 6 non-zero parameters (exactly
 505 as suggested by our theoretical results) while the
 506 un-regularized model does not.

486 suggest the potential for similar guarantees in other instances of alignment, such as different (dynamic
487 programming based) graph algorithms, sequence-to-sequence tasks, or architectures like transformers
488 and recurrent neural networks. Investigating the structural and algorithmic properties that enable
489 such guarantees could provide a unified framework for designing NNs that generalize reliably across
490 diverse tasks and input domains.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 [1] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veličković. Combinatorial op-
543 timization and reasoning with graph neural networks. *Journal of Machine Learning Research*,
544 24(130):1–61, 2023.

545 [2] A. Dudzik, T. von Glehn, R. Pascanu, and P. Velivcković. Asynchronous algorithmic alignment
546 with cocycles. *ArXiv*, abs/2306.15632, 2023.

547 [3] A. J. Dudzik and P. Veličković. Graph neural networks are dynamic programmers. In *Advances*
548 *in Neural Information Processing Systems*, volume 35, pages 20635–20647, 2022.

549 [4] W. Fan, Y. Ma, Q. Li, J. Wang, G. Cai, J. Tang, and D. Yin. A graph neural network framework
550 for social recommendations. *IEEE Transactions on Knowledge and Data Engineering*,
551 34(5):2033–2047, 2020.

552 [5] P. Garnier, J. Viquerat, and E. Hachem. Automated discovery of finite volume schemes using
553 graph neural networks, Aug. 2025.

554 [6] D. G. Georgiev, P. Lio, J. Bachurski, J. Chen, T. Shi, and L. Giusti. Beyond erdos-renyi:
555 Generalization in algorithmic reasoning on graphs. In *The Second Learning on Graphs*
556 Conference, 2023.

557 [7] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
558 quantum chemistry. In *International Conference on Machine Learning*, pages 1263–1272.
559 PMLR, 2017.

560 [8] F. Grötschla, J. Mathys, and R. Wattenhofer. Learning graph algorithms with recurrent graph
561 neural networks. *arXiv preprint arXiv:2212.04934*, 2022.

562 [9] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
563 *Advances in Neural Information Processing Systems*, volume 30, 2017.

564 [10] S. Hanneke and S. Kpotufe. A more unified theory of transfer learning. *arXiv preprint*
565 *arXiv:2408.16189*, 2024.

566 [11] S. Jegelka. Theory of graph neural networks: representation and learning. In *The International*
567 *Congress of Mathematicians*, pages 1–23, 2022.

568 [12] S. Jelassi, S. d’Ascoli, C. Domingo-Enrich, Y. Wu, Y. Li, and F. Charton. Length generalization
569 in arithmetic transformers. *arXiv preprint arXiv:2306.15400*, 2023.

570 [13] N. Karalias and A. Loukas. Erdos goes neural: an unsupervised learning framework for
571 combinatorial optimization on graphs. In *Advances in Neural Information Processing Systems*,
572 volume 33, pages 6659–6672, 2020.

573 [14] A. Kazemnejad, I. Padhi, K. Natesan Ramamurthy, P. Das, and S. Reddy. The impact of posi-
574 tional encoding on length generalization in transformers. In *Advances in Neural Information*
575 *Processing Systems*, volume 36, 2024.

576 [15] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
577 algorithms over graphs. In *Advances in Neural Information Processing Systems*, volume 30,
578 2017.

579 [16] T. Le and S. Jegelka. Limits, approximation and size transferability for gnns on sparse graphs
580 via graphops. In *Advances in Neural Information Processing Systems*, volume 36, 2024.

581 [17] R. Levie. A graphon-signal analysis of graph neural networks. In *Advances in Neural*
582 *Information Processing Systems*, volume 36, 2024.

583 [18] B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Transformers learn shortcuts to
584 automata. In *International Conference on Learning Representations*, 2023.

585 [19] A. Loukas. What graph neural networks cannot learn: depth vs width. In *International*
586 *Conference on Learning Representations*, 2020.

[20] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh. Learning algebraic multigrid using graph neural networks. In *International Conference on Machine Learning*, pages 6489–6499. PMLR, 2020.

[21] L. Rauchwerger and R. Levie. A note on graphon-signal analysis of graph neural networks. *arXiv preprint arXiv:2508.18564*, 2025.

[22] E. Rosenfeld and S. Garg. (almost) provable error bounds under distribution shift via disagreement discrepancy. In *Advances in Neural Information Processing Systems*, volume 36, 2023.

[23] E. Rosenfeld, P. Ravikumar, and A. Risteski. Domain-adjusted regression or: Erm may already learn features sufficient for out-of-distribution generalization. In *International Conference on Learning Representations*, 2023.

[24] R. A. Rossi and N. K. Ahmed. Usair97 (u.s. air transportation network, 1997). <http://networkrepository.com/USAir97.php>. Accessed 2025-11-24.

[25] R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph analytics and visualization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2015.

[26] L. Ruiz, L. F. O. Chamon, and A. Ribeiro. Graphon neural networks and the transferability of graph neural networks. In *Advances in Neural Information Processing Systems*, volume 33, 2020.

[27] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learning to simulate complex physics with graph networks. In *International Conference on Machine Learning*, pages 8459–8468. PMLR, 2020.

[28] R. Sato, M. Yamada, and H. Kashima. Approximation ratios of graph neural networks for combinatorial problems. In *Advances in Neural Information Processing Systems*, volume 32, 2019.

[29] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2008.

[30] H. Tang, Z. Huang, J. Gu, B.-L. Lu, and H. Su. Towards scale-invariant graph-related problem solving by iterative homogeneous gnns. In *Advances in Neural Information Processing Systems*, volume 33, pages 15811–15822, 2020.

[31] P. Veličković, A. P. Badia, D. Budden, R. Pascanu, A. Banino, M. Dashevskiy, R. Hadsell, and C. Blundell. The clrs algorithmic reasoning benchmark. In *International Conference on Machine Learning*, pages 22084–22102. PMLR, 2022.

[32] P. Veličković and C. Blundell. Neural algorithmic reasoning. *Patterns*, 2(7), 2021.

[33] P. Veličković, R. Ying, M. Padovano, R. Hadsell, and C. Blundell. Neural execution of graph algorithms. In *International Conference on Learning Representations*, 2020.

[34] T. Wang, Y. Zhang, R. Liao, L. Carin, Z. Chen, and A. G. Wilson. Towards out-of-distribution generalization: a survey. *arXiv preprint arXiv:2108.13624*, 2021.

[35] G. Weiss, Y. Goldberg, and E. Yahav. Thinking like transformers. *arXiv preprint arXiv:2106.06981*, 2021.

[36] O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel, and T. Langer. A compact review of molecular property prediction with graph neural networks. *Drug Discovery Today: Technologies*, 37:1–12, 2020.

[37] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and Learning Systems*, 32(1):4–24, 2021.

[38] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande. Moleculenet: a benchmark for molecular machine learning. *Chemical Science*, 9(2):513–530, 2018.

[39] K. Xu, J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka. What can neural networks reason about? In *International Conference on Learning Representations*, 2020.

[40] K. Xu and P. Veličković. Recurrent aggregators in neural algorithmic reasoning. *arXiv preprint arXiv:2409.07154*, 2024.

[41] K. Xu, M. Zhang, J. Li, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. In *International Conference on Learning Representations*, 2021.

[42] A. Yang, G. Cadilhac, and D. Chiang. Knee-deep in c-rasp: A transformer depth hierarchy. *arXiv preprint arXiv:2504.12345*, 2025.

[43] A. Yang and D. Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. *arXiv preprint arXiv:2404.04393*, 2024.

[44] G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and H. Maron. From local structures to size generalization in graph neural networks. In *International Conference on Machine Learning*, pages 11975–11986. PMLR, 2021.

[45] H. Zhou, A. Bradley, E. Littwin, N. Razin, O. Saremi, J. Susskind, S. Bengio, and P. Nakkiran. What algorithms can transformers learn? a study in length generalization. *arXiv preprint arXiv:2310.16028*, 2023.

[46] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph neural networks: A review of methods and applications. *AI Open*, 1:57–81, 2020.

[47] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural networks: a review of methods and applications. *AI Open*, 1:57–81, 2020.

A DEFINITIONS AND NOTATION

We begin with definitions and notations we utilize in our proof. To ensure the supplementary material is easy to navigate and reader-friendly, we reiterate some definitions from the main text. We take $[n] = \{1, 2, \dots, n\}$ and use $x \oplus y$ to denote the concatenation of the vectors x and y . The neighborhood of a node v is denoted $\mathcal{N}(v)$ and we use the convention $v \in \mathcal{N}(v)$. When referring to the i th component of x we write x_i or $[x]_i$.

Given a source node $s \in V$, let $d^{(t)}(s, v)$ denote the length of the t -step shortest path from s to v . If no such path exists, $d^{(t)}(s, v) = \beta$ and β is some large number. We define a single t -step Bellman-Ford instance to be a attributed graph $G^{(t)} = (V, E, X_v, X_e)$ where $X_v = \{x_v = d^{(t)}(s, v) : v \in V\}$ for some $s \in V$. For every 0-step Bellman-Ford instance $G^{(0)} = (V, E, X_v, X_e)$, $x_s = 0$ for the source node $s \in V$ and $x_u = \beta$ for all other nodes $u \in V$. Throughout this manuscript, t -step BF instances are always denoted by a superscript (t) . Recall that all edge weights considered in this manuscript are non-negative.

Let Γ be a map which implements a single step of the BF algorithm. If $G = (V, E, X_e, X_v)$ is an attributed graph, then $\Gamma(G) = (V, E, X_e, X'_v)$ such that for any $v \in V$,

$$x'_v = \min\{x_u + x_{(u,v)} : u \in \mathcal{N}(v)\}.$$

Let Γ^K be K iterations of Γ . Note that applying Γ^K to a 0-step Bellman-Ford instance $G^{(0)}$ yields the K -step shortest path from s to v , i.e., $\Gamma^K(G^{(0)}) = G^{(K)}$. Although we restrict our training set to BF instances, our extrapolation guarantees show that the MinAgg GNN approximates the operator Γ^K on any graph in

$$\mathcal{G} = \left\{ G = (V, E, X_v, X_e) : \sum_{e \in E} x_e < \beta \right\}.$$

702 Define a length- k path graph instance as $P_k^{(t)}(a_1, \dots, a_k) = (V, E, X_v, X_e)$ where $V =$
 703 $\{v_0, v_1, \dots, v_k\}$ and $E = \{(v_{i-1}, v_i) \mid i \in \{1, \dots, k\}\}$. Let $x_{(v_{i-1}, v_i)} = a_i$, $x_{v_0} = 0$ (i.e. the
 704 source node is $s = v_0$) and $x_{v_i} = d^{(t)}(s, v_i)$ for $i > 0$.
 705

706 **Definition A.1.** An L -layer MinAgg GNN with d -dimensional hidden layers is a map $\mathcal{A}_\theta : \mathcal{G} \rightarrow \mathcal{G}$
 707 which is computed by layer-wise node-updates (for all $\ell \in [L]$) defined as

$$708 \quad h_v^{(\ell)} = f^{\text{up},(\ell)} \left(\min_{u \in \mathcal{N}(v)} \{f^{\text{agg},(\ell)}(h_u^{(\ell-1)} \oplus x_{(u,v)})\} \oplus h_v^{(\ell-1)} \right) \quad (10)$$

710 where $f^{\text{agg},(\ell)} : \mathbb{R}^{d_{\ell-1}+1} \rightarrow \mathbb{R}^d$ and $f^{\text{up},(\ell)} : \mathbb{R}^{d+d_{\ell-1}} \rightarrow \mathbb{R}^{d_\ell}$ are L -layer ReLU MLPs, and
 711 $d_0 = d_K = 1$. Given an input $G = (V, E, X_v, X_e)$ the initialization is $h_u^{(0)} = x_u$. The MinAgg GNN
 712 \mathcal{A}_θ has output $\mathcal{A}_\theta(G) = (V, E, X'_v = \{h_v^{(\ell)} : v \in V\}, X_e)$. A **simple** L -layer MinAgg GNN instead
 713 uses the layer-wise update
 714

$$715 \quad h_v^{(\ell)} = f^{\text{up},(\ell)} \left(\min_{u \in \mathcal{N}(v)} \{f^{\text{agg},(\ell)}(h_u^{(\ell-1)} \oplus x_{(u,v)})\} \right). \quad (11)$$

718 We refer to the first $d_{\ell-1}$ components of the domain of $f^{\text{agg},(\ell)}$ as its node component, and we refer
 719 to the last component of the domain of $f^{\text{agg},(\ell)}$ as its edge component.

720 A K -step training set $\mathcal{G}_{\text{train}}$ is a set of tuples where for each element $(G^{(t)}, \Gamma^K(G^{(t)})) \in \mathcal{G}_{\text{train}}$ the
 721 graph $G^{(t)}$ is a t -step BF instance. For a graph $G = (V, E, X_v, X_e)$ let $V^*(G) = \{v \in V : x_v \neq \beta\}$
 722 be the set of reachable nodes and let $|\mathcal{G}_{\text{train}}|^* = \sum_{G^{(t)} \in \mathcal{G}_{\text{train}}} |V^*(G^{(t)})|$ be the total number of
 723 reachable nodes in the training set. For each graph G we consider the training loss over the subset of
 724 vertices $V^*(G)$ because the choice of the feature at unreachable nodes β is arbitrary and so should
 725 not be included when providing supervision for shortest path problems.

726 **Definition A.2.** An m -layer ReLU MLP is a function $f_\theta : \mathbb{R}^{d_0} \rightarrow \mathbb{R}^{d_m}$ parameterized by $\theta = \{W_j : W_j \in \mathbb{R}^{d_j \times d_{j-1}}, j \in [m]\} \cup \{b_j : b_j \in \mathbb{R}^{d_j}, j \in [m]\}$ where for all $j \in [m]$,

$$727 \quad x^{(0)} = x,$$

$$728 \quad x^{(j)} = \sigma(W_j x^{(j-1)} + b_j),$$

732 and $f_\theta(x) = x^{(m)}$. Here, σ is the rectified linear unit (ReLU) activation function.

733 The MinAgg GNN is parameterized by the set of weights

$$735 \quad \theta = \bigcup_{\ell=1}^L (\theta^{\text{up},(\ell)} \cup \theta^{\text{agg},(\ell)}),$$

738 where $\theta^{\text{up},(\ell)}$ and $\theta^{\text{agg},(\ell)}$ denote the parameters of the update and aggregation MLPs at layer ℓ ,
 739 respectively.

740 We also formalize the definition of path graph instances. A 0-step path graph instance
 741 $P_k^{(0)}(a_1, \dots, a_k)$ consists of a graph (V, E, X_v, X_e) where the vertex set is $V = \{v_0, v_1, \dots, v_k\}$,
 742 the edge set is $E = \{(v_{i-1}, v_i) : i \in \{1, \dots, k\}\}$, and the edge weights are defined as $x_{(v_{i-1}, v_i)} = a_i$
 743 for $i \in \{1, \dots, k\}$. The node features are initialized as $x_{v_0} = 0$ for the source node v_0 , while all
 744 other nodes v_i for $i > 0$ are initialized with $x_{v_i} = \beta$, representing an unreachable state.

746 B WARM-UP: SINGLE LAYER GNNS IMPLEMENT ONE STEP OF BF

748 We start with the simple setting of a single layer GNN with shallow and narrow MLP components.
 749 This example provides key insights on why a perfectly (or almost perfectly) trained model can
 750 generalize. We analyze the general case of a multilayer GNN with wide and deep MLPs in Sec. C.
 751 Although the general case is more sophisticated technically, the approach follows similar intuitions.
 752 In particular, we later show that sparsity regularization can be used to reduce the analysis of GNN
 753 with wide and deep MLPs trained on a single BF step to the simple model analyzed in this section.

754 We start by proving Theorem B.1, which shows how perfect accuracy on $\mathcal{H}_{\text{small}}$ requires certain
 755 restrictions on parameters of the simple MinAgg GNN. Next, in Corollary B.2 we show that such
 756 restrictions guarantee the parameters implement the BF algorithm. Finally, we extend this analysis to

evaluate how MinAgg GNNs approximately minimizing the training loss perform on arbitrary graphs in Theorem 2.2

Suppose we have a *simple* 1-layer Bellman-Ford GNN, \mathcal{A}_θ , where $f^{\text{up},(0)} : \mathbb{R} \rightarrow \mathbb{R}$ and $f^{\text{agg},(0)} : \mathbb{R}^2 \rightarrow \mathbb{R}$ are single layer MLPs. To be explicit:

$$h_u^{(1)} = \sigma(w_2 \min\{\sigma(W_1(x_v \oplus x_{(u,v)} + b_1)) : v \in \mathcal{N}(u) \cup \{u\}\} + b_2), \quad (12)$$

where σ is ReLU, $W_1 \in \mathbb{R}^{1 \times 2}$, and $w_2, b_1, b_2 \in \mathbb{R}$.

We consider the training set

$$\mathcal{H}_{\text{small}} = \{(P_1^{(0)}(a_i), P_1^{(1)}(a_i)) : i \in \{1, \dots, 4\}\} \cup \{(P_2^{(1)}(a_i, 0), P_2^{(2)}(a_i, 0)) : i \in \{5, \dots, 8\}\}. \quad (13)$$

For concreteness we take $a_i = 2i$, and we utilize these specific choices of edge weights in the proof of Theorem 2.2. However, any choice of a_i satisfying $a_i \neq a_j$ if $i \neq j$ and $a_i > 0$ is sufficient for the other results in this section.

Theorem B.1. *If, $\forall (H^{(t)}, \Gamma(H^{(t)})) \in \mathcal{H}_{\text{small}}$,*

$$\mathcal{A}_\theta(H^{(t)}) = \Gamma(H^{(t)}),$$

i.e. the computed node features are $h_u^{(1)}(H^{(t)}) = x_u(\Gamma(H^{(t)}))$ for all $u \in V(H^{(t)})$, then $w_2 W_1 = \mathbb{1}$ and $w_2 b_1 + b_2 = 0$.

Proof. First, note that from the definition of $P_1^{(0)}(a_i)$, the source node is $s = v_0$ so $x_{v_0} = 0$, and $x_{v_1}(P_1^{(0)}(a_i)) = \beta$. Additionally, given the training example $(P_1^{(0)}(a_i), P_1^{(1)}(a_i)) \in \mathcal{H}_{\text{small}}$, recall that $P_1^{(0)}(a_i)$ is the input to \mathcal{A}_θ (1-layer Bellman-Ford GNN). By the definition of \mathcal{A}_θ , the computed node feature for $v_1 \in V(P_1^{(0)}(a_i))$ is

$$\begin{aligned} h_{v_1}^{(1)} &= \sigma(w_2 \min\{\sigma(W_1(x_{v_1} \oplus x_{(v_1, v_1)}) + b_1), \sigma(W_1(x_{v_0} \oplus x_{(v_0, v_1)}) + b_1)\} + b_2) \\ &= \sigma(w_2 \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_i + b_1)\} + b_2) \end{aligned}$$

where σ is the ReLU activation function. Since

$$\mathcal{A}_\theta(P_1^{(0)}(a_1)) = P_1^{(1)}(a_1)$$

\vdots

$$\mathcal{A}_\theta(P_1^{(0)}(a_4)) = P_1^{(1)}(a_4),$$

for each $v_1 \in V(P_1^{(1)}(a_i))$, $x_{v_1}(P_1^{(1)}(a_i)) = a_i$ so $h_{v_1}^{(1)}(P_1^{(0)}(a_i)) = a_i$. Therefore,

$$a_1 = \sigma(w_2 \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_1 + b_1)\} + b_2)$$

\vdots

$$a_4 = \sigma(w_2 \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_4 + b_1)\} + b_2).$$

Suppose $\sigma(W_{11}\beta + b_1) = \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_i + b_1)\}$ and $\sigma(W_{11}\beta + b_1) = \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_j + b_1)\}$ for $i \neq j$. Then $a_i = a_j$ when $i \neq j$ which is a contradiction. Therefore, there can be at most one i for which $a_i = \sigma(w_2 \sigma(W_{11}\beta + b_1) + b_2)$. WLOG, assume that

$$a_i = \sigma(w_2 \sigma(W_{12}a_i + b_1) + b_2)$$

where $i \in [3]$. Since $a_i > 0$ and σ is the ReLU function, we have that $a_i = w_2 \sigma(W_{12}a_i + b_1) + b_2$ for $i \in [3]$. Suppose $W_{12}a_i + b_1 \leq 0$ and $W_{12}a_j + b_1 \leq 0$ for $i, j \in [3]$ where $i \neq j$. Then $a_i = a_j = b_2$ which is a contradiction. WLOG, assume that $W_{12}a_i + b_1 > 0$ for $i \in [2]$. Then, we get the following system of linear equations

$$a_1 = w_2 W_{12}a_1 + w_2 b_1 + b_2$$

$$a_2 = w_2 W_{12}a_2 + w_2 b_1 + b_2.$$

These linear equations are only satisfied when $w_2 W_{12} = 1$ and $w_2 b_1 + b_2 = 0$.

Now, consider $\{(P_2^{(1)}(a_i, 0), P_2^{(2)}(a_i, 0)) : a_i \in \mathbb{R}^+, i \in \{5, \dots, 8\}, a_i \neq a_j\}$. From the definition of $P_2^{(1)}(a_i, 0)$, we know that $s = v_0$, $x_{v_0}(P_2^{(1)}(a_i, 0)) = 0$, $x_{v_1}(P_2^{(1)}(a_i, 0)) = a_i$, $x_{v_2}(P_2^{(1)}(a_i, 0)) = \beta$, $x_{(v_0, v_1)} = a_i$, and $x_{(v_1, v_2)} = 0$. Since $\mathcal{A}_\theta(P_2^{(1)}(a_i, 0)) = P_2^{(2)}(a_i, 0)$, the computed node feature for $v_2 \in V(P_2^{(1)}(a_i, 0))$ is

$$\begin{aligned} h_{v_2}^{(1)} &= a_i = \sigma(w_2 \min\{\sigma(W_1(x_{v_2} \oplus x_{(v_2, v_2)}) + b_1), \sigma(W_1(x_{v_1} \oplus x_{(v_1, v_2)}) + b_1)\} + b_2) \\ &= \sigma(w_2 \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{11}a_i + b_1)\} + b_2) \end{aligned}$$

for $i \in \{5, \dots, 8\}$. Similar to above, we have that $\sigma(W_{11}\beta + b_1) = \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{11}a_i + b_1)\}$ can only occur for one $i \in \{5, \dots, 8\}$. Again, WLOG we can assume that $a_8 = \sigma(w_2\sigma(W_{11}\beta + b_1) + b_2)$ and $a_i = \sigma(w_2\sigma(W_{11}a_i + b_1) + b_2)$ for $i \in \{5, 6, 7\}$. Then, using a similar system of linear equations as above, we get that $w_2W_{11} = 1$. \square

Corollary B.2. *Let \mathcal{A}_θ be a simple 1-layer Bellman-Ford GNN, as given in Eq. (12). If $\mathcal{A}_\theta(H^{(t)}) = \Gamma(H^{(t)})$ for all $(H^{(t)}, \Gamma(H^{(t)})) \in \mathcal{H}_{\text{small}}$, then for any $G \in \mathcal{G}$ the MinAgg GNN outputs $\mathcal{A}_\theta(G) = \Gamma(G)$ which means for any $v \in V(G)$*

$$h_v^{(1)} = \min\{x_u + x_{(u, v)} : u \in \mathcal{N}(v)\}.$$

Proof. If $\mathcal{A}_\theta(H^{(t)}) = \Gamma(H^{(t)})$ for all $(H^{(t)}, \Gamma(H^{(t)})) \in \mathcal{H}_{\text{small}}$ then, by Theorem B.1, we know that $w_2W_1 = 1$ and $w_2b_1 + b_2 = 0$. First, suppose $w_2 < 0$. Since $w_2W_1 = 1$, we know that $W_{11} = W_{12}$ and $W_{11}, W_{12} < 0$. Consider $(P_1^{(0)}(a_i), P_1^{(1)}(a_i)) \in \mathcal{H}_{\text{small}}$. Recall that $a_i > 0$. For any $i \in \{1, \dots, 4\}$, we have that $v_1 \in V(P_1^{(0)}(a_i))$ gets the computed node feature

$$\begin{aligned} h_{v_1}^{(1)} &= \sigma(w_2 \min\{\sigma(W_{11}x_s + W_{12}x_{(s, v_1)} + b_1), \sigma(W_{11}x_{v_1} + W_{12}x_{(v_1, v_1)} + b_1)\} + b_2) \\ &= \sigma(w_2 \min\{\sigma(W_{11}a_i + b_1), \sigma(W_{11}\beta + b_1)\} + b_2) \end{aligned}$$

Since $0 \leq a_i \ll \beta, W_{11}\beta + b_1 \leq W_{11}a_i + b_1$ so

$$\min\{\sigma(W_{11}a_i + b_1), \sigma(W_{11}\beta + b_1)\} = \sigma(W_{11}\beta + b_1)$$

Then

$$h_{v_1}^{(1)} = \sigma(w_2\sigma(W_{11}\beta + b_1) + b_2)$$

for $v_1 \in P_1^{(0)}(a_i)$ for any $i \in \{1, \dots, 4\}$. However, this is a contradiction because $\mathcal{A}_\theta(P_1^{(0)}(a_i)) = P_1^{(1)}(a_i)$ for $i \in \{1, \dots, 4\}$ and $a_i \neq a_j$ for $i \neq j$. Therefore, $w_2 > 0$ so $W_{11}, W_{12} > 0$. Suppose $w_2b_1 < 0$. Because $w_2 > 0, b_1 < 0$. Additionally, since $w_2b_1 < 0$ and we know that $w_2b_1 + b_2 = 0$, we have that $b_2 > 0$. Then consider $(P_1^{(0)}(a_1), P_1^{(1)}(a_1)) = (P_1^{(0)}(0), P_1^{(1)}(0)) \in \mathcal{H}_{\text{small}}$. Then, $v_1 \in V(P_1^{(0)}(0))$ gets the updated node feature

$$h_{v_1}^{(1)} = \sigma(w_2 \min\{\sigma(b_1), \sigma(W_{11}\beta + b_1)\} + b_2) = b_2.$$

This is contradiction because $\mathcal{A}_\theta(P_1^{(0)}(a_1)) = P_1^{(1)}(a_1)$ which means that the computed node feature $h_{v_1}^{(1)}$ should be $a_1 = 0$.

Now, given $G^{(m)} \in \mathcal{G}$, then given $v \in V(G^{(m)})$, the updated node feature for $v \in V(\mathcal{A}_\theta(G^{(m)}))$ is

$$\begin{aligned} h_v^{(1)} &= \sigma(w_2 \min\{\sigma(W_{11}x_u + W_{12}x_{(v, u)} + b_1) : u \in \mathcal{N}(v)\} + b_2) \\ &= \sigma(\min\{w_2\sigma(W_{11}(x_u + x_{(v, u)}) + b_1) : u \in \mathcal{N}(v)\} + b_2) \\ &= \sigma(\min\{\sigma(w_2W_{11}(x_u + x_{(v, u)}) + w_2b_1) : u \in \mathcal{N}(v)\} + b_2) \text{ since } w_2 > 0 \\ &= \sigma(\min\{\sigma(w_2W_{11}(x_u + x_{(v, u)}) + w_2b_1) + b_2 : u \in \mathcal{N}(v)\}) \\ &= \sigma(\min\{\sigma(x_u + x_{(v, u)} + w_2b_1) + b_2 : u \in \mathcal{N}(v)\}) \\ &= \sigma(\min\{x_u + x_{(v, u)} + w_2b_1 + b_2 : u \in \mathcal{N}(v)\}) \text{ since } x_u + x_{(v, u)} + w_2b_1 \geq 0 \\ &= \sigma(\min\{x_u + x_{(v, u)} : u \in \mathcal{N}(v)\}) \\ &= \min\{x_u + x_{(v, u)} : u \in \mathcal{N}(v)\}. \end{aligned}$$

\square

864 **Lemma B.3.** Consider two points $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ such that $|x_1| < D$ and $|x_2 - x_1| > 2$ and
 865 an affine function $f(x) = ax + b$. Suppose $|f(x_1) - y_1| < \epsilon$ and $|f(x_2) - y_2| < \epsilon$. If $a_0 = \frac{y_2 - y_1}{x_2 - x_1}$
 866 and $b_0 = y_1 - a_0 x_1$ are the slope and y-intercept of a line passing through (x_1, y_1) and (x_2, y_2)
 867 then $|a_0 - a| < \epsilon$ and $|b_0 - b| < 2(1 + D)\epsilon$.
 868

869 *Proof.* First, $a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$ implies
 870

$$\begin{aligned} 871 \quad |a_0 - a| &= \left| \frac{y_2 - y_1}{x_2 - x_1} - \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| \\ 872 \quad &= \frac{1}{|x_2 - x_1|} |(y_2 - f(x_2)) - (y_1 - f(x_1))| \\ 873 \quad &\leq \frac{1}{|x_2 - x_1|} (|y_2 - f(x_2)| + |(y_1 - f(x_1))|) \\ 874 \quad &\leq \frac{2\epsilon}{|x_2 - x_1|} \\ 875 \quad &\leq \epsilon. \\ 876 \end{aligned}$$

877 Now, since $b = f(x_1) - ax_1$ we have
 878

$$\begin{aligned} 879 \quad |b_0 - b| &= |y_1 - a_0 x_1 - (f(x_1) - ax_1)| \\ 880 \quad &= |(y_1 - f(x_1)) - x_1(a_0 - a)| \\ 881 \quad &\leq |y_1 - f(x_1)| + |x_1| |a_0 - a| \\ 882 \quad &< (1 + D)\epsilon. \\ 883 \end{aligned}$$

□

884 We now restate Theorem 2.2 with additional details and provide a proof.
 885

886 **Theorem B.4.** Let $0 < \epsilon < 1$. If $\forall (H^{(t)}, \Gamma(H^{(t)})) \in \mathcal{H}_{\text{small}}$, a MinAgg GNN \mathcal{A}_θ that, for
 887 $u \in V(G^{(t)})$, computes a node feature satisfying $|h_u^{(1)}(G^{(t)}) - x_u(\Gamma(G^{(t)}))| < \frac{\epsilon}{20}$. Then
 888

- 889 (i) $\|w_2 W_1 - \mathbf{1}\|_1 < \epsilon$ and $|w_2 b_1 + b_2| < 20\epsilon$
- 890 (ii) $w_2, W_{11}, W_{12} \geq 0$
- 891 (iii) For $G \in \mathcal{G}$ and $v \in V(G)$

$$(1 - \epsilon)x_v(G) - \epsilon \leq h_v^{(1)}(G) \leq (1 + \epsilon)x_v(G) + \epsilon$$

900 *Proof.* (i) We first show part (i) i.e. if $|h_u^{(1)}(G^{(t)}) - x_u(\Gamma(G^{(t)}))| < \frac{\epsilon}{20}$, for any
 901 $(G^{(t)}, \Gamma(G^{(t)})) \in \mathcal{H}_{\text{small}}$, then $\|w_2 W_1 - \mathbf{1}\| < \epsilon$ and $|w_2 b_1 + b_2| < 20\epsilon$. Let $\epsilon_0 = \frac{\epsilon}{20}$. Given
 902 the definition of \mathcal{A}_θ , the computed node feature for $v_1 \in V(P_1^{(0)}(a_i))$ for $i \in \{1, \dots, 4\}$ is
 903

$$h_{v_1}^{(1)} = \sigma[w_2 \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_i + b_1)\}]$$

904 Since $|h_{v_1}^{(1)}(P_1^{(0)}(a_i)) - x_{v_1}(P_1^{(1)}(a_i))| < \epsilon_0$,
 905

$$|\sigma(w_2 \min(\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_1 + b_1)) + b_2) - a_1| < \epsilon_0$$

906 \vdots

$$|\sigma(w_2 \min(\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_4 + b_1)) + b_2) - a_4| < \epsilon_0$$

912 Suppose $\sigma(W_{11}\beta + b_1) = \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_i + b_1)\}$ and $\sigma(W_{11}\beta + b_1) =$
 913 $\min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_j + b_1)\}$ for $i \neq j$. Then $|\sigma(w_2 \sigma(W_{11}\beta + b_1) + b_2) - a_i| < \epsilon_0$
 914 and $|\sigma(w_2 \sigma(W_{11}\beta + b_1) + b_2) - a_j| < \epsilon_0$ so $|a_i - a_j| < 2\epsilon_0 < 2$. This is a contradiction
 915 because for any $i \neq j$, $|a_i - a_j| \geq 2$.

916 Suppose that $\sigma(W_{11}\beta + b_1) = \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_{i_1} + b_1)\}$ and $\sigma(W_{11}\beta + b_1) =$
 917 $\min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_{i_2} + b_1)\}$ for $i_1, i_2 \in \{1, 2, 3, 4\}$ for $i_1 \neq i_2$. This implies
 918 that $|a_{i_1} - a_{i_2}| < 2$ which is a contradiction. Thus, w.l.o.g. we can assume that for

918 $i \in \{1, 2, 3\}$, $\sigma(W_{12}a_i + b_1) = \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_i + b_1)\}$. Additionally,
 919 suppose $W_{12}a_i + b_1 < 0$ and $W_{12}a_j + b_1 < 0$ for $i \neq j$ and $i, j \in \{1, 2, 3\}$. Then,
 920 $h_{v_1}(P_1^{(0)}(a_i)) = \sigma(b_2)$ and $h_{v_1}(P_1^{(0)}(a_j)) = \sigma(b_2)$ so $|\sigma(b_2) - a_i| < \epsilon_0$ and $|\sigma(b_2) - a_j| < \epsilon_0$. From here, we get that $|a_i - a_j| < 2$, which is a contradiction. Therefore, we assume
 921 that $\sigma(W_{12}a_i + b_1) = \min\{\sigma(W_{11}\beta + b_1), \sigma(W_{12}a_i + b_1)\}$ and $W_{12}a_i + b_1 > 0$ for
 922 $i = \{1, 2\}$.

923 Then we have

$$|(a_1 w_2 W_{12} + w_2 b_1 + b_2) - a_1| \leq \epsilon_0$$

924 and

$$|(a_2 w_2 W_{12} + w_2 b_1 + b_2) - a_2| \leq \epsilon_0.$$

925 Note that $f(a) = a w_2 W_{12} + w_2 b_1 + b_2$ is an affine function with slope $m = w_2 W_{12}$ and
 926 intercept $w_2 b_1 + b_2$. As $|a_1|, \dots, |a_4| < 9$ and $|a_i - a_j| > 2$, by Lemma B.3,

$$\begin{aligned} |w_2 W_{11} - 1| &< \epsilon_0 < \frac{\epsilon}{2} \\ |w_2 b_1 + b_2| &< 2 \cdot (1 + 9)\epsilon_0 = 20\epsilon_0 = \epsilon. \end{aligned}$$

927 A parallel method using $\mathcal{H}_{\text{small}}$ with $a_i = 2i$ for $i \in \{5, 6, 7, 8\}$ follows for bounding
 928 $|w_2 W_{11} - 1| < \frac{\epsilon}{2}$.

929 (ii) Now, we turn our attention to part (ii) and show that $w_2, W_{11}, W_{12} \geq 0$. Suppose $w_2 < 0$,
 930 which implies $W_{11}, W_{12} < 0$ as otherwise $w_2 W_{11}, w_2 W_{12} < 0$ and $|w_2 W_{11} - 1| > \epsilon$ (recall
 931 $0 < \epsilon < 1$). The computed node feature for $v_1 \in V(P_1^{(0)}(a_i))$ is then

$$\begin{aligned} h_{v_1}^{(1)} &= \sigma(w_2 \min\{\sigma(W_{11}x_s + W_{12}x_{(s, v_1)} + b_1), \sigma(W_{11}x_{v_1} + W_{12}x_{(v_1, v_1)} + b_1)\} + b_2) \\ &= \sigma(w_2 \min\{\sigma(W_{11}a_i + b_1), \sigma(W_{11}\beta + b_1)\} + b_2) \\ &= \sigma(w_2 \sigma(W_{11}\beta + b_1)) + b_2. \end{aligned}$$

932 Note that the above inequality follows from the fact that $W_{11}a_i + b_1 > W_{11}\beta + b_1$ since
 933 $a_i < \beta$ and $W_{11} < 0$. For $v_1 \in V(P_1^{(0)}(a_i))$ for all $i \in \{1, 2, 3, 4\}$, $h_{v_1}^{(1)} = \sigma(w_2 \sigma(W_{11}\beta + b_1)) + b_2$. However, this is a contradiction, since $|a_i - a_j| \geq 2$ for all $i \neq j$ where
 934 $i, j \in \{1, \dots, 4\}$. Thus, $w_2, W_{11}, W_{12} \geq 0$.

935 (iii) We will now show that given any $G \in \mathcal{G}$ and $v \in V(G)$, a neural network with the weights
 936 given in part (i) will approximately yield a single step of Bellman-Ford i.e.

$$(1 - \epsilon)h_v^{(1)}(G) - \epsilon \leq h_v^{(1)}(G) \leq (1 + \epsilon)x_v(G) + \epsilon.$$

937 Since $\|w_2 W_{11} - 1\|_1 < \epsilon$ from part (i), we know that $|w_2 W_{11} - 1| < \epsilon$ and $|w_2 W_{12} - 1| < \epsilon$.
 938 Additionally, we know that for any $G \in \mathcal{G}$ and $v \in V(G)$,

$$h_v^{(1)}(G) = \sigma(w_2 \min\{\sigma(W_{11}x_u + W_{12}x_{(u, v)} + b_1) : u \in \mathcal{N}(v)\} + b_2)$$

939 From (ii), we know that $W_{11} \geq 0$, $W_{12} \geq 0$, and $W_{11}x_u + W_{12}x_{(u, v)} + b_1 > 0$ so the
 940 ReLU activation function σ can be removed from the aggregation MLP i.e.,

$$h_v^{(1)}(G) = \sigma(w_2 \min\{W_{11}x_u + W_{12}x_{(u, v)} + b_1 : u \in \mathcal{N}(v)\} + b_2).$$

941 Suppose

$$u' = \operatorname{argmin}_{u \in \mathcal{N}(v)} \{W_{11}x_u + W_{12}x_{(u, v)} + b_1\}$$

942 and

$$u^* = \operatorname{argmin}_{u \in \mathcal{N}(v)} \{x_u + x_{(u, v)}\}.$$

943 Note that $x_v(\Gamma(G)) = x_{u^*} + x_{(u^*, v)}$. Then,

$$\begin{aligned} h_v^{(1)}(G) &= \sigma(w_2(W_{11}x_{u'} + W_{12}x_{(u', v)} + b_1) + b_2) \\ &\leq \sigma(w_2 W_{11}x_{u^*} + w_2 W_{12}x_{(u^*, v)} + w_2 b_1 + b_2) \\ &\leq \sigma((1 + \epsilon)(x_{u^*} + x_{(u^*, v)}) + w_2 b_1 + b_2) \end{aligned}$$

972 Note that if $w_2b_1 + b_2 \leq 0$, then
 973
 974 $h_v^{(1)}(G) \leq \sigma((1+\epsilon)(x_{u^*} + x_{(u^*,v)}) + w_2b_1 + b_2) \leq \sigma((1+\epsilon)(x_{u^*} + x_{(u^*,v)})) = (1+\epsilon)(x_{u^*} + x_{(u^*,v)}).$
 975 If $w_2b_1 + b_2 > 0$, then
 976
 977
$$\begin{aligned} h_v^{(1)}(G) &\leq \sigma((1+\epsilon)(x_{u^*} + x_{(u^*,v)}) + w_2b_1 + b_2) \\ &\leq (1+\epsilon)(x_{u^*} + x_{(u^*,v)}) + \epsilon \\ &= (1+\epsilon)x_v(\Gamma(G)) + \epsilon. \end{aligned}$$

 980
 981

982 In both cases, $h_v^{(1)}(G) \leq (1+\epsilon)x_v(\Gamma(G)) + \epsilon$.
 983
 984 Now, we consider the lower bound and show that $(1-\epsilon)x_v(\Gamma(G)) - \epsilon < h_v^{(1)}(G)$. By the
 985 definition of u^* ,

$$x_{u^*} + x_{(u^*,v)} \leq x_{u'} + x_{(u',v)}$$

986 Note that because $0 < \epsilon < 1$, we have $0 < 1 - \epsilon < 1$ and $\frac{1}{1-\epsilon} > 1$. We will consider two
 987 cases: when $w_2b_1 + b_2 \geq 0$ and when $w_2b_1 + b_2 < 0$. Let $w_2b_1 + b_2 > 0$. Then
 988

$$\begin{aligned} x_{u^*} + x_{(u^*,v)} &\leq x_{u'} + x_{(u',v)} + w_2b_1 + b_2 \\ &\leq \left(\frac{1-\epsilon}{1-\epsilon}\right)x_{u'} + \left(\frac{1-\epsilon}{1-\epsilon}\right)x_{(u',v)} + \left(\frac{1-\epsilon}{1-\epsilon}\right)(w_2b_1 + b_2) \\ &\leq \left(\frac{1}{1-\epsilon}\right) \cdot (1-\epsilon)x_{u'} + \left(\frac{1}{1-\epsilon}\right) \cdot (1-\epsilon)x_{(u',v)} + \left(\frac{1}{1-\epsilon}\right)(w_2b_1 + b_2) \\ &\leq \left(\frac{1}{1-\epsilon}\right) \left((1-\epsilon)x_{u'} + (1-\epsilon)x_{(u',v)} + w_2b_1 + b_2 \right) \\ &\leq \left(\frac{1}{1-\epsilon}\right) \cdot (w_2W_{11}x_{u'} + w_2W_{12}x_{(u',v)} + w_2b_1 + b_2) \\ &= \left(\frac{1}{1-\epsilon}\right) \cdot h_v(G) \end{aligned}$$

1001 Therefore,

$$(1-\epsilon)(x_{u^*} + x_{(u^*,v)}) = (1-\epsilon)x_v(\Gamma(G)) \leq h_v(G).$$

1002 Let $w_1b_1 + b_2 < 0$. We know that
 1003

$$w_1W_{11}x_{u'} + w_2W_{12}x_{(u',v)} + w_2b_1 + b_2 \leq w_1W_{11}x_{u'} + w_1W_{12}x_{(u',v)} + w_2b_1 + b_2 + \epsilon$$

1004 Since $|w_1b_1 + b_2| < \epsilon$, $w_1b_1 + b_2 + \epsilon > 0$. Therefore,
 1005

$$\begin{aligned} x_{u^*} + x_{(u^*,v)} &\leq x_{u'} + x_{(u',v)} + w_2b_1 + b_2 + \epsilon \\ &\leq \left(\frac{1-\epsilon}{1-\epsilon}\right)x_{u'} + \left(\frac{1-\epsilon}{1-\epsilon}\right)x_{(u',v)} + \left(\frac{1-\epsilon}{1-\epsilon}\right)((w_2b_1 + b_2) + \epsilon) \\ &\leq \left(\frac{1-\epsilon}{1-\epsilon}\right)x_{u'} + \left(\frac{1-\epsilon}{1-\epsilon}\right)x_{(u',v)} + \left(\frac{1}{1-\epsilon}\right)((w_2b_1 + b_2) + \epsilon) \\ &\leq \left(\frac{1}{1-\epsilon}\right)(h_v(G) + \epsilon) \end{aligned}$$

1016 Thus,

$$(1-\epsilon)(x_{u^*} + x_{(u^*,v)}) - \epsilon \leq h_v(G)$$

1019 \square
 1020

1021 C SPARSITY REGULARIZED DEEP GNNs IMPLEMENT BF

1022 In this section we analyze GNNs that are large both in their number of layers and the size of their
 1023 respective MLPs. The key to showing these complex GNNs implement the BF algorithm is the
 1024 introduction of sparsity regularization to the loss. With this type of regularization we can show
 1025 any solution that approximates the global minimum must have only a few non-zero parameters.

1026 Furthermore, any GNN with so few non-zero parameters can solve shortest path problems only via
 1027 the BF algorithm. In short, although the model is over-parameterized, solutions approximating the
 1028 global minimum are not.

1029 Our overarching approach is as follows. We first give an implementation of BF by GNN with a small
 1030 number of non-zero parameters S . Next, we show that, on our constructed training set, any GNN with
 1031 less than S non-zero parameters has large error. This allows us to conclude that the global minimum
 1032 of the sparsity regularized loss must have exactly S non-zero parameters. This sparsity allows us to
 1033 simplify the MinAgg GNN update to include only a few parameters. We then derive approximations
 1034 to these parameters which show the MinAgg GNN must be implementing BF algorithm, up to some
 1035 scaling factor.

1036 A key strategy in this section is to track the dependencies of the functions $f^{\text{agg},(\ell)}$ and $f^{\text{up},(\ell)}$ on their
 1037 components. In particular, we say a function f depends on a component or set of components if it is
 1038 not constant over these components. Note that inputs to these functions are always non-negative (they
 1039 are always proceeded by a ReLU), so by constant we mean constant over all non-negative values.
 1040 The precise definitions are as follows.

1041 **Definition C.1.** For $\ell \in [L]$ the function $f^{\text{agg},(\ell)}$ **depends on its node component** iff it is not constant
 1042 over its first $d_{\ell-1}$ components, i.e., there exists $x, y \in \mathbb{R}_{\geq 0}^{d_{\ell-1}+1}$ with $x \neq y$ and $x_{d_{\ell-1}+1} = y_{d_{\ell-1}+1}$
 1043 such that

$$f^{\text{agg},(\ell)}(x) \neq f^{\text{agg},(\ell)}(y).$$

1044
 1045
 1046 The function $f^{\text{agg},(\ell)}$ **depends on its edge component** iff it is not constant over its edge component
 1047 (the $(d_{\ell-1} + 1)$ th component). That is, there exists $x, y \in \mathbb{R}_{\geq 0}^{d_{\ell-1}+1}$ with $x \neq y$ and $x_i = y_i$ for
 1048 $i \in \{1, \dots, d_{\ell-1}\}$ such that

$$f^{\text{agg},(\ell)}(x) \neq f^{\text{agg},(\ell)}(y).$$

1049
 1050
 1051 **Definition C.2.** For $\ell \in [L]$ the function $f^{\text{up},(\ell)}$ **depends on its aggregation component** iff it is not
 1052 constant over its first d components, i.e., there exists $x, y \in \mathbb{R}_{\geq 0}^{d+d_{\ell-1}}$ with $x \neq y$ and $x_i = y_i$ for
 1053 $i \in \{d+1, \dots, d_{\ell-1}\}$ such that

$$f^{\text{up},(\ell)}(x) \neq f^{\text{up},(\ell)}(y).$$

1054
 1055
 1056 The function $f^{\text{up},(\ell)}$ **depends on its skip component** iff it is not constant over its last $d_{\ell-1}$ components,
 1057 i.e., there exists $x, y \in \mathbb{R}_{\geq 0}^{d+d_{\ell-1}}$ with $x \neq y$ and $x_i = y_i$ for $i \in \{1, \dots, d\}$ such that

$$f^{\text{up},(\ell)}(x) \neq f^{\text{up},(\ell)}(y).$$

1058
 1059
 1060 Our approach proceeds by showing that requisite dependencies can only be achieved if there is some
 1061 minimal number of non-zero entries in θ .

1062 C.1 IMPLEMENTING BF

1063 We begin by showing there is a choice of parameters that makes the MinAgg GNN implement K
 1064 steps of the BF algorithm.

1065
 1066 **Lemma C.3.** Let $L \geq K > 0$. For an L -layer MinAgg GNN \mathcal{A}_θ with m -layer update and aggregation
 1067 MLPs and parameters θ , there is an assignment of θ with $mL + mK + K$ non-zero values such that
 1068 \mathcal{A}_θ implements K steps of the BF algorithm, i.e., for any $G \in \mathcal{G}$

$$\mathcal{A}_\theta(G) = \Gamma^K(G).$$

1069
 1070
 1071 *Proof.* We proceed by assigning parameters to \mathcal{A}_θ such that \mathcal{A}_θ simulates K steps of Bellman-Ford,
 1072 i.e., for any $G \in \mathcal{G}$, $\mathcal{A}_\theta(G) = \Gamma^K(G)$. For $\ell \in [L]$, let $f^{\text{agg},(\ell)} : \mathbb{R}^{d_{\ell-1}+1} \rightarrow \mathbb{R}^d$ and $f^{\text{up},(\ell)} : \mathbb{R}^{d+d_{\ell-1}} \rightarrow \mathbb{R}^d$ be the m -layer update and aggregation MLPs respectively. Note that $d_0 = d_L = 1$,
 1073 and for $\ell \in \{1, \dots, L-1\}$ the hidden layer dimension is $d_\ell = d$, for some arbitrary $d \geq 1$.
 1074 The parameters for $f^{\text{agg},(\ell)}$ and $f^{\text{up},(\ell)}$ are $\{(W_j^{\text{agg},(\ell)}, b_j^{\text{agg},(\ell)})\}_{j \in [m]}$ and $\{(W_j^{\text{up},(\ell)}, b_j^{\text{up},(\ell)})\}_{j \in [m]}$,

1080 respectively, where for $j \in [m]$,

$$1081 \quad W_j^{\text{agg},(\ell)} \in \mathbb{R}^{d_j^{\text{agg},(\ell)} \times d_{j-1}^{\text{agg},(\ell)}}$$

$$1082 \quad b_j^{\text{agg},(\ell)} \in \mathbb{R}^{d_j^{\text{agg},(\ell)}}$$

$$1083 \quad W_j^{\text{up},(\ell)} \in \mathbb{R}^{d_j^{\text{up},(\ell)} \times d_{j-1}^{\text{up},(\ell)}}$$

$$1084 \quad b_j^{\text{up},(\ell)} \in \mathbb{R}^{d_j^{\text{up},(\ell)}}.$$

1085 The dimension of these parameters are

$$1086 \quad d_j^{\text{agg},(\ell)} = \begin{cases} d_{\ell-1} + 1 & \text{if } j = 0 \\ d & \text{otherwise} \end{cases}$$

$$1087 \quad d_j^{\text{up},(\ell)} = \begin{cases} d_{\ell-1} + d & \text{if } j = 0 \\ d_\ell & \text{if } j = m \\ d & \text{otherwise} \end{cases}.$$

1088 Now we give values of these parameters that make \mathcal{A}_θ implement the BF algorithm. Let $b_j^{\text{up},(\ell)} = \mathbf{0}$
1089 and $b_j^{\text{agg},(\ell)} = \mathbf{0}$ for all $\ell \in [L]$ and $j \in [m]$. Set

$$1090 \quad W_1^{\text{agg},(1)} = \begin{pmatrix} 1 & 1 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$$

1091 and for $\ell \in \{2, \dots, K\}$

$$1092 \quad W_1^{\text{agg},(\ell)} = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & \dots & & 0 \end{pmatrix}. \quad (14)$$

1093 This choice makes $W_1^{\text{agg},(\ell)}$ sum the edge weight and first component of the node feature into the
1094 first component of the resulting vector. That is, $[W_1^{\text{agg},(\ell)}(h_v^{(\ell-1)} \oplus x_{(v,u)})]_1 = [h_v^{(\ell-1)}]_1 + x_{(v,u)}$.
1095 Next, set

$$1096 \quad W_j^{\text{agg},(\ell)} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & & \\ 0 & \dots & & 0 \end{pmatrix} \quad \text{for } \ell \in [K] \text{ and } j \in \{2, \dots, m\},$$

$$1097 \quad W_j^{\text{up},(\ell)} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & & \\ 0 & \dots & & 0 \end{pmatrix} \quad \text{for } \ell \in [K] \text{ and } j \in [m].$$

1098 Finally, for $\ell \in \{K+1, \dots, L\}$, let

$$1099 \quad W_j^{\text{agg},(\ell)} = \mathbf{0} \quad \text{for } j \in [m]$$

$$1100 \quad W_1^{\text{up},(\ell)} = \begin{pmatrix} 0 & 0 & \dots & 1 \\ 0 & \ddots & & \vdots \\ \vdots & & & \\ 0 & \dots & & 0 \end{pmatrix}$$

$$1101 \quad W_j^{\text{up},(\ell)} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & & \\ 0 & \dots & & 0 \end{pmatrix} \quad \text{for } j \in \{2, \dots, m\}.$$

Given the above assignments of $W_j^{\text{agg},(\ell)}$ and $W_j^{\text{up},(\ell)}$, the final $L - K$ layers implement the identity on the first component of the node feature, i.e., $[h_v^{(\ell)}]_1 = [h_v^{(\ell-1)}]_1$ for $\ell \in \{K+1, \dots, L\}$. Since edge weights are always non-negative and there are no negative parameters in the above, the ReLU activations can be ignored. Then, for all $v \in V$ and for $\ell \leq K$, we get

$$[h_v^{(\ell)}]_1 = \min\{[h_u^{(\ell-1)}]_1 + x_{(u,v)} \mid u \in \mathcal{N}(v)\}$$

which is the BF algorithm update. This implies, by the correctness of the BF algorithm, that $[h_v^{(K)}]_1$ is the K -step shortest path distance. The last $L - K$ layers of the GNN implement the identity function so $h_v^{(L)} = [h_v^{(L)}]_1 = [h_v^{(K)}]_1$ is also the K -step shortest path distances. Perfect accuracy is then achieved on all K -step shortest path instances. \square

We later show that the requirement $L \geq K$ is indeed necessary (Corollary C.13).

C.2 TRAINING SET

Our training set is comprised of multiple parts, which we describe in this subsection. The first set of training instances is used to regulate how the MinAgg GNN scales features throughout computation.

Definition C.4. For $k \in [K]$, define $\mathcal{H}_{k,K}$ as

$$\mathcal{H}_{k,K} = \{P_{K+1}^{(1)}(a, 0, \dots, 0, b, 0, \dots, 0) : (a, b) \in \{0, 1, \dots, 2K\} \times \{0, 2K+1\}\}$$

where $P_{K+1}^{(1)}(a, 0, \dots, 0, b, 0, \dots, 0)$ is the attributed K -edge path graph with weight a for the first edge, weight b for the $(k+1)$ th edge, and weight zero for all other edges.

Next, we define graph that is used to show the MinAgg GNN must have at least K steps that depend on both edge weights and neighboring node features. If these conditions are not met, then the MinAgg GNN is not expressive enough to compute the shortest path distances in this graph.

Definition C.5. Let $H^{(0),K}$ be a 0-step BF instance with $2K+2$ vertices

$$V = \{v_0, v_1, \dots, v_K\} \cup \{u_0, u_1, \dots, u_K\},$$

edges

$$E = \{(v_{i-1}, v_i) \mid i \in [K]\} \cup \{(u_{i-1}, u_i) \mid i \in [K]\} \cup \{(u_{i-1}, v_i) \mid i \in [K]\} \cup \{(v_{i-1}, u_i) \mid i \in [K]\},$$

edge features X_e given by

$$x_{(w,q)} = \begin{cases} 1 & \text{if } (w, q) = (u_{k-1}, v_k) \text{ or } (w, q) = (v_{k-1}, u_k) \text{ for } k \in [K] \\ 0 & \text{otherwise} \end{cases},$$

and initial node features X_v given by

$$x_w = \begin{cases} 0 & \text{if } w = v_0 \\ \beta & \text{otherwise} \end{cases}.$$

We also write $H_K^{(K)} = \Gamma^K(H_K^{(0)})$.

The complete training set also includes $P_1^{(0)}(1), P_2^{(1)}(1, 0), H_K^{(0)}$.

Definition C.6. For $K > 1$, we let

$$\begin{aligned} \mathcal{G}_{\text{scale},K} &= \bigcup_{K \geq k > 1} \mathcal{H}_{k,K} \\ \mathcal{G}_K &= \mathcal{G}_{\text{scale},K} \cup \{P_1^{(0)}(1), P_2^{(1)}(1, 0), H_K^{(0)}\} \\ \mathcal{G}_K &= \{(G^{(t)}, \Gamma(G^{(t)})) : G^{(t)} \in \mathcal{G}_K\}. \end{aligned}$$

Note the distinction here between \mathcal{G}_K which is a set of graphs and \mathcal{G}_K , which contains pairs of graphs (an input graph and a target graph).

1188
1189

C.3 SPARSITY STRUCTURE

1190
1191

Here we show that the training set \mathcal{G}_K requires a MinAgg GNN to have a minimal sparsity to achieve good performance. Furthermore, this non-zero parameters must follow a particular structure.

1192
1193

Definition C.7. An **isomorphism** between two attributed graphs $G = (V, E, X_v, X_e)$ and $G' = (V', E', X'_v, X'_e)$ is a bijection $\phi : V \rightarrow V'$ satisfying

1194

$$(u, v) \in E \text{ if and only if } (\phi(u), \phi(v)) \in E'$$

1195

and

1197
1198

$$\begin{aligned} x_v &= x'_{\phi(v)} \quad \forall v \in V \\ x_{(v,u)} &= x'_{(\phi(v), \phi(u))} \quad \forall (v, u) \in E. \end{aligned}$$

1200
1201
1202

Fact C.8. Suppose ϕ is an isomorphism between two attributed graphs $G = (V, E, X_v, X_e)$ and $G' = (V', E', X'_v, X'_e)$. Then ϕ is also an isomorphism between $A_\theta(G)$ and $A_\theta(G')$.

1203
1204
1205
1206

Definition C.9. For an L -layer MinAgg GNN A_θ , we say that a layer $\ell \in [L]$ is **message passing** if the aggregation function $f^{\text{agg},(\ell)}$ depends on its node component. A **edge-dependent message passing layer** is a message passing layer for which $f^{\text{agg},(\ell)}$ also depends on its edge component. A layer is **stationary** if it is not message passing

1207
1208
1209

The update at each node can only depend on neighboring node features through the node component of the aggregation function. Thus, for stationary layers, each updated node feature only depends on the previous value of the node feature and the value of adjacent edges.

1210
1211
1212

Fact C.10. Consider a MinAgg GNN A_θ such that its ℓ th layer is stationary. Then, taking θ to be fixed, the feature $h_v^{(\ell)}$ is only a function of $h_v^{(\ell-1)}$ and $x_{(u,v)}$ for $u \in \mathcal{N}(v)$.

1213
1214
1215

The importance of message passing layers is that these are the only layers for which an updated node depends on the previous features of its neighboring nodes. This is made precise by the following statement.

1216
1217
1218
1219
1220
1221
1222

Claim C.11. Consider a MinAgg GNN A_θ acting on a graph $G = (V, E, X_v, X_e)$ and consider two nodes $v, w \in V$ such that v is j steps away from w . Suppose for some $\ell \in [L]$ there are k layers in $[\ell]$ that are message passing with $k < j$. Then the feature $h_v^{(\ell)}(G)$ is independent of $x_w(G)$. That is, for any graph $G' = (V, E, X_v, X'_e)$ that differs from G only in the feature $x_w(G')$, we have $h_v^{(\ell)}(G) = h_v^{(\ell)}(G')$. Similarly, for any edge $(u, w) \in E$ if both u and w are j steps away from v then $h_v^{(\ell)}(G)$ is independent of $x_{(u,w)}(G)$.

1223
1224
1225
1226

Proof. We proceed by induction so assume the statement holds for $j - 1$. Note the base case of $j = 1$ is immediate from Fact C.10 as this implies no message passing has occurred. Suppose v is j steps away from w . Let ℓ' be the largest ℓ in $\{1, \dots, \ell\}$ that is message passing. By definition of the MinAgg GNN,

1227
1228

$$h_v^{(\ell')} = f^{\text{up},(\ell')}\left(\min\{f^{\text{agg},(\ell')}(h_u^{(\ell'-1)} \oplus x_{(u,v)}) : u \in \mathcal{N}(v)\}\right). \quad (15)$$

1229
1230
1231
1232
1233
1234
1235

Every node in $\mathcal{N}(v)$ is at least $j - 1$ steps from w and there are at most $k - 1$ message passing steps in $[\ell' - 1]$. Invoking the inductive hypothesis for $j - 1$ yields that $h_u^{(\ell'-1)}$ for $u \in \mathcal{N}(v)$ is independent of $x_u(G)$. Thus, since every variable in the expression for $h_v^{(\ell')}$ is independent of $x_u(G)$, the feature $h_v^{(\ell')}$ is independent as well. Finally, if $h_v^{(\ell')}$ is independent of $x_u(G)$ then by Fact C.10, $h_v^{(\ell)}$ is also independent of $x_u(G)$ since all the layers between ℓ' and ℓ are stationary. (If ℓ is message passing then $\ell' = \ell$.)

1236
1237

A parallel argument can be used to show independence of $h_v^{(\ell)}$ from $x_{(u,w)}$ in the case that v is j steps away from both u and w \square

1238
1239

Lemma C.12. An L -layer MinAgg GNN A_θ satisfies

1240
1241

$$h_{v_K}^{(L)}(H_K^{(0)}) \neq h_{u_K}^{(L)}(H_K^{(0)})$$

only if it has at least K edge-dependent message passing layers.

1242 *Proof.* We proceed by proving claim (*), regarding the output of the MinAgg GNN on $H_K^{(0)}$. This
 1243 claim is shown through two cases. Note that since in this proof only the graph $H_K^{(0)}$ is considered, we
 1244 suppress notation referring to the graph for simplicity.
 1245

1246 Claim (*) Let $k' \in [K]$ and $\ell \in [L]$. If for all $k \geq k'$,

$$1248 \quad h_{v_k}^{(\ell-1)} = h_{u_k}^{(\ell-1)},$$

1249 and $f^{\text{agg},(\ell)}$ is not edge-dependent message passing, then for all $k \geq k'$,

$$1251 \quad h_{v_k}^{(\ell)} = h_{u_k}^{(\ell)}.$$

1253 If $f^{\text{agg},(\ell)}$ is not edge-dependent message passing, then it either does not depend on its node component
 1254 or does not depend on its edge component.

1255 Case I: $f^{\text{agg},(\ell)}$ **does not depend on its node component.** For $k \geq k'$,

$$1257 \quad h_{v_k}^{(\ell)} = f^{\text{up},(\ell)} \left(\min \{ f^{\text{agg},(\ell)}(h_w^{(\ell-1)} \oplus x_{(w,v_k)}) : w \in \{v_{k-1}, u_{k-1}, v_k, v_{k+1}, u_{k+1}\} \} \oplus h_{v_k}^{(\ell-1)} \right) \\ 1258 \quad = f^{\text{up},(\ell)} \left(\min \{ f^{\text{agg},(\ell)}(\cdot \oplus 0), f^{\text{agg},(\ell)}(\cdot \oplus 1) \} \oplus h_{v_k}^{(\ell-1)} \right)$$

1261 where a center dot \cdot is used to indicate the lack of dependence on the node feature. (Any
 1262 value can replace \cdot and the expression does not change since $f^{\text{agg},(\ell)}$ is constant over
 1263 its node component.) The key here is that since $f^{\text{agg},(\ell)}$ does not depend on its node
 1264 component, only the set of edge weights incident on v_k , which is $\{0, 1\}$, effects the value
 1265 of

$$1266 \quad \min \{ f^{\text{agg},(\ell)}(h_w^{(\ell-1)} \oplus x_{(w,v_k)}) : w \in \{v_{k-1}, u_{k-1}, v_k, v_{k+1}, u_{k+1}\} \}.$$

1267 Similarly, for u_k we have

$$1269 \quad h_{u_k}^{(\ell)} = f^{\text{up},(\ell)} \left(\min \{ f^{\text{agg},(\ell)}(h_w^{(\ell-1)} \oplus x_{(w,u_k)}) : w \in \{v_{k-1}, u_{k-1}, u_k, v_{k+1}, u_{k+1}\} \} \oplus h_{u_k}^{(\ell-1)} \right) \\ 1270 \quad = f^{\text{up},(\ell)} \left(\min \{ f^{\text{agg},(\ell)}(\cdot \oplus 0), f^{\text{agg},(\ell)}(\cdot \oplus 1) \} \oplus h_{u_k}^{(\ell-1)} \right)$$

1273 and since $h_{v_k}^{(\ell-1)} = h_{u_k}^{(\ell-1)}$, we get $h_{u_k}^{(\ell)} = h_{v_k}^{(\ell)}$.

1274 Case II: $f^{\text{agg},(\ell)}$ **does not depend on its edge component.**

1275 For $k \geq k'$,

$$1277 \quad h_{v_k}^{(\ell)} = f^{\text{up},(\ell)} \left(\min \{ f^{\text{agg},(\ell)}(h_w^{(\ell-1)} \oplus x_{(w,v_k)}) : w \in \{v_{k-1}, u_{k-1}, v_k, v_{k+1}, u_{k+1}\} \} \oplus h_{v_k}^{(\ell-1)} \right) \\ 1278 \quad = f^{\text{up},(\ell)} \left(\min \{ f^{\text{agg},(\ell)}(h_w^{(\ell-1)} \oplus \cdot) : w \in \{v_{k-1}, u_{k-1}, v_k, v_{k+1}, u_{k+1}\} \} \oplus h_{v_k}^{(\ell-1)} \right)$$

1281 and

$$1282 \quad h_{u_k}^{(\ell)} = f^{\text{up},(\ell)} \left(\min \{ f^{\text{agg},(\ell)}(h_w^{(\ell-1)} \oplus x_{(w,u_k)}) : w \in \{v_{k-1}, u_{k-1}, u_k, v_{k+1}, u_{k+1}\} \} \oplus h_{u_k}^{(\ell-1)} \right) \\ 1283 \quad = f^{\text{up},(\ell)} \left(\min \{ f^{\text{agg},(\ell)}(h_w^{(\ell-1)} \oplus \cdot) : w \in \{v_{k-1}, u_{k-1}, u_k, v_{k+1}, u_{k+1}\} \} \oplus h_{u_k}^{(\ell-1)} \right).$$

1286 However, since $h_{v_k}^{(\ell-1)} = h_{u_k}^{(\ell-1)}$, the minimums in the expressions for $h_{v_k}^{(\ell)}$ and $h_{u_k}^{(\ell)}$ are
 1287 taken over the same set and so $h_{u_k}^{(\ell)} = h_{v_k}^{(\ell)}$.

1289 Now that we have proved claim (*) we proceed by induction to show that for any $\ell' \in [L]$ if there
 1290 are k' edge-dependent message passing layers in $[\ell']$ then $h_{u_k}^{(\ell')} = h_{v_k}^{(\ell')}$ for all $k > k'$. This holds
 1291 for the base case of $k' = 0$ since at initialization $h_{v_k}^{(0)} = h_{u_k}^{(0)}$ for all $k \in [K]$, and (*) yields that
 1292 $h_{v_k}^{(\ell')} = h_{u_k}^{(\ell')}$ since no layer in $[\ell']$ is edge-dependent message passing. Now suppose the inductive
 1293 hypothesis holds for $k' - 1$ edge-dependent message passing layers. That is, suppose that for any
 1294 $\ell' \in [L]$ if there are $k' - 1$ edge-dependent message passing layers in $[\ell']$ then $h_{u_k}^{(\ell')} = h_{v_k}^{(\ell')}$ for all
 1295 $k > k' - 1$. Now suppose for some $\ell' \in [L]$ there are k' edge-dependent message passing layers in

1296 $[\ell']$, and let ℓ^* be the last such layer. Then $h_{v_k}^{(\ell^*-1)} = h_{u_k}^{(\ell^*-1)}$ for all $k > k' - 1$ by the inductive
 1297 hypothesis. For all $k > k'$,

1298
$$h_{v_k}^{(\ell^*)} = f^{\text{up},(\ell^*)} \left(\min \{ f^{\text{agg},(\ell^*)} (h_w^{(\ell^*-1)} \oplus x_{(w,v_k)}) : w \in \{v_{k-1}, u_{k-1}, v_k, v_{k+1}, u_{k+1}\} \} \oplus h_{v_k}^{(\ell^*-1)} \right)$$

 1300

1301 and

1302
$$h_{u_k}^{(\ell^*)} = f^{\text{up},(\ell^*)} \left(\min \{ f^{\text{agg},(\ell^*)} (h_w^{(\ell^*-1)} \oplus x_{(w,u_k)}) : w \in \{v_{k-1}, u_{k-1}, u_k, v_{k+1}, u_{k+1}\} \} \oplus h_{u_k}^{(\ell^*-1)} \right).$$

 1303

1304 Recall that $x_{(w,w)}$ is always zero for any node w . The minimums in these expressions are then taken
 1305 over the sets

1306 $S_v = \{h_{v_{k-1}}^{(\ell^*-1)} \oplus x_{(v_{k-1}, v_k)}, h_{u_{k-1}}^{(\ell^*-1)} \oplus x_{(u_{k-1}, v_k)}, h_{v_k}^{(\ell^*-1)} \oplus 0, h_{v_{k+1}}^{(\ell^*-1)} \oplus x_{(v_{k+1}, v_k)}, h_{u_{k+1}}^{(\ell^*-1)} \oplus x_{(u_{k+1}, v_k)}\}$
 1307

1308 and

1309 $S_u = \{h_{v_{k-1}}^{(\ell^*-1)} \oplus x_{(v_{k-1}, u_k)}, h_{u_{k-1}}^{(\ell^*-1)} \oplus x_{(u_{k-1}, u_k)}, h_{u_k}^{(\ell^*-1)} \oplus 0, h_{v_{k+1}}^{(\ell^*-1)} \oplus x_{(v_{k+1}, u_k)}, h_{u_{k+1}}^{(\ell^*-1)} \oplus x_{(u_{k+1}, u_k)}\}$
 1310

1311 respectively. Note, by the inductive hypothesis, $h_{v_{k-1}}^{(\ell^*-1)} = h_{u_{k-1}}^{(\ell^*-1)}$, $h_{v_k}^{(\ell^*-1)} = h_{u_k}^{(\ell^*-1)}$, and
 1312

1313 $h_{v_{k+1}}^{(\ell^*-1)} = h_{u_{k+1}}^{(\ell^*-1)}$, since $k - 1 > k' - 1$. Furthermore, for all $i \in [K]$, we have $x_{(v_{i-1}, u_i)} =$
 1314 $x_{(u_{i-1}, v_i)} = 1$ and $x_{(v_{i-1}, v_i)} = x_{(u_{i-1}, u_i)} = 0$. Thus,

1315
$$S_v = S_u = \{h_{u_{k-1}}^{(\ell^*-1)} \oplus 0, h_{u_{k-1}}^{(\ell^*-1)} \oplus 1, h_{u_k}^{(\ell^*-1)} \oplus 0, h_{u_{k+1}}^{(\ell^*-1)} \oplus 0, h_{u_{k+1}}^{(\ell^*-1)} \oplus 1\}.$$

 1316

1317 so $h_{u_k}^{(\ell^*)} = h_{v_k}^{(\ell^*)}$ for $k > k'$. Finally, the remaining layers $\ell \in \{\ell^* + 1, \dots, \ell'\}$ are not edge-
 1318 dependent message passing, so claim $(*)$ gives that $h_{u_k}^{(\ell)} = h_{v_k}^{(\ell)}$ is maintained for $k > k'$, completing
 1319 the induction.

1320 Taking the inductive hypothesis that we just proved with $\ell' = L$ and $k' < K$ gives that if there are
 1321 are less than K edge-dependent message passing layers then $h_{u_K}^{(L)} = h_{v_K}^{(L)}$. \square
 1322

1323 Note $x_{v_K}(H_K^{(K)}) \neq x_{u_K}(H_K^{(K)})$, so any MinAgg GNN with less than K message passing layers can
 1324 not achieve perfect accuracy on $H_K^{(0)}$. In particular, since a MinAgg GNN with less than K layers
 1325 must also have less than K message passing layers, this lemma demonstrates that K layers are indeed
 1326 necessary for a MinAgg GNN to have perfect accuracy on K -step shortest path problems.

1327 **Corollary C.13.** *Any MinAgg GNN with less than K layers has non-zero error on the training pair
 1328 $(H_K^{(0)}, H_K^{(K)})$.*

1329 **Lemma C.14.** *An L -layer GNN \mathcal{A}_θ has output satisfying*

1330
$$h_{v_0}^{(L)}(P_1^{(0)}(1)) \neq h_{v_1}^{(L)}(P_1^{(0)}(1)) \tag{16}$$

 1331

1332 only if for all $\ell \in [L]$ the function $f^{\text{up},(\ell)}$ is not constant.

1333 *Proof.* Suppose $f^{\text{up},(\ell)}$ is constant for some $\ell \in [L]$. Then the node features after the ℓ th layer are
 1334 identical: $h_{v_0}^{(\ell)} = h_{v_1}^{(\ell)}$. Consider the attributed graph at this layer $G^{(\ell)} = (V, E, X_v^{(\ell)}, X_e)$ with node
 1335 features $x_v = h_v^{(\ell)}$. This graph has

1336
$$\begin{aligned} \phi : v_0 &\mapsto v_1 \\ v_1 &\mapsto v_0 \end{aligned}$$

1337 as an automorphism. By Fact C.8, $A_\theta(G)$ must also have ϕ as an automorphism. Thus, since
 1338 isomorphisms respect node features (Def. C.7), $h_{v_0}^{(L)} = h_{\phi(v_0)}^{(L)} = h_{v_1}^{(L)}$.
 1339

1340 \square

1341 We are now ready to show that any MinAgg GNN achieving small loss on a training set that includes
 1342 $P_1^{(0)}(1)$ and $H_K^{(0)}$ must have a specific sparsity structure.
 1343

1350 **Lemma C.15.** For $K \geq 1$, let $\mathcal{G}_{\text{train}}$ be a set containing pairs of training instances $(G^{(t)}, \Gamma^K(G^{(t)})$
 1351 where $\mathcal{G}_{\text{train}}$ contains M total reachable nodes and
 1352

$$1353 \{(H_K^{(0)}, H_K^{(K)}), (P_1^{(0)}(1), P_1^{(K)}(1))\} \subset \mathcal{G}_{\text{train}}.$$

1354 For $L \geq K > 0$, consider an L -layer MinAgg GNN \mathcal{A}_θ with m -layer MLPs and parameters θ . Given
 1355 regularization coefficient $0 < \eta < \frac{1}{2M(mL+mK+K)}$ and error $0 \leq \epsilon < \eta$, then the loss
 1356

$$1357 \mathcal{L}_{\text{reg}} = \mathcal{L}_{\text{MAE}}(G_{\text{train}}, \mathcal{A}_\theta) + \eta \|\Theta\|_0 \quad (17)$$

1359 has a minimum value of $\eta(mL + mK + K)$ and if the loss achieved by \mathcal{A}_θ is within ϵ of this minimum
 1360 then \mathcal{A}_θ has exactly $mL + mK + K$ non-zero parameters, K message passing layers, and for all
 1361 layers $f^{\text{up},(\ell)}$ is non-constant. In particular, for all $j \in [m]$ and $\ell \in [L]$

$$1362 \|W_j^{\text{up},(\ell)}\|_0 = 1,$$

1364 and $b_j^{\text{up},(\ell)} = b_j^{\text{agg},(\ell)} = 0$. For each of the K message passing layers $\ell_k \in [L]$,
 1365

$$1366 \|W_1^{\text{agg},(\ell)}\|_0 = 2$$

$$1367 \|W_j^{\text{agg},(\ell)}\|_0 = 1 \quad \text{for } m \geq j > 1$$

1369 where the two non-zero entries in $W_1^{\text{agg},(\ell)}$ share the same row.
 1370

1371 *Proof.* First, the BF implementation given by Lemma C.3 shows there is a choice of parameters
 1372 that achieves perfect accuracy with $mL + mK + K$ non-zero values. This implementation achieves
 1373 a loss of $\mathcal{L}_{\text{reg}} = \eta(mL + mK + K)$. Thus, \mathcal{A}_θ can not have more than $mL + mK + K$ non-
 1374 zero values as this would mean a loss at least $\eta > \epsilon$ greater than the loss achieved by the BF
 1375 implementation. We now derive the sparsity structure that any MinAgg GNN achieving a loss no less
 1376 than $\eta(mL + mK + K) + \epsilon$ must achieve. We show at the end of the proof that $\eta(mL + mK + K)$
 1377 is indeed the global minimum of the loss.

1378 Note that $|x_{v_0}(P_1^{(K)}(1)) - x_{v_1}(P_1^{(K)}(1))| = 1$ and $|x_{v_K}(H_K^{(K)}) - x_{u_K}(H_K^{(K)})| = 1$. If
 1379 $h_{v_0}^{(L)}(P_1^{(0)}(1)) = h_{v_1}^{(L)}(P_1^{(0)}(1))$ then
 1380

$$1381 \mathcal{L}_{\text{reg}} \geq \mathcal{L}_{\text{MAE}}(\mathcal{G}_{\text{train}}, \mathcal{A}_\theta)$$

$$1382 \geq \frac{|x_{v_0}(P_1^{(K)}(1)) - h_{v_0}^{(L)}(P_1^{(0)}(1))| + |x_{v_1}(P_1^{(K)}(1)) - h_{v_1}^{(L)}(P_1^{(0)}(1))|}{M}$$

$$1384 \geq \frac{1}{M}$$

$$1386 \geq \eta(mL + mK + K) + \epsilon,$$

1388 where the last inequality follows from $\epsilon < \frac{1}{2M(mL+mK+K)}$ and $\eta(mL + mK + K) < \frac{1}{2M}$. We can
 1389 then conclude that any MinAgg GNN with loss less than or equal to $\eta(mL + mK + K) + \epsilon$ must
 1390 satisfy $h_{v_k}^{(L)}(H_K^{(0)}) \neq h_{u_k}^{(L)}(H_K^{(0)})$ and $h_{v_0}^{(L)}(P_1^{(0)}(1)) \neq h_{v_1}^{(L)}(P_1^{(0)}(1))$ so by lemmas C.12 and C.14,
 1391 any such MinAgg GNN has at least K edge-dependent message passing layers and for all $\ell \in [L]$ the
 1392 update function $f^{\text{up},(\ell)}$ is nonconstant.
 1393

1394 Next, we analyze the sparsity required to achieve K edge-dependent message passing layers and
 1395 nonconstant $f^{\text{up},(\ell)}$.

1396 • If $f^{\text{up},(\ell)}$ is non constant, then for all $j \in [m]$ and $\ell \in [L]$

$$1398 \|W_j^{\text{up},(\ell)}\|_0 \geq 1 \quad (18)$$

1400 so there must be at least mL non-zero entries coming from $f^{\text{up},(\ell)}$.
 1401

1402 • If ℓ is a edge-dependent message passing layer then $f^{\text{agg},(\ell)}$ is nonconstant and so for all
 1403 $j \in [m]$ and $\ell \in [L]$

$$1403 \|W_j^{\text{agg},(\ell)}\|_0 \geq 1. \quad (19)$$

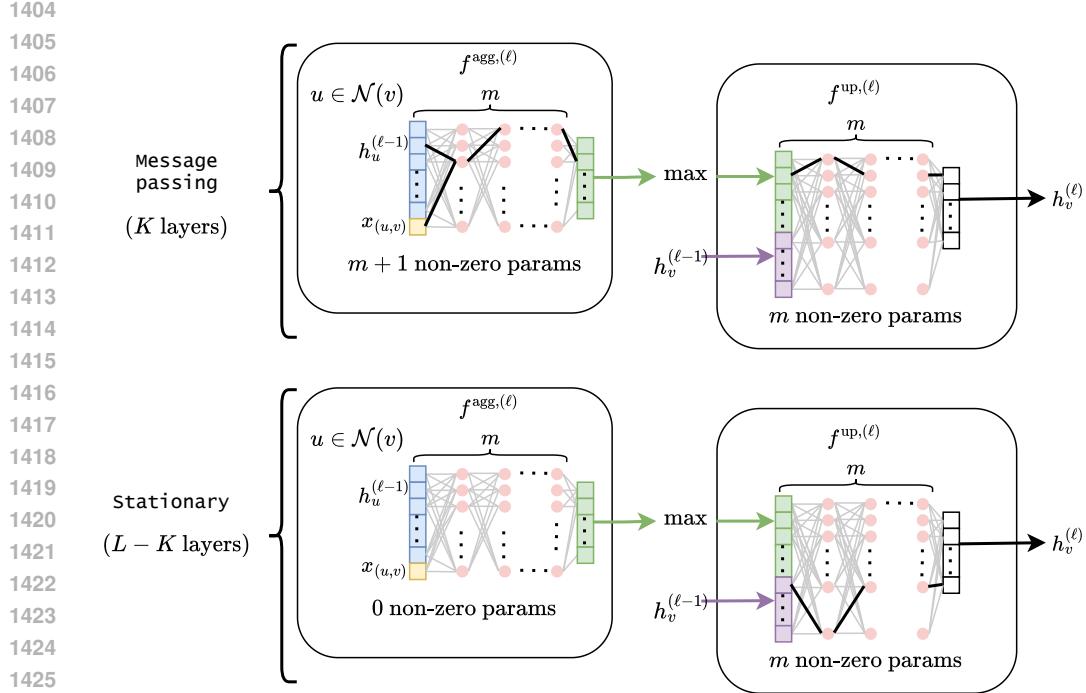


Figure 6: A diagram showing an example of a MinAgg GNN with the sparsity structure given by Lemma C.15. Bold black connections in the neural network indicate non zero parameters, while grey lines indicate zero parameters.

1431
1432
1433

Also, since $f^{agg,(\ell)}$ is edge-dependent message passing it depends on both its node and its edge component so $W_1^{agg,(\ell)}$ must have two columns that have non-zero entries, giving

1434
1435

$$\|W_1^{agg,(\ell)}\|_0 \geq 2. \quad (20)$$

1436
1437

Thus, the total number of non-zero entries coming from $f^{agg,(\ell)}$ is at least $mK + K$ since there are at least K edge-dependent message passing layers.

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

Combining the contributions from $f^{up,(\ell)}$ and $f^{agg,(\ell)}$ we have that A_θ has at least $mL + mK + K$ non-zero parameters. However, at the start of the proof we showed that $mL + mK + K$ is also an upper bound on the number of non-zero parameters, so there must be exactly $mL + mK + K$ non-zero parameters. Additionally, we can see that there can not be more than K message passing layers as this would require additional non-zero parameters. Furthermore, if only $mL + mK + K$ parameters are non-zero then inequalities (18) - (20) must be tight and, also, $b_j^{up,(\ell)} = b_j^{agg,(\ell)} = 0$. Finally, we remark that the non-zero entries in $W_1^{agg,(\ell)}$ must share a row since $W_2^{agg,(\ell)}$ has only one non-zero entry. Thus, if the non-zero entries in $W_1^{agg,(\ell)}$ do not share a row, either edge dependence or node dependence is lost.

1448
1449
1450

Furthermore, any MinAgg GNN that achieves a loss less than or equal to $\eta(mL + mK + K) + \epsilon$ must have exactly $mL + mK + K$ non-zero parameters. This implies that $\eta(mL + mK + K)$ is the minimum of the loss. \square

1451
1452
1453
1454

We can now limit our analysis to MinAgg GNNs with exactly K message passing layers. For these MinAgg GNNs let the k th message passing layer be $\ell_k \in [L]$ where $k \in [K]$.

1455 C.4 BOUNDING GNN EXPRESSIVITY

1456
1457

The following section aims to bound the expressiveness of \mathcal{A}_θ under certain conditions that are more challenging to analyze. The benefit is that with sufficiently many training examples we can restrict

1458 our analysis to more straightforward cases, as for most training instances, these challenging to analyze
 1459 conditions do not arise.

1460 **Lemma C.16.** *Consider $P_{K+1}^{(1)}(x, a_2, \dots, a_{K+1})$ where a_2, \dots, a_{K+1} are taken to be fixed and view
 1461 the computed node feature $h_{v_K}^{(L)} : \mathbb{R} \rightarrow \mathbb{R}$ solely as a function of the first edge weight x , which is
 1462 variable. Consider a MinAgg GNN \mathcal{A}_θ with exactly K message passing layers. If for the k th message
 1463 passing layer $\ell_k \in [L]$ there is a region $D_k \subset \mathbb{R}$ such that the feature $h_{v_{k+1}}^{(\ell_k)}(x)$ is constant on D_k ,
 1464 i.e., takes the same value for all $x \in D_k$, then $h_{v_{K+1}}^{(\ell_K)}(x)$ is also constant over D_k .*

1465
 1466 *Proof.* We proceed by induction, so consider $k' \in [K]$ with $k' \geq k$ and assume that $h_{v_{k'}}^{(\ell_{k'-1})}(x)$ is
 1467 constant over D_k . We aim to show $h_{v_{k'+1}}^{(\ell_{k'})}(x)$ is constant over D_k . This is true for the base case of
 1468 $k' = k$ by the assumption in the theorem statement that $h_{v_{k+1}}^{(\ell_k)}(x)$ is constant on D_k . Now we prove
 1469 the general case, so take $k' > k$. Since,
 1470

$$h_{v_{k'+1}}^{(\ell_{k'})} = f^{\text{up},(\ell_{k'})} \left(\min \{ f^{\text{agg},(\ell_{k'})}(h_u^{(\ell_{k'-1})} \oplus x_{(u,v)}) : u \in \{v_{k'}, v_{k'+1}, v_{k'+2}\} \} \oplus h_{v_{k'+1}}^{(\ell_{k'-1})} \right), \quad (21)$$

1471
 1472 $h_{v_{k'+1}}^{(\ell_{k'})}(x)$ is a function solely of $h_{v_{k'+1}}^{(\ell_{k'-1})}(x)$, $h_{v_{k'+2}}^{(\ell_{k'-1})}(x)$, and, $h_{v_{k'}}^{(\ell_{k'-1})}(x)$. (All edge weights
 1473 other than that of (v_0, v_1) are taken to be constant, and $k' > k \geq 1$ so there is no dependence on
 1474 $x_{(v_0, v_1)}$ in the expression.) The feature $h_{v_{k'}}^{(\ell_{k'-1})}(x)$ is constant over D_k by the inductive hypothesis.
 1475 Furthermore, $h_{v_{k'}}^{(\ell_{k'-1})}(x)$ is constant over D_k by Fact C.10 since all layers in $\{\ell_{k'-1}+1, \dots, \ell_{k'}-1\}$
 1476 must be stationary. Note that while the stationary layers may change the node feature at $v_{k'}$ so
 1477 that $h_{v_{k'}}^{(\ell_{k'-1})}(x) \neq h_{v_{k'}}^{(\ell_{k'-1})}(x)$, these two features $h_{v_{k'}}^{(\ell_{k'-1})}(x)$ and $h_{v_{k'}}^{(\ell_{k'-1})}(x)$ are still both constant
 1478 functions of x on D_k . In $P_{K+1}^{(1)}(x, a_2, \dots, a_{K+1})$ only the first edge weight $x_{(v_0, v_1)}$ and the second
 1479 node feature x_{v_1} depend on x . Thus, by Claim C.11, if $j \in [K]$ with $j > k'$ then $h_{v_{j+1}}^{(\ell_{k'})}(x)$ is constant
 1480 across all $x \geq 0$ as v_{j+1} is more than k' steps from v_1 . It then follows that the features $h_{v_{k'+1}}^{(\ell_{k'-1})}(x)$
 1481 and $h_{v_{k'+2}}^{(\ell_{k'-1})}(x)$ are both constant. Also, $h_{v_{k'+1}}^{(\ell_{k'-1})}(x)$ and $h_{v_{k'+2}}^{(\ell_{k'-1})}(x)$ are both constant since the
 1482 layers in $\{\ell_{k'-1}+1, \dots, \ell_{k'}-1\}$ must be stationary. We can then conclude $h_{v_{k'+1}}^{(\ell_{k'})}(x)$ is constant on
 1483 D_k , since it depends only on variables which are constant on D_k , completing the inductive argument.
 1484 Since we have proved $h_{v_{k'+1}}^{(\ell_{k'})}(x)$ is constant on D_k for all $k' \geq k$, we have that $h_{v_{K+1}}^{(\ell_K)}(x)$ is constant.
 1485 Finally, since $h_{v_{K+1}}^{(m)}(x)$ only depends on $h_{v_K}^{(\ell_K)}(x)$, as all layers following ℓ_k are stationary, we have
 1486 that $h_{v_K}^{(m)}(x)$ is constant on D_k

□

1487 **Definition C.17.** *A GNN \mathcal{A}_θ has 1-dimensional aggregation if for all message passing steps $\ell_k \in [L]$*

$$\|W_0^{\text{up},(\ell_k)}\|_0 = 1.$$

1488 One dimensional aggregation implies that the output of $f^{\text{up},(\ell)}$ only depends on one component of
 1489 the vector produced by \min . Furthermore, the value of this one component is determined by which
 1490 vector in the set

$$\{f^{\text{agg},(\ell_k)}(h_u^{(\ell_k)}, x_{(u,v)}) \mid u \in \mathcal{N}(v)\} \quad (22)$$

1491 is minimal in that component.

1492 **Definition C.18.** *Consider $P_{K+1}^{(1)}(a_1, a_2, \dots, a_{K+1})$ and a MinAgg GNN \mathcal{A}_θ with exactly K
 1493 message passing layers and 1-dimensional aggregation. We say that \mathcal{A}_θ is path derived on
 1494 $P_{K+1}^{(1)}(a_1, a_2, \dots, a_{K+1})$ if for the k th message passing step ℓ_k ,*

$$\begin{aligned} h_{v_{k+1}}^{(\ell_k)} &:= f^{\text{up},(\ell_k)} \left(\min \{ f^{\text{agg},(\ell_k)}(h_u^{(\ell_{k-1})}, x_{(u,v_{k+1})}) \mid u \in \{v_{k+1}\} \cup \mathcal{N}(v_{k+1}) \} \oplus h_{v_{k+1}}^{(\ell_{k-1})} \right) \\ &= f^{\text{up},(\ell_k)} \left(f^{\text{agg},(\ell_k)}(h_{v_k}^{(\ell_{k-1})}, x_{(v_k, v_{k+1})}) \oplus h_{v_{k+1}}^{(\ell_{k-1})} \right). \end{aligned}$$

1495 **Corollary C.19.** *Consider $P_{K+1}^{(1)}(x, a_2, \dots, a_{K+1})$ where a_2, \dots, a_{K+1} are taken to be fixed and
 1496 view the computed node feature $h_{v_{K+1}}^{(L)} : \mathbb{R} \rightarrow \mathbb{R}$ solely as a function of the first edge weight x , which*

1512 is variable. Consider a MinAgg GNN \mathcal{A}_θ with exactly K message passing layers and 1-dimensional
 1513 aggregation. If $D \subseteq \mathbb{R}$ contains all x such that \mathcal{A}_θ is not path derived on $P_{K+1}^{(1)}(x, a_2, \dots, a_{K+1})$
 1514 and

$$Y_{\text{pd}} = \{h_{v_{K+1}}^{(L)}(x) : x \in D\} \quad (23)$$

1515 then $|Y_{\text{pd}}| \leq K$.
 1516

1519 *Proof.* For $k \in [K]$, consider the subset $D_k \subseteq \mathbb{R}$ such that $x \in D_k$ if and only if
 1520

$$\begin{aligned} & f^{\text{up},(\ell_k)} \left(\min \{f^{\text{agg},(\ell_k)}(h_u^{(\ell_k-1)}, x_{(u,v_{k+1})}) \mid u \in \{v_{k+1}\} \cup N(v_{k+1})\} \oplus h_{v_{k+1}}^{(\ell_k-1)} \right) \\ & \neq f^{\text{up},(\ell_k)} \left(f^{\text{agg},(\ell_k)}(h_{v_{k+1}}^{(\ell_k-1)}, x_{(v_k,v_{k+1})}) \oplus h_{v_{k+1}}^{(\ell_k-1)} \right). \end{aligned}$$

1524 Since \mathcal{A}_θ has 1-dimensional aggregation, for $x \in D_k$,

$$h_{v_{k+1}}^{(\ell_k)} = f^{\text{up},(\ell_k)} \left(\min \{f^{\text{agg},(\ell_k)}(h_{v_{k+1}}^{(\ell_k-1)}, x_{(v_{k+1},v_{k+1})}), f^{\text{agg},(\ell_k)}(h_{v_{k+2}}^{(\ell_k-1)}, x_{(v_{k+2},v_{k+1})})\} \oplus h_{v_{k+1}}^{(\ell_k-1)} \right)$$

1528 and we have either
 1529

$$h_{v_{k+1}}^{(\ell_k)} = f^{\text{up},(\ell_k)} \left(f^{\text{agg},(\ell_k)}(h_{v_{k+1}}^{(\ell_k-1)}, x_{(v_{k+1},v_{k+1})}) \oplus h_{v_{k+1}}^{(\ell_k-1)} \right)$$

1532 or,

$$h_{v_{k+1}}^{(\ell_k)} = f^{\text{up},(\ell_k)} \left(f^{\text{agg},(\ell_k)}(h_{v_{k+2}}^{(\ell_k-1)}, x_{(v_{k+2},v_{k+1})}) \oplus h_{v_{k+1}}^{(\ell_k-1)} \right).$$

1536 since there is only one component of $f^{\text{agg},(\ell_k)}(h_{v_{k+1}}^{(\ell_k-1)}, x_{(v_{k+1},v_{k+1})})$ and
 1537 $f^{\text{agg},(\ell_k)}(h_{v_{k+2}}^{(\ell_k-1)}, x_{(v_{k+2},v_{k+1})})$ that is not identically zero.
 1538

1539 By Claim C.11, $h_{v_{k+1}}^{(\ell_k-1)}(x)$ and $h_{v_{k+2}}^{(\ell_k-1)}(x)$ are constant functions of x (v_{k+1} and v_{k+2} are both more
 1540 than $k-1$ steps away from v_1 and (v_0, v_1) , and at step ℓ_k-1 only $k-1$ message passing steps
 1541 have occurred). Then, $h_{v_{k+1}}^{(\ell_k)}(x)$ must be constant over $x \in D_k$ since it only depends on features
 1542 that are constant. By Lemma C.16, $h_{v_{K+1}}^{(L)}(x)$ is constant on D_k and must take some value q_k . Let
 1543 $Q = \{q_k \mid k \in [K]\}$ and note $|Q| \leq K$.

1544 Suppose $h_{v_{K+1}}^{(L)}(x)$ is not path derived. Then there exists some $k \in [K]$ such that
 1545

$$\begin{aligned} & f^{\text{up},(\ell_k)} \left(\min \{f^{\text{agg},(\ell_k)}(h_u^{(\ell_k-1)}, x_{(u,v_{k+1})}) \mid u \in \{v_{k+1}\} \cup N(v_{k+1})\} \oplus h_{v_{k+1}}^{(\ell_k-1)} \right) \\ & \neq f^{\text{up},(\ell_k)} \left(f^{\text{agg},(\ell_k)}(h_{v_{k+1}}^{(\ell_k-1)}, x_{(v_k,v_{k+1})}) \oplus h_{v_{k+1}}^{(\ell_k-1)} \right). \end{aligned}$$

1550 which implies $h_{v_{K+1}}^{(L)}(x) \in Q$ so $Y_{\text{pd}} \subset Q$ and $|Y_{\text{pd}}| \leq K$. □
 1551

1552 C.5 GLOBAL MINIMUM IS BF

1554 We are now ready to prove Theorem 2.3, which we restate here with additional details.

1555 **Theorem C.20.** Let $\mathcal{G}_{\text{train}}$ be a set containing pairs of training instances $(G^{(t)}, \Gamma^K(G^{(t)}))$ where
 1556 $\mathcal{G}_{\text{train}}$ contains M total reachable nodes and $\mathcal{G}_K \subset \mathcal{G}_{\text{train}}$. For $L \geq K > 0$, consider an L -
 1557 layer MinAgg GNN \mathcal{A}_θ with m -layer MLPs and parameters θ . Given regularization coefficient
 1558 $0 < \eta < \frac{1}{2M(mL+mK+K)}$ and error $0 \leq \epsilon < \eta$, then the loss
 1559

$$\mathcal{L}_{\text{reg}} = \mathcal{L}_{\text{MAE}}(G_{\text{train}}, \mathcal{A}_\theta) + \eta \|\Theta\|_0 \quad (24)$$

1561 has a minimum value of $\eta(mL+mK+K)$ and if the loss achieved by \mathcal{A}_θ is within ϵ of this minimum
 1562 then on any $G \in \mathcal{G}$ the features computed by the MinAgg GNN satisfy
 1563

$$(1 - M\epsilon)x_v(\Gamma^K(G)) \leq h_v^{(L)}(G) \leq (1 + M\epsilon)x_v(\Gamma^K(G))$$

1564 for all $v \in V(G)$.
 1565

1566 *Proof.* Our proof proceeds by first simplifying and reparametrizing the MinAgg GNN update using
 1567 the sparsity structure derived Section C.3. Next, we prove approximations to these new parameters,
 1568 where we utilize the results of Section C.4 to restrict analysis to cases where computation follows
 1569 a simple structure (path-derived cases). We conclude by using these approximations to bound the
 1570 error the MinAgg GNN achieves on an arbitrary graph. Key to this final argument is showing that the
 1571 features of the MinAgg GNN approximate the node values in the BF algorithm, up to some scaling
 1572 factor.

1573 **Simplifying the update.** We next show that the MinAgg GNN under the sparsity constraints
 1574 of Lemma C.15 can be reformulated into a much simpler framework, where all the information
 1575 exchanged between message-passing layers is consolidated into a much smaller set of parameters
 1576 and where node features are always one dimensional. As $\{(H_K^{(0)}, H_K^{(K)}), (P_1^{(0)}(1), P_1^{(K)}(1))\} \subset$
 1577 $\mathcal{G}_K \subset \mathcal{G}_{\text{train}}$, Lemma C.15 gives that A_θ has exactly $mL + mK + K$ non-zero parameters, K
 1578 edge-dependent message passing layers, and a specific sparsity structure: for all layers $\ell \in [L]$, and
 1579 $j \in [m]$

$$\|W_j^{\text{up},(\ell)}\|_0 = 1$$

1580 and for each of the K message passing layers $\ell_k \in [L]$
 1581

$$\|W_1^{\text{agg},(\ell_k)}\|_0 = 2$$

$$\|W_j^{\text{agg},(\ell_k)}\|_0 = 1 \quad \text{for } j > 1$$

1582 where the two non-zero entries in $W_1^{\text{agg},(\ell_k)}$ must share a row. Furthermore, all bias terms are zero.
 1583 We now argue that each of these non-zero parameters must also be non-negative. For $\ell \in [L]$, suppose
 1584 that there is some $W_j^{\text{up},(\ell)}$ with a negative element. Then $\sigma(W_j^{\text{up},(\ell)} x) = 0$, where x is a vector
 1585 with non-negative entries, is a constant function of x . This implies $f^{\text{up},(\ell)}$ is constant (it is the zero
 1586 function), which contradicts Lemma C.15. Similarly, for any message passing layer $\ell_k \in [L]$ if there
 1587 is some $W_j^{\text{agg},(\ell_k)}$ with a negative element for $j > 1$ then $\sigma(W_j^{\text{agg},(\ell_k)} x) = 0$ is a constant function
 1588 of x which gives that $f^{\text{agg},(\ell_k)}$ is constant. Again, we have a contradiction with Lemma C.15, which
 1589 says that $f^{\text{agg},(\ell_k)}$ must be edge and node dependent.

1590 It remains to show that for messages passing layers $\ell_k \in [L]$ that the non-zero elements in $W_1^{\text{agg},(\ell_k)}$
 1591 are non-negative. However, we first simplify the update function given the restrictions we have
 1592 already derived. By the sparsity of the MinAgg GNN ($\|W_m^{\text{up},(\ell)}\|_0 = 1$), at any step ℓ , all node
 1593 features $h_v^{(\ell)}$ have at most 1 non-zero component. We can then simplify the update by reducing the
 1594 number of dimensions. In particular we get

$$\tilde{h}_v^{(\ell)} = \gamma^{(\ell)} \tilde{h}_v^{(\ell-1)}$$

1600 for stationary layers and
 1601

$$\tilde{h}_v^{(\ell)} = \gamma^{(\ell)} \min\{\sigma(\rho^{(\ell)} \tilde{h}_v^{(\ell-1)} + \tau^{(\ell)} x_{(u,v)}) : u \in \mathcal{N}(v)\}$$

1602 for message passing layer where $\gamma^{(\ell)}, \rho^{(\ell)}, \tau^{(\ell)} \in \mathbb{R}$ are new parameters that are functions the initial
 1603 parameters θ , and $\tilde{h}_v^{(\ell)} \in \mathbb{R}$ is a single-dimensional node feature that is equal to the non-zero value
 1604 in $h_v^{(\ell)}$ (or zero if there is no such value). We have that $\tilde{h}_v^{(0)} = h_v^{(0)} = x_v^{(0)}$ and $\tilde{h}_v^{(L)} = h_v^{(L)}$ since
 1605 $h_v^{(0)}, h_v^{(L)} \in \mathbb{R}$. Note that the new parameters do not depend on the input features since they are only
 1606 dependent on θ .

1607 We now further simplify by combining the stationary layers with their succeeding message passing
 1608 layer. Let $\ell_0 = 0$. For the k th message passing layer $\ell_k \in [L]$

$$\begin{aligned} \tilde{h}_v^{(\ell_k)} &= \gamma^{(\ell_k)} \min \left\{ \sigma \left(\rho^{(\ell_k)} \left(\prod_{i \in \{\ell_{k-1}+1, \dots, \ell_k-1\}} \gamma^{(i)} \right) \tilde{h}_v^{(\ell_k-1)} + \tau^{(\ell_k)} x_{(u,v)} \right) : u \in \mathcal{N}(v) \right\} \\ &= \gamma^{(\ell_k)} \min \left\{ \sigma \left(\alpha^{(\ell_k)} \tilde{h}_v^{(\ell_k-1)} + \tau^{(\ell_k)} x_{(u,v)} \right) : u \in \mathcal{N}(v) \right\} \end{aligned}$$

1609 where $\alpha^{(\ell_k)} = \rho^{(\ell_k)} \left(\prod_{i \in \{\ell_{k-1}+1, \dots, \ell_k-1\}} \gamma^{(i)} \right)$. Note that if for any $\ell_k \in [L]$ we have $h_v^{(\ell_k)} = 0$,
 1610 then or all succeeding layers $\ell > \ell_k$, the node feature $h_v^{(\ell)}$ is also zero. This is because the min

1620 aggregation at $h_v^{(\ell_k)}$ always includes $h_v^{(\ell_{k-1})}$, so if $h_v^{(\ell_{k-1})} = 0$ then $h_v^{(\ell_k)} = 0$. We are now ready
 1621 to show $\alpha^{(\ell_k)} > 0$ and $\tau^{(\ell_k)} > 0$. Suppose $\alpha^{(\ell_k)} \leq 0$ for some $\ell_k \in [L]$ and consider the training
 1622 instance $(P_2^{(1)}(1, 0), P_2^{(K+1)}(1, 0))$. The update at v_2 is
 1623

$$\begin{aligned} \tilde{h}_{v_2}^{(\ell_k)} &= \gamma^{(\ell_k)} \min \left\{ \sigma \left(\alpha^{(\ell)} \tilde{h}_u^{(\ell_{k-1})} \right) : u \in \{v_1, v_2\} \right\} \\ &= 0 \end{aligned}$$

1624 since $h_v^{(\ell_{k-1})} \geq 0$ for all $v \in V$. We then also have $\tilde{h}_{v_2}^{(L)} = 0$ and since $x_{v_2}(P_2^{(K+1)}(1, 0)) = 1$ the
 1625 loss is
 1626

$$\begin{aligned} \mathcal{L}_{\text{reg}} &\geq \mathcal{L}_{\text{MAE}}(\mathcal{G}_{\text{train}}, \mathcal{A}_\theta) \\ &> 1/M \\ &> \eta(mL + mL + K) + \epsilon \end{aligned}$$

1627 which is a contradiction.
 1628

1629 Now instead suppose $\tau^{(\ell_k)} < 0$ for some $\ell_k \in [L]$ and consider the training instance
 1630 $(P_1^{(0)}(1), P_1^{(K)}(1))$. Since $h_{v_0}^{(\ell)} = 0$ for all $\ell \in [L]$, the update at v_1 is
 1631

$$\begin{aligned} \tilde{h}_{v_1}^{(\ell_k)} &= \gamma^{(\ell_k)} \min \left\{ \sigma \left(\tau^{(\ell_k)} x_{(v_0, v_1)} \right), \sigma \left(\alpha^{(\ell)} \tilde{h}_{v_1}^{(\ell_{k-1})} + \tau^{(\ell_k)} x_{(v_1, v_1)} \right) \right\} \\ &= \gamma^{(\ell_k)} \min \left\{ 0, \sigma \left(\alpha^{(\ell)} \tilde{h}_{v_1}^{(\ell_{k-1})} + \tau^{(\ell_k)} x_{(v_1, v_1)} \right) \right\} \\ &= 0. \end{aligned}$$

1632 We then also have $\tilde{h}_{v_1}^{(L)} = 0$ and since $x_{v_1}(P_1^{(K)}(1)) = 1$ the loss is again greater than $\eta(mL + mK + K) + \epsilon$ which is a contradiction.
 1633

1634 We can now remove the final ReLU, since its argument is always non-negative:
 1635

$$\tilde{h}_v^{(\ell_k)} = \gamma^{(\ell_k)} \min \left\{ \alpha^{(\ell_k)} \tilde{h}_v^{(\ell_{k-1})} + \tau^{(\ell_k)} x_{(u, v)} : u \in \mathcal{N}(v) \right\}.$$

1636 As another simplification, we re-index to $k \in [K]$ as follows. Let $\bar{h}_v^{(k)} = \tilde{h}_v^{(\ell_k)}$ and $\bar{\gamma}^{(k)} = \gamma^{(\ell_k)}$ for
 1637 $k \in \{0, \dots, K-1\}$. However, to account for the effect of the layers succeeding ℓ_k we take
 1638 $\bar{h}_v^{(K)} = \tilde{h}_v^{(L)}$ and $\bar{\gamma}^{(K)} = \prod_{i \in \{\ell_K, \ell_K+1, \dots, L\}} \gamma^{(i)}$. Furthermore, for all $k \in [K]$, let $\bar{\alpha}^{(k)} = \alpha^{(\ell_k)}$
 1639 and $\bar{\tau}^{(k)} = \tau^{(\ell_k)}$. Then
 1640

$$\bar{h}_v^{(k)} = \bar{\gamma}^{(k)} \min \left\{ \bar{\alpha}^{(k)} \bar{h}_v^{(k-1)} + \bar{\tau}^{(k)} x_{(u, v)} : u \in \mathcal{N}(v) \right\}.$$

1641 Finally, by letting $\mu^{(k)} = \bar{\gamma}^{(k)} / \bar{\alpha}^{(k)}$ and $\nu^{(k)} = \bar{\tau}^{(k)} / \bar{\alpha}^{(k)}$ we get
 1642

$$\bar{h}_v^{(k)} = \mu^{(k)} \min \left\{ \bar{h}_v^{(k-1)} + \nu^{(k)} x_{(u, v)} : u \in \mathcal{N}(v) \right\}. \quad (25)$$

1643 Note that we can factor through the min here because $\alpha^{(k)} > 0$. For the rest of the proof, we focus
 1644 on this simplified update, since it has the same output as the MinAgg GNN, i.e., $\bar{h}_v^{(K)} = h_v^{(L)}$.
 1645

1646 **Approximating parameters.** We proceed by analyzing the output of the MinAgg GNN on an
 1647 inputs for which it is path derived. To this end, suppose that \mathcal{A}_θ is path derived on some input graph
 1648 $P_{K+1}^{(1)}(a_1, \dots, a_{K+1})$. Then, by definition of path derived,
 1649

$$h_{v_{k+1}}^{(\ell_k)} = f^{\text{up}, (\ell_k)} \left(f^{\text{agg}, (\ell_k)}(h_{v_k}^{(\ell_{k-1})}, x_{(v_k, v_{k+1})}) \oplus h_{v_{k+1}}^{(\ell_{k-1})} \right)$$

1650 which implies
 1651

$$\bar{h}_{v_{k+1}}^{(k)} = \mu^{(k)} (\bar{h}_{v_k}^{(k-1)} + \nu^{(k)} x_{(v_k, v_{k+1})}).$$

1652 Next, we prove, for $k \in \{0, \dots, K\}$,

$$\bar{h}_{v_{k+1}}^{(k)} = \left(\prod_{i \geq 1} \mu^{(i)} \right) x_{(v_0, v_1)} + \sum_{s=1}^k \nu^{(s)} \left(\prod_{i \geq s} \mu^{(i)} \right) x_{(v_s, v_{s+1})}$$

1674 by induction, where the products evaluate to 1 if they are indexed over an empty set. For the base
 1675 case we have

$$\bar{h}_{v_1}^{(0)} = x_{(v_0, v_1)}.$$

1676 Now for $k \in [K]$, suppose

$$\bar{h}_{v_k}^{(k-1)} = \left(\prod_{k-1 \geq i \geq 1} \mu^{(i)} \right) x_{(v_0, v_1)} + \sum_{s=1}^{k-1} \nu^{(s)} \left(\prod_{k-1 \geq i \geq s} \mu^{(i)} \right) x_{(v_s, v_{s+1})}.$$

1683 Then we have

$$\begin{aligned} \bar{h}_{v_{k+1}}^{(k)} &= \mu^{(k)} (\bar{h}_{v_k}^{(k-1)} + \nu^{(k)} x_{(v_k, v_{k+1})}) \\ &= \mu^{(k)} \left(\left(\prod_{k-1 \geq i \geq 1} \mu^{(i)} \right) x_{(v_0, v_1)} + \sum_{s=1}^{k-1} \nu^{(s)} \left(\prod_{k-1 \geq i \geq s} \mu^{(i)} \right) x_{(v_s, v_{s+1})} + \nu^{(k)} x_{(v_k, v_{k+1})} \right) \\ &= \left(\prod_{k \geq i \geq 1} \mu^{(i)} \right) x_{(v_0, v_1)} + \sum_{s=1}^{k-1} \nu^{(s)} \left(\prod_{k \geq i \geq s} \mu^{(i)} \right) x_{(v_s, v_{s+1})} + \nu^{(k)} \mu^{(k)} x_{(v_k, v_{k+1})} \\ &= \left(\prod_{k \geq i \geq 1} \mu^{(i)} \right) x_{(v_0, v_1)} + \sum_{s=1}^k \nu^{(s)} \left(\prod_{k \geq i \geq s} \mu^{(i)} \right) x_{(v_s, v_{s+1})}. \end{aligned}$$

1696 This completes the induction and yields

$$\bar{h}_{v_{K+1}}^{(K)} = \left(\prod_{K \geq i \geq 1} \mu^{(i)} \right) x_{(v_0, v_1)} + \sum_{s=1}^K \nu^{(s)} \left(\prod_{K \geq i \geq s} \mu^{(i)} \right) x_{(v_s, v_{s+1})}$$

1701 Given this expression for the output at v_{K+1} we can now derive bounds on the values of these
 1702 parameters. However, we must restrict our focus to instances of the training set for which A_θ is path
 1703 derived.

1704 For $k \in [K]$, let $\mathcal{H}_{k,K}^0$ contain graphs in $\mathcal{H}_{k,K}$ where the $k+1$ edge has weight 0 and let $\mathcal{H}_{k,K}^1$
 1705 contain graphs in $\mathcal{H}_{k,K}$ where the $k+1$ edge has weight $2K+1$. It can be checked that for any
 1706 $G^{(1)}, G'^{(1)} \in \mathcal{H}_{k,K}$,

$$|x_{v_{K+1}}(G^{(K+1)}) - x_{v_{K+1}}(G'^{(K+1)})| \geq 1.$$

1709 Then, it must be that $\bar{h}_{v_{K+1}}^{(K)}(G^{(1)}) \neq \bar{h}_{v_{K+1}}^{(K)}(G'^{(1)})$ as if these output features are equal

$$\begin{aligned} \mathcal{L}_{\text{reg}} &\geq \mathcal{L}_{\text{MAE}} \\ &\geq \frac{|\bar{h}_{v_{K+1}}^{(K)}(G^{(1)}) - x_{v_{K+1}}(G^{(K+1)})| + |\bar{h}_{v_{K+1}}^{(K)}(G'^{(1)}) - x_{v_{K+1}}(G'^{(K+1)})|}{M} \\ &\geq \frac{1}{M} \\ &\geq \eta(mL + mK + K) + \epsilon \end{aligned}$$

1718 which violates that $|\mathcal{L}_{\text{reg}} - \eta(mL + mK + K)| < \epsilon$.

1719 Consider the subset $\mathcal{J}_{k,K}^0 \subset \mathcal{H}_{k,K}^0$ containing all graphs $G \in \mathcal{H}_{k,K}^0$ for which A_θ is not path derived
 1720 on G . By Lemma C.19, if

$$Y_{\text{pd}}^0 = \{\bar{h}_{v_{K+1}}^{(k)}(G) : G \in \mathcal{J}_{k,K}^0\}$$

1723 then $|Y_{\text{pd}}^0| \leq K$ and $|\mathcal{J}_{k,K}^0| \leq K$. Similarly, if $\mathcal{J}_{k,K}^1 \subset \mathcal{H}_{k,K}^1$ contains all graphs $G \in \mathcal{H}_{k,K}^1$ for
 1724 which A_θ is not path derived on G , and

$$Y_{\text{pd}}^1 = \{\bar{h}_{v_{K+1}}^{(k)}(G) : G \in \mathcal{J}_{k,K}^1\}$$

1725 then $|Y_{\text{pd}}^1| \leq K$ and $|\mathcal{J}_{k,K}^1| \leq K$.

1728 Using these facts, the pigeon hole principle gives that there must be two graphs $G_0^{(1)} \in \mathcal{H}_{k,K}^0 \setminus \mathcal{J}_{k,K}^0$
 1729 and $G_1^{(1)} \in \mathcal{H}_{k,K}^1 \setminus \mathcal{J}_{k,K}^1$ such that
 1730

$$1731 \quad 1732 \quad x_{(v_0, v_1)}(G_0^{(1)}) = x_{(v_0, v_1)}(G_1^{(1)}),$$

1733 i.e., $G_0^{(1)}$ and $G_1^{(1)}$ only differ in the weight of their $(k+1)$ th edge.
 1734 Since error less than ϵ is achieved on $\mathcal{G}_{\text{train}}$,
 1735

$$1736 \quad 1737 \quad |\bar{h}_{v_{K+1}}^{(K)}(G_0^{(1)}) - x_{v_{K+1}}(G_0^{(K+1)})| \leq M\epsilon$$

1738 and

$$1739 \quad 1740 \quad |\bar{h}_{v_{K+1}}^{(K)}(G_1^{(1)}) - x_{v_{K+1}}(G_1^{(K+1)})| \leq M\epsilon.$$

1741 The triangle inequality then gives
 1742

$$1743 \quad 1744 \quad |\bar{h}_{v_{K+1}}^{(K)}(G_0^{(1)}) - x_{v_{K+1}}(G_0^{(K+1)}) - \bar{h}_{v_{K+1}}^{(K)}(G_1^{(1)}) + x_{v_{K+1}}(G_1^{(K+1)})| \leq 2M\epsilon.$$

1745 Making the substitutions

$$1746 \quad \bar{h}_{v_{K+1}}^{(K)}(G_0^{(1)}) = \left(\prod_{K \geq i \geq 1} \mu^{(i)} \right) x_{(v_0, v_1)}(G_0^{(1)}) + \sum_{s=1}^K \nu^{(s)} \left(\prod_{K \geq i \geq s} \mu^{(i)} \right) x_{(v_s, v_{s+1})}(G_0^{(1)})$$

$$1747 \quad \bar{h}_{v_{K+1}}^{(K)}(G_1^{(1)}) = \left(\prod_{K \geq i \geq 1} \mu^{(i)} \right) x_{(v_0, v_1)}(G_1^{(1)}) + \sum_{s=1}^K \nu^{(s)} \left(\prod_{K \geq i \geq s} \mu^{(i)} \right) x_{(v_s, v_{s+1})}(G_1^{(1)})$$

$$1748 \quad x_{v_{K+1}}(G_0^{(K+1)}) = x_{(v_0, v_1)}(G_0^{(1)}) + x_{(v_k, v_{k+1})}(G_0^{(1)})$$

$$1749 \quad x_{v_{K+1}}(G_1^{(K+1)}) = x_{(v_0, v_1)}(G_1^{(1)}) + x_{(v_k, v_{k+1})}(G_1^{(1)})$$

1750 and canceling like terms yields
 1751

$$1752 \quad |\nu^{(k)} \left(\prod_{K \geq i \geq k} \mu^{(i)} \right) (x_{(v_k, v_{k+1})}(G_0^{(1)}) - x_{(v_k, v_{k+1})}(G_1^{(1)})) - (x_{(v_k, v_{k+1})}(G_0^{(1)}) - x_{(v_k, v_{k+1})}(G_1^{(1)}))| \leq 2M\epsilon.$$

1753 Since $|x_{(v_k, v_{k+1})}(G_0^{(1)}) - x_{(v_k, v_{k+1})}(G_1^{(1)})| = 2K + 1 \geq 1$, dividing by this factor gives
 1754

$$1755 \quad |\nu^{(k)} \left(\prod_{K \geq i \geq k} \mu^{(i)} \right) - 1| \leq 2M\epsilon.$$

1756 We can rewrite the inequality as
 1757

$$1758 \quad \frac{1}{\prod_{K \geq i \geq k+1} \mu^{(i)}} (1 - 2M\epsilon) \leq \nu^{(k)} \mu^{(k)} \leq \frac{1}{\prod_{K \geq i \geq k+1} \mu^{(i)}} (1 + 2M\epsilon). \quad (26)$$

1759 Next we bound the product $\prod_{K \geq i \geq 1} \mu^{(i)}$ by considering how the MinAgg GNN scales the edge
 1760 weight $x_{(v_0, v_1)}$. Consider two instances $J^{(1)}, J'^{(1)} \in \mathcal{H}_{k,K}^0 \setminus \mathcal{J}_{k,K}^0$, that is, instances for which A_θ
 1761 is path derived (which must exist since $|\mathcal{J}_{k,K}^0| \leq K$ and $|\mathcal{H}_{k,K}^0| = 2K + 1$). These instances only
 1762 differ in the weight of their first edge. As before,
 1763

$$1764 \quad |\bar{h}_{v_{K+1}}^{(K)}(J^{(1)}) - x_{v_{K+1}}(J^{(K+1)})| \leq M\epsilon$$

1765 and

$$1766 \quad |\bar{h}_{v_{K+1}}^{(K)}(J'^{(1)}) - x_{v_{K+1}}(J'^{(K+1)})| \leq M\epsilon.$$

1782 which combine to give
 1783

$$1784 |\bar{h}_{v_{K+1}}^{(K)}(J^{(1)}) - x_{v_{K+1}}(J^{(K+1)}) - \bar{h}_{v_{K+1}}^{(K)}(J'^{(1)}) + x_{v_{K+1}}(J'^{(K+1)})| \leq 2M\epsilon.$$

1785 Substituting in for these four terms and canceling yields
 1786

$$1787 \left| \left(\prod_{K \geq i \geq 1} \mu^{(i)} \right) (x_{(v_0, v_1)}(J^{(1)}) - x_{(v_0, v_1)}(J'^{(1)})) - (x_{(v_0, v_1)}(J^{(1)}) - x_{(v_0, v_1)}(J'^{(1)})) \right| \leq 2M\epsilon.$$

1790 Since $|x_{(v_0, v_1)}(J^{(1)}) - x_{(v_0, v_1)}(J'^{(1)})| \geq 1$ we can rearrange this inequality as
 1791

$$1792 \left| \left(\prod_{K \geq i \geq 1} \mu^{(i)} \right) - 1 \right| \leq 2M\epsilon.$$

1793 and
 1794

$$1795 (1 - 2M\epsilon) \leq \left(\prod_{K \geq i \geq 1} \mu^{(i)} \right) \leq (1 + 2M\epsilon). \quad (27)$$

1802 **Bounding error on arbitrary graphs.** Consider an arbitrary graph $G \in \mathcal{G}$. We aim to show that the
 1803 MinAgg GNN outputs on this graph $h_v^{(L)} = \bar{h}_v^{(K)}$ approximate $x_v(\Gamma^K(G))$. Let $r_v^{(0)} = x_v(G)$ and
 1804 define

$$1805 r_v^{(k)} = \min \{r_u^{(k-1)} + x_{(u, v)} \mid u \in \mathcal{N}(v)\}.$$

1806 meaning $r_v^{(k)}$ are the results of applying k steps of the BF algorithm. In particular, $r_v^{(K)}(G) =$
 1807 $x_v(\Gamma^K(G))$

1808 We now show that

$$1809 \bar{h}_v^{(k)} \leq \frac{1 + 2M\epsilon}{\prod_{K \geq i \geq k+1} \mu^{(i)}} r_v^{(k)}$$

1810 by induction. The base case
 1811

$$1812 \bar{h}_v^{(0)} = r_v^{(0)} \leq \frac{1 + 2M\epsilon}{\prod_{K \geq i \geq 1} \mu^{(i)}} r_v^{(0)}$$

1813 follows from Eq. 27. Now suppose
 1814

$$1815 \bar{h}_v^{(k-1)} \leq \frac{1 + 2M\epsilon}{\prod_{K \geq i \geq k} \mu^{(i)}} r_v^{(k-1)}.$$

1816 Then, using Eq. 26,
 1817

$$1818 \begin{aligned} \bar{h}_v^{(k)} &= \mu^{(k)} \min \left\{ \bar{h}_v^{(k-1)} + \nu^{(k)} x_{(u, v)} : u \in \mathcal{N}(v) \right\} \\ 1819 &\leq \mu^{(k)} \min \left\{ (1 + 2M\epsilon) r_v^{(k-1)} \frac{1}{\prod_{K \geq i \geq k} \mu^{(i)}} + \nu^{(k)} x_{(u, v)} : u \in \mathcal{N}(v) \right\} \\ 1820 &\leq \min \left\{ (1 + 2M\epsilon) r_v^{(k-1)} \frac{1}{\prod_{K \geq i \geq k+1} \mu^{(i)}} + \frac{1}{\prod_{K \geq i \geq k+1} \mu^{(i)}} (1 + 2M\epsilon) x_{(u, v)} : u \in \mathcal{N}(v) \right\} \\ 1821 &= \frac{1 + 2M\epsilon}{\prod_{K \geq i \geq k+1} \mu^{(i)}} \min \left\{ r_v^{(k-1)} + x_{(u, v)} : u \in \mathcal{N}(v) \right\} \\ 1822 &= \frac{1 + 2M\epsilon}{\prod_{K \geq i \geq k+1} \mu^{(i)}} r_v^{(k)}. \end{aligned}$$

1823 On the other hand, we next show
 1824

$$1825 \bar{h}_v^{(k)} \geq \frac{1 - 2M\epsilon}{\prod_{K \geq i \geq k+1} \mu^{(i)}} r_v^{(k)}$$

1836 by induction. The base case
 1837

$$\bar{h}_v^{(0)} = r_v^{(0)} \geq \frac{1 - 2M\epsilon}{\prod_{K \geq i \geq 1} \mu^{(i)}} r_v^{(0)}$$

1840 again follows from Eq. 27. Now suppose
 1841

$$\bar{h}_v^{(k-1)} \geq \frac{1 - 2M\epsilon}{\prod_{K \geq i \geq k} \mu^{(i)}} r_v^{(k-1)}.$$

1844 Then, using Eq. 26,
 1845

$$\begin{aligned} \bar{h}_v^{(k)} &= \mu^{(k)} \min \left\{ \bar{h}_v^{(k-1)} + \nu^{(k)} x_{(u,v)} : u \in \mathcal{N}(v) \right\} \\ &\geq \mu^{(k)} \min \left\{ (1 - 2M\epsilon) r_v^{(k-1)} \frac{1}{\prod_{K \geq i \geq k} \mu^{(i)}} + \nu^{(k)} x_{(u,v)} : u \in \mathcal{N}(v) \right\} \\ &\geq \min \left\{ (1 - 2M\epsilon) r_v^{(k-1)} \frac{1}{\prod_{K \geq i \geq k+1} \mu^{(i)}} + \frac{1}{\prod_{K \geq i \geq k+1} \mu^{(i)}} (1 - 2M\epsilon) x_{(u,v)} : u \in \mathcal{N}(v) \right\} \\ &= \frac{1 - 2M\epsilon}{\prod_{K \geq i \geq k+1} \mu^{(i)}} \min \left\{ r_v^{(k-1)} + x_{(u,v)} : u \in \mathcal{N}(v) \right\} \\ &= \frac{1 - 2M\epsilon}{\prod_{K \geq i \geq k+1} \mu^{(i)}} r_v^{(k)}. \end{aligned}$$

1859 Putting the upper bound and lower bound together, taking $k = K$, and using $x_v(\Gamma^K(G)) = r_v^{(K)}$
 1860 yields
 1861

$$(1 - 2M\epsilon) x_v(\Gamma^K(G)) \leq \bar{h}_v^{(K)} \leq (1 + 2M\epsilon) x_v(\Gamma^K(G))$$

1865 \square
 1866
 1867
 1868

1869 D ADDITIONAL EXPERIMENTS

1870
 1871 We include additional experiments verifying our theoretical claims with different configurations
 1872 of the MinAgg GNN including the simple BF-GNN described in Theorem 2.2 as well as several
 1873 configurations of the complex BF-GNN utilized in Theorem 2.3. All models are trained on 8 NVidia
 1874 A100 GPUs using the AdamW optimizer with a learning rate of 0.001. We evaluate each model using
 1875 the metrics described in Section 3.

1876 D.1 SIMPLE MINAGG GNN
 1877

1878 We show in Fig. 7 that, with gradient descent, a simple MinAgg GNN will converge to the parameter
 1879 configuration described in Theorem 2.2. The simple MinAgg GNN is trained with the specified
 1880 train set in Theorem 2.2: four single-edge graphs initialized at step 0 and two double-edge graphs
 1881 initialized at step 1. Recall that an update for the simple MinAgg GNN is defined as
 1882

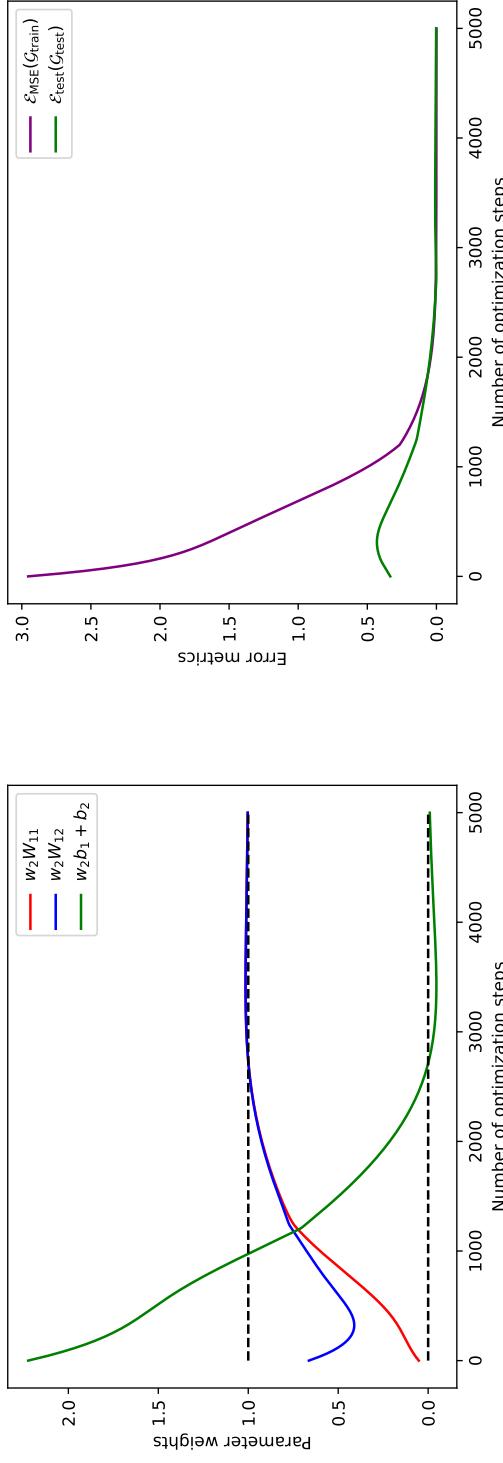
$$h_v^{(1)} = \sigma(w_2 \min_{u \in \mathcal{N}(v)} \{\sigma(W_1(x_u \oplus x_{(v,u)} + b_1))\} + b_2)$$

1883 where $w_2, b_1, b_2 \in \mathbb{R}$ and $W_1 \in \mathbb{R}^{1 \times 2}$. From Theorem 2.2, we know that the simple BF-GNN will
 1884 implement a single step of Bellman-Ford if $w_2 W_{11} = w_2 w_{12} = 1$ and $w_2 b_1 + b_2 = 0$. Therefore, in
 1885 Fig. 7 (a), we see that, via gradient descent, the parameter configurations converge to the expected
 1886 values (indicated by the black dotted lines). We further empirically verify the results in Theorem 2.2
 1887 in Fig. 7(b) by showing that the as the parameter configurations converge to the expected values, the
 1888 test error also converges to zero.
 1889

```

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

```



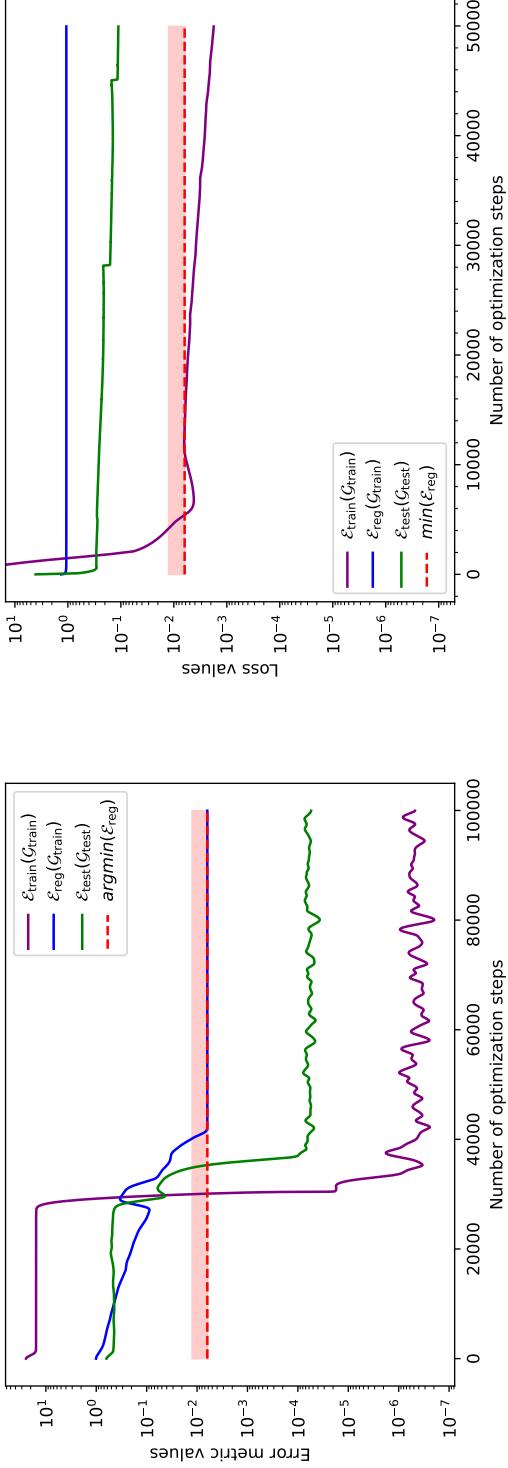
(a) Model weights for small BF-GNN.
(b) Error metrics for small BF-GNN.

Figure 7: Performance and parameter weights for the small BF-GNN instance (trained with MSE). Recall from to Theorem 2.2, we expect that $w_2 b_1 + b_2 = 0$ and $w_2 W_{11} = w_2 W_{12} = 1.0$. We indicate these values by the black dotted lines in (a) and show that the parameters of our small BF-GNN converge to the expected parameter values from Theorem 2.2. Additionally, we verify that convergence to this parameter configuration corresponds to low test error in (b) as we have that $\mathcal{E}_{\text{test}}$ converges to 0.0018.

```

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

```



(a) Error metrics for models trained with $\mathcal{L}_{\text{MSE}, L_1}$.
(b) Error metrics for models trained with \mathcal{L}_{MSE} .

(c) Model parameters for models trained with $\mathcal{L}_{\text{MSE}, L_1}$.

(d) Model parameters for models trained with \mathcal{L}_{MSE} .

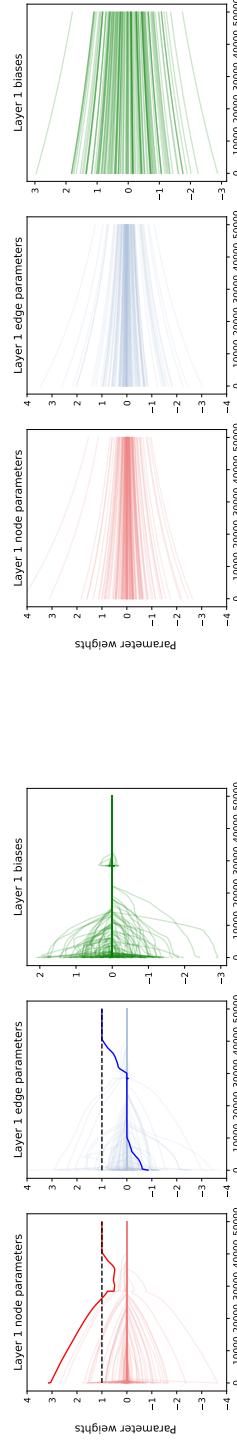


Figure 8: Error metrics and parameter updates for a one-layer MinAvg GNN trained on a single step of the Bellman-Ford algorithm. Note that the dotted line in (a) and (b) is the global minimum of \mathcal{E}_{reg} , and the red highlighted region indicates the error bound described in Theorem 2.3. (a) and (b) show how each error metric changes over each training epoch for the models trained with $\mathcal{E}_{\text{MSE}, L_1}$ and \mathcal{E}_{MSE} . Note that $\mathcal{E}_{\text{test}}$ is 0.00008 for the L_1 regularized model and $\mathcal{E}_{\text{test}}$ is 0.212 for the un-regularized model. Additionally, (b) and (c) show how the model parameters update from epoch for models trained with $\mathcal{L}_{\text{MSE}, L_1}$ and \mathcal{L}_{MSE} , respectively.

1998
1999
2000

2050
2051

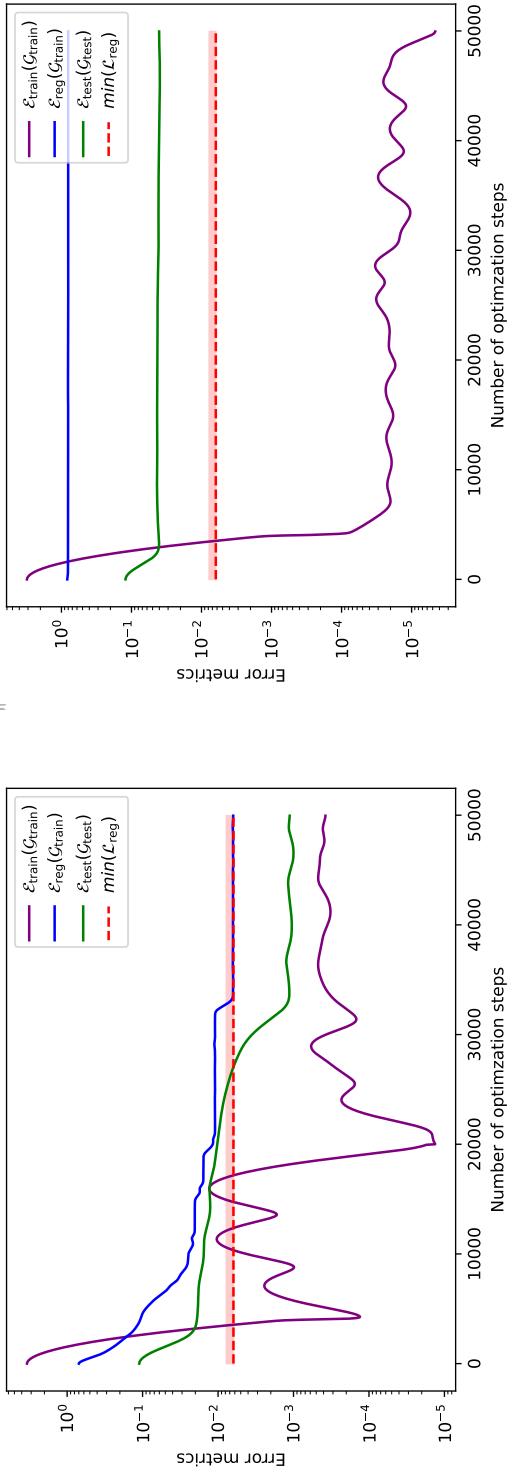
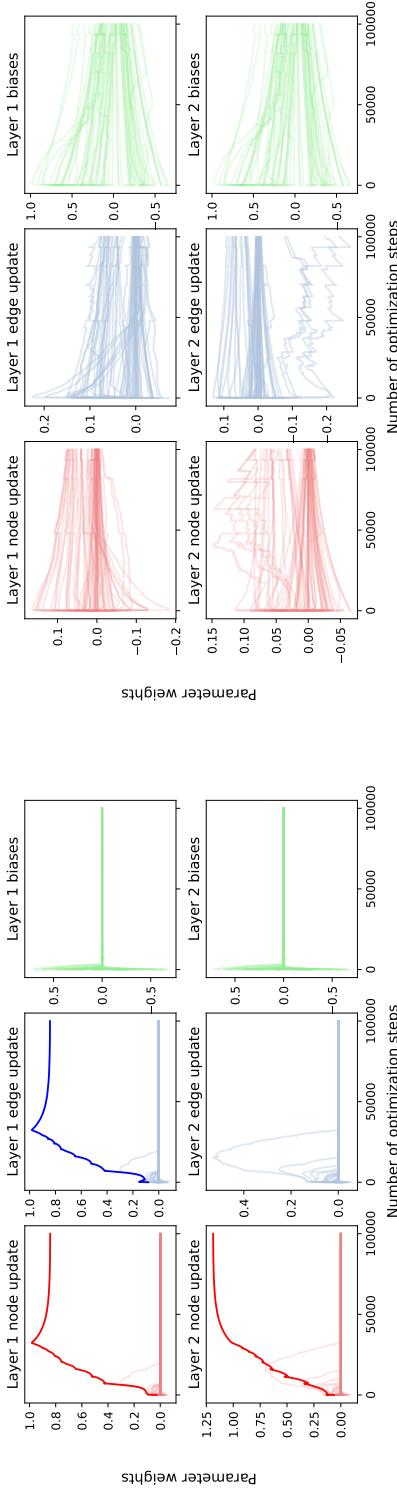
(b) Error metrics for models trained with \mathcal{L}_{MSE} .(a) Error metrics for models trained with $\mathcal{L}_{\text{MSE}, L_1}$.(c) Model parameters for models trained with $\mathcal{L}_{\text{MSE}, L_1}$ (d) Model parameters for models trained with \mathcal{L}_{MSE}

Figure 9: Error metrics and parameter updates for a two-layer MinAgg GNN trained on a single step of the Bellman-Ford algorithm. Note that the dotted line in (a) and (b) is the global minimum of Eq. (8). (a) and (b) show how the train loss and test loss change over each training epoch for the models trained with $\mathcal{L}_{\text{MSE}, L_1}$ and \mathcal{L}_{MSE} as well as the theoretical loss term \mathcal{L}_{reg} over time. $\mathcal{E}_{\text{test}}$ converges to 0.001 for the L_1 regularized model and 0.0312 for the un-regularized model. (b) and (c) show how the model parameters update from epoch for models trained with $\mathcal{L}_{\text{MSE}, L_1}$ and \mathcal{L}_{MSE} , respectively. Each curve has been smoothed with a truncated Gaussian filter with $\sigma = 20$.

2052 D.2 DEEP MINAGG GNNs
2053

2054 We examine a variety of MinAgg GNN configurations to empirically verify Theorem 2.3. As in
2055 Section 3, we compare models trained with L_1 regularization against models trained using just \mathcal{L}_{MSE} .
2056 Similar to Section 3, for each model, we track $\mathcal{E}_{\text{test}}$, $\mathcal{E}_{\text{train}}$, and \mathcal{E}_{reg} throughout optimization. Note
2057 that $\mathcal{E}_{\text{test}}$ is evaluated on the same set of test graphs described in Section 3 i.e. $\mathcal{G}_{\text{test}}$ is a set of 200
2058 graphs which are a mix of cycles, complete graphs, and Erdős-Renyi graphs with $p = 0.5$. Note
2059 that Theorem 2.3 requires \mathcal{E}_{reg} to fall below a certain ϵ threshold (indicated by the red region). For
2060 each of the complex GNN configurations we analyze below, we observe that models trained with L_1
2061 regularization satisfy this bound, aligning with Theorem 2.3. Furthermore, to verify that the model
2062 learns the correct parameters which implement Bellman-Ford, we also track a summary of the model
2063 parameters per epoch, defined as follows. This is the same as the model parameters from Section 3 in
2064 the main text, but here we provide more detail. Recall the definition of MinAgg GNNs in Def. 2.1.
2065 Each layer can be precisely expressed as follows:

$$2066 \sigma\left(W^{\text{up},(\ell)}\left(\min\{\sigma(W^{\text{agg},(\ell)}(h_u^{(\ell-1)} \oplus x_{(u,v)})) + b^{\text{agg},(\ell)}\} \oplus h_v^{(\ell-1)}\right)\right) + b^{\text{up},(\ell)}$$

2067 To analyze parameter dynamics, we visualize the following for each optimization step and each layer:
2068

- 2069 • Layer ℓ node parameters: Given a node feature in \mathbb{R}^d , the first d columns of $W^{\text{agg},(\ell)}$,
2070 $W^{\text{agg},(\ell)}[:, :d]$ scale the incoming neighboring node features. The contribution of incoming
2071 neighboring node features to the layer-wise output node feature for v can be summarized as
2072 follows:

$$2074 \bigoplus_{j=1}^d \left(\bigoplus_{i=1}^{d_{\text{up}}} W^{\text{up},(\ell)}[i, :d_{\text{agg}}] \odot W^{\text{agg},(\ell)}[:, j] \right) \oplus \left(\bigoplus_{i=d_{\text{up}}}^{d_{\text{agg}}+d_{\text{up}}} W^{\text{up},(\ell)}[i, d_{\text{agg}} : d_{\text{agg}} + d_{\text{up}}] \right)$$

2078 where \odot is the element-wise product and \oplus denotes concatenation.

- 2079 • Layer ℓ edge parameters: Similar to above, we know that the last column, $d+1$, of $W^{\text{agg},(\ell)}$
2080 scales the incoming edge features. Therefore, the contribution of neighboring edges to the
2081 layer-wise output node feature can be summarized as

$$2082 \bigoplus_{i=1}^{d_{\text{up}}} W^{\text{up},(\ell)}[i : d_{\text{agg}}] \odot W^{\text{agg},(\ell)}[:, d+1].$$

- 2086 • Layer ℓ biases: We track the bias terms for each layer as $b^{\text{agg},(\ell)} \oplus b^{\text{up}}$. Note that for the
2087 sparse implementation of Bellman-Ford that we describe previously, we require that the bias
2088 terms all converge to zero.

2089 Finally, note that we summarize each model’s size generalization ability in Table 2 (analogous to
2090 Table 1 in the main text) in both the setting where we make a single forward pass through the model
2091 and when we use the model as a module and make repeated forward passes through the model. In
2092 Table 1, we see that each of the models trained with L_1 regularization achieve significantly lower test
2093 error than those trained without L_1 regularization.

2094 D.2.1 ONE LAYER
2095

2096 We configure the single layer GNN with BF-GNN with $d_{\text{agg}} = 64$ and $d_{\text{up}} = 1$. We evaluate
2097 \mathcal{L}_{MSE} on $\mathcal{G}_{\text{train}}$ which is the same as for the simple BF-GNN (four two-node path graphs and four
2098 three-node path graphs starting from step one of Bellman-Ford). Intuitively, the two-node path graphs
2099 provide a signal which controls the edge update feature while the three-node path controls the node
2100 update feature of Bellman-Ford. The results for a single layer BF-GNN are summarized in Fig. 8.

2101 First, as illustrated in Fig. 8 (a) and (b), the train error \mathcal{L}_{MSE} alone does not capture the model’s
2102 generalization ability. Both the L_1 -regularized and non-regularized models achieve low \mathcal{L}_{MSE}
2103 (0.002 for both the L_1 regularized model and the un-regularized model), yet only the regularized
2104 model—where \mathcal{L}_{reg} converges to its minimum value—exhibits low test error.

2105 Furthermore, we verify in Fig. 8 (b) and (c) that the parameters for the single layer MinAgg GNN
converge to a configuration which *approximately implements* a single step of Bellman-Ford. Since we

Table 2: Error ($\mathcal{E}_{\text{test}}$) versus size for all model configurations. The first row of the table contains the test error for both the single (indicated by 1L) and two-layer (indicated by 2L) model configurations trained on a single step of Bellman-Ford and the second row contains the test error for all model configurations trained on two steps of Bellman-Ford. We use ‘reg’ to indicate that the model is trained with L_1 regularization and ‘un-reg’ to indicate a model trained without L_1 regularization. Similar to Table 1, we examine the error for a single pass of each model (one step of BF for the first row and two steps of BF for the second row) and for three forward passes of each model (three steps of BF for the first row and six steps of BF for the second row). Each test set consists of Erdős–Rényi graphs generated with the corresponding sizes listed with p such that the expected degree $np = 5$. For both models trained with L_1 regularization and without, the error does not change much as the number of nodes in the test graphs increase. However, when each model is used as a module and iterated, we see that the L_1 regularized model remains accurate while the error for the un-regularized model increases significantly.

Single					
# of nodes	1L, un-reg.	1L, reg.	2L, un-reg.	2L, reg.	
One step	100	0.0079 \pm 0.0027	0.00006 \pm 0.00003	0.0569 \pm 0.0064	0.0022 \pm 0.0002
	500	0.0070 \pm 0.0025	0.00006 \pm 0.00004	0.0560 \pm 0.0072	0.0022 \pm 0.0003
	1K	0.0071 \pm 0.0026	0.00006 \pm 0.00004	0.0558 \pm 0.0073	0.0021 \pm 0.0003
Two steps	100	–	–	0.0296 \pm 0.002	0.0173 \pm 0.001
	500	–	–	0.0297 \pm 0.002	0.0174 \pm 0.001
	1K	–	–	0.0308 \pm 0.002	0.0180 \pm 0.001
Iterated					
# of nodes	1L, un-reg.	1L, reg.	2L, un-reg.	2L, reg.	
One step	100	0.0320 \pm 0.0028	0.00012 \pm 0.00004	0.0097 \pm 0.0017	0.00133 \pm 0.0001
	500	0.0289 \pm 0.0025	0.00012 \pm 0.00006	0.0074 \pm 0.0010	0.00147 \pm 0.0001
	1K	0.0290 \pm 0.0025	0.00011 \pm 0.00001	0.0072 \pm 0.0013	0.00151 \pm 0.0001
Two steps	100	–	–	0.0596 \pm 0.0131	0.0182 \pm 0.0009
	500	–	–	0.0391 \pm 0.0040	0.0197 \pm 0.0006
	1K	–	–	0.0367 \pm 0.0025	0.0199 \pm 0.0007

are only considering a single layer MinAgg GNN and the input node feature are the initial distances to source ($d = 1$), the node parameter summary that we consider is

$$W^{\text{up},(1)}[:, d_{\text{agg}}] \odot W^{\text{agg},(1)}[:, 1] \oplus W^{\text{up},(1)}[d_{\text{agg}} + d]$$

where $W^{\text{agg},(1)} \in \mathbb{R}^{d_{\text{agg}} \times 2}$ and $W^{\text{up},(1)} \in \mathbb{R}^{d_{\text{agg}}+d}$. Additionally, the edge parameter summary we consider is

$$W^{\text{up},(1)}[:, d_{\text{agg}}] \odot W^{\text{agg},(1)}[:, 2].$$

Therefore, for a single layer MinAgg GNN, the model parameters which exactly implement Bellman-Ford has a single $k \in [64]$ such that

$$W^{\text{up},(1)}[k] \cdot W^{\text{agg},(1)}[k, 1] = W^{\text{up},(1)}[k] \cdot W^{\text{agg},(1)}[k, 2] = 1.0.$$

This means there is a single identical positive non-zero value for both the node and edge parameters. Additionally, all biases are zero. In Fig. 8 (c), we see that the trained MinAgg GNN using L_1 regularization approximately converges to this configuration of parameters. However, the MinAgg GNN trained without regularization does not achieve this parameter configuration, explaining the higher test error $\mathcal{E}_{\text{test}}$.

D.2.2 TWO LAYER, SINGLE STEP

We configure a two layer GNN with $d_{\text{agg}} = 64$ and $d_{\text{up}} = 1$ for all layers and train it on a single step of Bellman-Ford. Note that this setup is overparameterized for modeling a single step of Bellman-Ford. The results of training on a single step of Bellman-Ford are summarized in Fig. 9. As with the single layer MinAggGNN configuration, the train set again consists of four two-node path graphs and four three-node path graphs with varying edge weights.

First, while \mathcal{L}_{MSE} converged to a low error for both models, only the model trained with $\mathcal{L}_{\text{MSE},L_1}$ has \mathcal{L}_{reg} converging to a low value. This also corresponds to a significantly lower $\mathcal{E}_{\text{test}}$, again

2160
2161
2162

3407

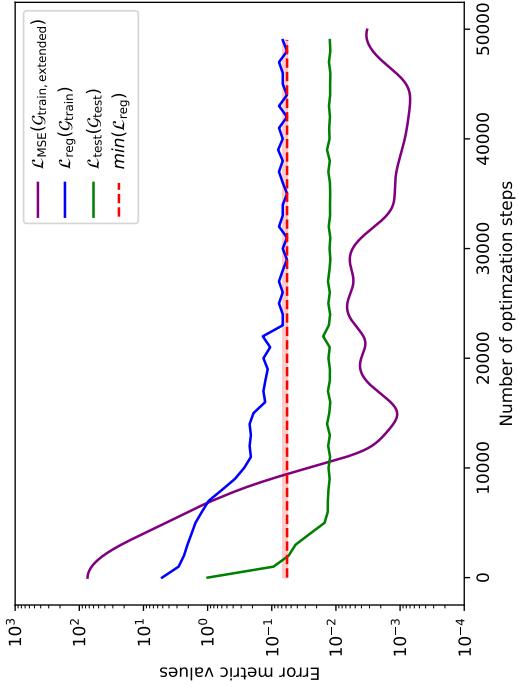
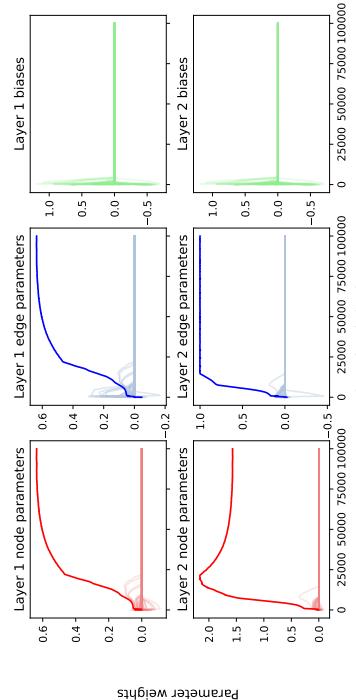
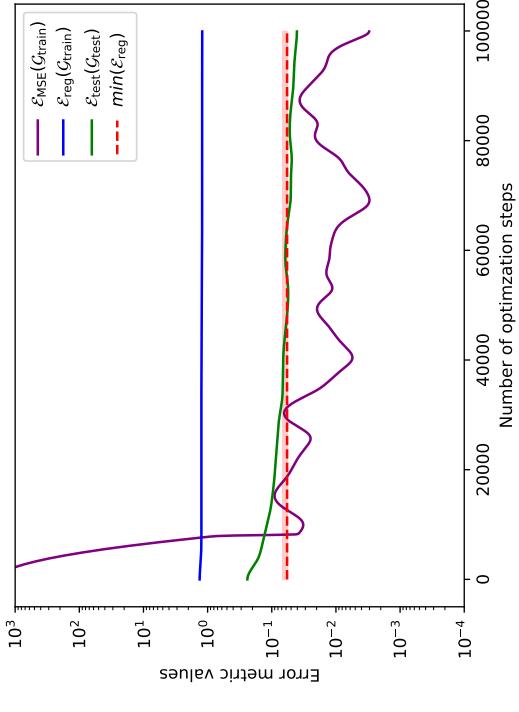
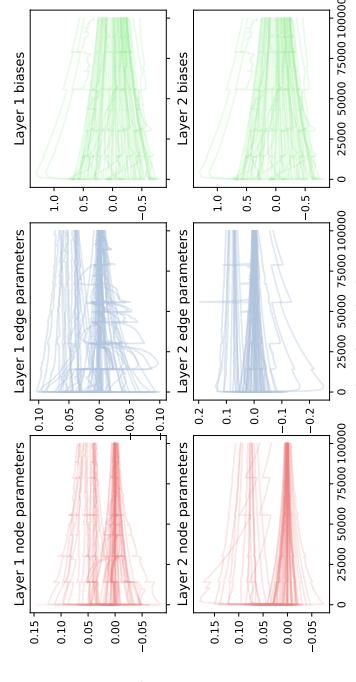
(a) Error metrics for model trained with $\mathcal{L}_{\text{MSE},L_1}$.(c) Model parameters summaries for model trained with $\mathcal{L}_{\text{MSE},L_1}$.(b) Error metrics for models trained with \mathcal{L}_{MSE} .(d) Model parameters summaries for model trained with \mathcal{L}_{MSE} .

Figure 10: Performance metrics and parameter updates for a two-layer MinAg GNN trained on two steps of the Bellman-Ford algorithm. The dotted line in (a) and (b) is the global minimum of Eq. (8) and the red region represents the ϵ bounds in Theorem 2.3. In (a) and (b), we track the change in the train loss, test loss, and \mathcal{L}_{reg} over each optimization step for the models trained with $\mathcal{L}_{\text{MSE},L_1}$ and \mathcal{L}_{MSE} . Note that the final test loss for the model trained with $\mathcal{L}_{\text{MSE},L_1}$ is 0.006 while the final test loss for the model trained with \mathcal{L}_{MSE} is 0.288. (b) and (c) show how the model parameters change over each optimization step models trained with $\mathcal{L}_{\text{MSE},L_1}$ and \mathcal{L}_{MSE} , respectively. Each curve has been smoothed with a truncated Gaussian filter with $\sigma = 20$.

2212
2213

2214 demonstrating an overparameterized model’s ability to learn Bellman-Ford under an L_1 -regularized
 2215 training error and generalize to larger graph sizes with lower test error. These results align with our
 2216 theoretical results, where the convergence of \mathcal{L}_{reg} to its minimum value provides a certificate for size
 2217 generalization.

2218 In Fig. 9 (b) and (c), we again further verify the size generalization ability of our models and
 2219 emphasize the importance of sparsity regularization for size generalization by showing that the model
 2220 parameter summaries for the model trained with $\mathcal{L}_{\text{MSE}, L_1}$ converge to an implementation of a single
 2221 step of Bellman-Ford. Since $d_{\text{up}, (\ell)} = 1$ for both layers, the node parameter summary that we analyze
 2222 is again

$$W^{\text{up}, (\ell)}[:, d_{\text{agg}}] \odot W^{\text{agg}, (\ell)}[:, 1] \oplus W^{\text{up}, (\ell)}[d_{\text{agg}} + 1]$$

2224 and the edge parameter summary is

$$W^{\text{up}, (\ell)}[:, d_{\text{agg}}] \odot W^{\text{agg}, (\ell)}[:, 2].$$

2225 for both layers. Similar to the single layer and single edge case, for the first layer, we expect that in the
 2226 sparse implementation of a single step of Bellman, there will only a unique identical and positive non-
 2227 zero value for both the node and edge parameter summaries. Therefore, for this sparse implementation,
 2228 for any node v in a given input graph, the node feature for v at the first layer is $a(x_{u'} + x_{(u', v)})$ where
 2229 $a > 0$ and $u' = \text{argmin}_{u \in \mathcal{N}(v)} \{x_u + x_{(u, v)}\}$. In the second layer, $W^{\text{up}, (2)}[65] = 1/a$ is the only
 2230 positive non-zero parameter. Therefore, the final output for v will be $\min_{u \in \mathcal{N}(v)} \{x_u + x_{(u, v)}\}$. In
 2231 Fig. 9 (b) and (c), we see again that the model trained with L_1 regularization (i.e. $\mathcal{L}_{\text{MSE}, L_1}$) has its
 2232 parameters approximately converge to this sparse implementation of Bellman-Ford. In contrast, the
 2233 model trained without L_1 regularization (i.e. only \mathcal{L}_{MSE}) does not appear to converge such a sparse
 2234 implementation of Bellman-Ford, which accounts for the higher test error of the model.

2235 D.2.3 TWO LAYER, TWO STEPS

2236 In the main text, we evaluate the ability of a two layer MinAgg GNN to learn two steps of Bellman-
 2237 Ford. Here, we show the ability of the MinAgg GNN to learn two steps of Bellman-Ford in a
 2238 somewhat under-parameterized setting as we let $d_{\text{agg}} = 64$ and $d_{\text{up}} = 1$. The results are summarized
 2239 in Fig. 10. Similar to the other model configurations evaluated (both in the supplement and the
 2240 main text), we see that in Fig. 10 (a) and (b) that the L_1 regularized model achieves much lower
 2241 \mathcal{E}_{reg} and correspondingly, much lower $\mathcal{E}_{\text{test}}$. The parameter configurations visualized in Fig. 10 (c)
 2242 and (d) show that the L_1 regularized model with low \mathcal{E}_{reg} converges to the sparse implementation
 2243 of two-steps Bellman-Ford, as we have shown theoretically in Theorem 2.3. Additionally, note in
 2244 Table 2, the gap between the error for the unregularized model and the error for the regularized model
 2245 is much lower than that of Table 1 in the main text.

2246 D.3 ADDITIONAL SYNTHETIC AND REAL DATASETS

2247 To provide further evidence of our claims, we provide a comparison of both the unregularized and
 2248 L_1 -regularized BF GNN error on several synthetic and real datasets. For the synthetic datasets we
 2249 use:

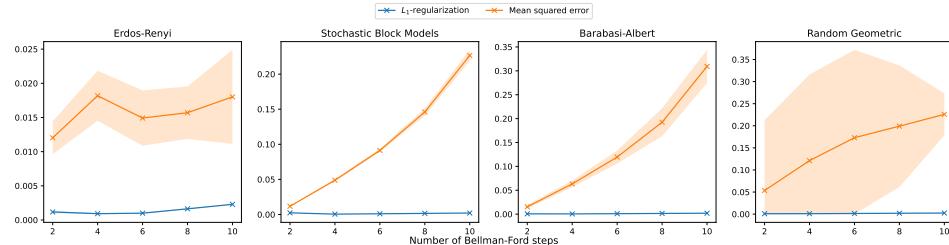
- 2250 • Stochastic block models (SBM): these graphs are generated using 3-7 partitions of 35
 2251 vertices each and a randomly generated probability matrix.
- 2252 • Barabasi-Albert models (BA): these graphs are generated according to the Barabasi-Albert
 2253 model with preferential attachment parameter $m \in [3, 65]$.
- 2254 • Random geometric graphs: we randomly position 5-65 nodes in $[0, 1]^2$. Two nodes are
 2255 joined by an edge if the distance between them is less than 0.1.

2256 For the real datasets, we use a terrain triangulation of patch of land in Norway with 40,000 vertices.
 2257 Edge weights are determined by the Euclidean distance between points on the terrain. Additionally,
 2258 we use Airports USA (USAir97) (25; 24), where nodes represent airports and edges represent the
 2259 existence of commercial flights between them. All edge weights for this graph are randomly generated.
 2260 In Table 3, we evaluate the performance of the two-step BF GNN model. For the sake of comparison,
 2261 we also include a comparison to the GAT (both trained with mean squared error and also trained with
 2262 L_1 regularization).

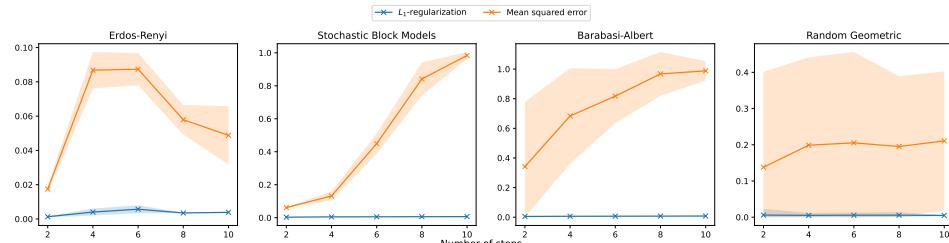
2263 Additionally, we further evaluate our model as an iterative module for solving more than k steps
 2264 of Bellman–Ford on several synthetic test graphs. We show this for both learning a single step

	Synthetic				
	SBM	BA	Geometric	Norway	Airports-USA
MSE	0.053 ± 0.006	0.441 ± 0.431	0.226 ± 0.334	0.0141 ± 0.0652	0.1119 ± 0.0924
L_1 -reg	0.003 ± 0.0005	0.005 ± 0.0011	0.003 ± 0.0022	0.0003 ± 0.0008	0.0081 ± 0.0299
GAT (MSE)	0.977 ± 0.015	0.838 ± 0.157	0.971 ± 0.047	1.611 ± 3.027	5.426 ± 7.044
GAT (L_1)	0.722 ± 0.121	1.237 ± 0.2137	0.616 ± 0.297	0.9178 ± 0.1416	0.998 ± 0.0081

Table 3: Comparison of test error across all synthetic and real datasets.



(a) Iterating one step of Bellman-Ford



(b) Iterating two steps of Bellman-Ford.

Figure 11: Extended results for iterative modules.

of Bellman–Ford and learning two steps of Bellman–Ford; see Fig. 11. Across iterations, the L_1 -regularized models exhibit substantially slower error accumulation (flatter curves) than the unregularized \mathcal{L}_{MSE} models.

D.4 HIDDEN EDGE WEIGHTS

We next evaluate a setting where the algorithmic skeleton (shortest paths via Bellman–Ford) is appropriate, but a component of the computation is unknown and must be learned. Concretely, edges expose an observed attribute x_e . The effective distance used by the shortest-path objective is an unknown, nonnegative transformation $g(x_e)$. The model must both learn g and learn to execute BF, the latter of which is aided by algorithmic alignment. As a simple instantiation, we set $g(x) = (x-2)^2$ and supervise on shortest-path labels computed with these transformed edge costs (see Table 4).

This scenario mirrors real applications—for example, routing to minimize fuel or energy consumption where per-road cost is a nonlinear function of observable features (e.g., grade, speed limit, and congestion) rather than raw length alone. In this regime, the L_1 -regularized, BF-aligned MinAgg GNN reliably learns a sparse approximation to g and extrapolates to larger and structurally different graphs, substantially outperforming the unregularized \mathcal{L}_{MSE} model. This provides a concrete example of how algorithmic alignment remains effective when we have only a prior over the desired computation (e.g., shortest-path computation) and must infer the remaining components from data.

D.5 INFERENCE TIME

We benchmarked the inference time of a trained 2-step Bellman-Ford neural network model against NetworkX’s optimized Bellman-Ford implementation on Erdos-Renyi random graphs with edge probability $p = 0.5$. The experiment compared NetworkX’s

	ER	SBM	BA	Geometric
MSE	0.383 ± 0.055	0.541 ± 0.093	0.276 ± 0.129	0.517 ± 0.732
L_1 -reg	0.0054 ± 0.0006	0.0055 ± 0.0006	0.0057 ± 0.0013	0.0291 ± 0.0334

Table 4: Hidden edge function $f(x) = (x - 2)^2$

single_source_bellman_ford_path_length function (CPU) against our trained SingleSkipBFModel running on both CPU and GPU (NVIDIA RTX A6000). We tested 100 graphs each for $n \in \{100, 500, 1000\}$ nodes, with all graphs verified to have diameter ≤ 2 to ensure that 2 steps of Bellman-Ford compute full shortest paths. Results (Table 5) show that the CPU model is fastest for small graphs ($n = 100$, 1.16ms vs 2.56ms for NetworkX), while the GPU model achieves significant speedups for larger graphs ($n = 1000$, 5.73ms vs 350.78ms for NetworkX, a $61\times$ speedup). The improvements in our model over NetworkX are due to PyTorch’s optimized operations and GPU acceleration.

n	NetworkX (CPU)	Model (CPU)	Model (GPU)
100	2.56 ± 0.39	1.16 ± 0.45	2.13 ± 14.75
500	66.26 ± 4.14	26.41 ± 8.89	2.18 ± 0.51
1000	350.78 ± 530.20	239.74 ± 3.73	5.73 ± 0.24

Table 5: Mean inference time (ms) with standard deviation for Bellman-Ford computation on Erdos-Renyi graphs.

E LIMITATIONS

We now discuss limitations to our current study. First, we do not provide experiments for graph neural networks (GNNs) with many layers, and thus our experimental findings may not generalize to deeper architectures. Second, our approach requires training sets to be explicitly constructed rather than sampled from a distribution, which may limit the applicability of our results to more general or practical scenarios. Finally, we focus exclusively on the properties of the global minimum of the loss and do not discuss optimization dynamics or the process of reaching this minimum, which are important considerations in real-world training.

F TABLE OF NOTATION

Symbol	Definition
General Notations	
$[n]$	The set $\{1, 2, \dots, n\}$.
$x \oplus y$	Concatenation of vectors x and y .
x_i or $[x]_i$	i -th component of vector x .
β	A large constant representing the unreachable node feature value.
Graphs and Attributed Graphs	
$G = (V, E, X_v, X_e)$	Attributed graph with vertices V , edges E , edge weights X_e , and node attributes X_v .
X_e, X_v	Edge weights $\{x_e : e \in E\}$ and node attributes $\{x_v : v \in V\}$.
$d^{(t)}(s, v)$	Length of the t -step shortest path from node s to v ; β if no such path exists.
$G^{(t)}$	t -step Bellman-Ford (BF) instance with node features $\{x_v = d^{(t)}(s, v) : v \in V\}$.
Γ	Operator implementing a single step of the BF algorithm.
\mathcal{G}	Set of all edge-weight-bounded attributed graphs.
$P_k^{(\ell)}(a_1, \dots, a_k)$	k -edge path graph at step ℓ with edge weights a_1, \dots, a_k .
$\mathcal{N}(v)$	Neighborhood of node v in the graph.
$V^*(G)$	Set of reachable nodes in graph G , i.e., nodes with $x_v \neq \beta$.
Graph Neural Networks (GNNs)	
\mathcal{A}_θ	L -layer Bellman-Ford Graph Neural Network (MinAgg GNN) parameterized by θ .
$h_v^{(\ell)}$	Hidden feature of node v at layer ℓ in the MinAgg GNN.
$\mathcal{A}_\theta(G)$	Output graph of MinAgg GNN \mathcal{A}_θ after L layers, with updated node features.
d_ℓ	Dimensionality of hidden features at layer ℓ .
$f^{\text{agg}}, f^{\text{up}}$	MLPs used for aggregation and update operations in MinAgg GNN layers.
$W_j^{\text{agg}}, W_j^{\text{up}}$	Weight matrices for aggregation and update MLPs in MinAgg GNN.
$b_j^{\text{agg}}, b_j^{\text{up}}$	Bias vectors for aggregation and update MLPs in MinAgg GNN.
K	Number of message passing steps in the MinAgg GNN.
m	Number of layers in the MLPs used for aggregation and update in MinAgg GNN.
L	Total number of layers in the MinAgg GNN.
d	Dimensionality of hidden features in MinAgg GNN layers.
Training and Loss Functions	
$\mathcal{H}_{\text{small}}$	A set of small training graphs used to analyze GNN performance.
$\mathcal{G}_{\text{train}}$	Set of training examples for the MinAgg GNN, consisting of input-output graph pairs.
\mathcal{L}_{reg}	Regularized loss function for MinAgg GNN, combining training loss and parameter sparsity penalty.
\mathcal{L}_{MAE}	Mean absolute error loss over the training set.
η	Regularization coefficient for sparsity in the MinAgg GNN.
$\mathcal{E}_{\text{test}}$	Multiplicative error over the test set.
\mathcal{E}_{reg}	Model sparsity combined with mean absolute error over the training set. Same as \mathcal{L}_{reg} .
$\mathcal{E}_{\text{train}}$	Mean squared error over the training set.

Table 6: Notation table summarizing key symbols and terms.

2430	G LLM USE	
2431		
2432	LLMs were used for refining writing, proof-reading, and organizing citations.	
2433		
2434	H TABLE OF CONTENTS	
2435		
2436	CONTENTS	
2437		
2438	1 Introduction	1
2439	1.1 Related work	3
2440		
2441	2 Extrapolation Guarantees	4
2442	2.1 Model	4
2443	2.2 Toy Example	5
2444	2.3 Main Result	6
2445		
2446	3 Experiments	7
2447		
2448	4 Discussion	9
2449		
2450	A Definitions and notation	13
2451		
2452	B Warm-up: Single layer GNNs implement one step of BF	14
2453		
2454	C Sparsity regularized deep GNNs implement BF	19
2455		
2456	C.1 Implementing BF	20
2457	C.2 Training set	22
2458	C.3 Sparsity structure	23
2459	C.4 Bounding GNN expressivity	27
2460	C.5 Global minimum is BF	29
2461		
2462	D Additional Experiments	35
2463		
2464	D.1 Simple MinAgg GNN	35
2465	D.2 Deep MinAgg GNNs	39
2466	D.2.1 One layer	39
2467	D.2.2 Two layer, single step	40
2468	D.2.3 Two layer, two steps	42
2469	D.3 Additional synthetic and real datasets	42
2470	D.4 Hidden edge weights	43
2471	D.5 Inference time	43
2472		
2473	E Limitations	44
2474		
2475	F Table of Notation	45
2476		
2477	G LLM Use	46
2478		
2479	H Table of Contents	46
2480		
2481		
2482		
2483		