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Abstract

The generalization of neural networks is harmed by shortcut learning: the use
of simple non-semantic features may prevent the networks from learning deeper
semantic and task-related cues. Existing studies focus mainly on explicit shortcuts,
e.g. color patches and annotated text in images, that are visually detectable and
may be removed. However, there exist implicit shortcuts determined by bias or
superficial statistics in the data that neural networks can easily exploit. Mitigating
the learning of implicit shortcuts is challenging due to the simplicity-bias and an
intrinsic difficulty in identifying them. We empirically investigate shortcut learning
in the frequency domain and propose a method to identify learned frequency
shortcuts based on frequency removal. We found that frequency shortcuts often
correspond to textures consisting of specific frequencies. We also investigate the
influence of frequency shortcuts in Out-of-Distribution (OOD) tests.

1 Introduction

In classification, shortcuts are decision rules specific for a dataset, based on spurious correlations
between data and ground truth, rather than on the correlation of semantic and task-related cues [1].
The training of NNs is affected by a biased learning behavior known as simplicity-bias, inducing the
networks to learn simple but effective patterns, known as shortcuts, disregarding semantics related
to the problem at hand [2]. For instance, in regression tasks, the networks are biased towards low-
frequency components during learning [3] and favor fitting input data to a low-frequency function [4],
because low frequencies carry most of the needed information to reconstruct signals and are easier
to learn [5]. To improve the generalization and robustness of NNs, researchers investigate methods
to mitigate shortcut learning. Most of them focus on shortcuts that are explicitly observable [6, 7]
which are used to augment other classes, thus reducing their discriminative power. However, data
can contain implicit shortcuts that are not always observable, e.g. spurious texture [8] or superficial
statistics [9], which contribute to high performance on IID datasets but hamper generalization to
OOD datasets. These are more difficult to identify.

Shortcut learning [1] is caused by a simplicity-bias of NNs [2]. Models trained for regression tasks
tend to learn low-frequency components [3]. Classification models, instead, tend to learn spurious
correlations between input images and ground truth labels to achieve classification with the least
effort, e.g. a text manually embedded in images of a certain class [10], which the network uses as the
most discriminant feature for classification. The presence of the text in images of other classes as
well as the absence of the text in those of the intended class lead to incorrect predictions.

Avoiding shortcut learning is a promising way to improve the generalization of NNs. In [6], the
authors identify the shortcuts for a class and embed them in another class during training. Identifying
implicit shortcuts in the training data is much more difficult than identifying explicit visible shortcuts.
Regularization was used to decouple feature learning dynamics, forcing NNs to learn from more
features instead of a subset of shortcut features [11]. In [12], the authors evaluate a shortcut degree of
learned features, inspecting the gradient at early stage and at the end of the training. An auxiliary
network with low capacity was applied to measure the shortcut degree of images in [7]. Implicit
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Feature Modification with adversarial perturbations was proposed to reduce learning shortcut features
in contrastive learning [13]. The focus on mitigation of shortcut learning in image classification is
limited to synthetic and visible shortcuts, rather than those implicitly present in the data [6, 7].

In this work, we empirically investigate shortcut learning in classification from a Fourier perspective,
and show that simplicity-biased learning results in frequency-biased learning. NNs can reach their
objective by finding implicit shortcut solutions in the Fourier domain, which we can identify with an
iterative method based on the evaluation of the contribution of single frequencies to classification.
We show that the identified shortcuts directly reveal the texture-bias of NNs.

2 Identifying frequency shortcuts

Algorithm 1 Culling irrelevant frequencies
Require: Test model M , Dataset D, Exploration class c, Predefined

margin m, Frequency set ranked by importance R,
Ensure: Dominant frequency map Mc of class c

for (u, v) in R do
Mc[u, v] = 1

end for
for (u, v) in R do

Predictioncorrect = 0
for Xj , Lj in Dc do

F
′
(Xj) = F (Xj) − (u, v)

X
′
j = F−1(F

′
(Xj))

Ypredict = M(X
′
j)

if Ypredict = Lj then
Predictioncorrect+ = 1

end if
end for
if Predictioncorrect >= Predictionbest − m then ▷

Margin controls performance degradation
Mc[u, v] = 0
Predictionbest = Predictioncorrect ▷ Threshold is

updated if a frequency is removed
end if

end for

We investigate shortcut learning in the Fourier
domain by an iterative method (see Algorithm 1)
that evaluates the contribution of frequencies to
classification results. In each iteration, the con-
tribution of a single frequency is evaluated by
measuring the performance degradation on the
classification results induced by filtering it out
from the test images. If no reduction of accuracy
is observed when removing a certain frequency,
then this frequency is discarded from subsequent
iterations. If the degradation is above a certain
threshold, the specific frequency is deemed rel-
evant. The threshold is dynamically updated
based on the predictions after a frequency is
removed. We do not use a fixed threshold as re-
moving low frequencies may already reach the
threshold, and subsequently, all high frequencies
are retained, and thus every frequency removed
early is considered unimportant. We use a mar-
gin m to control performance degradation and
decrease the comparison threshold. The higher
the value of m, the easier the frequencies are removed and thus more degradation of performance
is allowed. The final outcome is a dominant frequency map (DFM), which shows the frequencies
contributing the most to the classification of a specific class. Our hypothesis for frequency shortcut
is that a small set of frequencies cannot represent properly task-related features, such as object
shape. Thus, a DFM containing few frequencies that guarantee high classification performance is an
indication of a learned frequency shortcut.

Experiment setup. We train different models (several ResNet and VGG configurations) on the
CIFAR-10 dataset [14]. We inspect the trained models and the relevance of the frequency components
learned during training for classification using Algorithm 1 with different values of m to generate
class-wise DFMs. Then, we filter the images of each class using the DFMs (in Fig. 1a) as masks
in the Fourier domain to retain only the dominant frequencies, and compare the classification
performance on the filtered images with that obtained when using the original images. We measure the
performance degradation as ∆ = (acc(DO)− acc(DF ))/acc(DO), where acc(DO) is the accuracy
on the original test set and acc(DF ) is the accuracy on the test images filtered with the DFMs.
With the resulting maps, the models can maintain roughly 70% of the prediction performance,
compared to the performance on the original images. We evaluate how frequency shortcuts affect the
generalization of models on OOD datasets, by testing on the ImageNet-10 dataset [15], a subset of
ImageNet with similar characteristics as CIFAR-10. We apply the (inverse) DFMs to generate test
sets with contributing frequencies only or without them.

Class-wise frequency shortcuts result in texture-biased classification. In Fig. 1a and Fig. A.1,
we show the DFMs obtained for different architectures for each class in the CIFAR-10 dataset. We
observed that, for instance, the maps of dominant frequency learned by ResNet-18 for the classes
‘deer’ and ‘frog’ contain less than 20% of all frequencies. However, about 80% of the samples of
these two classes are predicted correctly despite the limited amount of frequency information.
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(b)
Figure 1: (a) Dominant frequency maps for the classes in CIFAR-10, and (b) confusion matrices
when ResNet18 tested on CIFAR-10 by filtering images with the maps of the classes ‘deer’ and
‘frog’.

DogFrog

filter filter 

Figure 2: A network trained on CIFAR-10 uses non-semantic features for classification. Correct
predictions of ‘frog’ images, even when only the texture is considered, indicate shortcuts learned
during training. Extracting similar textures from images of ‘dog’ results in false predictions as ‘frog’.

In Fig. 2, example images from the class ‘frog’ and ‘dog’, correctly classified, are shown. Filtering
these images using the DFM of the class ‘frog’ results in only-texture images, which are both
classified as ‘frog’. This indicates a bias of the classifier that associates the class ‘frog’ with certain
texture patterns which we can identify using our Algorithm 1. The very specific texture patterns used
for classification are not clearly visible by observing the original images or not directly associated
with task-related semantic cues of the object to recognize. We filter the test images from CIFAR-10
using the DFMs of the class ‘deer’ and ‘frog’, and report the test results in the confusion matrices
in Fig. 1b. They highlight a classification bias towards the classes concerned, indicating a misuse of
specific sets of frequency as discriminative features to recognize samples from these classes. The
dependency on specific frequency patterns to achieve classification is in line with the observation
about texture bias in NNs reported in [8].

How do frequency shortcuts affect generalization to OOD datasets? We expect that the fre-
quency shortcuts specifically learned for CIFAR-10 would not generalize to OOD tests on ImageNet-
10, thus impacting negatively the classification accuracy. We test on ImageNet-10 the models that we
have trained on CIFAR-10, in order to evaluate OOD generalization and its relation with frequency
shortcuts. We carry out tests using the original ImageNet-10 images, and two filtered versions of
them using the corresponding class-wise DFMs of the models trained on CIFAR-10. In the first
filtered version, we only keep the contributing frequencies of each class (referred to as ‘w/ df’), while
the other version only includes the complementary remaining frequencies (referred to as ‘w/o df’) to
test the case when shortcuts are explicitly removed.

In Table 1, we report numerical results regarding the percentage of contributing frequencies from the
overall Fourier spectrum according to Algorithm 1, the corresponding degradation ∆ of performance
measure as accuracy drop achieved when using only frequency from the DFMs to classify images
of the different classes and the accuracy of OOD tests. Classes with a low number of dominant
frequencies, relatively small degradation and many false positive predictions are considered using
frequency shortcuts.

We observed a considerable drop in performance, especially on the class ‘ox’, which corresponds to
class ‘deer’ (for which we identified as shortcut) according to [15]. For images of the classes ‘ox’ and
‘tailed frog’ of the ImageNet-10 dataset, corresponding to ‘deer’ and ‘frog’ of CIFAR-10, the use of
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Table 1: No. of frequencies and performance degradation of ResNet(s) on CIFAR-10, and OOD test
results on ImageNet-10. For OOD tests, we report accuracy on the original dataset, on images with
the dominant frequencies removed (w/o df), and with only dominant frequencies retained (w/ df).

CIFAR-10: details of dominant frequency maps

model airplane automobile bird cat deer dog frog horse ship truck

ResNet9 % freqs 42.38 51.76 29.88 43.55 23.93 38.48 16.6 46.58 10.06 41.76
∆ 24.41 22.52 25.22 23.42 22.76 19.58 26.58 22.23 20.53 31.96

ResNet18 % freqs 44.82 54.79 35.94 38.57 10.94 40.04 15.43 45.70 19.73 40.33
∆ 22.49 21.89 23.59 22.24 15.94 19.35 13.07 21.39 22.15 24.97

ResNet50 % freqs 46.97 55.96 38.96 42.48 15.23 32.23 22.95 44.43 12.69 34.77
∆ 25.61 20.84 22.92 20.30 12.86 23.31 23.07 29.57 7.02 27.54

ImageNet-10: OOD tests

model airliner wagon humming bird Siamese cat ox golden retriever tailed frog zebra container ship trailer truck

ResNet9 acc 89.54 82.54 55.85 59.46 31.23 65.77 84.77 17.62 82.15 74.08
acc w/o df 42.69 3.23 22.08 24.54 33.92 1.77 87.00 2.31 76.00 0.46
acc w/ df 62.15 44.69 42.92 39.23 36.62 55.46 17.69 9.31 23.62 57.62

ResNet18 acc 91.31 84.00 54.62 69.31 35.46 70.23 84.69 20.08 86.00 76.23
acc w/o df 79.8 16.1 32.8 42.2 55.69 12.1 85.1 7.3 53.7 2.9
acc w/ df 74.31 54.77 54.08 47.46 8.54 59.54 4.92 15.31 31.38 63.69

ResNet50 acc 90.23 81.77 54.15 59.39 27.77 72.46 81.69 26.54 82.31 74.54
acc w/o df 58.46 18.08 37.38 36.31 41.54 2.23 81.08 5.85 61.08 9.54
acc w/ df 71.69 54.08 54.54 46.00 6.92 51.38 18.92 14.23 39.85 64.92

the dominant frequency only to perform classification results in a considerable drop of performance
(for ResNet18 and ResNet50 specifically), worse than random, so generalizing poorly. Interestingly,
when forcing the classifier to ignore the shortcut learned on the CIFAR-10 dataset, namely filtering
out the frequency contained in the DFMs of the classes with identified shortcuts, the results on the
‘ox’ and ‘tailed frog’ classes sharply increase. This indicates that the frequency shortcuts learned on
the CIFAR-10 dataset no longer existing in the OOD dataset affect the extraction of semantic and
task-related cues and have a negative impact on generalization.

Does higher model capacity mitigate frequency shortcut learning? In Fig. 1a, we observe that
different models have similar frequency biases for classes ‘deer’, ‘frog’ and ‘ship’. However, the
values of ∆ in Table 1 indicate that the models learn slightly different frequency shortcuts. ResNet50
uses more frequencies for classes ‘deer’ and ‘frog’ than ResNet18, showing a slight mitigation of
learned frequency shortcuts as the capacity of the model increases. However, ResNet50 uses fewer
frequencies to perform classification for class ‘ship’ with small performance degradation, intensifying
the learning of a different frequency shortcut. On the contrary, ResNet9 learns to use a similar amount
of frequencies to ResNet50 for the class ‘ship’ but with larger degradation of performance, indicating
a less strong learned shortcut. It is worth noting that the number of false positive predictions of classes
with frequency shortcuts decreases (see Fig. A.2 in Appendix A). We think that this is determined by
the classification model paying attention to a larger set of frequencies to perform the classification for
all classes. Although the experiments indicate a tendency of models with higher capacity to mitigate
shortcut learning, we foresee the need for further investigation to better understand their relation.
This would help to design specific procedures that increase generalization.

3 Conclusions

We empirically investigated frequency shortcut learning in deep neural networks and designed a
method to identify shortcuts in the Fourier domain. We found that frequency shortcuts usually relate
to textures consisting of a small set of frequencies that lead to biased predictions on certain classes.
We show that frequency shortcut learning is common across different architectures, and investigate
its relation with model capacity. Our preliminary results on CIFAR-10 and ImageNet-10 indicate
that higher model capacity may contribute to mitigating the learning of frequency shortcuts, although
deeper investigations are needed.
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Figure A.1: Dominant frequency maps for the classes in CIFAR-10 (AlexNet and VGG16).
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Figure A.2: Confusion matrices when ResNet50 tested on CIFAR-10 test set retaining only the
dominant frequencies of the classes ‘deer’, and ‘frog’ respectively.
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