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Abstract

In this paper, we study a natural policy gradient method based on recurrent neural
networks (RNNs) for partially-observable Markov decision processes (POMDPs),
whereby RNNs are used for policy parameterization and policy evaluation to
address curse of dimensionality in reinforcement learning for POMDPs. We
present finite-time and finite-width analyses for both the critic (recurrent temporal
difference learning), and correspondingly-operated recurrent natural policy gradient
method in the near-initialization regime. Our analysis demonstrates the efficiency
of RNNs for problems with short-term memory with explicit bounds on the required
network widths and sample complexity, and points out the challenges in the case
of long-term dependencies.

1 Introduction

Reinforcement learning for partially-observable Markov decision processes (POMDPs) has been a
particularly challenging problem due to the absence of an optimal stationary policy, which leads to a
curse of dimensionality as the space of non-stationary policies grows exponentially over time [26, 32].
There has been a growing interest in finite-memory policies to address the curse of dimensionality in
reinforcement learning for POMDPs [47, 46, 24, 5]. Among these, recurrent neural networks (RNNs)
have been shown to achieve impressive empirical success in solving POMDPs [43, 44, 30]. However,
theoretical understanding of RNN-based RL methods for POMDPs is still in a nascent stage.

In this paper, we aim to remedy this by studying a model-free policy optimization method based on a
recurrent natural actor-critic (Rec-NAC) framework (Section 5), which

• utilizes an RNN-based policy parameterization for history representation in non-stationary policies,

• incorporates an RNN-based temporal difference learning algorithm as the critic (Section 6), and

• performs policy updates by using RNN-based natural policy gradient as the actor (Section 7),

for large POMDPs. We establish non-asymptotic (finite-time, finite-width) analyses of Rec-TD (in
Theorem 6.2) and Rec-NPG (Theorem 7.2 and Propositions 7.5-7.7), and prove their near-optimality
in the large-network limit for problems that require short-term memory. We identify pathological
cases that cause exponentially growing iteration complexity and network size (Remarks 6.3-7.3). Our
analysis reveals an interesting connection between (i) the memory (i.e., long-term dependencies) in the
POMDP, (ii) continuity and smoothness of the parameters of the RNN, and (iii) global near-optimality
of the Rec-NPG in terms of the required network size and iterations.

1.1 Previous work

Natural policy gradient method, proposed in [23], has been extensively investigated for MDPs
[1, 8, 25, 18, 6], and analyses of NPG with feedforward neural networks (FNNs) have been established
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in [42, 28, 7]. As these works consider MDPs, the policies are stationary. In our case, the analysis of
RNNs and POMDPs constitute a very significant challenge.

In [46, 38, 24, 5], finite-memory policies based on sliding-window approximations of the history
were investigated. Alternatively, value- and policy-based model-free approaches based on RNNs have
been widely considered in the literature to solve POMDPs [27, 43, 44, 30]. However, these works
are predominantly experimental, thus there is no theoretical analysis of RNN-based RL methods
for POMDPs to the best of our knowledge. In this work, we also present theoretical guarantees for
RNN-based NPG for POMDPs. For structural results on the hardness of RL for POMDPs, refer to
[29, 38].

1.2 Notation

For a vector Θ = (Θ⊤
1 , . . . ,Θ

⊤
m)⊤ ∈ Rm·(d+1), m, d ∈ Z+ with Θi = (Vi, U

⊤
i )⊤ ∈

Rd+1 for Vi ∈ R, Ui ∈ Rd and ρ = (ρ1, ρ2) ∈ R2
≥0, we define B(m)

2,∞(Θ, ρ) :=⊗m
i=1

(
B(1)
1

(
Vi,

ρ1√
m

)
,B(d)

2

(
Ui,

ρ2√
m

))
, where

⊗
is the Cartesian product, and B(d)

p (x, ρ0) :=

{z ∈ Rd : ∥z−x∥p ≤ ρ0} for any p ≥ 1, x ∈ Rd, ρ0 ≥ 0. Mm denotes the set of allm×m diagonal
matrices. [m] := {1, 2, . . . ,m} for any m ∈ Z+. ∆(Y) is the space of probability distributions on a
set Y. Rad(α) = Unif{−α, α} for α ∈ R≥0.

2 Preliminaries on Partially-Observable Markov Decision Processes

In this paper, we consider a discrete-time infinite-horizon partially-observable Markov decision
process (POMDP) with the (nonlinear) dynamics

P(St+1 ∈ B|σ (Sk, Ak, k ≤ t)) =: P((St, At), B), and P(C|σ(St)) =: ϕ(St, C),

for any B ∈ B(S) and C ∈ B(Y), where St is an S-valued state, Yt is a Y-valued observation,
and At is an A-valued control process with the stochastic kernels P : S × A × B(S) → [0, 1]
and ϕ : S × B(Y) → [0, 1]. We consider finite but arbitrarily large A ⊂ Rd1 ,Y ⊂ Rd2 with
Y × A ⊂ B(d1+d2)

2 (0, 1) and S. In this setting, the state process (St)t∈N is not observable by the
controller. Let

Zt =

{
Y0, if t = 0,

(Zt−1, At−1, Yt), if t > 0,
(1)

be the history process, which is available to the controller at time t ∈ N, and Z̄t := (Zt, At) =
(Y0, A0, . . . , Yt, At), be the history-action process.

Definition 2.1 (Admissible policy). An admissible control policy π = (πt)t∈N is a sequence of
measurable mappings πt : (Y × A)t × Y → ∆(A), and the control at time t is chosen under πt
randomly as P(At = a|Zt = zt) = πt(a|zt), for any zt ∈ (Y× A)t × Y. We denote the class of all
admissible policies by ΠNM.

If an action a is taken at state a, then a reward r(s, a) is obtained. For simplicity, we assume that the
reward is deterministic, and max

s,a
|r(s, a)| ≤ r∞ <∞.

Definition 2.2 (Value function, Q-function, advantage function). Let π be an admissible policy, and
µ ∈ ∆(Y) be an initial observation distribution. Then, the value function under π with discount
factor γ ∈ (0, 1] is defined as

Vπ
t (zt) := Eπ

[ ∞∑
k=t

γk−tr(Sk, Ak)
∣∣∣Zt = zt

]
, (2)

for any zt ∈ (Y × A)t × Y. Similarly, the state-action value function (also known as Q-function)
and the advantage function under π are defined for any z̄t ∈ (Y× A)t+1 as

Qπ
t (z̄t) := Eπ

[ ∞∑
k=t

γk−tr(Sk, Ak)
∣∣∣Z̄t = z̄t

]
, and Aπ

t (zt, a) := Qπ
t (zt, a)− Vπ

t (zt). (3)
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Given an initial observation distribution µ ∈ ∆(Y), the optimization problem is

maximize
π∈ΠNM

∫
Y
Vπ
0 (z0)µ(dz0) =: Vπ(µ), where π⋆ ∈ argmax

π∈ΠNM

Vπ(µ). (4)

Remark 2.3 (Curse of history in RL for POMDPs). Note that the problem in equation 4 is significantly
more challenging than its subcase of (fully-observable) MDPs since there may not exist an optimal
policy which is (i) stationary, and (ii) deterministic [26, 38]. As such, the policy search is over
non-Markovian randomized policies of type π = (π0, π1, . . .) where πt : (Y × A)t × Y → ∆(A)
depends on the history of observations Zt = (Y0, A0, Y1, . . . , At−1, Yt) for t ∈ N. In this case, direct
extensions of the existing reinforcement learning methods for MDPs become intractable, even for
finite Y,A: the instantaneous memory complexity of a probabilistic admissible policy π ∈ ΠNM at
epoch t ∈ N is O(|Y× A|t+1), growing exponentially over t.

Recurrent neural networks (RNNs), which involve a parametric recurrent structure to efficiently
represent the process history by using finite memory, are universal approximators for sequence-to-
sequence mappings [36, 15]. As such, we consider using them in an actor-critic framework for
approximation in (i) value space (for the critic), and (ii) policy space (for the actor). In the following
section, we formally introduce the RNN architecture that we study in this paper.

3 Elman-Type Recurrent Neural Networks

We consider an Elman-type recurrent neural network (RNN) of width m ∈ N with W ∈ Rm×m and
U ∈ Rm×d, where d = d1 + d2, and the rows of U are denoted as U⊤

i for i = 1, 2, . . . ,m. Given
a smooth activation function ϱ : C 2(R,R) with ∥ϱ∥∞ ≤ ϱ0, ∥ϱ′∥∞ ≤ ϱ1, ∥ϱ′′∥∞ ≤ ϱ2, we denote

ϱ⃗ : Rm → Rm : z 7→

ϱ(z1))...
ϱ(zm)

. Let Xt =

(
Yt
At

)
, which is an Rd-valued random variable with

d = d1 + d2. The central structure in an RNN is the sequence of hidden states Ht ∈ Rm, which
evolves according to

Ht(Z̄t;W,U) = ϱ⃗
(
WHt−1(Z̄t−1;W,U) +UXt

)
, (5)

with H0(Z̄0;W,U) = ϱ⃗(UX0) and Z̄t = (X0, . . . , Xt) denoting the history. We denote the ith

element of Ht as H(i)
t for i ∈ [m]. We consider a linear readout layer with weights c ∈ Rm, which

leads to the output

Ft(Z̄t;W,U, c) =
1√
m

m∑
i=1

ciH
(i)
t (Z̄t;W,U). (6)

The characteristic property of RNNs is weight-sharing: throughout all time-steps t ∈ N, the same
weights are utilized, which enables the hidden state (Ht)t>0 to summarize the entire history Z̄t

compactly with a fixed memory.

We consider diagonal W and general U in the paper, which simplifies the analysis, yet preserves
the essential properties of RNNs. This diagonal structure for W is common in the study of deep
linear networks for the aforementioned reason [16, 45], while our work also encompasses nonlinear
activation functions and weight-sharing.

Following the neural tangent kernel literature, we omit the straightforward task of training the
linear output layer c ∈ Rm for simplicity, and study the training dynamics of (W,U), which is
the main challenge [12, 34, 3, 42]. Consequently, we denote the learnable parameters of a hidden

unit i ∈ [m] compactly as Θi =

(
Wii

Ui

)
, and denote the learnable parameters of an RNN by

Θ =
[
W11, U

⊤
1 ,W22, U

⊤
2 , . . . ,Wmm, U

⊤
m

]⊤ ∈ Rm(d+1). Given learnable parameters (W,U), we
denote the sequence of recurrent neural network outputs as F (·;W,U) = (Ft(·;W,U))t∈N, and
use Θ and (W,U) interchangeably throughout the paper.
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4 Infinite-Width Limit of Diagonal Recurrent Neural Networks

In this paper, we consider a class of systems that can be efficiently approximated and learned by the
class of large recurrent neural networks in the near-initialization regime following [4]. To that end,
we provide the following characterization of the infinite-width limit of RNNs in order to give our
results in later sections. Let w0 ∼ Rad(α) and u0 ∼ N (0, Id) be independent random variables, and

θ :=

(
w0

u0

)
. Given a history-action realization z̄ = (x0, x1, . . .) ∈ (Y× A)Z+ , define

ht(z̄t; θ0) := ϱ(w0ht−1(z̄t−1; θ0) + ⟨u0, xt⟩), t > 0,

with h−1 := 0 (thus h0(z̄0; θ0) = ϱ(⟨u0, x0⟩)), and It(z̄t; θ0) := ϱ′(w0ht−1(z̄t−1; θ0) + ⟨u0, xt⟩).
Then, the neural tangent random feature (NTRF) mapping1 at time t is defined as ψt(z̄t; θ0) :=∑t

k=0 w
k
0

(
ht−k−1(z̄t−k−1; θ0)

xt−k

)
Īt,k(z̄t; θ0), with Īt,k(z̄t; θ0) :=

∏k
j=0 It−j(z̄t−j ; θ0). We also

define the NTRF matrix as follows:

ΨT (z̄; θ0) :=


ψ⊤
0 (z̄0; θ0)

ψ⊤
1 (z̄1; θ0)

...
ψ⊤
T−1(z̄T−1; θ0)

 , with Ψ(z̄; θ0) := Ψ∞(z̄; θ0). (7)

Definition 4.1 (Transportation mapping). Let H be the set of mappings v : R1+d → R1+d :

θ0 7→
(
vw(w0)
vu(u0)

)
with E[|vw(w0)|2] = 1

2

(
|vw(α)|2 + |vw(−α)|2

)
< ∞, and E[∥vu(u0)∥22] =

1
(2π)d/2

∫
Rd ∥vu(u)∥22e−

1
2∥u∥

2
2du <∞. We call v ∈ H a transportation mapping, following [20, 21].

Definition 4.2 (Infinite-width limit). We define the infinite-width limit of Elman-type RNNs as

F :=
{
(Y× A)Z+ ∋ z̄ 7→ E [Ψ(z̄; θ0)v(θ0)] : v ∈ H

}
.

F consists of f⋆t (z̄t;v) = E[⟨v(θ0), ψt(z̄t; θ0)⟩] for any z̄ ∈ (Y× A)Z+ . The same transportation
mapping v is used to define the mapping f⋆t at each time t, which is a characteristic feature of
weight-sharing in recurrent neural networks. Also, the input z̄ grows over time in a concatenated
way, implying f⋆ ∈ F is a representational assumption on the dynamical structure of the problem.

For any fixed time t ∈ N, the completion of {z̄t 7→ f⋆t (z̄t;v) : v ∈ H } is exactly the reproducing
kernel Hilbert space (RKHS) Gκt

associated with the “recurrent" neural tangent kernel (NTK) κt
[35, 21]. For any t ∈ N, the inner product of two functions in Gκt

associated with the transportation
mappings v,v′ is ⟨f⋆t (·;v), f⋆t (·;v′)⟩Hκt

= E
[
⟨v(θ0),v′(θ0)⟩

]
. Thus, RKHS norm of f ∈ Gκt

is

∥f∥Gκt
=
√
E∥v(θ0)∥22 =

√
E∥vu(u0)∥22 + E|vw(w0)|2.

Remark 4.3 (Reduction to FNNs). Consider T = 1:

F1 :=
{
z̄0 7→ E

[
ψ⊤
0 (z̄0; θ0)v(θ0)

]
: v ∈ H

}
.

In this case, we exactly recover the NTK (and the associated RKHS) for single-layer FFNs [19, 42, 28].
Furthermore, since the kernel κ0 is universal, the associated RKHS Gκ0

is dense in the space of
continuous functions on a compact set [21].

5 Rec-NAC Algorithm for POMDPs

In this section, we present a high-level description of our Recurrent Natural Actor-Critic (Rec-
NAC) Algorithm with two inner loops, critic (called Rec-TD) and actor (called Rec-NPG), for
policy optimization with RNNs. The details of the inner loops of the algorithm will be given in the

1The feature uses a complicated weighted-sum of all past inputs xk, k ≤ t, leading to a discounted memory
to tackle non-stationarity. xt−k is scaled with wk

0 ∼ Rad(α), thus it yields a fading memory approximation of
the history if α < 1.
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succeeding sections. We use an admissible policy π = (πt)t∈N that is parameterized by a recurrent
neural network (F a

t (·; Φ))t∈N of the form given in equation 6 with m ∈ Z+. To that end, let

πΦ
t (a|zt) :=

exp (F a
t ((zt, a); Φ))∑

a′∈A exp (F a
t ((zt, a

′); Φ))
, t ∈ Z+, (8)

for any zt ∈ (Y× A)t × Y and a ∈ A with the parameter Φ ∈ Rm(d+1).

Rec-NAC operates as follows:

• Initialization. F a is randomly initialized with parameter Φ(0) ∼ ζinit (see Def. A.1).

• Natural policy gradient. For n = 0, 1, . . . , N − 1,

• Critic. Estimate Q̂(n)
t (·) := F c

t (·; Θ̄(n)) t < T of QπΦ(n)

t (·), t < T via Rec-TD learning in
Sec. 6. F c is initialized independently for each n as Definition A.1.

• Actor. By projected stochastic gradient descent (SGD), obtain a solution ωn for the compatible
function approximation problem

min
ω

E
T−1∑
t=0

γt|∇ lnπn
t (At|Zt)ω − ÂπΦ(n)

t (Z̄t)|2 such that ω ∈ B2,∞(0, ρ),

where for any t ∈ N, Â(n)
t (zt, a) := Q̂(n)

t (zt, a)− E
A′∼πΦ

t (·|zt)
Q̂(n)

t (zt, A
′).

For information regarding the algorithmic tools, i.e., random initialization and max-norm regulariza-
tion for RNNs, we refer to Section A.

6 Critic: Recurrent Temporal Difference Learning (Rec-TD)

In this section, we study a value prediction algorithm for policy evaluation in POMDPs, which will
serve as the critic.

Policy evaluation problem. Consider the policy evaluation problem for POMDPs under a given non-
Markovian policy π ∈ ΠNM. Given an initial observation distribution µ ∈ ∆(Y), policy evaluation
aims to solve

min
Θ

Rπ
T (Θ) := Eπ

µ

T−1∑
t=0

γt
(
Ft(Z̄t; Θ)−Qπ

t (Z̄t)
)2

such that Θ ∈ Ωρ,m := B(m)
2,∞(0, ρ), (9)

where T ∈ N is the truncation level, and {Ft : t ∈ N} is an Elman-type recurrent neural network
given in equation 6 – we drop the superscript a for simplicity throughout the discussion. The
expectation in Rπ

T (Θ) is with respect to the joint probability law Pπ,µ
T of the stochastic process

{(St, At, Yt) : t ∈ [0, T ]} where Z0 ∼ µ.

6.1 Recurrent TD Learning Algorithm

Given a sample trajectory z̄T ∈ (Y× A)T+1, let

δt(z̄t+1; Θ) := rt + γFt+1(z̄t+1; Θ)− Ft(z̄t; Θ), (10)

be the temporal difference, and let

∇̌RT (z̄T ; Θ) =

T∑
t=0

γtδt(z̄t+1; Θ)∇ΘFt(z̄t; Θ), (11)

be the stochastic semi-gradient. Note that, despite the exponential growth in the dimension of z̄t ∈
(Y× A)t+1 over t ∈ N, the memory complexity for computing ∇̌RT (z̄T ; Θ) is only O(m2 +md).
Assumption 6.1 (Sampling oracle). Given an initial state distribution µ, we assume that the system
can be independently started from S0 ∼ µ, i.e., independent trajectories {(St, Yt, At) : t ∈ [T ]} ∼
Pπ,µ
T can be obtained.
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Under Assumption 6.1, for k ∈ N, let {(Sk
t , Y

k
t , A

k
t ) : t ∈ [T ]} ∼ Pπ,µ

T be an independent trajectory
(for each k ∈ N, i.e., a trajectory with an independent initial sample Sk

0 ∼ µ), and {Zk
t : t ∈ [T ]}

and {Z̄k
t : t ∈ [T ]} be the resulting (truncated) history and history-action processes. Starting from a

random initialization (W(0),U(0), c), let

Θ̌(k + 1) = Θ(k) + η · ∇̌RT (Z̄
k
T ; Θ(k)), (12)

for k ∈ N. For Rec-TD, one uses Θ(k+1) = Θ̌(k+1). For Rec-TD with max-norm regularization,
one uses Θ(k + 1) = ProjΩρ,m

[Θ̌(k + 1)], for parameter ρ = (ρw, ρu) ∈ R2
>0.

6.2 Theoretical Analysis of Rec-TD: Finite-Time Bounds and Global Near-Optimality

In the following, we prove that Rec-TD with max-norm regularization achieves global optimality in
expectation. To characterize the impact of long-term dependencies on the performance of Rec-TD,
let pt(x) =

∑t−1
k=0 |x|k, and qt(x) =

∑t−1
k=0(k + 1)|x|k, x ∈ R, t ∈ N.

Theorem 6.2 (Finite-time bounds for Rec-TD). Assume that {Qπ
t : t ∈ N} ∈ F with a transporta-

tion mapping v = (vw, vu) ∈ H such that supu∈Rd ∥vu(u)∥2 ≤ νu and supw∈R |vw(w)| ≤ νw.
Then, for any projection radius ρ ⪰ ν = (νw, νu) and step-size η > 0, Rec-TD with max-norm
regularization achieves the following error bound:

E
[ 1
K

K−1∑
k=0

Rπ
T (Θ(k))

]
≤ 1√

K

(
∥ν∥22

(1− γ)
+

C
(1)
T

(1− γ)3

)
+

C
(2)
T

(1− γ)2
√
m

+
γT

(1− γ)K

K−1∑
k=0

ω2
T,k︸ ︷︷ ︸

(♡)

.

(13)

for any K ∈ N, where C
(1)
T , C

(2)
T = poly

(
pT

(
ϱ1(α+ ρw√

m
)
)
, ∥ρ∥2, ∥ν∥2

)
, are instance-

dependent constants that do not depend on K, and ωt,k :=
√

E[(Ft(Z̄t; Θ(k))−Qπ
t (Z̄

k
t ))

2] for
t, k ∈ N. For the average-iterate Rec-TD with Θ̄K := 1

K

∑K−1
k=0 Θ(k), we have

E
[
Rπ

T

(
Θ̄K

)]
≤ 10

(1− γ)
√
K

(
∥ν∥22 +

C
(1)
T

(1− γ)2

)
+

10C
(2)
T

(1− γ)2
√
m

+
10γT

(1− γ)K

K−1∑
k=0

ω2
T,k.

The proof of Theorem 6.2 can be found in Section B.

From Proposition 7.1, we observe that the exact natural policy gradient update would require a large
T . As noted in [13], the spectral radius of {W(k) : k ∈ N} determines the degree of long-term
dependencies in the problem as it scales Ht. Consistent with this observation, our bounds have a
strong dependency on αm := α+ ρw√

m
≥ λmax(W(k)) = ∥W(k)∥∞,∞ for any k ∈ N.

Remark 6.3 (When is Rec-TD efficient? Impact of long-term dependencies). Note that both constants
C

(1)
T , C

(2)
T polynomially depend on pT (ϱ1αm). Let ε > 0 be any given target error.

• Short-term memory. If αm < 1
ϱ1

, then it is easy to see that pT (ϱ1αm) ≤ 1
1−ϱ1αm

.
Thus, the extra term (♡) in equation 13 vanishes at a geometric rate as T → ∞, yet m
(network-width) and K (iteration-complexity) are Õ(1/ε2). Rec-TD is efficient in that case.

• Long-term memory. If αm > 1
ϱ1

, as T → ∞, both m and K grow at a rate
O
(
(ϱ1αm)T /ε2

)
while the extra term (♡) in equation 13 vanishes at a geometric rate.

As such, the required network size and iterations grow at a geometric rate with T in systems
with long-term memory, constituting the pathological case for Rec-TD.

Finally, note that the additional term (♡) in Theorem 6.2 is unique to Rec-TD learning, and stems
from the use of bootstrapping in reinforcement learning.

The performance of Rec-TD is studied numerically in Random-POMDP instances in Section C.
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7 Actor: Recurrent Natural Policy Gradient (Rec-NPG) for POMDPs

The goal is to solve the following problem:

maximize
Θ∈Rm(d+1)

VπΦ

(µ) such that Φ ∈ Ωρ,m, (PO)

for a given initial distribution µ ∈ ∆(Y) and ρ ∈ R2
>0. π⋆ denotes an optimal policy.

7.1 Recurrent Natural Policy Gradient for POMDPs

In this section, we describe the recurrent natural policy gradient (Rec-NPG) algorithm for non-
Markovian reinforcement learning. As proved in Prop. D.2, a policy gradient for POMDPs is

∇ΦVπΦ

(µ) := EπΦ

µ

∞∑
t=0

γtQπΦ

t (Zt, At)∇Φ lnπΦ
t (At|Zt).

Fisher information matrix under a policy πΦ is defined as

Gµ(Φ) := EπΦ

µ

∞∑
t=0

γt∇ lnπΦ
t (At|Zt)∇⊤ lnπΦ

t (At|Zt),

for an initial observation distribution µ ∈ ∆(Y). Rec-NPG updates the policy parameters by

Φ(n+ 1) = Φ(n) + η ·G+
µ (Φ(n))∇ΦVπΦ(n)

(µ), (14)

for an initial parameter Φ(0) and step-size η > 0, where G+ denotes the Moore-Penrose inverse of a
matrix G. This update rule is in the same spirit as the NPG introduced in [23], however, due to the
non-Markovian nature of POMDPs, it has significant complications that we will address.

In order to avoid computationally-expensive policy updates in equation 14, we utilize the following
extension of the compatible function approximation in [23] to the case of non-Markovian policies.
Proposition 7.1 (Compatible function approximation for non-Markovian policies). For any Φ ∈
Rm(d+1) and initial observation distribution µ, let

Lµ(w; Φ) = EπΦ

µ

∞∑
t=0

γt
(
∇⊤ lnπΦ

t (At|Zt)ω −AπΦ

t (Z̄t)
)2
, (15)

for ω ∈ Rm(d+1). Then, we have

G+
µ (Φ)∇ΦVπΦ

(µ) ∈ argmin
ω∈Rm(d+1)

Lµ(ω; Φ). (16)

Path-based compatible function approximation with truncation. For general (non-Markovian)
problems as in equation 15, we use a path-based method under truncation for a given T ∈ N
with ℓT (ω; Φ,Q) :=

∑T−1
t=0 γt(∇ lnπΦ

t (At|Zt)ω−At(Zt, At))
2, where At(zt, at) = Qt(zt, at)−∑

a∈A π
Φ
t (a|zt)Qt(zt, a). Given a policy with parameter Φ(n) and the corresponding output of the

critic (Rec-TD with the average-iterate Θ̄(n) := 1
Ktd

∑
k<Ktd

Θ(n)(k)): Q̂(n)(·) := Ft(·; Θ̄(n)), the
actor aims to solve the following problem:

min
ω

E
[
ℓT

(
ω; Φ(n), Q̂(n)

) ∣∣∣Θ̄(n),Φ(n), . . . ,Φ(0)
]

such that ω ∈ B(m)
2,∞(0, ρ).

To that end, we utilize stochastic gradient descent (SGD) to solve the above problem. Let Z̄n,k
T ∼

PπΦ(n),µ
T be an independent random sequence for k = 0, 1, . . ., and let

ω̃n(k + 1) = ω̂n(k)− ηsgd∇ωℓT
(
ω̂n(k); Φ(n), Q̂(n)

)
, and ω̂n(k + 1) = ProjB(m)

2,∞(0,ρ)
[ω̃n(k + 1)],

with ω̂n(0) = 0. Then, a biased stochastic approximation of the natural policy gradient is obtained as
ωn := 1

Ksgd

∑
k<Ksgd

ω̂n(k), and the policy update is performed as

Φ(n+ 1) = Φ(n) + ηnpg · ωn.

In the following, we present a non-asymptotic analysis of the above approach.
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7.2 Theoretical Analysis of Rec-NAC for POMDPs

We establish an error bound on the best-iterate for the Rec-NPG. The significance of the following
result is two-fold: (i) it will explicitly connect the optimality gap to the compatible function approxi-
mation error, and (ii) it will explicitly show the impact of truncation on the performance of path-based
policy optimization for the non-stationary case.

Theorem 7.2. Assume that Pπ⋆,µ
T ≪ PπΦ(n),µ

T , n < N , and let κ := max0≤n<N

∥∥∥∥ Pπ⋆,µ
T

PπΦ(n),µ

T

∥∥∥∥
∞
.

We have the following result under Rec-NPG after N ∈ Z+ steps with step-size ηnpg = 1/
√
N with

projection radius ρ ∈ R2
>0:

min
0≤n<N

E0[Vπ⋆

(µ)− VπΦ(n)

(µ)] ≤ ln |A|
(1− γ)

√
N

+
√
pT (γ)E0

[
1

N

N−1∑
n=0

(
κεTcfa(Φ(n), ωn)

) 1
2

]

+
2γT r∞
(1− γ)2

+
∑
t<T

γt
poly(∥ρ∥2, Lt, βt,Λt, χt)

m1/4
+

∥ρ∥22
2
√
N

∑
t<T

γtL2
t ,

where εTcfa(Φ, ω) := EπΦ(n)

µ

∑
t<T γ

t|∇⊤ lnπΦ
t (At|Zt)ω − AπΦ

t (Zt, At)|2, and the sequence
(Lt, βt,Λt, χt)t is defined in Lemma B.1.
Remark 7.3. We have the following remarks.

• The effectiveness of Rec-NPG is proportional to the approximation power of the RNN used for
policy parameterization, as reflected in εTcfa in Theorem 7.2. We further characterize this error term in
Prop. 7.5-7.7.

• The terms Lt, βt,Λt, χt grow at a rate pt(ϱ1αm). Thus, if αm > ϱ−1
1 , then m and N should grow

at a rate (αmϱ1)
T , implying the curse of dimensionality (more generally, it is known as the exploding

gradient problem [13]). On the other hand, if αm < ϱ−1
1 , then Lt, βt,Λt, χt are all O(1) for all t,

implying efficient learning of POMDPs. This establishes a very interesting connection between the
memory in the system, the continuity and smoothness of the RNN with respect to its parameters, and
the optimality gap under Rec-NPG.

• The term 2γT r∞
(1−γ)2 is due to truncating the trajectory at T , and vanishes with large T .

Remark 7.4. The quantity κ in the above theorem is the so-called concentrability coefficient in policy
gradient methods [1, 2, 42], and determines the complexity of exploration. Note that it is defined in
terms of path probabilities Pπ,µ

T in the non-stationary setting.

In the following, we decompose the compatible function approximation error εTcfa into the approxima-
tion error for the RNN and the statistical errors. To that end, let

εapp,n = inf
{
E

T−1∑
t=0

γt
∣∣∇⊤Ft(Z̄t; Φ(0))ω −QπΦ(n)

t (Z̄t)
∣∣2 : ω ∈ B(m)

2,∞(0, ρ)
}
,

be the approximation error where the expectation is with respect to PπΦ(n),µ
T ,

εtd,n = E[RπΦ(n)

T (Θ̄(n))|Φ(k), k ≤ n],

be the error in the critic (see equation 9), and finally let

εsgd,n = E[ℓT (ωn; Φ(n), Q̂(n))|Θ̄(n),Φ(k), k ≤ n]−inf
w

E[ℓT (ω; Φ(n), Q̂(n))|Θ̄(n),Φ(k), k ≤ n],

be the error in the policy update via compatible function approximation.
Proposition 7.5 (Error decomposition for εTcfa). We have

E
[
EπΦ(n)

µ

[
ℓT (ωn; Φ(n),Q(n))

] ∣∣∣Φ(k), k ≤ n
]
≤ 8∥ρ∥22

m

T−1∑
t=0

γtβ2
t +8εapp,n+6εtd,n+2εsgd,n.

for any n ∈ Z+.
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From Theorem 6.2, we have εtd,n ≤ poly(pT (ϱ1αm))O
(

1√
Ktd

+ 1√
mcritic

+ γT
)

with ηtd =

O(1/
√
Ktd), and by Theorem 14.8 in [37], we have εsgd,n ≤ poly(pT (ϱ1αm), ∥ρ∥2)O(1/

√
Ksgd)

with ηtd = O(1/
√
Ktd). As such, the statistical errors in the critic and the policy update (i.e.,

εtd,n, εsgd,n) can be made arbitrarily small by using larger Ktd,Ksgd and larger mcritic. The remain-
ing quantity to characterize is the approximation error, which is of critical importance for a small
optimality gap as shown in Theorem 7.2 and Proposition 7.5. In the following, we will provide a finer
characterization of εapp,n and identify a class of POMDPs that can be efficiently solved by Rec-NPG.
Assumption 7.6. For an index set J and ν ∈ R2

>0, we consider a class HJ,ν of transportation

mappings

v(j) ∈ H : j ∈ J,

 sup
w∈R,j∈J

|v(j)w (w)|

sup
u∈Rd,j∈J

∥v(j)u (u)∥2

 ≤
(
νw
νu

) , and the infinite-width limit

FJ,ν := {z̄ 7→ E[Ψ(z̄; θ0)v(θ0)] : v ∈ Conv(HJ,ν)}, where Ψ(·; θ0) is the NTRF matrix.

We assume that there exists an index set J and ν ∈ R2
>0 such that QπΦ(n) ∈ FJ,ν for all n ∈ N.

This representational assumption states that the Q-functions under all policies πΦ(n) throughout the
Rec-NPG iterations n can be represented by convex combinations of a fixed set of mappings in the
function class F indexed by J . Richness of J as measured by a Rademacher complexity will play an
important role in bounding εapp,n. To that end, for z̄t = (zt, at) ∈ (Y× A)t+1, let

Gz̄t
t = {ϕ 7→ ∇⊤

ϕH
(1)
t (z̄t;ϕ)v(ϕ) : v ∈ HJ,ν}, and Radm(Gz̄t

t ) = E
ϵ∼Radm(1)
Φ(0)∼ζinit

sup
g∈G

z̄t
t

m∑
i=1

ϵi
m
g(Φi(0)).

Note that v ∈ HJ,ν above can be replaced more with v ∈ Conv(HJ,ν) without any loss. In that
case, since the mapping v(j) 7→ f⋆t (z̄t;v

(j)) ∈ Gz̄t
t is linear, Gz̄t

t is replaced with Conv(Gz̄t
t )

without changing the Rademacher complexity [31].

The following proposition provides a finer characterization of the function approximation error.
Proposition 7.7. Under Assumption 7.6, if ρ ⪰ ν, then

ϵapp,n ≤ 1

1− γ

(
2 max
0≤t<T

max
z̄t∈(Y×A)t+1

Radm(Gz̄t
t ) + LT ∥ρ∥2

√
ln (2T |Y× A|T /δ)

m

)2

,

for all n simultaneously with probability at least 1−δ over the random initialization for any δ ∈ (0, 1).

Remark 7.8. Two interesting cases that lead to a vanishing approximation error (as m→ ∞), thus
global near-optimality, are as follows.

• Finite J . If |J | <∞, then Proposition 7.7 reduces to [7] (with T = 1 for FNNs) with the complexity

term O

(√
ln(|J|/δ)

m

)
by the finite-class lemma [31]. In this case, the Q-functions throughout

n = 0, 1, . . . lie in the convex hull of |J | basis functions in F generated by {v(j) ∈ H : j ∈ J}.

• Linear transportation mappings. For a fixed map ϖ : Rd+1 → R(d+1)×(d+1), let v(b)(θ) =
⟨ϖ(θ), b⟩, b ∈ J where J ⊂ Rd+1 is compact. The approximation error vanishes at a rate O( 1√

m
).

The proof of Prop. 7.7 and a discussion on the necessity of uniform bounds for the actor network in
policy parameterization within the policy optimization framework can be found in Appendix 5.

8 Conclusion

In this work, we have studied RNN-based policy evaluation and policy optimization methods with
finite-time analyses. An important limitation of Rec-NPG is that it does not provide an effective
solution in POMDPs that require long-term memory as we point out in Remarks 6.3-7.3. As an
extension of this work, theoretical analyses of more complicated LSTM- [17] and GRU-based [10]
natural policy gradient algorithms can be considered as a future work. Alternatively, the study of hard-
and soft-attention mechanisms to address the limitations of the RNNs [33] in policy optimization is
also a very interesting future direction.
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A Algorithmic Tools for Recurrent Neural Networks

A.1 Random Initialization for Recurrent Neural Networks

One key concept is random initialization, which is widely used in practice [13] and yields the basis of
the kernel analysis [19, 9]. In this work, we assume that m is even, and use the following symmetric
initialization [9].
Definition A.1 (Symmetric random initialization). Let ci ∼ Rad(1), Vi ∼ Rad(α), Ui(0) ∼
N (0, Id) independently for all i ∈ {1, 2, . . . ,m/2} and independently from each other, and
ci = −ci−m/2, Vi = Vi−m/2 and Ui(0) = Ui−m/2(0) for i ∈ {m/2 + 1, . . . ,m}. Then,
(W(0),U(0), c) is called a symmetric random initialization where W(0) = diagm(V ) and U⊤

i (0)
is the ith-row of U(0).

The symmetrization ensures that Ft(z̄t;W(0),U(0), c) = 0 for any t ≥ 0 and input z̄t.

A.2 Max-Norm Regularization for Recurrent Neural Networks

Max-norm regularization, proposed by [39], has been shown to be very effective across a broad
spectrum of deep learning problems [40, 14]. In this work, we incorporate max-norm regularization
(around the random initialization) into the recurrent natural policy gradient for sharp convergence
guarantees. To that end, given a random initialization (W(0),U(0), c) as in Definition A.1 and a
vector ρ = (ρw, ρu)

⊤ ∈ R2
>0 of projection radii, we define the compactly-supported set of weights

Ωρ,m ⊂ Rm(d+1) as
Ωρ,m = B(m)

2,∞(Θ(0), ρ). (17)

Given any symmetric random initialization (W(0),U(0), c) and ρ ∈ R2
>0, the set Ωρ,m is a compact

and convex subset of Rm(d+1), and for any Θ ∈ Ωρ,m, we have

max
1≤i≤m

|Wii −Wii(0)| ≤
ρw√
m
,

max
1≤i≤m

∥Ui − Ui(0)∥ ≤ ρu√
m
.

Let

ProjΩρ,m
[Θ] =

 argmin
w∈B2

(
Wii(0),

ρw√
m

) |Wii − wi|, argmin
ui∈B2

(
Ui(0),

ρu√
m

) ∥Ui − ui∥2


i∈[m]

(18)
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As such, the projection operator ProjΩρ,m
[·] onto Ωρ,m is called the max-norm projection (or

regularization).

Note that we have ∥W − W(0)∥2 ≤ ρw, ∥U − U(0)∥2 ≤ ρu and ∥Θ − Θ(0)∥2 ≤ ∥ρ∥2 in
the ℓ2 geometry for any Θ ∈ Ωρ,m. Therefore, although the max-norm parameter class Ωρ,m ⊂
{Θ ∈ Rm(d+1) : ∥Θ − Θ(0)∥2 ≤ ∥ρ∥2}, the ℓ2-projected [3, 42, 28] and max-norm projected [7]
optimization algorithms recover exactly the same function class (i.e., RKHS associated with the
neural tangent kernel studied in [21, 41], see Section 4).

B Proofs for Section 6

An important quantity in the analysis of recurrent neural networks is the following:

Γ
(i)
t (z̄t; Θ) :=WiiH

(i)
t (z̄t; Θ),

for any hidden unit i ∈ [m] and Θ ∈ Rm(d+1). The following Lipschitzness and smoothness results
for Θi 7→ H

(i)
t (z̄t; Θ) and Θi 7→ Γ

(i)
t (z̄t; Θ).

Lemma B.1 (Local continuity of hidden states; Lemma 1-2 in [4]). Given ρ ∈ R2
>0 and α ≥ 0, let

αm = α+ ρw√
m

. Then, for any z̄ ∈ (Y× A)Z̄+ with supt∈N

∥∥∥∥(ytat
)∥∥∥∥

2

≤ 1, t ∈ N and i ∈ [m],

• Θi 7→ H
(i)
t (z̄t; Θ) is Lt-Lipschitz continuous with Lt = (ϱ20 + 1)ϱ20 · p2t (αmϱ1),

• Θi 7→ H
(i)
t (z̄t; Θ) is βt-smooth with βt = O (d · p(αmϱ1) · q(αmϱ1)),

• Θi 7→ Γ
(i)
t (z̄t; Θ) is Λt-Lipschitz with Λt =

√
2(ϱ0 + 1 + αmLt),

• Θi 7→ Γ
(i)
t (z̄t; Θ) is χt-smooth with χt =

√
2(Lt + αmβt),

in Ωρ,m. Consequently, for any Θ ∈ Ωρ,m,

sup
z̄∈H̄∞

max
0≤t≤T

|Ft(z̄t; Θ)| ≤ LT · ∥ρ∥2, T ∈ N, (19)

sup
z̄∈H̄∞

|F Lin
t (z̄t; Θ)− Ft(z̄t; Θ)| ≤ 2√

m
(ϱ2Λ

2
t + ϱ1χt)∥Θ−Θ(0)∥22, t ∈ N, (20)

sup
z̄∈H̄∞

〈
∇Ft(z̄t; Θ)−∇Ft(z̄t; Θ(0)),Θ− Θ̄

〉
≤ 2β2

t ∥ρ∥22√
m

, (21)

with probability 1 over the symmetric random initialization (W(0),U(0), c).
Lemma B.2 (Approximation error between RNN-NTRF and RNN-NTK). Let f⋆ ∈ F with the
transportation mapping v ∈ H , and let

Θ̄i = Θi(0) +
1√
m
civ(Θi(0)), i ∈ [m]. (22)

for any symmetric random initialization (W(0),U(0), c) in Def. A.1. Let

F Lin
t (·; Θ) = ∇ΘFt(·; Θ(0)) · (Θ−Θ(0)).

If Pπ,µ
T induces a compactly-supported marginal distribution for Xt, t ∈ N such that ∥Xt∥2 ≤ 1 a.s.

and {Z̄t : t ∈ N} is independent from the random initialization (W(0),U(0), c), then we have

E
[
Eπ
µ

[(
f⋆t (Z̄t)− F Lin

t (Z̄t; Θ̄)
)2]] ≤ 2∥ν∥22(1 + ϱ20)p

2
t (αϱ1)

m
, (23)

where the outer expectation is with respect to the random initialization (W(0),U(0), c).

Proof. For any hidden unit i ∈ [m], let

ζi =

〈
v(Θi(0)),

t∑
k=0

Wii
k(0)

(
H

(i)
t−k−1(Z̄t−k−1,Θi(0))

Xt−k

) k∏
j=0

It−j(Z̄t−j ; Θi(0))

〉
.
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Then, it is straightforward to see that

F Lin
t (Z̄t; Θ̄) =

1

m

m∑
i=1

ζi, (24)

and E[ζi|Z̄t] = E[f⋆t (Z̄t)|Z̄t] almost surely. Note that {ζi : i ∈ [m/2]} is independent and identically
distributed and ζi = ζi+m/2 for any i ∈ [m/2]. Also, with probability 1 we have

|ζi|
(♠)

≤ ∥v(Θi(0))∥2 ·

∥∥∥∥∥∥
t∑

k=0

Wii
k(0)

(
H

(i)
t−k−1(Z̄t−k−1,Θi(0))

Xt−k

) k∏
j=0

It−j(Z̄t−j ; Θi(0))

∥∥∥∥∥∥
2

,

(♣)

≤ ∥v(Θi(0))∥2
t−1∑
k=0

αkϱk+1
1

√
1 + ϱ20,

(♢)

≤ ∥ν∥2 · ϱ1 ·
√

1 + ϱ20 · pt(αϱ1),

where (♠) follows from Cauchy-Schwarz inequality, (♣) follows from the uniform bound
supz∈R |ϱ(z)| ≤ ϱ1 and almost-sure bounds ∥Xk∥2 ≤ 1 and |Wii(0)| ≤ α, and (♣) follows
from v ∈ Hν . From these bounds,

Var(ζi) ≤ E[Eπ
µ[|ζi|2]] ≤ ∥ν∥22ϱ21(1 + ϱ0)

2p2t (αϱ1), i ∈ [m]. (25)

Therefore,

E
[
Eπ
µ

[(
f⋆t (Z̄t)− F Lin

t (Z̄t; Θ̄)
)2]]

= Eπ
µ

E
∣∣∣∣∣ 1m

m∑
i=1

(
ζi − E[ζi|Z̄t]

)∣∣∣∣∣
2
 ,

= Eπ
µ

E

∣∣∣∣∣∣ 2m

m/2∑
i=1

(
ζi − E[ζi|Z̄t]

)∣∣∣∣∣∣
2

 ,

=
4

m2
Eπ
µ

m/2∑
i=1

m/2∑
j=1

E
[(
ζi − E[ζi|Z̄t]

) (
ζj − E[ζj |Z̄t]

)]
,

=
4

m2
Eπ
µ

m/2∑
i=1

Var(ζi) ≤
2

m
∥ν∥22ϱ21(1 + ϱ0)

2p2t (αϱ1),

where the first identity is from Fubini’s theorem, the second identity is from the symmetricity of the
random initialization, the fourth identity is due to the independent initialization for i ≤ m/2, and the
inequality is from the bound in equation 25.

Proposition B.3 (Non-stationary Bellman equation). For π ∈ ΠNM, we have

Qπ
t (z̄t) = Eπ

[
r(St, At) + γQπ

t+1(Z̄t+1)
∣∣∣Z̄t = z̄t

]
= Eπ

[
r(St, At) + γVπ

t+1(Zt+1)
∣∣∣Z̄t = z̄t

]
,

for any t ∈ Z+.

Proof of Theorem 6.2. Since {Qπ
t : t ∈ N} ∈ F , let the point of attraction Θ̄ be defined as in

equation 22, and the potential function be defined as

Ψ(Θ) = ∥Θ− Θ̄∥22. (26)

Then, from the non-expansivity of the projection operator onto the convex set Ωρ,m, we have the
following inequality:

Ψ(Θ(k + 1)) ≤ Ψ(Θ(k)) + 2η

T−1∑
t=0

γtδt(Z̄
k
t+1; Θ(k))

〈
∇Ft(Z̄

k
t ; Θ(k)),Θ(k)− Θ̄

〉
+ 2η2∥ŘT (Z̄

k
T ; Θ(k))∥22. (27)
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Let Ěk
t [·] := E[·|Θ(k), . . . ,Θ(0), Z̄k

t ]. Then, we obtain

E[Ψ(Θ(k + 1)−Ψ(Θ(k))] ≤ 2ηE
[ T−1∑

t=0

γt Ěk
t [δt(Z̄

k
t+1; Θ(k))]

〈
∇Ft(Z̄

k
t ; Θ(k)),Θ(k)− Θ̄

〉︸ ︷︷ ︸
(♠)t

]
+ η2E ∥∇̌RT (Z̄

k
T ; Θ(k))∥22︸ ︷︷ ︸
(♣)

. (28)

Bounding E(♠)t. By using the Bellman equation in the non-Markovian setting (cf. Proposition B.3),
notice that

Ěk
t δt(Z̄

k
t+1; Θ(k)) = Ěk

t [r
k
t + γFt+1(Z̄

k
t+1; Θ(k)]− Ft(Z̄

k
t ; Θ(k)),

= γĚk
t

[
Ft+1(Z̄

k
t+1; Θ(k))−Qπ

t+1(Z̄
k
t+1)

]
+Qπ

t (Z̄t)− Ft(Z̄
k
t ; Θ(k)).

Secondly, we perform a change-of-feature as follows:〈
∇Ft(Z̄

k
t ; Θ(k)),Θ(k)− Θ̄

〉
=
〈
∇Ft(Z̄

k
t ; Θ(0)),Θ(k)− Θ̄

〉
+ err

(1)
t,k , (29)

where

err
(1)
t,k :=

〈
∇Ft(Z̄

k
t ; Θ(k))−∇Ft(Z̄

k
t ; Θ(0)),Θ(k)− Θ̄

〉
, and |err(1)t,k | ≤

2β2
t ∥ρ∥22√
m

≤ 2β2
T ∥ρ∥22√
m

,

by Lemma B.1. Furthermore,〈
∇Ft(Z̄

k
t ; Θ(0)),Θ(k)− Θ̄

〉
= F Lin

t (Z̄k
t ; Θ(k))− F Lin

t (Z̄k
t ; Θ̄), (30)

= Ft(Z̄
k
t ; Θ(k))−Qπ

t (Z̄
k
t ) + err

(2)
t,k + err

(3)
t,k (31)

where

err
(2)
t,k := F Lin

t (Z̄k
t ; Θ(k))− Ft(Z̄

k
t ; Θ(k)),

err
(3)
t,k := −F Lin

t (Z̄k
t ; Θ̄) +Qπ

t (Z̄
k
t ).

Thus,

(♠)t = −(Qπ
t (Z̄

k
t )− Ft(Z̄

k
t ; Θ(k)))2 ++Ěk

t δt(Z̄
k
t+1; Θ(k))

3∑
j=1

err
(j)
t,k

+ γĚk
t

[
Ft+1(Z̄

k
t+1; Θ(k))−Qπ

t+1(Z̄
k
t+1)

]
· (Qπ

t (Z̄
k
t )− Ft(Z̄

k
t ; Θ(k))).

By equation 19, we have

sup
z̄∈H̄∞

|δt(z̄t+1; Θ(k))| ≤ r∞ + 2LT ∥ρ∥2 =: δmax

Now, let ωt,k :=
(
E[(Qπ

t (Z̄
k
t )− Ft(Z̄

k
t ; Θ(k)))2]

)1/2
, where the expectation is over the joint distri-

bution of Θ(k) and Z̄k
T . Then,

E[(♠)t] ≤ −ω2
t,k + γωt+1,kωt,k + δmax

3∑
j=1

E|err(j)t,k|.

From equation 20, we have

E|err(2)t,k | ≤
2√
m
(ϱ2Λ

2
T + ϱ1χT )∥ρ∥22.

From the approximation bound in Lemma B.2, we get

E|err(3)t,k | ≤
√
E|err(3)t,k |2 ≤ 2∥ν∥2

√
1 + ϱ20 · pT (αϱ1)√

m
.
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Also, note that ωt+1,kωt,k ≤ 1
2 (ω

2
t,k+ω

2
t+1,k). Putting these together, we obtain the following bound

for every t ∈ {0, 1, . . . , T − 1}:

E[(♠)t] ≤ −ω2
t,k +

γ

2
(ω2

t+1,k + ω2
t,k) + δmax ·

CT√
m
,

where
CT := 2β2

T ∥ρ∥22 + 2(ϱ2Λ
2
T + ϱ1χT )∥ρ∥22 + 2∥ν∥2

√
1 + ϱ20 · pT (αϱ1).

Hence, we obtain the following upper bound:
T−1∑
t=0

γtE[(♠)t] ≤ −(1− γ/2)
∑
t<T

γtω2
t,k +

δmax · CT

(1− γ)
√
m

+
1

2

∑
t<T

γt+1ω2
t+1,k︸ ︷︷ ︸

≤ 1
2 (

∑
t<T γtω2

t,k+γTω2
T,k)

≤ −1− γ

2

∑
t<T

γtω2
t,k +

1

2
γTω2

T,k +
CT · δmax

(1− γ)
√
m
. (32)

Bounding E[(♣)]. Using the triangle inequality, we obtain:

∥
∑
t<T

γtδt(Z̄
k
t+1; Θ(k))∇Ft(Z̄t; Θ(k))∥2 ≤

∑
t<T

γt|δt(Z̄k
t+1; Θ(k))| · ∥∇Ft(Z̄t; Θ(k))∥2.

Since Θ(k) ∈ Ωρ,m for every k ∈ N as a consequence of the max-norm regularization, we have

|δt(Z̄k
t+1; Θ(k))| ≤ δmax = r∞ + 2LT ∥ρ∥2,

∥∇Ft(Z̄
k
t ; Θ(k))∥22 =

1

m

m∑
i=1

∥∇Θi
H

(i)
t (Z̄k

t ; Θ(k))∥22 ≤ L2
t ≤ L2

T ,

for every t < T with probability 1 since Θi 7→ H
(i)
t (z̄t; Θi) is Lt-Lipschitz continuous by Lemma

B.1. Hence, we obtain:

∥∇̌RT (Z̄
k
T ; Θ(k))∥2 ≤ δmaxLT

1− γ
. (33)

Final step. Now, taking expectation over (Z̄k
t ,Θ(k)) in equation 28, and substituting equation 32

and equation 33, we obtain:

E[Ψ(Θ(k + 1))−Ψ(Θ(k))] ≤ −η(1− γ)

T−1∑
t=0

γtω2
t,k + ηγTω2

T,k + η
δmax · CT

(1− γ)
√
m

+ η2
δ2maxL

2
T

(1− γ)2
,

for every k ∈ N. Note that Ψ(Θ(0)) ≤ ∥ν∥22. Thus, telescoping sum over k = 0, 1, . . . ,K − 1 yields

1

K

K−1∑
k=0

RT (Θ(k)) ≤ ∥ν∥22
η(1− γ)K

+
ηδ2maxL

2
T

(1− γ)3
+

δmax · CT

(1− γ)2
√
m

+
γT

(1− γ)K

K−1∑
k=0

ω2
T,k. (34)

The final inequality in the proof stems from the linearization result Lemma B.2, and directly follows
from

RT

(
1

K

∑
k<K

Θ(k)

)
≤ 4

K

∑
k<K

RT (Θ(k)) +
6√
m

(
ϱ2Λ

2
T + ϱ1χT

)
∥ρ∥22,

which directly follows from [4], Corollary 1.

In the following, we study the error under mean-path Rec-TD learning algorithm.
Theorem B.4 (Finite-time bounds for mean-path Rec-TD). For K ∈ N, with the step-size choice
η = (1−γ)2

64L2
T

, mean-path Rec-TD learning achieves the following error bound:

E

[
1

K

∑
k<K

Rπ
T (Θ(k))

]
≤ 2∥ν∥22

(1− γ)ηK
+
γTωT,k

1− γ
+

CT δmax

(1− γ)2
√
m

+ η
( (C ′

T )
2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22)
)
,

where C ′
T and LT are terms that do not depend on K.
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Theorem B.4 indicates that if a noiseless semi-gradient is used in Rec-TD, then the rate can be
improved from O

(
1√
K

)
to O

(
1
K

)
, indicating the potential limits of using variance-reduction

schemes.

Proof of Theorem B.4. At any iteration k ∈ N, let

∇̄RT (Θ(k)) := Eπ
µ

[
∇̌R(Z̄k

t ; Θ(k))
]
, (35)

be the mean-path semi-gradient. First, note that

∥∇̄RT (Θ(k))∥22 ≤ 2∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥22 + 2∥∇̄RT (Θ̄)∥22. (36)

Bounding ∥∇̄RT (Θ̄)∥22. For any k ∈ N, t ≤ T , we have

E
[
δt(Z̄

k
t+1; Θ̄)|Z̄k

t ,Θ(0), c
]
= γE[Ft+1(Z̄

k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)|Z̄k

t ,Θ(0), c]

+Qπ
t (Z̄

k
t )− Ft(Z̄

k
t ; Θ̄).

Since ∥∇Ft(z̄t; Θ̄)∥2 ≤ Lt, the following inequality holds:∥∥E[δt(Z̄k
t+1; Θ̄)∇Ft(Z̄

k
t ; Θ̄)

]∥∥
2
≤ E

∥∥E[δt(Z̄k
t+1; Θ̄)|Z̄k

t ,Θ(0), c
]
∇Ft(Z̄

k
t ; Θ̄)

∥∥
2
,

≤ LTE
∣∣E[δt(Z̄k

t+1; Θ̄)|Z̄k
t ,Θ(0), c

]∣∣ ,
≤ LT

(
γE
∣∣Ft+1(Z̄

k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)

∣∣+ E
∣∣Qπ

t (Z̄
k
t )− Ft(Z̄

k
t ; Θ̄)

∣∣) , (37)

where we used Jensen’s inequality, the law of iterated expectations, and triangle inequality. From the
above inequality, we obtain

∥∇̄RT (Θ̄)∥2
1
≤

T−1∑
t=0

γt
∥∥E[δt(Z̄k

t+1; Θ̄)∇Ft(Z̄
k
t ; Θ̄)

]∥∥
2
,

2
≤ LT γ

∑
t<T

γtE|Ft+1(Z̄
k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)|+ LT

∑
t<T

γtE|Qπ
t (Z̄

k
t )− Ft(Z̄

k
t ; Θ̄)|,

3
≤ LT√

1− γ

(
γE
√∑

t<T

γt|Ft+1(Z̄k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)|2 + E

√∑
t<T

γt|Ft(Z̄k
t ; Θ̄)−Qπ

t (Z̄
k
t )|2

)
,

4
≤ LT√

1− γ

(
γ

√
E
∑
t<T

γt|Ft+1(Z̄k
t+1; Θ̄)−Qπ

t+1(Z̄
k
t+1)|2 +

√
E
∑
t<T

γt|Ft(Z̄k
t ; Θ̄)−Qπ

t (Z̄
k
t )|2

)
,

5
≤

√
2(1 + γ)LT√

1− γ

∥ν∥2
√

1 + ϱ20 · pT (ϱ1α)√
m

.

where 1 follows from triangle inequality, 2 follows from equation 37, 3 follows from Cauchy-
Schwarz inequality and the monotonicity of the geometric series T 7→

∑
t<T γ

t, 4 follows from
Jensen’s inequality, and finally 5 follows from Lemma B.2. Hence, we obtain

∥∇̄RT (Θ̄)∥22 ≤ 8L2
T ∥ν∥22(1 + ϱ20)p

2
T (ϱ1α)

(1− γ)m
. (38)

Bounding ∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥22. First, note that

∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥2

= ∥E
[∑
t<T

γt
(
δt(Z̄

k
t+1; Θ(k))∇Ft(Z̄

k
t ; Θ(k))− δt(Z̄

k
t+1; Θ̄)∇Ft(Z̄

k
t ; Θ̄)

) ∣∣∣]∥2
We make the following decomposition for each t < T :

δt(Z̄
k
t+1; Θ(k))∇Ft(Z̄

k
t ; Θ(k))− δt(Z̄

k
t+1; Θ̄)∇Ft(Z̄

k
t ; Θ̄)

= δt(Z̄
k
t+1; Θ(k))

(
∇Ft(Z̄

k
t ; Θ(k))−∇Ft(Z̄

k
t ; Θ̄)

)
+∇Ft(Z̄

k
t ; Θ(k))

(
δt(Z̄

k
t+1; Θ̄)− δt(Z̄

k
t+1; Θ(k))

)
(39)
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By Lemma B.1, we have |δt(Z̄k
t+1; Θ)| ≤ δmax and ∥∇Ft(Z̄

k
t ; Θ)∥1 ≤ Lt ≤ LT almost surely for

any Θ ∈ Ωρ,m, which holds for Θ(k) (due to the max-norm projection) and Θ̄. As such, by triangle
inequality,

∥∇̄RT (Θ(k))−∇̄RT (Θ̄)∥2

≤
∑
t<T

γtδmax
β2
tE∥Θ(k)− Θ̄∥22

m
+
∑
t<T

γtLtE|δt(Z̄k
t+1; Θ̄)− δt(Z̄

k
t+1; Θ(k))|,

≤ δmaxβ
2
T (∥ρ∥22 + ∥ν∥22)
m(1− γ)︸ ︷︷ ︸

=:
C

(4)
T
m

+LTE

[
T−1∑
t=0

γt|δt(Z̄k
t+1; Θ̄)− δt(Z̄

k
t+1; Θ(k))|

]
(40)

Note that∑
t<T

γt|δt(Z̄k
t+1; Θ(k))− δt(Z̄

k
t+1; Θ̄)|

=
∑
t<T

γt
(
|Ft+1(Z̄

k
t+1; Θ̄)− Ft+1(Z̄

k
t+1; Θ(k))|+ |Ft(Z̄

k
t ; Θ̄)− Ft(Z̄

k
t ; Θ(k))|

)
,

≤ 2
∑
t<T

γt
∣∣∣Ft(Z̄

k
t ; Θ̄)− Ft(Z̄

k
t ; Θ(k))

∣∣∣+ γTLT ∥Θ(k)− Θ̄∥2, (41)

where the second line follows from the Lipschitz continuity of Θ 7→ Ft(·; Θ). Then, adding and
subtracting Qπ

t to each term, we obtain∑
t<T

γt|δt(Z̄k
t+1; Θ(k))− δt(Z̄

k
t+1; Θ̄)|

≤ 2
∑
t<T

γt
(
|Ft(Z̄

k
t ; Θ̄)−Qπ

t (Z̄
k
t )|+ |Qπ

t (Z̄
k
t )− Ft(Z̄

k
t ; Θ(k))|

)
+ γTLT ∥Θ(k)− Θ̄∥2. (42)

Taking expectation, we obtain

E
∑
t<T

γt|δt(Z̄k
t+1; Θ(k))− δt(Z̄

k
t+1; Θ̄)| ≤ 2√

1− γ

√√√√E

[∑
t<T

γt|Ft(Z̄k
t ; Θ(k))−Qπ

t (Z̄
k
t )|2

]

+
2√
1− γ

√√√√E

[∑
t<T

γt|Ft(Z̄k
t ; Θ̄)−Qπ

t (Z̄
k
t )|2

]
+ γTLT ∥Θ(k)− Θ̄∥2.

By Lemma B.2 and equation 20, we have

E|Ft(Z̄
k
t ; Θ̄)−Qπ

t (Z̄
k
t )|2 ≤ 4

m
∥ν∥22ϱ21(1 + ϱ0)

2p2t (αϱ1) +
4

m
(ϱ2Λ

2
T + ϱ1χT )

2∥ρ∥42,

for any t < T . Thus,

E
∑
t<T

γt|δt(Z̄k
t+1; Θ(k))− δt(Z̄

k
t+1; Θ̄)| ≤ 2√

1− γ

√√√√E

[∑
t<T

γt|Ft(Z̄k
t ; Θ(k))−Qπ

t (Z̄
k
t )|2

]

+
1√
m

4√
(1− γ)3

(
∥ν∥2ϱ1(1 + ϱ0)pT (αϱ1) + (ϱ2Λ

2
T + ϱ1χT )∥ρ∥22)

)
︸ ︷︷ ︸

=:C
(3)
T

+γTLT ∥Θ(k)− Θ̄∥2︸ ︷︷ ︸
≤∥ρ∥2+∥ν∥2

.

This results in the following bound:

E
∑
t<T

[
γt|δt(Z̄k

t+1; Θ(k))− δt(Z̄
k
t+1; Θ̄)|

]
≤ 2√

1− γ

√
RT (Θ(k))+

C
(3)
T√
m

+γTLT (∥ρ∥2+∥ν∥2).

(43)
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Substituting the local smoothness result in equation 43 into equation 40, we obtain

∥∇̄RT (Θ(k))−∇̄RT (Θ̄)∥2 ≤ LT

(
2√
1− γ

√
RT (Θ(k)) +

C
(3)
T√
m

+ γTLT (∥ρ∥2 + ∥ν∥2)

)
+
C

(4)
T

m
.

Thus, we obtain

∥∇̄RT (Θ(k))−∇̄RT (Θ̄)∥22 ≤ 16L2
T

1− γ
RT (Θ(k))+

4(C
(3)
T )2L2

T + 4(C
(4)
T )2

m
+8γ2TL4

T (∥ρ∥22+∥ν∥22).
(44)

Using equation 38 and equation 44 together, we obtain

∥∇̄RT (Θ(k))∥22 ≤ 2∥∇̄RT (Θ(k))− ∇̄RT (Θ̄)∥22 + 2∥∇̄RT (Θ̄)∥22,

≤ 32L2
TRT (Θ(k))

1− γ
+

(C ′
T )

2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22). (45)

In the final step, we use equation 28, equation 32 and equation 45 together:

E [Ψ(Θ(k + 1))−Ψ(Θ(k))] ≤ −η(1− γ)ERT (Θ(k)) + ηγTωT,k + η
CT δmax

(1− γ)
√
m

+ η2
(
32L2

TERT (Θ(k))

1− γ
+

(C ′
T )

2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22)
)
, (46)

where the expectation is over the random initialization. Choosing η = (1−γ)2

64L2
T

, we obtain

E[Ψ(Θ(k + 1))−Ψ(Θ(k))] ≤ −η(1− γ)

2
ERT (Θ(k)) + ηγTωT,k + η

CT δmax

(1− γ)
√
m

+ η2
(
(C ′

T )
2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22)
)
. (47)

Telescoping sum over k = 0, 1, . . . ,K − 1, and re-arranging terms, we obtain:

E

[
1

K

∑
k<K

RT (Θ(k))

]
≤ 2∥ν∥22

(1− γ)ηK
+
γTωT,k

1− γ
+

CT δmax

(1− γ)2
√
m

+ η

(
(C ′

T )
2

m
+ 16γ2TL4

T (∥ρ∥22 + ∥ν∥22)
)
. (48)

C Numerical Experiments for Rec-TD

In the following, we will demonstrate the numerical performance of Rec-TD for a given non-
Markovian policy πgreedy.

POMDP setting. We consider a randomly-generated finite POMDP instance with |S| = |Y| = 8,
|A| = 4, r(s, a) ∼ Unif[0, 1] for all (s, a) ∈ S× A. For a fixed ambient dimension d = 8, we use a
random feature mapping (y, a) 7→ φ(y, a) ∼ N (0, Id), ∀(y, a) ∼ Y× A.

Greedy policy. Let
j⋆(t) ∈ arg max

0≤j<t
rj ,

be the instance before t at which the maximum reward was obtained, and let

πgreedy
t (a|Zt) =

{
1
|A| , w.p. min{ 2+t

10 , pexp},
1a=Aj⋆(t)

, w.p. 1−min{ 2+t
10 , pexp},

(49)

be the greedy policy with a user-specified exploration probability pexp ∈ (0, 1). The long-term
dependencies in this greedy policy is obviously controlled by pexp: a small exploration probability
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will make the policy (thus, the corresponding Q-functions) more history-dependent. Since the exact
computation of (Qπ

t )t∈N is highly intractable for POMDPs, we use (empirical) mean-square temporal
difference (MSTD) 2 as a surrogate loss.

Example 1 (Short-term memory). We first consider the performance of Rec-TD with learning
rate η = 0.05, discount factor γ = 0.7 and RNNs with various choices of network width m.
For pexp = 0.8, the performance of Rec-TD is demonstrated in Figure 1. Consistent with the

(a) Mean-squared TD, T = 8 (b) 1
m
∥U(k)−U(0)∥2,1, T = 8.

(c) 1
m
∥W(k)−W(0)∥2,1, T =

8.

(d) Mean-squared TD, T = 32
(e) 1

m
∥U(k) − U(0)∥2,1, T =

32.
(f) 1

m
∥W(k) −W(0)∥2,1, T =

32.

Figure 1: Mean-square TD and parameter movement under Rec-TD for the case pmin = 0.8 and
γ = 0.7. The mean curve and confidence intervals (90%) in Figures 1a and 1d stem from 5 trials. The
90% confidence intervals in Figures 1b-1c and 1e-1f correspond to deviations (i.e., ∥Ui(k)−Ui(0)∥2
and |Wii(k)−Wii(0)|) across different units i ∈ [m] in a single trial.

theoretical results in Theorem 6.2, Rec-TD (1) achieves smaller error with larger network width m,
(2) requires smaller deviation from the random initialization Θ(0), which is known as the lazy training
phenomenon. Since ∥W(k)∥2,∞ ≤ 1 due to large enough pexp that avoids long-term dependencies,
the problem exhibits a weak memory behavior. This is observed in Figures 1d-1f without a visible
increase in the MSTD performance despite a significant 3-fold increase in T , consistent with the
theoretical findings in Theorem 6.2.

Example 2 (Long-term memory). In the second example, we consider the same POMDP with a
discount factor γ = 0.9. The exploration probability is reduced to pexp = 0.3, which leads to longer
dependency on the history. This impact can be observed in Figure 2b-2d, which implies a larger
spectral radius compared to Example 1 (in comparison with Figures 1c-1f). As a consequence of
the long-term dependencies, increasing T from 8 to 32 leads to a dramatic increase in the MSTD
unlike the weak-memory system in Example 1. The impact of a larger network size (i.e., m) is very
significant in this example: choosing m = 512 leads to a dramatic improvement in the performance.

D Policy Gradients under Partial Observability

In this section, we will provide basic results for policy gradients under POMDPs, which is critical to
develop the natural policy gradient method for POMDPs.

2the empirical mean of independently sampled
{

1
k

∑
s<k R̂

TD
T (Θ(s)) : k ∈ N

}
where R̂TD

T (Θ(k)) =∑T−1
t=0 γtδ2t (Z̄

k
t ; Θ(k)).
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(a) Mean-squared TD, T = 8 (b) 1
m
∥W(k)−W(0)∥2,1, T = 8.

(c) Mean-squared TD, T = 32 (d) 1
m
∥W(k)−W(0)∥2,1, T = 32.

Figure 2: Mean-square TD and parameter deviation under Rec-TD for the case pmin = 0.3 and
γ = 0.9. The mean curve and confidence intervals (90%) in Figures 2a and 2c stem from 5 trials.
The 90% confidence intervals in Figures 2b and 2d correspond to deviations (i.e., |Wii(k)−Wii(0)|)
across different units i ∈ [m] in a single trial.

Proposition D.1. Let π′ ∈ ΠNM be an admissible policy, and let Z̄T ∼ Pπ′,µ
T . Then, for any t < T ,

conditional distribution of St given Z̄t is independent of π′. Furthermore, for any π ∈ ΠNM, the
conditional distribution of r(St, At) + γVπ

t+1(Zt+1) given Z̄t is independent of π′.

Proof of Prop. D.1. Let the belief at time t ∈ N be defined as

bt(s) := P(St = s|Z̄t). (50)

For any non-stationary admissible policy π, the belief function is policy-independent. To see this,
note that

P(St = st, Z̄t = z̄t) =
∑

(s0,...,st−1)∈St
P(S0 = s0|Y0 = y)π0(a0|z0)

×
t−1∏
k=0

P(sk+1|sk, ak)ϕ(yk+1|sk+1)πk+1(ak+1|zk+1),

=

(
t∏

k=0

πk(ak|zk)

) ∑
(s0,...,st−1)∈St

P(S0 = s0|Y0 = y)

×
t−1∏
k=0

P(sk+1|sk, ak)ϕ(yk+1|sk+1),

since
∏t

k=0 πk(ak|zk) does not depend on the summands (s0, . . . , st−1) – note that we use the
notation P(sk+1|sk, ak) := P(sk, ak, {Sk+1 = sk+1}) and ϕ(yk|sk) := ϕ(sk, {Yk = yk}). Thus,

bt(st) =

∑
(s0,...,st−1)∈St P(S0 = s0|Y0 = y)

∏t−1
k=0 P(sk+1|sk, ak)ϕ(yk+1|sk+1)∑

(s′0,...,s
′
t−1,s

′
t)∈St+1 P(S0 = s′0|Y0 = y)

∏t−1
k=0 P(s′k+1|s′k, ak)ϕ(yk+1|s′k+1)

,
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independent of π. As such, we have

Eπ′
[rt + γVπ(Zt+1)|Z̄t] =

∑
s∈S

bt(s)Eπ′
[rt + γVπ

t+1(Zt+1)|Z̄t = z̄t, St = s],

=
∑

st,st+1∈S

∑
y∈Y

bt(st)
(
r(st, At) + γP(st+1|st, At)ϕ(y|st+1)Vπ

t+1(Zt, yt+1)
)
,

= E[rt + γVπ
t+1(Zt+1)|Z̄t = z̄t],

in other words, the conditional distribution of r(St, At) + γVπ
t+1(Zt+1) given {Z̄t = z̄t} is indepen-

dent of π′. We also know from Prop. B.3 that

Eπ′
[rt + γVπ

t+1(Zt+1)|Z̄t = z̄t] = E[rt + γVπ
t+1(Zt+1)|Z̄t = z̄t] = Qπ

t (z̄t).

The next result generalizes the policy gradient theorem to POMDPs. We note that there is an extension
of REINFORCE-type policy gradient for POMDPs in [44]. The following result is a different and
improved version as it 1 provides a variance-reduced unbiased estimate of the policy gradient for
POMDPs, and more importantly 2 yields the compatible function approximation (Prop. 7.1) that
yields natural policy gradient (NPG) for POMDPs.

Proposition D.2 (Policy gradient – POMDPs). For any Φ ∈ Rm(d+1), we have

∇ΦVπΦ

(µ) = EπΦ

µ

[ ∞∑
t=0

γt · QπΦ

t (Zt, At) · ∇Φ lnπΦ
t (At|Zt)

]
, (51)

for any µ ∈ ∆(Y).

Proof of Prop. D.2. For any t ∈ N, we have

VπΦ

t (zt) =
∑
at

πΦ
t (at|zt)QπΦ

t (zt, at), (52)

by Prop. B.3. Thus, we obtain

∇VπΦ

t (zt) =
∑
at

πΦ
t (at|zt)∇ lnπΦ

t (at|zt)QπΦ

t (zt, at) +
∑
at

πΦ
t (at|zt)∇QπΦ

t (zt, at),

= EπΦ

[∇ lnπΦ
t (At|Zt)QπΦ

t (Zt, At) +∇QπΦ

t (Zt, At)|Zt = zt]. (53)

Now, note that

QπΦ

t (zt, at) = E[r(St, At) + γVπΦ

t+1(Zt+1)|Z̄t = (zt, at)],

=
∑
st

bt(st)

r(st, at) + γ
∑
st+1

P(st+1|st, at)
∑
yt+1

ϕ(yt+1|st+1)VπΦ

t+1(zt+1)

 ,

where zt+1 = (zt, at, yt+1). As a consequence of Prop. D.1, we have ∇Φ

∑
st
bt(st)r(st, at) = 0,

and also

∇ΦQπΦ

t (zt, at) = γ
∑
st

bt(st)
∑
st+1

P(st+1|st, at)
∑
yt+1

ϕ(yt+1|st+1)∇ΦVπΦ

t+1(zt+1),

= γE[∇ lnπΦ
t+1(At+1|Zt+1)QπΦ

t+1(Zt+1, At+1) +∇ΦQπΦ

t+1(Zt+1, At+1)|Z̄t = (zt, at)],

= γEπΦ
[ ∞∑
k=t+1

γk−t−1∇Φ lnπΦ
k (Ak|Zk)QπΦ

k (Zk, Ak)
∣∣∣Z̄t = (zt, at)

]
.

Using the above recursive formula for ∇ΦQπΦ

t along with the law of iterated expectations in equa-
tion 53, we obtain

∇ΦVπΦ

t (zt) = EπΦ
[ ∞∑
k=t

γk−t∇Φ lnπΦ
k (Ak|Zk)QπΦ

k (Zk, Ak)
∣∣∣Zt = zt

]
. (54)
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Since we have Vπ := Vπ
0 , and also ∇ΦVπΦ

(µ) = ∇Φ

∑
z0
µ(z0)VπΦ

(z0) =
∑

z0
µ(z0)∇ΦVπΦ

(z0)
by the linearity of gradient, we conclude the proof.

Note on the baseline. Similar to the case of fully-observable MDPs, adding a baseline qπ
Φ

t (zt)

to the Q-function does not change the policy gradients since
∑

a πt(a|zt)∇ lnπΦ
t (a|zt)qπ

Φ

t (zt) =

qπ
Φ

t (zt)
∑

a ∇πΦ
t (a|zt) = qπ

Φ

t (zt)∇
∑

a π
Φ
t (a|zt) = 0. Thus, we also have

∇ΦVπΦ

(µ) = EπΦ

µ

[ ∞∑
t=0

γtAπΦ

t (Zt, At)∇Φ lnπΦ
t (At|Zt)

]
, (55)

which uses qπ
Φ

t = VπΦ

t as the baseline, akin to the fully-observable case.

The following result extends the compatible function approximation theorem in [23] to POMDPs.

Proof of Prop. 7.1. The proof is identical to [23]. By first-order condition for optimality, we have

2EπΦ

µ

∞∑
t=0

γt∇ lnπΦ
t (At|Zt)

(
∇⊤ lnπΦ

t (At|Zt)ω
⋆ −AπΦ

t (Z̄t)
)

= 2
(
Gµ(Φ)ω

⋆ −∇ΦVπΦ

(µ)
)
= 0,

which concludes the proof.

E Theoretical Analysis of Rec-NPG

First, we prove structural results for RNNs in the kernel regime, which will be key in the analysis
later.

E.1 Log-Linearization of SOFTMAX Policies Parameterized by RNNs

The key idea behind the neural tangent kernel (NTK) analysis is linearization around the random
initialization. To that end, let

F Lin
t (z̄t; Θ) := ⟨∇Ft(z̄t; Θ(0)),Θ−Θ(0)⟩, (56)

for any Θ ∈ Rm(d+1). We define the log-linearized policy as follows:

π̃Φ
t (a|zt) :=

exp(F Lin
t (zt, a; Φ))∑

a′∈A exp(F Lin
t (zt, a′; Φ))

, t ∈ N. (57)

The first result bounds the Kullback-Leibler divergence between πΦ
t and its log-linearized version

π̃Φ
t . In the case of FNNs with ReLU activation functions, a similar result was presented in [7]. The

following result extends this idea to (i) RNNs, and (ii) smooth activation functions.
Proposition E.1 (Log-linearization error). For any t ∈ N and (zt, a) ∈ (Y× A)t+1, we have

sup
(zt,a)∈(Y×A)t+1

∣∣∣∣ln π̃Φ
t (a|zt)
πΦ
t (a|zt)

∣∣∣∣ ≤ 6√
m

(
Λ2
tϱ2 + χtϱ1

)
∥Φ− Φ(0)∥22, (58)

for any t ∈ N. Consequently, we have πt(·|zt) ≪ π̃t(·|zt) and π̃t(·|zt) ≪ πt(·|zt), and

max
{
DKL(π

Φ
t (·|zt)∥π̃Φ

t (·|zt)),DKL(π̃
Φ
t (·|zt)∥πΦ

t (·|zt))
}
≤ 6√

m

(
Λ2
tϱ2 + χtϱ1

)
∥Φ− Φ(0)∥22,

(59)
for all zt ∈ (Y× A)t+1 and t ∈ N.

Proof. Fix (zt, a) ∈ (Y× A)t+1. By the log-sum inequality [11], we have

ln

∑
a exp(F

Lin
t (zt, a; Φ))∑

a exp(Ft(zt, a; Φ))
≤
∑
a∈A

π̃Φ
t (a|zt)

(
F Lin
t (zt, a; Φ)− Ft(zt, a; Φ)

)
.
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Using the same argument, we obtain∣∣∣∣ln∑a exp(F
Lin
t (zt, a; Φ))∑

a exp(Ft(zt, a; Φ))

∣∣∣∣ ≤∑
a∈A

(
π̃Φ
t (a|zt) + πΦ

t (a|zt)
)
·
∣∣F Lin

t (zt, a; Φ)− Ft(zt, a; Φ)
∣∣ . (60)

Thus, we have∣∣∣∣ln π̃Φ
t (a|zt)
πΦ
t (a|zt)

∣∣∣∣ ≤ (1 + π̃Φ
t (a|zt) + πΦ

t (a|zt))
∣∣F Lin

t (zt, a; Φ)− Ft(zt, a; Φ)
∣∣ .

By using Lemma B.1, we have supz̄t∈(Y×A)t+1

∣∣F Lin
t (z̄′t; Φ)− Ft(z̄

′
t; Φ)

∣∣ ≤ 2√
m
(Λ2

tϱ2+χtϱ1)∥Φ−
Φ(0)∥22. By using the last two inequalities together, and noting that 1 + π̃Φ

t (a|zt) + πΦ
t (a|zt) ≤ 3,

we conclude that ∣∣∣∣ln π̃Φ
t (a|zt)
πΦ
t (a|zt)

∣∣∣∣ ≤ 6√
m
(Λ2

tϱ2 + χtϱ1)∥Φ− Φ(0)∥22.

Since the righthand-side of the above inequality is independent of (zt, a), we deduce that the result
holds for all (zt, a), thus concluding the proof.

The following result will be important in establishing the Lyapunov drift analysis of Rec-NPG.

Proposition E.2 (Smoothness of ln π̃Φ
t (a|zt)). For any t ∈ N, we have

sup
(zt,a)∈(Y×A)t+1

∥∇ ln π̃Φ
t (a|zt)−∇ ln π̃Φ′

t (a|zt)∥2 ≤ L2
t∥Φ− Φ′∥2,

for any Φ,Φ′ ∈ Rm(d+1).

Proof. Consider a general log-linear parameterization

pθ(x) ∝ exp(ϕ⊤x θ), x ∈ X.

Then, if supx∈X ∥ϕx∥2 ≤ B < ∞, then θ 7→ ln pθ(x) has B2-Lipschitz continuous gradients for
each x ∈ X [1]. The remaining part is to prove a uniform upper bound for ∥∇ΦFt(z̄t; Φ(0))∥2. To
that end, notice that

∇ΦiFt(z̄t; Φ(0)) =
1√
m
ci∇H(i)

t (z̄t; Φ(0)), z̄t ∈ (Y× A)t+1, i ∈ [m].

From the local Lipschitz continuity result in Lemma B.1, we have
supz̄t:maxj≤t ∥(yj ,aj)∥2≤1 ∥∇ΦiH

(i)
t (z̄t; Φ(0))∥2 ≤ Lt for any i ∈ [m]. Thus, for any z̄t, we

have

∥∇ΦFt(z̄t; Φ(0))∥22 =
1

m

m∑
i=1

∥∇ΦiH
(i)
t (z̄t; Φ(0))∥22 ≤ L2

t . (61)

E.2 Theoretical Analysis of Rec-NPG

For any π ∈ ΠNM, we define the potential function as

L (π) := Eπ⋆

µ

[
T−1∑
t=0

γtDKL (π
⋆
t (·|Zt)∥πt(·|Zt))

]
. (62)

Then, we have the following drift inequality.
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Proposition E.3 (Drift inequality). For any n ∈ N, the drift can be bounded as follows:

L (πΦ(n+1))− L (πΦ(n)) ≤ −ηnpg(Vπ⋆

(µ)− VπΦ(n)

(µ))

−ηnpgEπ⋆

µ

[
T−1∑
t=0

γt
(
∇⊤ lnπ

Φ(n)
t (At|Zt)ωn −AπΦ(n)

t (Z̄t)
)]

︸ ︷︷ ︸
1

+ ηnpgEπ⋆

µ

∞∑
t=T

γtAπΦ(n)

t (Z̄t)︸ ︷︷ ︸
2

−ηnpgEπ⋆

µ

T−1∑
t=0

γt
(
∇ ln π̃

Φ(n)
t (At|Zt)−∇ lnπ

Φ(n)
t (At|Zt)

)⊤
ωn︸ ︷︷ ︸

3

+
1

2
η2npg∥ρ∥22

T−1∑
t=0

γtL2
t +

12∥ρ∥22√
m

T−1∑
t=0

γt(Λ2
tϱ2 + χtϱ1).

Proof. First, note that the drift can be expressed as

L (πΦ(n+1))− L (πΦ(n)) = Eπ⋆

µ

T−1∑
t=0

γt
∑
a∈A

π⋆
t (At|Zt) ln

π
Φ(n)
t (At|Zt)

π
Φ(n+1)
t (At|Zt)

.

Then, with a log-linear transformation,

L (πΦ(n+1))− L (πΦ(n)) = Eπ⋆

µ

T−1∑
t=0

γt
∑
a∈A

π⋆
t (At|Zt)

×

(
ln

π̃
Φ(n)
t (At|Zt)

π̃
Φ(n+1)
t (At|Zt)

+ ln
π
Φ(n)
t (At|Zt)

π̃
Φ(n)
t (At|Zt)

+ ln
π̃
Φ(n+1)
t (At|Zt)

π
Φ(n+1)
t (At|Zt)

)
.

By using the log-linearization bound in Prop. E.1 twice in the above inequality, we obtain

L (πΦ(n+1))− L (πΦ(n)) ≤ Eπ⋆

µ

T−1∑
t=0

γt
∑
a∈A

π⋆
t (At|Zt) ln

π̃
Φ(n)
t (At|Zt)

π̃
Φ(n+1)
t (At|Zt)

+
12√
m

T−1∑
t=0

γt(Λ2
tϱ2 + χtϱ1)∥ρ∥22. (63)

By the smoothness result in Prop. E.2, we have

| ln π̃Φ(n+1)
t (at|zt)−ln π̃

Φ(n)
t (at|zt)−∇ ln π̃

Φ(n)
t (at|zt)(Φ(n+1)−Φ(n))| ≤ 1

2
L4
t∥Φ(n+1)−Φ(n)∥22.

Thus, we obtain

−η2npgL4
t∥ρ∥22 ≤ −η2npgL4

t∥ωn∥22 ≤ − ln
π̃
Φ(n)
t (at|zt)

π̃
Φ(n+1)
t (at|zt)

− ηnpg∇⊤ ln π̃
Φ(n)
t (at|zt)ωn,

because of the max-norm gradient clipping that yields ∥ωn∥2 ≤ ∥ρ∥2 and Φ(n+1) = Φ(n)+ηnpgωn

for any n ∈ N. Using this in equation 63, we get

L (πΦ(n+1))− L (πΦ(n)) ≤ −ηnpgEπ⋆

µ

T−1∑
t=0

γt∇⊤ ln π̃
Φ(n)
t (at|zt)ωn

+
12√
m

T−1∑
t=0

γt(Λ2
tϱ2 + χtϱ1)∥ρ∥22 +

1

2
η2npgL

4
t∥ρ∥22. (64)

An important technical result that will be useful in our analysis is the pathwise performance difference
lemma, which was originally developed in [22] for fully-observable MDPs.
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Lemma E.4 (Pathwise Performance Difference Lemma). Let Φ,Φ′ ∈ Rm(d+1) be two parameters.
Then, we have

VπΦ′

(µ)− VπΦ

(µ) = EπΦ′

µ

∞∑
t=0

γtAπΦ

t (Zt, At).

The proof of Lemma E.4 is an extension of [1] to non-stationary policies, and can be found at the end
of this subsection.

Using Lemma E.4 in equation 64, we obtain

L (πΦ(n+1))− L (πΦ(n)) ≤ −ηnpg(Vπ⋆

(µ)− VπΦ(n)

(µ))

− ηnpgEπ⋆

µ

T−1∑
t=0

γt
(
∇⊤ ln π̃

Φ(n)
t (at|zt)ωn −AπΦ(n)

t (Z̄t)
)

+ ηnpgEπ⋆

µ

∞∑
t=T

AπΦ(n)

t (Z̄t) +
12√
m

T−1∑
t=0

γt(Λ2
tϱ2 + χtϱ1)∥ρ∥22 +

1

2
η2npgL

4
t∥ρ∥22. (65)

Finally, we replace the term ∇ ln π̃
Φ(n)
t (at|zt) with ∇ lnπ

Φ(n)
t (at|zt) by including the corresponding

error term, and conclude the proof by considering the telescoping sum, and noting that L (πΦ(0)) =
log |A| since Ft(·; Φ(0)) = 0 by symmetric initialization.

Proof of Theorem 7.2. We prove Theorem 7.2 by bounding the numbered terms in Prop. E.3.

Bounding 1 in Prop. E.3. Recall that pT (γ) =
∑

t<T γ
t. Then, by using Jensen’s inequality,

Eπ⋆

µ

T−1∑
t=0

γt
(
∇⊤ lnπ

Φ(n)
t (At|Zt)ωn −AπΦ(n)

t (Z̄t)
)

≤

√√√√pT (γ)Eπ⋆

µ

T−1∑
t=0

γt
∣∣∣∇⊤ lnπ

Φ(n)
t (At|Zt)ωn −AπΦ(n)

t (Z̄t)
∣∣∣2,

=:
√
pT (γ)

√
κεTcfa(Φ(n), ωn),

where κ yields a change-of-measure argment from Pπ⋆,µ
T to PπΦ(n),µ

T .

Bounding 2 in Prop. E.3. sups,a |r(s, a)| ≤ r∞, therefore |Aπ
t (z̄t)| ≤ 2r∞

1−γ for any t ∈ N, z̄t ∈
(Y× A)t+1, and π ∈ ΠNM.

Bounding 3 in Prop. E.3. For any t ∈ N, Cauchy-Schwarz inequality implies(
∇ ln π̃

Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)

)⊤
ωn ≤ ∥∇ ln π̃

Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2∥ρ∥2.

Recall that

∇ ln π̃Φ
t (at|zt) = ∇Ft(zt, at; Φ(0))−

∑
a′

π̃Φ
t (a

′|zt)∇Ft(zt, a
′; Φ(0)),

∇ lnπΦ
t (at|zt) = ∇Ft(zt, at; Φ)−

∑
a′

πΦ
t (a

′|zt)∇Ft(zt, a
′; Φ).

First, from local βt-Lipschitzness of Φi 7→ ∇H(i)
t (z̄t; Φi) for Φ ∈ Ωρ,m by Lemma B.1, we have

∥∇Φi
Ft(z̄t; Φ(n))−∇Φi

Ft(z̄t; Φ(0))∥2 =
1√
m
∥∇Φi

H
(i)
t (z̄t; Φi(n))−∇Φi

H
(i)
t (z̄t; Φi(0))∥2,

≤ βt∥ρ∥2
m

,
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for any n ∈ N since maxi ∥Φi(n)− Φi(0)∥2 ≤ ∥ρ∥2√
m

by max-norm projection. Thus,

∥∇ΦFt(z̄t; Φ(n))−∇ΦFt(z̄t; Φ(0))∥2 ≤ βt∥ρ∥2√
m

, t ∈ N. (66)

Thus,

∥∇ ln π̃
Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2 ≤

∑
a

|πΦ(n)
t (a|zt)− π̃

Φ(n)
t (a|zt)|∥∇Ft(z̄t; Φ(0))∥2

+
βt∥ρ∥2√

m
+
∑
a

π
Φ(n)
t (a|zt)∥∇Ft(zt, a; Φ(n))−∇Ft(zt, a; Φ(0))∥2.

From equation 61, we have

∥∇ ln π̃
Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2 ≤ 2βt∥ρ∥2√

m
+ 2LtDTV

(
π
Φ(n)
t (·|zt)∥π̃Φ(n)

t (·|zt)
)
,

where DTV denotes the total-variation distance between two probability measures. By Pinsker’s
inequality [11], we obtain

∥∇ ln π̃
Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2 ≤ 2βt∥ρ∥2√

m
+

√
2Lt

√
DKL

(
π
Φ(n)
t (·|zt)∥π̃Φ(n)

t (·|zt)
)
.

(67)
By the log-linearization result in Prop. E.1, we have

∥∇ ln π̃
Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)∥2 ≤ 2βt∥ρ∥2√

m
+
√
12Lt∥ρ∥2

√
Λ2
tϱ2 + χtϱ1√

m
. (68)

Thus, we have(
∇ ln π̃

Φ(n)
t (at|zt)−∇ lnπ

Φ(n)
t (at|zt)

)⊤
ωn ≤ ∥ρ∥22

(
2βt√
m

+
√
12Lt

√
Λtϱ2 + χtϱ1
m1/4

)
.

Proof of Lemma E.4. For any y0 ∈ Y, we have:

Vπ′
(y0)− Vπ(y0) = Eπ′

µ

[ ∞∑
t=0

γtrt

∣∣∣Z0 = y0

]
− Vπ(y0),

= Eπ′

µ

[ ∞∑
t=0

γt
(
rt + Vπ

t (Zt)− Vπ
t (Zt)

)∣∣∣Z0 = y0

]
− Vπ(y0),

= Eπ′

µ

[ ∞∑
t=0

γt(rt + γVπ
t+1(Zt+1)− Vπ

t (Zt)
∣∣∣Z0 = y0

]
,

where rt = r(St, At) and the last identity holds since

∞∑
t=0

γtVπ
t (zt) = Vπ

0 (z0) + γ

∞∑
t=0

γtVπ
t+1(zt+1).

Then, letting rt = r(st, at) and by using law of iterated expectations,

Vπ′
(y0)− Vπ(y0) = Eπ′

µ

[ ∞∑
t=0

γt
(
Eπ′

[rt + γVπ
t+1(Zt+1)|Z̄t, St]− Vπ

t (Zt)
)∣∣∣Z0 = y0

]
, (69)

which holds because

Eπ′
[rt + γVπ(Zt+1)|Z̄t] = Eπ′

[rt + γVπ(Zt+1)|Z̄t, Z0].
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The conditional expectation of rt + γVπ
t+1 given {Z̄t = z̄t} is independent of π′:

Eπ′
[rt+γVπ(Zt+1)|Z̄t] =

∑
s∈S

bt(s)Eπ′
[rt + γVπ

t+1(Zt+1)|Z̄t = z̄t, St = s],

=
∑

st,st+1∈S

∑
y∈Y

bt(st)
(
r(st, At) + γP(st+1|st, At)ϕ(y|st+1)Vπ

t+1(Zt, yt+1)
)
,

= E[rt + γVπ
t+1(Zt+1)|Z̄t = z̄t],

based on Prop. D.1. We also know from Prop. B.3 that

Eπ′
[rt + γVπ

t+1(Zt+1)|Z̄t = z̄t] = E[rt + γVπ
t+1(Zt+1)|Z̄t = z̄t] = Qπ

t (z̄t).

Using the above identity in equation 69, we obtain

Vπ′
(y0)− Vπ(y0) = Eπ′

µ

[ ∞∑
t=0

γt
(
Qπ

t (Z̄t)− Vπ(Zt)
)∣∣∣Z0 = y0

]
, (70)

which concludes the proof.

Proof of Prop. 7.5. For any ω, we have

ℓT (ω; Φ(n),QπΦ(n)

) ≤ 2ℓT (ω; Φ(n), Q̂(n)) + 2

∞∑
t=0

γt(AπΦ(n)

t (Zt, At)− Â(n)
t (Zt, At))

2. (71)

Let Gn := σ(Φ(k), k ≤ n) and Hn := σ(Θ̄(n),Φ(k), k ≤ n). Then, since

εsgd,n = E[ℓT (ωn; Φ(n), Q̂(n))|Hn]− inf
ω∈B(m)

2,∞(0,ρ)

E[ℓT (ω; Φ(n), Q̂(n))|Hn],

we obtain

E[ℓT (ωn; Φ(n),QπΦ(n)

)|Hn] ≤ 2E
[
inf
ω

E[ℓT (ω; Φ(n), Q̂(n))|Hn]
∣∣∣Gn

]
+ 2(εtd,n + εsgd,n), (72)

which uses the fact that V ar(X|Gn) ≤ E[|X|2|Gn] for any square-integrable X . We also have

inf
ω

E[ℓT (ω; Φ(n), Q̂(n))|Hn] ≤ 2 inf
ω

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn]

+ 2

∞∑
t=0

γt(AπΦ(n)

t (Zt, At)− Â(n)
t (Zt, At))

2,

which further implies that

E[inf
ω

E[ℓT (ω; Φ(n), Q̂(n))|Hn]|Gn] ≤ 2E[inf
ω

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn]|Gn] + 2εtd,n.

Thus,

E[ℓT (ωn; Φ(n),QπΦ(n)

)|Hn] ≤ 4E
[
inf
ω

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn]
∣∣∣Gn

]
+6εtd,n +2εsgd,n. (73)

For any ω ∈ B(m)
2,∞(0, ρ),

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn] ≤ E[
∑
t<T

γt(∇⊤
ΦFt(Z̄t; Φ(n))ω −QπΦ(n)

t (Z̄t))
2|Hn],

≤ 2E[
∑
t<T

γt(∇⊤
ΦFt(Z̄t; Φ(0))ω −QπΦ(n)

t (Z̄t))
2 + (∇Ft(Z̄t; Φ(n))−∇Ft(Z̄t; Φ(0))

⊤ω)2|Hn],

which implies that

inf
ω

E[ℓT (ω; Φ(n),QπΦ(n)

)|Hn] ≤ 2εapp,n + 2∥ρ∥22E[
∑
t<T

γt∥∇Ft(Z̄t; Φ(n))−∇Ft(Z̄t; Φ(0)∥22|Hn],

≤ 2εapp,n +
2∥ρ∥42
m

∑
t<T

γtβ2
t ,
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using equation 66. Hence,

E[ℓT (ωn; Φ(n),QπΦ(n)

)|Hn] ≤
8∥ρ∥42
m

∑
t<T

γtβ2
t + 8εapp,n + 6εtd,n + 2εsgd,n,

concluding the proof.

Proof of Prop. 7.7. Under Assumption 7.6, consider f (j)t (z̄t) := E[ψ⊤
t (z̄t;ϕ0)v

(j)(ϕ0)] for v(j) ∈
HJ ,ν . Let

ω
(j)
i :=

1√
m
civ

(j)(Φi(0)), i = 1, 2, . . . ,m, (74)

for any j ∈ J . Since ∥ω(j)∥2 ≤ ∥ν∥2 and ρ ⪰ ν, we have

inf
ω∈B(m)

2,∞(0,ρ)

∣∣∣∇⊤Ft(z̄t; Φ(0))ω − f
(j)
t (z̄t)

∣∣∣ ≤ ∣∣∣∇⊤Ft(z̄t; Φ(0))ω
(j) − f

(j)
t (z̄t)

∣∣∣ . (75)

Thus, we aim to find a uniform upper bound for the second term over j ∈ J . For each z̄t, we have

∇⊤Ft(z̄t; Φ(0))ω
(j) =

1

m

m∑
i=1

∇⊤
Φi
H

(i)
t (z̄t; Φi(0))v

(j)(Φi(0)),

thus E[∇⊤Ft(z̄t; Φ(0))ω
(j)] = f

(j)
t (z̄t). Furthermore, from Lemma B.1, since Φ(0) ∈ Ωρ,m

obviously, we have

max
1≤i≤m

∥∇⊤
Φi
H

(i)
t (z̄t; Φi(0))v

(j)(Φi(0))∥2 ≤ Lt∥ν∥2 ≤ Lt∥ρ∥2, a.s..

Thus, by McDiarmid’s inequality [31], we have with probability at least 1− δ,

sup
j∈J

∣∣∣∇⊤Ft(z̄t; Φ(0))ω
(j) − f

(j)
t (z̄t)

∣∣∣ ≤ 2Radm(Gz̄t
t ) + Lt∥ρ∥2

√
log(2/δ)

m
, (76)

for each t < T and z̄t. By union bound,

sup
j∈J

max
z̄t

∣∣∣∇⊤Ft(z̄t; Φ(0))ω
(j) − f

(j)
t (z̄t)

∣∣∣ ≤ 2max
z̄t

Radm(Gz̄t
t ) + Lt∥ρ∥2

√
log(2T |Y× A|t+1/δ)

m
,

≤ 2 max
0≤t<T

max
z̄t

Radm(Gz̄t
t ) + LT ∥ρ∥2

√
log(2T |Y× A|T /δ)

m
,

simultaneously for all t < T with probability ≥ 1− δ. Therefore,

inf
ω

EπΦ(n)

µ

∑
t<T

γt|∇⊤Ft(Z̄t; Φ(0))ω − f
(j)
t |2 ≤ EπΦ(n)

µ

∑
t<T

γt sup
j∈J

|∇⊤Ft(Z̄t; Φ(0))ω
(j) − f

(j)
t |2,

≤ 1

1− γ

(
2 max
0≤t<T

max
z̄t

Radm(Gz̄t
t ) + LT ∥ρ∥2

√
log(2T |Y× A|T /δ)

m

)2

.

E.3 Why do we consider uniform approximation error?

In a static problem (e.g., the regression problem in supervised learning or the policy evaluation
problem in Section 6) with a target function f ∈ F , the approximation error is easy to characterize:

∣∣∇⊤Ft(z̄t; Φ(0))ω
⋆ − ft(z̄t)

∣∣ = O

(√
ln (1/δ)

m

)
, (77)

by Hoeffding inequality with ω⋆ :=
[

1√
m
civ(Φi(0))

]
i∈[m]

.
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In the dynamical policy optimization problem, the representational assumption QπΦ(n) ∈ F does
not imply an arbitrarily small approximation error as m→ ∞ since the target function QπΦ(n)

also
depends on Φ(0) [7]. Thus, an approximation

∇⊤Ft(z̄t; Φ(0))ω
⋆
n =

m∑
i=1

∇⊤H
(i)
t (z̄t; Φ(0))v

Φ(n)(Φi(0))

m
,

with ω⋆
n := [ 1√

m
civ

Φ(n)(Φi(0))]i∈[m] for the transportation mapping vΦ(n) ∈ H may not con-

verge to the target function QπΦ(n)

because of the correlated ∇⊤H
(i)
t (z̄t; Φ(0))v

Φ(n)(Φi(0)) across
i ∈ [m] as argued in [7]. To address this, we characterize the uniform approximation error as in
Proposition 7.7 for the random features of the actor RNN in approximating all QπΦ(n)

for all n based
on Rademacher complexity.
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