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Abstract

In this paper, we study a natural policy gradient method based on recurrent neural
networks (RNNs) for partially-observable Markov decision processes (POMDPs),
whereby RNNs are used for policy parameterization and policy evaluation to
address curse of dimensionality in reinforcement learning for POMDPs. We
present finite-time and finite-width analyses for both the critic (recurrent temporal
difference learning), and correspondingly-operated recurrent natural policy gradient
method in the near-initialization regime. Our analysis demonstrates the efficiency
of RNNss for problems with short-term memory with explicit bounds on the required
network widths and sample complexity, and points out the challenges in the case
of long-term dependencies.

1 Introduction

Reinforcement learning for partially-observable Markov decision processes (POMDPs) has been a
particularly challenging problem due to the absence of an optimal stationary policy, which leads to a
curse of dimensionality as the space of non-stationary policies grows exponentially over time [26}32]].
There has been a growing interest in finite-memory policies to address the curse of dimensionality in
reinforcement learning for POMDPs [47, 146, [24] |5]. Among these, recurrent neural networks (RNNs)
have been shown to achieve impressive empirical success in solving POMDPs [43] 144, 30]. However,
theoretical understanding of RNN-based RL methods for POMDPs is still in a nascent stage.

In this paper, we aim to remedy this by studying a model-free policy optimization method based on a
recurrent natural actor-critic (Rec-NAC) framework (Section[3)), which

« utilizes an RNN-based policy parameterization for history representation in non-stationary policies,
* incorporates an RNN-based temporal difference learning algorithm as the critic (Section[6]), and
* performs policy updates by using RNN-based natural policy gradient as the actor (Section[7)),

for large POMDPs. We establish non-asymptotic (finite-time, finite-width) analyses of Rec-TD (in
Theorem[6.2)) and Rec-NPG (Theorem [7.2] and Propositions [7.5}{7.7), and prove their near-optimality
in the large-network limit for problems that require short-term memory. We identify pathological
cases that cause exponentially growing iteration complexity and network size (Remarks[6.3}{7.3). Our
analysis reveals an interesting connection between (i) the memory (i.e., long-term dependencies) in the
POMDP, (ii) continuity and smoothness of the parameters of the RNN, and (iii) global near-optimality
of the Rec-NPG in terms of the required network size and iterations.

1.1 Previous work

Natural policy gradient method, proposed in [23], has been extensively investigated for MDPs
[L, 18, 250118L16], and analyses of NPG with feedforward neural networks (FNNs) have been established
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in [42 28 [7]. As these works consider MDPs, the policies are stationary. In our case, the analysis of
RNNs and POMDPs constitute a very significant challenge.

In [46} 38|, 24, 3]}, finite-memory policies based on sliding-window approximations of the history
were investigated. Alternatively, value- and policy-based model-free approaches based on RNNs have
been widely considered in the literature to solve POMDPs [27, 43 144, 30]. However, these works
are predominantly experimental, thus there is no theoretical analysis of RNN-based RL methods
for POMDPs to the best of our knowledge. In this work, we also present theoretical guarantees for
RNN-based NPG for POMDPs. For structural results on the hardness of RL for POMDPs, refer to
(29, 138]].

1.2 Notation

For a vector © = (0],...,0)T € R™UW+D m d ¢ Z, with ©; = (V;,U)" €
R for V; € RU; € R* and p = (p1,p2) € RZ; we define Bg@(@,p) =
R, (BF) (Vi, \?%) 7Béd) (Ui, \?%)) , where () is the Cartesian product, and BY” (z, pg) :=

{zeR4: ||z—x|, < po}forany p > 1,2 € R%, py > 0. M, denotes the set of all m x m diagonal
matrices. [m] :={1,2,...,m} forany m € Z,. A(Y) is the space of probability distributions on a
set Y. Rad(a) = Unif{—a, a} for & € R>q.

2 Preliminaries on Partially-Observable Markov Decision Processes

In this paper, we consider a discrete-time infinite-horizon partially-observable Markov decision
process (POMDP) with the (nonlinear) dynamics

P(Sti1 € Blo (Sk, Ak, k < t)) =: P((St, A¢), B), and P(C|o(S:)) =: ¢(S¢, C),

for any B € A(S) and C € #(Y), where S; is an S-valued state, Y; is a Y-valued observation,
and A; is an A-valued control process with the stochastic kernels P : S x A x A(S) — [0,1]
and ¢ : S x %(Y) — [0,1]. We consider finite but arbitrarily large A C R4, Y C R with

Y x A C BéleFdQ)(O7 1) and S. In this setting, the state process (S;):cn is not observable by the

controller. Let
Yo ift=20
Zy = ' ’ 1
‘ {(Zt—lvAt—I;Yt)v 1ft>07 ( )

be the history process, which is available to the controller at time ¢ € N, and Zy = (Z, Ay) =
(Yo, Ao, ..., Yy, Ay), be the history-action process.

Definition 2.1 (Admissible policy). An admissible control policy m = (7):en is a sequence of
measurable mappings m; : (Y x A)! x Y — A(A), and the control at time ¢ is chosen under 7;
randomly as P(A; = a|Z; = z;) = m(alz), forany 2z, € (Y x A)? x Y. We denote the class of all
admissible policies by IIypm.

If an action « is taken at state a, then a reward (s, a) is obtained. For simplicity, we assume that the
reward is deterministic, and max |r(s, a)| < 1o < 00.
s,a

Definition 2.2 (Value function, Q-function, advantage function). Let 7 be an admissible policy, and
i € A(Y) be an initial observation distribution. Then, the value function under 7 with discount
factor v € (0, 1] is defined as

Vi(z) =E" [Z ARt (S, Ag)
k=t

7, = zt}, 2

for any z; € (Y x A)* x Y. Similarly, the state-action value function (also known as Q-function)
and the advantage function under  are defined for any z; € (Y x A)**! as

o7 () == ET {Z'yk_tr(Sh Ak)‘Zt - zt], and AT (z;,a) := OF (z1,a) — V7 (2).  (3)
k=t



Given an initial observation distribution i € A(Y), the optimization problem is

maximize / Vi (z0)p(dzo) =: V™ (i), where 7* € arg max V™ (). 4)
wEIlnm Y mw€llnm

Remark 2.3 (Curse of history in RL for POMDPs). Note that the problem in equation[]is significantly
more challenging than its subcase of (fully-observable) MDPs since there may not exist an optimal
policy which is (i) stationary, and (ii) deterministic [26) 38]. As such, the policy search is over
non-Markovian randomized policies of type m = (o, 71, ...) where m; : (Y x A) x Y — A(A)
depends on the history of observations Z; = (Yp, Ao, Y1,..., A:—1,Y;) fort € N. In this case, direct
extensions of the existing reinforcement learning methods for MDPs become intractable, even for
finite Y, A: the instantaneous memory complexity of a probabilistic admissible policy 7 € Ilyy at
epocht € Nis O(|Y x A|*T1), growing exponentially over ¢.

Recurrent neural networks (RNNs), which involve a parametric recurrent structure to efficiently
represent the process history by using finite memory, are universal approximators for sequence-to-
sequence mappings [36, [15]. As such, we consider using them in an actor-critic framework for
approximation in (i) value space (for the critic), and (ii) policy space (for the actor). In the following
section, we formally introduce the RNN architecture that we study in this paper.

3 Elman-Type Recurrent Neural Networks

We consider an Elman-type recurrent neural network (RNN) of width m € N with W € R™*™ and
U € R™*4 where d = dj + ds, and the rows of U are denoted as Ul-T fori =1,2,...,m. Given
a smooth activation function g : €?(R,R) with ||¢]|cc < 00, [|0'[|oc < 01, [0 |loc < 02, We denote

olz1)) - -
0:R™ 5 R™: 2z — . Let X; = (Xi) , which is an R%-valued random variable with
Q(zm)

d = di + ds. The central structure in an RNN is the sequence of hidden states H; € R™, which
evolves according to

Hy(Z; W, U) = (WH,1(Z1; W, U) + UX, ), )

with Hy(Zo; W, U) = g(UXy) and Z; = (X, ..., X;) denoting the history. We denote the i*"

element of H; as Ht(i)

leads to the output

for i € [m]. We consider a linear readout layer with weights ¢ € R™, which

m

_ 1 0=
Fi(Z5 WU e) = <=3 eolly (2 W, U) (©)
i=1

The characteristic property of RNNs is weight-sharing: throughout all time-steps ¢ € N, the same
weights are utilized, which enables the hidden state (H;):~o to summarize the entire history Z;
compactly with a fixed memory.

We consider diagonal W and general U in the paper, which simplifies the analysis, yet preserves
the essential properties of RNNs. This diagonal structure for W is common in the study of deep
linear networks for the aforementioned reason [16} 45]], while our work also encompasses nonlinear
activation functions and weight-sharing.

Following the neural tangent kernel literature, we omit the straightforward task of training the
linear output layer ¢ € R™ for simplicity, and study the training dynamics of (W, U), which is
the main challenge [12| 34, 3/ 142]]. Consequently, we denote the learnable parameters of a hidden
unit ¢ € [m| compactly as ©; = (V5”> , and denote the learnable parameters of an RNN by
O = [Wu, UlT, Waa, U2T, ooy Whm, Un—';]—r € R™(@+1)  Given learnable parameters (W, U), we
denote the sequence of recurrent neural network outputs as F(-; W, U) = (F(; W, U))sen, and
use O and (W, U) interchangeably throughout the paper.



4 Infinite-Width Limit of Diagonal Recurrent Neural Networks

In this paper, we consider a class of systems that can be efficiently approximated and learned by the
class of large recurrent neural networks in the near-initialization regime following [4]]. To that end,
we provide the following characterization of the infinite-width limit of RNNs in order to give our
results in later sections. Let wy ~ Rad(«) and ug ~ N(0, I;) be independent random variables, and

w; . . . . . _
0= (u()). Given a history-action realization zZ = (g, z1,...) € (Y x A)%+, define
0

hi(Z4;00) = o(wohi—1(Zi—1;60) + (uo,z¢)), t >0,

with h_y := 0 (thus ho(Zo; 00) = 0({ug, To))), and Z;(Z:; 0g) := o' (wohi—1(Z:—1;60) + (uo, Tt)).
Then, the neural tangent random feature (NTRF) mappin at time ¢ is defined as ¥ (2;;6p) =
).

hi—k—1(Zt—k—1;0 = = _
ZZ:O w’g L=k 155_2:_: 1 0) It,k<zt§ 90), with It,k(zt; 90) = Hf:o It,]‘(z’t,j; 90 We also
define the NTRF matrix as follows:
g (%03 0o)
Y1 (21360 ]
Ur(Z;0p) := . , with W(Z;6p) := U (Z; 0p)- @)

Y1 (2015 60)
Definition 4.1 (Transportation mapping). Let .7 be the set of mappings v : Rt — RI*d .
o > (00 it o o) ] = 4 (Jou @) + ow(=)P?) < oc. and B, (uo)3] =
W Jga v (w) |2e= 213 gy < co. We call v € # a transportation mapping, following [20} 21].
Definition 4.2 (Infinite-width limit). We define the infinite-width limit of Elman-type RNNs as

F = {(Y x A" 3 2 E[U(Z;00)v(0)] : v € H}.

Z consists of f7(z;v) = E[(v(6p), ¥:(2:; 00))] for any Z € (Y x A)%+. The same transportation
mapping v is used to define the mapping f; at each time ¢, which is a characteristic feature of
weight-sharing in recurrent neural networks. Also, the input Z grows over time in a concatenated
way, implying f* € % is a representational assumption on the dynamical structure of the problem.

For any fixed time ¢ € N, the completion of {Z; — f{(Z;;v) : v € S} is exactly the reproducing
kernel Hilbert space (RKHS) ¥, associated with the “recurrent” neural tangent kernel (NTK)
(35, [21]]. For any ¢ € N, the inner product of two functions in ¥, associated with the transportation

mappings v, v’ is (ff(-;v), f£ (5 0)) 4 = E[<’U(90), v'(6p)) } . Thus, RKHS norm of f € 4,,, is

K

Ifll%., = VEIv(00)[5 = vE[vu(uo)[l3 + Elvw (wo) 2.
Remark 4.3 (Reduction to FNNs). Consider 1" = 1:

F = {20 — E [wOT(ZO,GO)v(GO)] IV E %} .

In this case, we exactly recover the NTK (and the associated RKHS) for single-layer FFNs [[19,142, [28]].
Furthermore, since the kernel ¢ is universal, the associated RKHS ¢, is dense in the space of
continuous functions on a compact set [21]].

5 Rec-NAC Algorithm for POMDPs

In this section, we present a high-level description of our Recurrent Natural Actor-Critic (Rec-
NAC) Algorithm with two inner loops, critic (called Rec-TD) and actor (called Rec-NPG), for
policy optimization with RNNs. The details of the inner loops of the algorithm will be given in the

'The feature uses a complicated weighted-sum of all past inputs x, k < ¢, leading to a discounted memory
to tackle non-stationarity. x;_ is scaled with w§ ~ Rad(a), thus it yields a fading memory approximation of
the history if o < 1.



succeeding sections. We use an admissible policy m = (7):cn that is parameterized by a recurrent
neural network (F7(-; ®));en of the form given in equation [6|with m € Z... To that end, let

exp (F2((zt,a); @)
s b (F7 (o, ) 8))

for any z; € (Y x A)? x Y and a € A with the parameter & € R™(¢+1),

my (al2) = t€Zy, ®)

Rec-NAC operates as follows:
« Initialization. /" is randomly initialized with parameter ®(0) ~ Cinit (see Def. [A.T).
¢ Natural policy gradient. Forn =0,1,..., N — 1,

* Critic. Estimate QAgn)() = Ff(0M)t < Tof QF " (-), t < T via Rec-TD learning in
Sec. [6] F“ is initialized independently for each n as Definition [A.T]

®(n)

* Actor. By projected stochastic gradient descent (SGD), obtain a solution w,, for the compatible
function approximation problem

T-1

min E Z VIV In 7 (A4 Z )w — A”q(”)( Z4)|? such that w € Ba (0, p),
=0
where forany t € N, A" (z,0) .= O™ (z,a) = E O™ (z, A").

Aleomf (+]21)

For information regarding the algorithmic tools, i.e., random initialization and max-norm regulariza-
tion for RNNs, we refer to Section[A]

6 Critic: Recurrent Temporal Difference Learning (Rec-TD)

In this section, we study a value prediction algorithm for policy evaluation in POMDPs, which will
serve as the critic.

Policy evaluation problem. Consider the policy evaluation problem for POMDPs under a given non-
Markovian policy 7 € IIym. Given an initial observation distribution p € A(Y), policy evaluation
aims to solve

—1
ngn R7(0) :=E] Y (Fi(Z;0) — QF (Zt)) such that © € Q,,,, := B(m 0,p), )
t=0

where T' € N is the truncation level, and {F; : ¢ € N} is an Elman-type recurrent neural network
given in equation [0 — we drop the superscript a for simplicity throughout the discussion. The
expectation in R7.(©) is with respect to the joint probability law P;"** of the stochastic process
{(S¢, At,Yz) : t € [0,T]} where Zy ~ p.

6.1 Recurrent TD Learning Algorithm

Given a sample trajectory zr € (Y x A)TH1 let
0¢(Ze4150) =1t + vF11(Z141;©) — Fi(2;9), (10)

be the temporal difference, and let

VRT ZT, Z’)/ 5,5 Zt+1, VQFt(Zt;@), (11D

be the stochastic semi-gradient. Note that, despite the exponential growth in the dimension of z; €
(Y x A)**! over t € N, the memory complexity for computing VR (z7; ©) is only 0 (m? + md).
Assumption 6.1 (Sampling oracle). Given an initial state distribution x, we assume that the system

can be independently started from Sy ~ u, i.e., independent trajectories { (S, Yz, A;) : t € [T} ~
P7°" can be obtained.



Under Assumption|[6.1] for k € N, let {(SF, Y}*, A¥) : t € [T]} ~ PJ" be an independent trajectory
(for each k € N, i.e., a trajectory with an independent initial sample S ~ p), and {Z} : t € [T}

and {ZF : t € [T} be the resulting (truncated) history and history-action processes. Starting from a
random initialization (W (0), U(0), ¢), let

O(k+1) =0O(k)+n-VRp(Zk; 0(k)), (12)

for k € N. For Rec-TD, one uses ©(k+1) = O(k+1). For Rec-TD with max-norm regularization,
one uses O(k + 1) = Projq_ [O(k + 1)], for parameter p = (puw, pu) € R2,.

6.2 Theoretical Analysis of Rec-TD: Finite-Time Bounds and Global Near-Optimality

In the following, we prove that Rec-TD with max-norm regularization achieves global optimality in
expectation. To characterize the impact of long-term dependencies on the performance of Rec-TD,

let py(x) = S04 |2, and () = SSb_t (k+ 1)|z|*, © € R,t € N,

Theorem 6.2 (Finite-time bounds for Rec-TD). Assume that {QF : t € N} € .F with a transporta-
tion mapping v = (vy,vy) € J€ such that sup,cga ||vu(v)|]2 < vy and sup,,eg |vw(w)| < v
Then, for any projection radius p = v = (U, V) and step-size 1 > 0, Rec-TD with max-norm
regularization achieves the following error bound:

LN %z (o o P
e Zrenls R <<1—v> Faop) A Tk e
(@)

(13)

for any K € N, where CFE,}),CFEFQ) = poly (pT (gl(a—I— 5—%)) s lell2s ||1/H2)7 are instance-

dependent constants that do not depend on K, and wy j, = \/E[(Ft(Zt; O(k)) — QF (ZF))?] for
t,k € N. For the average-iterate Rec-TD with O i := % kK;Ol O(k), we have

i 10 o w00 107" (R
E[R} (6k)] < ——= (VB + L5 | + z VL

The proof of Theorem [6.2] can be found in Section [B]

From Proposition we observe that the exact natural policy gradient update would require a large
T. As noted in [13], the spectral radius of {W (k) : k € N} determines the degree of long-term
dependencies in the problem as it scales H,. Consistent with this observation, our bounds have a
strong dependency on a,,, := o + % > Amax(W(k)) = [|[W (k)] 0,00 for any k € N.

Remark 6.3 (When is Rec-TD efficient? Impact of long-term dependencies). Note that both constants
C(Tl), C’:E?) polynomially depend on pr (91 ;). Let € > 0 be any given target error.

* Short-term memory. If o, < é, then it is easy to see that pr(01ay,) < ﬁ.

Thus, the extra term (Q) in equation (13| vanishes at a geometric rate as T — oo, yet m
(network-width) and K (iteration-complexity) are &'(1/2). Rec-TD is efficient in that case.

¢ Long-term memory. If o, > 9—11, as T' — oo, both m and K grow at a rate

0 ((0100m)™ /€?) while the extra term (©) in equation (13| vanishes at a geometric rate.
As such, the required network size and iterations grow at a geometric rate with 7" in systems
with long-term memory, constituting the pathological case for Rec-TD.

Finally, note that the additional term (Q) in Theorem[6.2]is unique to Rec-TD learning, and stems
from the use of bootstrapping in reinforcement learning.

The performance of Rec-TD is studied numerically in Random-POMDP instances in Section



7 Actor: Recurrent Natural Policy Gradient (Rec-NPG) for POMDPs

The goal is to solve the following problem:

D
imize V™ hthat ® € Q, ., PO
i V7 (1) sueh tha @ € 2, ®0)

for a given initial distribution 4« € A(Y) and p € R2 . 7* denotes an optimal policy.

7.1 Recurrent Natural Policy Gradient for POMDPs

In this section, we describe the recurrent natural policy gradient (Rec-NPG) algorithm for non-
Markovian reinforcement learning. As proved in Prop. [D.2] a policy gradient for POMDPs is

V<I>VTr<I> (1) == Ef Z VtQ?q)(Zt, A)VaIn W?(At‘zt)'
t=0

Fisher information matrix under a policy 7 is defined as

(o)
Gu(®) == Er Y A Vinaf (4] Z)V Inx (4| Z,),
t=0
for an initial observation distribution i € A(Y). Rec-NPG updates the policy parameters by

P(n+1)=®(n)+n-GLH(®(n)VaV™ (1), (14)

for an initial parameter ®(0) and step-size > 0, where G denotes the Moore-Penrose inverse of a
matrix GG. This update rule is in the same spirit as the NPG introduced in [23]], however, due to the
non-Markovian nature of POMDPs, it has significant complications that we will address.

@(n)

In order to avoid computationally-expensive policy updates in equation [I4] we utilize the following
extension of the compatible function approximation in [23] to the case of non-Markovian policies.

Proposition 7.1 (Compatible function approximation for non-Markovian policies). For any ® €
R4+ and initial observation distribution 1, let

Lo(w;®) =B S A4V na (Al Zo)w — A (Z0))°) (15)
t=0

for w € R™@+Y) Then, we have

G:(@)V¢V”¢ (1) € argmin L, (w; ®). (16)

weRm,(d+1)

Path-based compatible function approximation with truncation. For general (non-Markovian)
problems as in equation we use a path-based method under truncation for a given 7' € N

with £7(w; ®, Q) := .1 A (VInw® (Ae| Z)w — Ar(Zy, Ar))?, where Ay (21, ar) = Qi (21, ar) —
> aen ™ (alz) Qi (24, a). Given a policy with parameter ®(n) and the corresponding output of the
critic (Rec-TD with the average-iterate ©(") := K%d D k<K O (k)): QM () := F,(-;0™), the
actor aims to solve the following problem:

min E[KT (w; ®(n), Q(")) ‘G)(’L), o(n),. .., @(o)} such that w € BY™) (0, p).
To that end, we utilize stochastic gradient descent (SGD) to solve the above problem. Let Z;’k ~
P}rq)(n) * be an independent random sequence for k = 0,1, .. ., and let
@n(k + 1) = O (k) — 1sga Vol (0 (k); @(n), Q™) and @, (k + 1) = Projyom o [@n(k + 1)),

with @,,(0) = 0. Then, a biased stochastic approximation of the natural policy gradient is obtained as
Wy 1= %d Y k<K y wn (k), and the policy update is performed as
sg S|

O(n+1) = P(n) + Nnpg - Wn.-

In the following, we present a non-asymptotic analysis of the above approach.



7.2 Theoretical Analysis of Rec-NAC for POMDPs

We establish an error bound on the best-iterate for the Rec-NPG. The significance of the following
result is two-fold: (i) it will explicitly connect the optimality gap to the compatible function approxi-
mation error, and (ii) it will explicitly show the impact of truncation on the performance of path-based
policy optimization for the non-stationary case.

P7r H
Pﬂ-@(n) e

D(n),p

Theorem 7.2. Assume that PTr " < PE , n < N, and let k := maxo<n<n

oo

We have the following result under Rec-NPG after N € 7. steps with step-size tnpg = 1/v/ N with
projection radius p € R2>0.'

N—
min_ Eo[V™ (u) — V™ " (u)] < 1“|A| U Vet Eo[ Z edtal n))]

N

0<n<N (1 _

27 o0 tpOIY(”p”%Ltaﬁt»AtaXt ||p||2
st v T 2L

+
(1=7) t<T t<T

where L (®,w) = E”I(") Sier VIV In7TP (Af Zy)w — AT " (Z,, A2

(Ly, Bry Mey Xt )t is deﬁned in LemmalB.1}
Remark 7.3. We have the following remarks.

, and the sequence

» The effectiveness of Rec-NPG is proportional to the approximation power of the RNN used for
policy parameterization, as reflected in £, in Theorem We further characterize this error term in

Prop. (73T

 The terms Ly, B¢, Ay, x¢ grow at a rate p; (01 ). Thus, if o, > Ql_l, then m and N should grow
atarate (v, 01)7, implying the curse of dimensionality (more generally, it is known as the exploding
gradient problem [13]]). On the other hand, if «,,, < Qfl, then Ly, B:, At, x¢ are all &(1) for all ¢,
implying efficient learning of POMDPs. This establishes a very interesting connection between the
memory in the system, the continuity and smoothness of the RNN with respect to its parameters, and
the optimality gap under Rec-NPG.

e The term (f T;; is due to truncating the trajectory at 7', and vanishes with large 7.

Remark 7.4. The quantity « in the above theorem is the so-called concentrability coefficient in policy
gradient methods [[1} 12} 142]], and determines the complexity of exploration. Note that it is defined in
terms of path probabilities P;"*" in the non-stationary setting.

In the following, we decompose the compatible function approximation error €, into the approxima-
tion error for the RNN and the statistical errors. To that end, let

T-1
) _ ®(n)
Eappn = inf {E Z ’Yt|VTFt(Zt; ®(0))w — OF

t=0

(Z)[*:w e B (0,0)

. . L ®(n)
be the approximation error where the expectation is with respect to P~ %,

®(n)

ewn =E[RE " (0M)|@(k), k < n,

be the error in the critic (see equation[J)), and finally let
cegd.n = Ellr (wn; @(n), Q)01 ®(k), k < n]—inf E[tr(w; @(n), Q™))|OM, &(k), k < n],

be the error in the policy update via compatible function approximation.

Proposition 7.5 (Error decomposition for % ). We have

cfa

8llpl2 T=2
[t (ons (n), Q)] |@(k), b < n] < ”””2 Z 7248 app,n 66t + 2 .

@(n)

E[E]

foranyn € Z..



From Theorem we have e, < poly(pr(oiam))0 (\/l%d + \/ﬁ + ’YT) with g =

0(1/+/Kiq), and by Theorem 14.8 in [37]], we have esgq.,, < poly (pr(010m), ||pll2)0(1/+/Ksga)
with g = O(1/v/Ki). As such, the statistical errors in the critic and the policy update (i.e.,
€td,n €sgd,n) Can be made arbitrarily small by using larger Kiq, Kcgq and larger mcitic. The remain-
ing quantity to characterize is the approximation error, which is of critical importance for a small
optimality gap as shown in Theorem|[7.2]and Proposition[7.3] In the following, we will provide a finer
characterization of €,pp ,, and identify a class of POMDPs that can be efficiently solved by Rec-NPG.
Assumption 7.6. For an index set J and v € R2, we consider a class 7, of transportation

sup [ (w))]

mappings { vV € A j € J, weR,jeJ o) < (V‘”> , and the infinite-width limit
sup [log (u)]|2 Y
ueRd jeJ

Fyp:={Z— E[¥(Z;6p)v(0)] : v € Conv(s;,)}, where U(-;0y) is the NTRF matrix.

We assume that there exists an index set JJ and v € R2>0 such that Q”q)(”) € Fy, foralln € N.
This representational assumption states that the Q-functions under all policies 7®(") throughout the
Rec-NPG iterations n can be represented by convex combinations of a fixed set of mappings in the
function class .# indexed by J. Richness of .J as measured by a Rademacher complexity will play an
important role in bounding ,pp . To that end, for z; = (24, a;) € (Y x A)IF1 let

m

Z - 2 €i
Gi' = {0 V] H" (zZ:0)v(0) : v € #7,}, and Rad,, (Gf) = B, s > rg(@4(0)
@ (0)~Cinit 9€G:" i=1

Note that v € 7, above can be replaced more with v € Conv(4¢7, ) without any loss. In that
case, since the mapping v\) s f7(z;v)) € G7* is linear, G}* is replaced with Conv(G}*)
without changing the Rademacher complexity [31].

The following proposition provides a finer characterization of the function approximation error.
Proposition 7.7. Under Assumption[7.6} if p = v, then

2
1 . In (2T|Y x AT /5)
[ t
Cappn = 7 v (2 Oglta<XT 5t€(%13§)t+1 Radm(G) + LT”p||2\/ m ’

Sor all n simultaneously with probability at least 1 — 6 over the random initialization for any § € (0,1).

Remark 7.8. Two interesting cases that lead to a vanishing approximation error (as m — 00), thus
global near-optimality, are as follows.

* Finite J. If |.J| < oo, then Propositionreduces to [7]] (with T" = 1 for FNNs) with the complexity
term O ( ln(“’m/é)> by the finite-class lemma [31]]. In this case, the Q-functions throughout
n =0,1,...lie in the convex hull of |.J| basis functions in .7 generated by {v\/) € 27 : j € J}.

+ Linear transportation mappings. For a fixed map w : R — REFD*(d+1) et () () =
(w(#),b), b € J where J C R¥*! is compact. The approximation error vanishes at a rate &/( \/%)

The proof of Prop. and a discussion on the necessity of uniform bounds for the actor network in
policy parameterization within the policy optimization framework can be found in Appendix 3]

8 Conclusion

In this work, we have studied RNN-based policy evaluation and policy optimization methods with
finite-time analyses. An important limitation of Rec-NPG is that it does not provide an effective
solution in POMDPs that require long-term memory as we point out in Remarks As an
extension of this work, theoretical analyses of more complicated LSTM- [17] and GRU-based [10]
natural policy gradient algorithms can be considered as a future work. Alternatively, the study of hard-
and soft-attention mechanisms to address the limitations of the RNNs [33]] in policy optimization is
also a very interesting future direction.
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A Algorithmic Tools for Recurrent Neural Networks

A.1 Random Initialization for Recurrent Neural Networks

One key concept is random initialization, which is widely used in practice [13]] and yields the basis of
the kernel analysis [19,[9]. In this work, we assume that m is even, and use the following symmetric
initialization [9]].

Definition A.1 (Symmetric random initialization). Let ¢; ~ Rad(1),V; ~ Rad(a),U;(0) ~
N(0,I;) independently for all i € {1,2,...,m/2} and independently from each other, and
Cc;, = —Ci,m/g,‘/i = V;‘,m/g and UL(O) = zfm/Q(O) for ¢ € {m/2 + 1, .. .,m}. Then,
(W(0),U(0), ¢) is called a symmetric random initialization where W (0) = diag,,,(V) and U, (0)
is the i*"-row of U(0).

The symmetrization ensures that F;(Z;; W (0), U(0), ¢) = 0 for any ¢ > 0 and input Z;.

A.2 Max-Norm Regularization for Recurrent Neural Networks

Max-norm regularization, proposed by [39], has been shown to be very effective across a broad
spectrum of deep learning problems [40l [14]. In this work, we incorporate max-norm regularization
(around the random initialization) into the recurrent natural policy gradient for sharp convergence
guarantees. To that end, given a random initialization (W (0), U(0), ¢) as in Definition and a
vector p = (pw, pu) | € R, of projection radii, we define the compactly-supported set of weights
Qpm C RMAFD) a5

Qpm = B2 (6(0), p). (17

Given any symmetric random initialization (W (0), U(0), ¢) and p € R2, the set 2, ,,, is a compact
and convex subset of R™(@+1) and for any © € Qp,m, we have

Pw
W — W <

2, W = WOl < 75

Pu
PR . < )

22, 10 = GOl < o

Let
Projg,  [0] = arg min |[Wi; —w;|,  argmin U — uill2 (18)
weB: (W,i,i(0)7%) u; €B2 (Ui(O),%)

i€[m]
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As such, the projection operator Proj, [-] onto €, ,, is called the max-norm projection (or
regularization).

Note that we have |[W — W(0)||2 < pw, ||[U — U(0)|]2 < py and ||© — O(0)[|2 < |lp|l2 in
the ¢, geometry for any © € (1, ,,. Therefore, although the max-norm parameter class €2, ., C
{6 € R™+D) . |@ — 0(0)||2 < ||p|l2}, the £o-projected [3, 42} 28] and max-norm projected 7]
optimization algorithms recover exactly the same function class (i.e., RKHS associated with the
neural tangent kernel studied in [21},41]], see Section E[)

B Proofs for Section

An important quantity in the analysis of recurrent neural networks is the following:
I\ (2;0) := Wi H\" (2, 0),
for any hidden unit i € [m] and © € R™(@+1) The following Lipschitzness and smoothness results
for ©; — H(2;0) and ©; — T\ (z,; ©).
Lemma B.1 (Local continuity of hidden states; Lemma 1-2 in [4]). Given p € R2>0 and o > 0, let

(&)

* Q;— Ht(i)(ét; ©) is Ly-Lipschitz continuous with Ly = (03 + 1) 03 - p? (am01),

am =a+ L L. Then, forany z € (Y x A)Z+ with SUD;eN

<1,teNandiec [m],
2

0; — Ht(i)(ét; ©) is Bi-smooth with By = O (d - p(ame1) - ¢(amoe1)),
* O, — F,@(Et; ©) is As-Lipschitz with Ay = v/2(00 + 1 + am Ly),
e O, — ng)(ét; ©) is x¢-smooth with x; = V/2(Ls + amBt),

in Qp m. Consequently, for any © € (1, ,,

Sup max. |Fi(2:;0)] < Lr - |lplle, T €N, (19)
. 2
sup |F"(24;0) — Fy(2;0)] < —=(02A7 + 01x1)[|© — ©(0)[[3, t € N, (20)
e, vm
sup (VF,(z;0) — VF,(%;0(0),0 — 0) < M, (21)
P vm

with probability 1 over the symmetric random initialization (W (0), U(0), ¢).

Lemma B.2 (Approximation error between RNN-NTRF and RNN-NTK). Ler f* € % with the
transportation mapping v € €, and let

%cm(@i(O)),i € [m]. (22)

for any symmetric random initialization (W (0), U(0), ¢) in Def. Let

Fy"(:0) = Ve F(0(0) - (6 — ©(0)).
If Pp" induces a compactly-supported marginal distribution for X;,t € N such that || X¢|[2 < 1 a.s.
and {Z, : t € N} is independent from the random initialization (W (0), U(0), ¢), then we have

E {Ez [(f:(zt) _ FtLin(Zt;(:)))QH < 2[lv[I3(1 + Q%)pf(a91)7 (23)

m

0; = 0;(0) +

where the outer expectation is with respect to the random initialization (W (0), U(0), ¢).

Proof. For any hidden unit i € [m], let
Ci_< ZW“ ( t—k— 1(§étkk17 )HL j (Z;_ —js (0))>
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Then, it is straightforward to see that

m

FF™(Z;0) = Z Gy (24)

and E[¢;| Z;] = E[f#(Z:)| Z;] almost surely. Note that {¢; : i € [m/2]} is independent and identically
distributed and {; = (i1, /2 for any i € [m/2]. Also, with probability 1 we have

i)
Z
12 @O [ Wity (ke 2k O )quzf 0.0 .

k=0 2

(%

< [v(© IIQZQ’“ 1+ 03,
©) ;

< vll2 - o1+ 4/1+ 0§ - pe(or),

where (#) follows from Cauchy-Schwarz inequality, (&) follows from the uniform bound
sup,cp |0(2)] < o1 and almost-sure bounds || X%|2 < 1 and |W;;(0)] < «, and () follows
from v € J7,. From these bounds,

Var((;) < EBELGI]) < [lvll507 (1 + 00)*pi (1), i € [m]. (25)
Therefore,
o -
_ _ 1 & _
BB} |(£(Z) - F"(2:0)°]| =E] |E || (G —El6IZ))] ||
=1
i [ m/2 217
=E;, |E —Z ElG1Z))| ||,
] T;/Q'm/Q o
=@EZZZE E[G|Z1]) (¢ — ElG1Z0)]
=1 j=1
4 m/2
= ZVM G) < *HV|\291(1+90) i (),
=1

where the first identity is from Fubini’s theorem, the second identity is from the symmetricity of the
random initialization, the fourth identity is due to the independent initialization for ¢ < m /2, and the
inequality is from the bound in equation 23]

O
Proposition B.3 (Non-stationary Bellman equation). For m € IIywm, we have
Q7 (20) = B [r(Si, A) +7Q71 (Zes1)|Ze = 2] = B [1(S1, Ar) + 9V (Zes)
foranyt e Z,.

Zy = Et} )

Proof of Theorem[6.2} Since {QF : t € N} € Z, let the point of attraction © be defined as in
equation[22] and the potential function be defined as

v(0) =|le -6l (26)
Then, from the non-expansivity of the projection operator onto the convex set €1, ,,, we have the
following inequality:

T-1
V(O(k +1)) < W(O(K) +20 ) 7'6:(Zf,1; Ok)) (VF(Z]©(k)), O(k) — ©)

t=0
+ 20| Rr(Z5;©(K)|53. 27
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Let EF[] := E[|O(k),...,©(0), ZF]. Then, we obtain

!

E[W(O(k + 1) — W(O(K)] < 2E[ 3+ BLo: (ZE,1:0(0)] (VF(Z5: (k). 6(k) - ) ]

t

Il
<

&)
+1°E [VRr(Z5;0(k))|l5 . (28)
*)

Bounding E(#);. By using the Bellman equation in the non-Markovian setting (cf. Proposition[B.3)),
notice that

Ef(st(ztkﬂ; O(k)) = EﬂTf + ’YFt+1(Zf+1§ @(k)] - Ft(Ztk§ @(k’))7
=B} [Fi1(Zf1;0(k) — Q1 (Z50)] + QF (Zi) — Fi(Zf; O(k)).

Secondly, we perform a change-of-feature as follows:

(VF,(ZF;0(k)),0(k) — 0) = (VF,(ZF;6(0)),0(k) — ©) + err), (29)
where
erl!) .= (VF,(Z};0(k)) — VF,(ZF;0(0)),0(k) — ©) , and [err(})| < 2B%II% < 253%”3,
by Lemma[B:1] Furthermore,
(VE(Z;;0(0)),0(k) - ©) = Fy™(Z7: 0(k)) — F"(Zf: ©), (30)
= F(Z};0(k)) — Q7 (ZF) + err) + errf’) (31
where
err?) .= FE"(ZF; 0(k)) — Fi(ZF; 0(k)),
err(’) i= —FL"(Z8:0) + Q7 (Z)).
Thus,

3
(W) = —(Q7(Z) —~ Fu(Z: O(R)? + +EF5(Zf,:0(k) Y errf)

i=
+ B [Fin (ZF0:0(R) — Q7 (2] - (QF (Z) — Fu(Zy: ©(k))).-
By equation [I9] we have

sup 166(Zt+15 O(K))| < 7o + 2L7||pll2 =t Omax
zelo,

Now, let wy i, := (E[(QF (ZF) — Fi(ZF;©(k)))%) "2 Where the expectation is over the joint distri-
bution of ©(k) and ZX. Then,

3
E[(‘)t] S _wt27k + 'th—i-l,kwt,k + 5max ZE|€I’I’§{2I
j=1

From equation [20] we have

2
2
]E|err£7,2| < ﬁ(QQA% +o1xr)llpll3-

From the approximation bound in Lemma[B.2} we get

2 1 2.
E|errg3]2\ < E\err§3]2|2 < 72 f/@ PT(am).
: , —
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Also, note that w1 xwi x < %(wf et wf 41, 1)~ Putting these together, we obtain the following bound
forevery t € {0,1,...,7 —1}:

E[(M)] < —w?, + 1

Cr
2(

2 2
w + wi ) 4 Omax - ——
t+1,k t,k max )
v/m

where

= 267 |pll3 + 2(02A% + o1x7)|Ipll3 + 2[Vll2y/ 1 + 0§ - pr(or).
Hence, we obtain the following upper bound:

T-1
'CT
t max t+1, 2
ZVE[(Q) —(1=7/2) Z'thkJriﬁﬂL Z’Y Witk
t=0 t<T 7) m t<T

S%(Zt<T’Y “’t w T ‘*’T k)
L—v

Cr  6ma
<_7Z’ywtk+ ’wak:—i_( )

—— (32
= v

Bounding E[(&)]. Using the triangle inequality, we obtain:
1D 70251 0KV E(Z: O(K))ll2 < D 1 18:(ZE 13 ORI - IV F(Ze; O (K)) -

t<T t<T
Since O(k) € Q,, ,,, for every k € N as a consequence of the max-norm regularization, we have

|§t(Zt+1’ ( ))' < Omax = Too + 2LT||p||27

IVE(Z;0(k))|5 = Z Vo, H(ZF; 0(k)3 < L7 < L,

for every ¢ < T with probability 1 since ©; — Ht( )(Zt; ©,) is L;-Lipschitz continuous by Lemma

Hence, we obtain:

6maxLT
11—~

Final step. Now, taking expectation over (ZF, ©(k)) in equation and substituting equation

and equation [33] we obtain:

VRr(ZE; ©(k))|2 < (33)

T—1
5max’CT 252

E[P (O +1)) —¥(O(k)] < —n(l —~ E Yl +my i+ +
[ ( ( )) ( ())} ( )t « t,k T,k (1 ,Y)ﬂ (1 ,7)2
for eve kEN Note that ¥(©(0)) < ||v||2. Thus, telescoping sum over k = 0,1, ..., K — 1 yields

YY 2 ping y

K—1
HVH% néma Omax - O ’YT 2

— Ry x . 34
Z 0—yE (- ) DR i ey kzzo‘*’Tvk (34)

The ﬁnal mequahty in the proof stems from the linearization result Lemma[B.2] and directly follows

from
(% 300 < = 3 RrO®k) + —— (0283 + 1) ol
Kk<K S K \F o 1 :
which directly follows from [4], Corollary 1. O

In the following, we study the error under mean-path Rec-TD learning algorithm.

Theorem B.4 (Finite-time bounds for mean-path Rec-TD). For K € N, with the step-size choice
_ (-7

0 = ‘i3 mean-path Rec-TD learning achieves the following error bound:
T
1 2”””% ’YTWT k C'T(Smax
E|— RT(O(k))| < = +
[K,;( g (1—nK = 1—75  (1—9)2ym

(C/ )2
(25 1692 L (ol + V1))

where C’. and Lt are terms that do not depend on K.
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Theorem [B-4] indicates that if a noiseless semi-gradient is used in Rec-TD, then the rate can be

improved from & ( \ﬁ) to 0 ( ), indicating the potential limits of using variance-reduction
schemes.

Proof of Theorem|[B4} At any iteration k € N, let

VR (O(k)) = Ef [ VR(ZE;0(k)|, (35)
be the mean-path semi-gradient. First, note that
IVRz(©(K))[3 < 2IVR7(O(k)) — VRr(8)|3 + 2[VR7(©)]3. (36)

Bounding | VR (0)|2. For any k € N, ¢ < T, we have

E[6:(Z¢11:©)IZF,0(0), ] = vE[Fe11(Zf130) = QF11(Z41)| 27, ©(0), c]
+ Q7 (Zf) - Fi(Z;:0).
Since ||V F;(2:;©)||2 < Ly, the following inequality holds:
|E[6:(ZF,1:©)VE(ZF;:0)]|, < E|E[6:(Zf1;0)|ZF,0(0),c] VE(Zf; 0)|,
< LrE[E[5,(Z1:©)IZ/, ©(0), ]|,
< Ly (YE|Fis1(Z24150) — QT (250 + E|QF (2)) — Fi(Zf;0)]) @37
where we used Jensen’s inequality, the law of iterated expectations, and triangle inequality. From the
above inequality, we obtain
T—1
IVRz(©)]l2 < Y A'|[E[6:(Zf,1; ©)VE(ZF; ©)]
t=0

>+

@ R _ . o
< LTVZVtMFtH(ZfH% 0) — Q7 (ZE )|+ Lr ZWt]E|Qf(Ztk) - F(2};0)|,

t<T t<T
T (1B, [0 1F (201 0) = Qfia (Z) P + B, [3 21IF(ZH:6) - Q(ZD)P2).
t<T t<T
@ L E— .
e — (\/ S B (Z64,:0) - O, (2, )2 +\/Eth|Ft(Zf;®)—Q?( MR,
t<T t<T

© va(+ )LT Ill2v/1+ 68 - pr(escr)

- Vv1— vm
where @ follows from triangle inequality, @ follows from equation @ follows from Cauchy-
Schwarz inequality and the monotonicity of the geometric series 7' — >, - ~t, @ follows from
Jensen’s inequality, and finally ® follows from Lemma Hence, we obtain

s a2 — SLEIVIE(L + 0f)p7(e1e)
< .
vRr (@) < SLEIELL 6
Bounding | VR (O(k)) — VR7(O)||3. First, note that
IVRr(6(k)) — VRT(O)]|2

= B[ D" (22 0R)VFL(ZE; 0(k) — 82811 O)VE(ZE50)) || Iz

t<T
We make the following decomposition for each ¢ < T

5:(Zf11;:0(k))VE(Zf;0(k)) — 0¢( t+17@>V (27 0)
= 61(ZF 1 0(k)) (VF(Z;0(k)) — VE(Z);©))
+ VE(ZF;0(k)) (6:(Zf150) — 6:(Zf,1;0(K)))  (39)

(3%)
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By Lemma B.1| we have [§;(Z} 1;©)| < dmax and | VF,(Zf;©)|l1 < Ly < Ly almost surely for
any © € Q, ,,, which holds for ©(k) (due to the max-norm projection) and ©. As such, by triangle
inequality,

IVR2(©(k))=VRr(O)]l2

B?E||©(k) — 6|3 _ _ _
< Z’ytdmax ¢ I (m) Iz + Z’YtLtE\CSt(ZfH;@) - 5t(Zf+1§ O(k))l,

t<T t<T
6max 2 2+ v 2 ! = — _
< ﬂfvg('lpH—Q'y) HQ) +L7E Z’Yt‘(st(zthrﬁ@)_5t(ZZ€+1§@(k))| (40)
t=0
_ef
Note that
27t|5t(2tk+15 k)) = 6:( t+1vé)|
t<T
=32 (1F1(ZE2:0) = Fua(Zhy0: 00)| + |F(ZF; ©) = Fi(ZE: 0(R)]),
t<T
(Z¢:0) = Fi(Zy;0(k))| + 7" Lr]|0(k) — B2, (41)
t<T

where the second line follows from the Lipschitz continuity of © — F(; ©). Then, adding and
subtracting QF to each term, we obtain

> 162815 0(k)) = 6,(2f41:0)

t<T
<2> A (IF(ZF;0) — QF (ZF)| + |97 (ZF) — Fu(ZF;0(k))|) + 7" Lr|©(k) — 6|2 (42)
t<T

Taking expectation, we obtain

EZ’YtMt(Zf-s-l;@(k)) 6t( t+17é)| <

t<T

J [ZvlFt (Zt:0(k)) — QF (ZF)I?

t<T

+97Lr||O(k) - Ol|2.

E | SR (28 0) — OF ()P

t<T

2
+
V31— ’yd
By Lemma[B.2]and equation[20] we have
4
E|F(Z};0) - Qf (ZF)? < *||VH29%(1 +00)°p (@01) + —(02A7 + o1xr)’|lpll2:

for any ¢t < T'. Thus,

E;7t|5t(25+1;9(k)) — (25115 0)] < \/%\J E LZ;VtIFt(Zt’“;@(k)) - Qf(Z})P?

\F \/7 (I7ll201(1 + 0o)pr(cer) + (02A% + o1x7)llpl13)) +7" Lt |[O(K) — O] .

<llpllz+lv]l2

::C§§)

This results in the following bound:

(3)
e VRO + 0 Ll + ),

(43)

EZ [’Yt‘(st(ztkH;@(k)) - 5t(2tk+1§é)|] <

t<T
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Substituting the local smoothness result in equation [d3]into equation 40} we obtain

_ _ 9 o o
|9R2(O(k)~TR2(O)]2 < Lt (m Re(O)) + =+ LT<||p||z+|u||2>>+m.

Thus, we obtain

_ - 1612 ACP L3 +a(C)?
[VRr(O(0)-TR2(6)[} < 1L Rr(@(k) 4 1 LI EEENEL D 027 14 (g ).
(44)
Using equation [38]and equation 4] together, we obtain
IVRz(©(k)3 < 2[VRr(O(k)) — VR (O)|[3 + 2| VR7(O)]]3,
32L7 R (O(k Ccr)?
< REROW) L L i Lol + 11D @9)

In the final step, we use equation [28] equation [32]and equation [43]together:

C1T6ma><

E[T(O(k +1)) = ¥(O(k))] < —n(1 = NER7(O(k)) + 1" wrp + T/

32LZER 1 (O(k Ch)?
oo (PEEROE) 3 R 02T i+ 1w1B) )
— m
where the expectation is over the random initialization. Choosing n = (6134_722)2, we obtain
T
n(l—7) T Cr0max
E¥©Ok+1)) -9 (O(k))] < ———ERr(O(K)) + 0y wrp + -7
[W(O(k +1)) = ¥(O(k)) - (©(k) R
2 ((C7)? 16~27 14 2 2 4
o | = 16y Le(llpllz +[Ivll2) ) - @47
Telescoping sum over k = 0,1, ..., K — 1, and re-arranging terms, we obtain:

1 2”””% ’yTwTk CVTémax
E|— Rr(©k))| < + LA
lKKZK l ”)] =k " 1=7 T a—apvm

(©r) 2T (o2 ; 4
= 1677 Le(llpllz +lvl2) ). (48)

O

C Numerical Experiments for Rec-TD

In the following, we will demonstrate the numerical performance of Rec-TD for a given non-
Markovian policy m&reedy.

POMDP setting. We consider a randomly-generated finite POMDP instance with |S| = |Y| = 8,
|A| =4, r(s,a) ~ Unif[0, 1] for all (s,a) € S x A. For a fixed ambient dimension d = 8, we use a
random feature mapping (y, a) — ¢(y,a) ~ N (0, I4), Y(y,a) ~Y x A.
Greedy policy. Let

oy 4

J*(t) € arg Joax. 1,
be the instance before ¢ at which the maximum reward was obtained, and let

1 : 24t
7_l_tgreedy(a|Zt) — Wa w.p. mln{ﬁ,zpexp}, (49)
lozajey, Wwp.1—min{% pep},

be the greedy policy with a user-specified exploration probability pex, € (0,1). The long-term
dependencies in this greedy policy is obviously controlled by peyp: a small exploration probability
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will make the policy (thus, the corresponding Q-functions) more history-dependent. Since the exact
computation of (QF )¢y is highly intractable for POMDPs, we use (empirical) mean-square temporal
difference (MSTD)['|as a surrogate loss.

Example 1 (Short-term memory). We first consider the performance of Rec-TD with learning
rate = 0.05, discount factor v = 0.7 and RNNs with various choices of network width m.
For pe,, = 0.8, the performance of Rec-TD is demonstrated in Figure m Consistent with the

— men2
m=128
14 — m=s12

Deviation [IW(KI-W(O)]]

Mean-squared temporal difference

o 2000 4000 6000 8000 10000
Iterations (k)

© W (k) = W(0)[|21. T =
8

2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Iterations (k) terations (k)

m

(a) Mean-squared TD, T' = 8 (b) L[ U(k)—U(0)|2,1. T = 8.
@© [Uk) = U(0)|l21, T = 0 W (k) = W(0)|l2,1, T =
(d) Mean-squared TD, T" = 32 32. 32.

Figure 1: Mean-square TD and parameter movement under Rec-TD for the case ppyi, = 0.8 and
~v = 0.7. The mean curve and confidence intervals (90%) in Figures @ and@ stem from 5 trials. The
90% confidence intervals in Figures[Tb{{Ic|and correspond to deviations (i.e., ||U; (k) — U;(0)]|2
and |W;; (k) — W;;(0)|) across different units ¢ € [m] in a single trial.

theoretical results in Theorem@ Rec-TD (1) achieves smaller error with larger network width m,
(2) requires smaller deviation from the random initialization ©(0), which is known as the lazy training
phenomenon. Since |[W(k)||2,0c < 1 due to large enough pe, that avoids long-term dependencies,
the problem exhibits a weak memory behavior. This is observed in Figures [Id{If] without a visible
increase in the MSTD performance despite a significant 3-fold increase in 7', consistent with the
theoretical findings in Theorem [6.2]

Example 2 (Long-term memory). In the second example, we consider the same POMDP with a
discount factor vy = 0.9. The exploration probability is reduced to pes, = 0.3, which leads to longer
dependency on the history. This impact can be observed in Figure 2bjj2d, which implies a larger
spectral radius compared to Example 1 (in comparison with Figures [Ic]]If). As a consequence of
the long-term dependencies, increasing 1" from 8 to 32 leads to a dramatic increase in the MSTD
unlike the weak-memory system in Example 1. The impact of a larger network size (i.e., m) is very
significant in this example: choosing m = 512 leads to a dramatic improvement in the performance.

D Policy Gradients under Partial Observability

In this section, we will provide basic results for policy gradients under POMDPs, which is critical to
develop the natural policy gradient method for POMDPs.

’the empirical mean of independently sampled {% >
i=0 7102 (ZE; O (k).

RIP(O(s)) : k € N} where RIP(O(k)) =

s<k
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— m=32 — m=32
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1.4 — m=512 — m=512

N

Mean-squared temporal difference
Deviation [|W(k)-W(0)]|

0 2000 4000 6000 8000 10000 0 5000 10000 15000 20000 25000 30000
Iterations (k) Iterations (k)

(a) Mean-squared TD, T' = 8 (b) Z[[W (k) — W(0)|

21, T = 8.

— m=32 — m=32
3 m=128
— m=512

w e N @

=

=

Mean-squared temporal difference
Deviation [|W(k)-W(0)]|

5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Iterations (k) Iterations (k)

(c) Mean-squared TD, T' = 32 (@) LIW(k) — W(0)l2,1, T = 32.

o

Figure 2: Mean-square TD and parameter deviation under Rec-TD for the case pmin = 0.3 and
v = 0.9. The mean curve and confidence intervals (90%) in Figures 2a) and [2¢|stem from 5 trials.
The 90% confidence intervals in Figures 2b]and 2d|correspond to deviations (i.e., |W;;(k) — Wi;(0)])
across different units ¢ € [m] in a single trial.

Proposition D.1. Let ' € Inm be an admissible policy, and let I~ P;f/’“. Then, for anyt < T,
conditional distribution of Sy given Z, is independent of . Furthermore, for any = € Ilnwm, the
conditional distribution of 7(Sy, Ay) + YV 1 (Zi41) given Z, is independent of '
Proof of Prop. D1} Let the belief at time ¢ € N be defined as

bi(s) == B(S, = s|Z,). (50)

For any non-stationary admissible policy , the belief function is policy-independent. To see this,
note that

P(S; = s¢, Zt =7%) = Z P(So = s0|Yo = y)ﬂ'O(aO‘ZO)

(50,-+,5¢—1)€S?

t—1
x [T Plsrsalsns an)d@eralsus) T (sl zie0),
k=0
t
= (H Wk(ak|zk)> > P(So=s0lYo =)
k=0 (50,-.-,5¢—1) €S
t—1
x [T Plswsalsn, ar)d(ynsalsiir),
k=0
since H};:o 7k (ak|2x) does not depend on the summands (s, ..., s:—1) — note that we use the

notation P (sg41|sk, ak) := P(Sk, @k, {Sk+1 = Sk+1}) and ¢(yr|sk) := d(sk, {Yx = yr}). Thus,

Y (eonsrnyes P(So = s0lYo = y) TTiZo P(sk1lsk, ar)d(er1lsk1)
t—1

bt(St) = )
Z(sg,‘..,s;_l,s;)ESHl P(So = sp|Yo = y) k=0 P(3;€+1|3;€a ak)¢(yk+1|5;g+1)
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independent of 7. As such, we have

E™ [ry + WV (Zei1)| Z4) = D bi($)E™ [re + Wi (Ze41)| 20 = 7, i = 8],
seS

= 3> belse) (r(se, A) + AP (sepalse, A)S(ylser1) Vi1 (Ze yern))

st,8t+1ES y€Y
=E[ry + W1 (Ze1)| 20 = Z],

in other words, the conditional distribution of r(S, A¢) + YV, 1 (Zi41) given {Z; = %} is indepen-
dent of 7’. We also know from Prop. that

E™ [ + YV (Zes1)| Ze = 2] = Elre + Vi) (Zes1)| Ze = 7] = OF (2.
O

The next result generalizes the policy gradient theorem to POMDPs. We note that there is an extension
of REINFORCE-type policy gradient for POMDPs in [44]]. The following result is a different and
improved version as it () provides a variance-reduced unbiased estimate of the policy gradient for
POMDPs, and more importantly ) yields the compatible function approximation (Prop. that
yields natural policy gradient (NPG) for POMDPs.

Proposition D.2 (Policy gradient — POMDPs). For any ® € R™@+1) e have

VoV™ (0) =E5 |3 4t OF (Zi, Ar) - Ve lna (A4 Zy) | (51)
t=0

forany p € A(Y).
Proof of Prop.[D.2] For any t € N, we have
P P
Vi () = > i (anz) QF (21, a), (52)

by Prop. [B:3] Thus, we obtain
P P P
VI (2) = Y (ag2) VInaf (arl20) QT (20,a0) + Y 7 (as]20) VT (20, ),

=B [VIna® (4| Z) Q7 (Zu, Ay) + VOF (Zy, A)|Zy = ). (53)

Now, note that

Q7 (20, ar) = E[r(Si, Ae) + YV1(Ze1)| Ze = (21, a0)),

= bu(s) | (st a0) 7Y Plsisalsian) Y S(yest|ser) Vi (2141) |

St+1 Y41

where z:11 = (2¢, at, yr41). As a consequence of Prop. we have Vg ZSt be(s¢)r(se,a) =0,
and also

Vs Q?(b (Zm at) =7 Z bt(st) Z P(3t+1|5t7 at) Z ¢(yt+1‘8t+1)V<I>VZf1 (Zt+1)7

St St41 Yt+1

D P —
=EVInad (A1) Zi:1) QF 1 (Zis1, Arr) + Vo Ori 1 (Zig1, Avi1)| Ze = (24, a1)),

:VEw‘p[ A lnw,f(Ak|Zk)ng’(Z,€,Ak)‘Zt - (zt,at)]
k=t+1

Using the above recursive formula for Vg Q?q) along with the law of iterated expectations in equa-
tion[33] we obtain

VoV (2) = E7 [ Y 4" Va lnwd (Al Z0) QF (2, A0)| 2 = ). (54)
k=

t
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Since we have V™ := V7, and also Vo V™ (1) = Ve > s 1(z0)V™" (20) = >z 1(20) Ve V™ (20)
by the linearity of gradient, we conclude the proof.

Note on the baseline. Similar to the case of fully-observable MDPs, adding a baseline ¢ ? (z¢)
to the Q-function does not change the policy gradients since Y, m(alz;)V In7 (a]z¢)qF " (z¢) =
aF (2) Y, Vrd(alz) = ¢F (2)V Y, 72 (alz) = 0. Thus, we also have

il P i il
VoV (n) = Ej [}:vRMF(ZhAnV¢hnf%AAZQ : (55)
t=0
which uses qf = Vt as the baseline, akin to the fully-observable case. O

The following result extends the compatible function approximation theorem in [23]] to POMDPs.

Proof of Prop. [71} The proof is identical to [23]. By first-order condition for optimality, we have

2IEZ<I> Z’YtVanZb(AﬂZt) (VT 7y (Al Ze)w* — ‘A?q) (Zt))

t=0
—9 (Gu(é)w* . vV (u)) =0,

which concludes the proof. O

E Theoretical Analysis of Rec-NPG

First, we prove structural results for RNNs in the kernel regime, which will be key in the analysis
later.

E.1 Log-Linearization of SOFTMAX Policies Parameterized by RNNs

The key idea behind the neural tangent kernel (NTK) analysis is linearization around the random
initialization. To that end, let

Fr"(z;0) := (VE(%;0(0)),0 — 6(0)), (56)
for any © € R™(?+1) We define the log-linearized policy as follows:
exp(FH" (2, a; ®))
D aren exp(FE" (2, a3 @)’

The first result bounds the Kullback-Leibler divergence between 7 and its log-linearized version
7?? . In the case of FNNs with ReL.U activation functions, a similar result was presented in [7]]. The
following result extends this idea to (i) RNNs, and (ii) smooth activation functions.

72 (alz) = t € N. (57)

Proposition E.1 (Log-linearization error). Foranyt € Nand (z;,a) € (Y x A)'™1, we have

i (alz)

In
T (alz)

sup (A7o2 + xe01) @ — ©(0)]]3, (58)

(z¢,a)E(YxA)t+T

6
S Tm
for any t € N. Consequently, we have 7:(-|z) < 7 (+|2¢) and 74 (-|2¢) < me(+|2¢), and

max { Z (1} (-|20) |17 (-120)), Pr (77 (2ol (-|22)) } < % (Afoz +xeo1) @ — @(0)II3,

(39)
forall z; € (Y x A)* L andt € N.

Proof. Fix (z;,a) € (Y x A)tTL. By the log-sum inequality [11]], we have

>, exp(FH" (2, a; @)
1
! 20 XP(Fi(zt, a; @)) Zﬁt (alze) (

Lin (2, a; ®) — Fi(z, a; <I>))
a€A
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Using the same argument, we obtain

’ln 2. exp(Ft“%zt,a;@»‘
Za exp(Fy(zt,a; ®))

< Z (78 (alze) + 7 (alz)) - ‘Ft"i"(zt,a;q)) — Fy(2t,a;®)|. (60)
ach

Thus, we have

’111 7t (alz)
7 (alz)

By using Lemma we have supz, ¢y a)e+1 |Ft'-i”(2£;c1>) _ Ft(fé;q’ﬂ < TQH(A?&JFXWI)H‘I)*

< (1 + 78 (alz) +7F(alz)) ‘F (2t,0;9) — Fy(z,0;9)|.

®(0)||2. By using the last two inequalities together, and noting that 1 + 7% (a|z;) + 7 (a|z;) < 3,
we conclude that

7 (alzt) 6
In —L—=2 1 < —— (A7 ® — ®(0)]]3.
I < D hd + venlle - B0
Since the righthand-side of the above inequality is independent of (z;, a), we deduce that the result
holds for all (2, a), thus concluding the proof. O

The following result will be important in establishing the Lyapunov drift analysis of Rec-NPG.
Proposition E.2 (Smoothness of In 7 (a|z;)). Foranyt € N, we have

sup  [VIn#f (alz) — VInaf (alz)|l2 < L@ - &',
(z1,0)€(YxA)IH1

for any ®,®' € R™d+1),

Proof. Consider a general log-linear parameterization

po(x) o< exp(¢, 0), € X.

Then, if sup,cx [|¢z]l2 < B < oo, then 6 — Inpy(x) has B2-Lipschitz continuous gradients for
each x € X [[1]]. The remaining part is to prove a uniform upper bound for ||V ¢ F3(Z:; ©(0))]|2. To
that end, notice that

1 i) _ )
Vo, F (2 ®(0) = ——c; VH (2, 8(0)), 7 € (Y x A)'t! i € [m].

vm
From the local Lipschitz continuity result in Lemma [B.1} we  have
SUPz, imax; <, ||(y;,a,) o<1 | Vs H (zt;CIJ(O))Hg < L, for any i € [m]. Thus, for any z,, we
have
m
Ve Fy(2:; ®(0)) 3 = Z IVa, H (2 2(0))|3 < L. (61)
O

E.2 Theoretical Analysis of Rec-NPG

For any 7w € IIym, we define the potential function as

T-1

L(m) =B | YV Dk (w7 (| Z) |me (1 2e) | - (62)

t=0

Then, we have the following drift inequality.
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Proposition E.3 (Drift inequality). For any n € N, the drift can be bounded as follows:

@ (n)

L (D) = L(@*) < g (VT (1) = VT ()
T-1
* n a2(m)
B | A (VT (A Zown — AT (22)
t=0
@
®(n) -— 3 3 T
b iggEL S AT (Z) gL 3t (VI (44120) - Vinn? (4,12
t=T t=0
@ ©)
T-1 T-1
12]|pll3
tL2 2 t A2 .
+ nnngPIIQZW o t:OV( 702+ x:01)

Proof. First, note that the drift can be expressed as

mr ™ (A 2,)

g(ﬂ@(n+1)) _D‘Z(ﬂ‘b(’ﬂ) ]E’ﬂ' Z’y Zﬂ't At|Zt W
e (AelZ4)

t=0 achA
Then, with a log-linear transformation,
L(n® ) — L(n® 27 pEACHYA
t=0 a€A
W e Az ANz w (A Z)
x| ~<I>(n+1 +hn ~<1>( +In 55 :
Ty (Ae|Zt) (At|Zy) L9 (At|Zy)

By using the log-linearization bound in Prop. [E.T|twice in the above inequality, we obtain

P(n+1) n) * E § : ~<I’n (At|Zt)
= acA t (At|Zt)
12 T-1
— t(A? 2. (63
+\/mtzov( 102+ xe01)llpll3- (63)

By the smoothness result in Prop. we have
[ (g 2) ~In w7 (@] 20) =V In 7 (@] 20) (@(n1) =@ ()] < S L[ @(n+1)~ ()3

Thus, we obtain

A (0]
t Zt)
oLt 119113 < =g Lilwnll3 < —In W
Ty

t\Zt)

because of the max-norm gradient clipping that yields [|wy,||2 < ||p[|2 and @(n+1) = ®(n) + Npgn
for any n € N. Using this in equation [63] we get

— nnngT In ﬁ?(n) (at|zt)wn,

T-1
g(ﬂ<1>(n+1)) _ j(ﬂ‘b(n)) < 7%ng;* Z Naval 1n7~r?(n)(at\zt)wn
t=0

12 . 1
= A2 2, -2 14 2 (64
+ﬁ§7( roa +xeo) 103 + S LilIoll3. (64)

An important technical result that will be useful in our analysis is the pathwise performance difference
lemma, which was originally developed in [22]] for fully-observable MDPs.
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Lemma E.4 (Pathwise Performance Difference Lemma). Let ®, &' € R4+ pe two parameters.
Then, we have

V() =V () = BEY A AT (Z, Ay).

t=0

The proof of Lemma [E-4]is an extension of [1] to non-stationary policies, and can be found at the end
of this subsection.

Using Lemma[E-4]in equation [64] we obtain

®(n)

L (@) — L (@) < tpg (VT (1) = VT ()

* - n ﬂ_d(n)
— B Y7 (VT (a2 — AT (2)

oo T-1
o 22 5 12 1
FmesBl D AT (20 % = 3 A" (er - xae) ol + s L el (69)
t=T t=0

Finally, we replace the term V In ﬁ'f) ) (at]|z¢) with V In 7T;I> (n) (at|zt) by including the corresponding
error term, and conclude the proof by considering the telescoping sum, and noting that .2 (7®(®)) =
log |A| since F;(-; ®(0)) = 0 by symmetric initialization.

Proof of Theorem[7.2] We prove Theorem [7.2]by bounding the numbered terms in Prop. [E3]
Bounding D in Prop. Recall that pp () = Y-, 7". Then, by using Jensen’s inequality,

AP (VT " (A Zown — AT (2 )>

_ 2
7™ (A Z)wn — AFT (2],

IN

T-1
NEZ Y o
t=0
= pT (’Y) F':cha (Q(n)7 wn)7

where £ yields a change-of-measure argment from Pr " to Py

Bounding ) in Prop. SUp, , [7(5,a)| < 7o, therefore | A7 (z,)| < §%== forany t € N,z €
(Y X A)H_l, and 7 € IInm.

Bounding 3 in Prop. For any t € N, Cauchy-Schwarz inequality implies

.
(v In 72 (ay]2,) — Vinr ™ (at|zt)) wn < IV (a]20) — VIn 7™ (ag]z0)l2]lpll-.
Recall that
Vin7?(a|z) = VF(2, ap; ® Zﬂ't "2¢)V Fy(2,a"; ®(0)),

Vinn®(at|z) = VFi(2, ap; ® Zﬂ't "2¢)VFy(2g,a; ®).

First, from local (3;-Lipschitzness of ®; — VHt(i) (Z4;®;) for © € Q, ,,, by Lemma we have

1 i) Oy
V0. Fi (225 () = Vo, Fi (225 2(O0) |2 = = [V (3 03(m) = Vo, (33 24(0))

< Pellell2

m
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for any n € N since max; ||®;(n) — ©;(0)||2 < Hj% by max-norm projection. Thus,

Thus,

IVIn 7" (ae]2) = Vinay ™ (aelz)ll < 3 ™ (alze) — 77" (alz) |V Fe(z; @(0)) 12

a

Bt

+ %»l' + wa’“” (al20) |V Fi (20, a; ®(n) — VFy(21, a; B(0))]|2-

From equation [6T] we have

~ n n 2 n ~ n
V7 ) = T el < 2222 4 o,y (2O C10IF ()

where 2ty denotes the total-variation distance between two probability measures. By Pinsker’s
inequality [[11], we obtain

~ n n 2 n ~ n
19072 (ay]20) — w2 < @”ﬂ% N ﬁLt\/@KL (FE O ™ (120))-

(67)
By the log-linearization result in Prop. we have

_B(n n 2 Ao +
IV 1072 (ay]2) — VI (ag]z0)]l2 < ﬁ%” +VIL ol | 6

Thus, we have

- T 23 VAio9 +
o (n) _ o(n) 2 t t02 T Xt01
(VI adee) = Tinrf anlz)) o < ol (22 + ViZL LT

Proof of Lemma For any yo € Y, we have:

V™ (o) = V™ (y0) = E5 | 32 1"e|Zo = o] — V" (w0),
T t=0

=B [ > (r+ V7 (20 = Vi (Z0) |20 = o] — V7 (o),
t=0

=B} | Y ' (re + Wi (Zir) = VI (Z0)
"~ t=0

ZO = y0:|a

where r; = (S, A;) and the last identity holds since

S AV (z) = Vi (20) 41 YAV (i)
t=0 t=0

Then, letting r, = r(s¢, a;) and by using law of iterated expectations,

V7 (o) = V" (o) = E5 [ Yo" (7 Ire + Vi1 (Zesn)| Ze, S = VI (20) )| 20 = wo] . (69)
t=0

which holds because

E™ [ry + W (Ze1)| Zi) = E™ [ry + WV (Zes1)| Zi, Zo).
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The conditional expectation of r; + 7]/7;1 given {Z, = %} is independent of 7":

ET" [rt—i—'yV Zt+1 ‘Zt Z bt Tt + ’th+1(Zt+1)|Zt = Zt, St = S]
seS

Z th (s¢) (r(st, At) +YP(sex1l5t, A)d(Yls141) Vi1 (Zes Yer1))

st;8t41€SyeY
=E[re + Wi (Ze)| 20 = 2,
based on Prop. [D.1] We also know from Prop. [B.3| that
E™ [ry + YV (Zer1)| Ze = 2] = Elre + Wi (Ze1)|Ze = 2] = QF ().
Using the above identity in equation[69] we obtain
V™ (o) = V(o) = Bx | 32" (QF(Z0) = V™(20))| 20 = o), (70)
t=0

which concludes the proof. O

Proof of Prop.[7.3] For any w, we have

@(n)

Lr(w; ®(n), O™ ") < 207 (w; B(n), O™) +2Z (2, Ay) — A (2,, A2, (TD)

Let G, := o(®(k),k < n) and H,, := o(0™ &(k),k < n). Then, since

Esgdin = Ellr(wn; @(n), Q™) Hy] = inf  Ellr(w; ®(n), Q)| M),
wEBéTZi(O,p)

we obtain

E[lr(wn; ®(n), Q") H,] < 2E[igf Eltr(w; ®(n), Q™) Ha]

gn} + 2(gtd,n + 5sgd,n)a (72)

which uses the fact that Var(X|G,) < E[|X|?|G,] for any square-integrable X. We also have

<I>(n)

inf E[lr(w; B(n), QMM < 2inf B[ (w; (n), Q7 )M

> I eo) A(n
12 AT (2, A) — AT (2, A
t=0

which further implies that

E[inf E[¢r (w; ®(n), QM) H,0]|Gn] < 2E[inf E[¢r(w; (n), Q

aP(n)

NHnl|Gn] + 26td,n-
Thus,
E[lr(wn; ®(n), Q

) a2(n)

)[Ha] < B[ inf Eftr (w: ®(n), @) [H, ]

gn:| + GEtd,n + 2Esgd,n~ (73)

For any w € Bg’;))(o, p),

&) P (n)

Eltr(w; ®(n), Q% ) Ha] E[>_ A (VaF(Ze ®(n)w — QF " (Ze)[Ha,
t<T
< OB AU VEFU(Z; ®(0)w — QF " (Z0))% + (VE(Ze; B(n)) — VE;(Ze; D(0) T w)?[Ha,

t<T
which implies that
inf E[lr(w; ®(n), Q

I)(n) =
)IHn] < 2eappn + 210I3ED_ VIV E(Ze (n)) — VE(Ze; 2(0)]I3]Ha],
t<T

<9 + 2||pl3 27%2
> 4Capp,n m to

t<T
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using equation[66] Hence,

22(n)

8 4
)|H ] H:LHZ Z ’Ytﬂtz + 8Eapp,n + 6f‘:td,n + 255gd,na

t<T

E[ET(wn; @(n)
concluding the proof. O

Proof of Prop.[7.7] Under Assumption consider £ (2,) := E[v)] (Z:; do)vD ()] for v €
%ffw Let

2

G L (@0, i = 1.9 74
w . \/Eczv ( ’L( ))7 ? y Ly ey M, ( )
for any j € J. Since ||w) ||y < ||v||2 and p > v, we have

St VTR RO ~ 19| < [V REs 00 - 1 (z)|. a9)
wEBLL (0,p

Thus, we aim to find a uniform upper bound for the second term over 7 € J. For each z;, we have
VT Fy(z;0(0)wt) = Z% (2 2:(0))v (@;(0)),

thus B[V T F(2:; ®(0))wl)] = ft(j)(it). Furthermore, from Lemma since ®(0) € Q.
obviously, we have

12iEm IV, H" (25 2:(0))0 D (@:(0)) 12 < Le[v]l2 < Lillpll, as..

Thus, by McDiarmid’s inequality [31]], we have with probability at least 1 — 4,

5 log(2/d
sup [97 i 25 0(0))) — £ (1)| < 2800, (GF) + Laloley| “E22, (76)
VIS

for each ¢t < T and Z;. By union bound,

. log(2T]Y x A["T1/5
sup max |V Fy(z; 9(0)w?) — £ (2 )‘<2maxma0m(Gft)+Lt|p|2\/ o821 - /8,
JjeT *t Z

\/log(2T|Y x A|T/§)

m

< 2 max maxRad,,(G7*) + Lz|pll2

0<t<T z: ’

simultaneously for all ¢ < T with probability > 1 — §. Therefore,

. 22 _ . .
inf B N A VT R(Z 0(0)w — £ <BFT ST sup VT E(Zi @(0)w? — £,
t<T t<T J€J

2
1 z log(2T|Y x A|T /6
< (20max max Rad,, (GF") +LT||P||2\/ el m>< - ))

P(n)

1—7 <t<T Z

O

E.3 Why do we consider uniform approximation error?

In a static problem (e.g., the regression problem in supervised learning or the policy evaluation
problem in Section[6) with a target function f € .7, the approximation error is easy to characterize:

VT E(Z:®(0))w* — fi(2)]| = O In (1/9) ; (77)
| ( ) (z1)]

m

by Hoeffding inequality with w* := [\/%civ(fbi(O))} il
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In the dynamical policy optimization problem, the representational assumption Q’T(I)(n) € % does

not imply an arbitrarily small approximation error as m — oo since the target function Q”q)(") also
depends on ®(0) [7]. Thus, an approximation

VI Fy(2;9(0))w), = i VTH (25 8(0)v®™ (9,(0))

n _ m )
=1

with w? = [ﬁciv‘b(”)(@i(()))]ie[m] for the transportation mapping v®(™) € % may not con-

verge to the target function Q™" because of the correlated VTHt(i) (Z¢; ®(0))v®™) (®;(0)) across
i € [m] as argued in [7]. To address this, we characterize the uniform approximation error as in

Proposition|7.7| for the random features of the actor RNN in approximating all Q”q)(") for all n based
on Rademacher complexity.
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