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Abstract
Invariant representations are transformations of
the covariates such that the best model on top
of the representation is invariant across training
environments. In the context of linear Structural
Equation Models (SEMs), invariant representa-
tions might allow us to learn models with out-
of-distribution guarantees, i.e., models that are
robust to interventions in the SEM. To address the
invariant representation problem in a finite sample
setting, we consider the notion of ε-approximate
invariance. We study the following question: If a
representation is approximately invariant with re-
spect to a given number of training interventions,
will it continue to be approximately invariant on
a larger collection of unseen intervened SEMs?
Inspired by PAC learning, we obtain finite-sample
out-of-distribution generalization guarantees for
approximate invariance that holds probabilisti-
cally over a family of linear SEMs without faith-
fulness assumptions. We also show how to extend
our results to a linear indirect observation model
that incorporates latent variables.

1. Introduction
A common failure of empirical risk minimization in ma-
chine learning is that it is beneficial to exploit spurious
correlations to minimize training loss. A classic example
of this comes from (Beery et al., 2018) where we have a
dataset with pictures of cows and camels. In most cases,
the cows are in pastures and the camels are in deserts, and
a classifier that works well on such a dataset generalizes
poorly to classifying cows in deserts. How do we prevent a
classifier tasked with distinguishing pictures of cows from
pictures of camels from using the color of the images? Cer-
tainly doing so might actually help with the classification
- take an extreme example wherein rather than just having
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an indicative background, the species of the animal is an-
notated in the image itself. In this case, simply learning to
interpret what is annotated will lead to an excellent classifier.
However, such a classifier will perform poorly on a future
dataset with incorrect or missing annotations.

In asking for such “out-of-distribution” (OOD) generaliza-
tion (generalization to different distributions rather than
different samples from the same distribution), we are asking
for more than what is guaranteed by traditional PAC learn-
ing. For instance, we might have a covariate shift, meaning
the marginal on the covariates of the joint distributions of
our training and test data is different. We would like a clas-
sifier that is trained on training environments to generalize
to the test environments.

Recently, in the OOD generalization literature, the data for
the training and test environments have been modeled to
arise from a set of causal models that are intervened versions
of each other. The true causal relationship in causal models
between a target variable and its causal parents remains
invariant while other relationships could change (Peters
et al., 2016; Bareinboim et al., 2012). Building on this
observation, authors in (Arjovsky et al., 2019) proposed
to learn a representation across the training environments
such that the optimal classifier on top of it remains the same.
We refer to this as the invariant representation in this work.
Will this representation and the predictor generalize (remain
invariant) in unseen environments? Does such a formulation
result in improvements over other methods such as empirical
risk minimization or distributionally robust optimization?

There has been some debate about this matter. Some theo-
retical works (Rosenfeld et al., 2020), (Kamath et al., 2021)
describe regimes and settings in which either the convex
penalty suggested by (Arjovsky et al., 2019) or the invari-
ance formulation in general are not sufficient to generalize
to new environments. On the other hand, there are also
settings described in (Arjovsky et al., 2019), (Ahuja et al.,
2020), (Kamath et al., 2021) in which IRM does provably
lead to OOD generalization guarantees that are not possible
using other methods. However, these prior studies require
strong conditions such as faithfulness (Yang et al., 2018),
(Pearl, 2009), that come from the structure learning commu-
nity. Indeed, as noted in (Uhler et al., 2013), faithfulness
(that observed invariances imply structural constraints on the
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causal graph) is a very strong assumption in the finite sam-
ple setting. This is because the volume of the set of linear
SEMs that are “close” to ones with faithfulness violations
is a large constant fraction of all linear SEMs. This makes
it difficult to resolve the question of whether an observed
conditional independence truly holds due to the underlying
causal structure with finite samples. Invariance based results
almost always study the infinite sample setting and assume
general position conditions on the training environments;
similar to the faithfulness assumption, these become much
stronger assumptions in the finite sample setting.

Thus in the worst case, perhaps we cannot expect general-
ization guarantees without an exponentially many interven-
tions/samples. Instead of studying the worst case setting,
suppose we consider the PAC setting – can we now derive
finite sample generalization guarantees without the need of
strong faithfulness or general position assumptions, yet with
a polynomial scaling in interventions/samples?

1.1. Contributions

We answer the above affirmatively, and provide the first
generalization and associated finite-sample guarantees for
invariant representations without faithfulness assumptions.
We study a setting in which we have access to a family of
linear SEMs related to each other by hard and soft inter-
ventions on arbitrary subsets of variables. We assume that
the training environments arise by random sampling from
a distribution over this family. We derive a PAC bound
for the number of interventions needed to get probabilistic
generalization on the family of SEMs. A central result is
that we need only O(n

4

δ′ ) training environments, such that
approximately invariant representations on the training set
generalizes with probability 1− δ′ on the family of unseen
linear SEMs. Further our theory also works for general lin-
ear representations beyond feature selection for indirect and
direct observation models (e.g., could have latent variables)
with a scaling ofO(n

8

δ′ ); please see Appendix 9.4 for details.
We show tighter interventional complexity independent of
n for SEM families that have simultaneous atomic interven-
tions on any fixed set of k nodes and soft interventions on k
nodes in a degree bounded setting.

Secondly, we characterize the number of samples in each
training environment that is needed for approximate invari-
ance to hold with high probability. This gives an end-to-end
sample complexity guarantee along with the interventional
complexity required in the above setting without any faith-
fulness or general position assumptions. Furthermore, we
show extensions of our results to a linear indirect observa-
tion model that incorporates latent variables.

Finally, we empirically demonstrate that in the setting de-
scribed above using a notion of generalization that we de-

scribe, most approximately invariant representations gener-
alize to most new distributions.

1.2. Related Work

Causal Structure Learning: One approach, in the pres-
ence of data sampled from structural models, is simply to
try and learn the DAG structure explicitly. Algorithms that
use conditional independence (CI) tests and/or penalized
likelihood scoring are used to determine the DAG (Spirtes
et al., 2000; Solus et al., 2021; Chickering, 2020; Brouillard
et al., 2020). These methods can only learn DAGs up to
what is called the Markov Equivalence Class (MEC) (Verma
& Pearl, 1990), or I-MECs (Interventional MECs) when
given access to general interventions (Hauser & Bühlmann,
2012; Squires et al., 2020; Brouillard et al., 2020) (Yang
et al., 2018) under some form of faithfulness assumptions on
the underlying causal model. It has been shown that some
forms of faithfulness assumption are actually stronger than
one might expect; linear SEMs that are close to a faithful
violation form a much larger set (Uhler et al., 2013) and are
difficult to distinguish in finite samples from faithful ones.
However, in light of the fact that we only want generaliza-
tion guarantees for invariance and not structure recovery,
one could argue that learning the structure, or even feature
selection is stronger than what we actually need.

Domain Adaptation Methods: Domain adaptation litera-
ture (Ganin et al., 2016; Muandet et al., 2013; Ben-David
et al., 2007) learns representations whose distribution does
not change across training and an unlabeled test distribution.
Another line of work searches for the best mixture of train-
ing distributions to train on or mixture of pretrained models
for generalization to unlabeled test data or test data with
limited test labels (Mansour et al., 2021; 2008). Distribution-
ally robust optimization approaches that optimize the worst
risk over an uncertainty set of distributions have been pro-
posed (Duchi et al., 2021; Sagawa et al., 2019). Please see
Appendix A of (Gulrajani & Lopez-Paz, 2020) for a more
exhaustive list of works. Robust optimization and multi
source domain adaptation methods search in an uncertainty
ball around the training distributions while domain adapta-
tion fail even with a shift in marginal distributions of the
labels (Zhao et al., 2019). Such methods fail when the test
distribution is outside the convex hull of training distribu-
tions. (Magliacane et al., 2017) use invariance tests, which
require faithfulness assumptions. (Chen et al., 2023) ap-
plies a multi-objective optimization perspective to the OOD
problem to resolve some of the optimization difficulties of
OOD generalization. Finally, the interventional complexity
of learning invariant representations is also considered in
(Chen et al., 2022) and (Wang et al., 2022). Under the data
model of (Rosenfeld et al., 2020), (Chen et al., 2022) show
that a smoothed analysis (with distributional assumptions)
can get logarithmic interventional complexity, while (Wang
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et al., 2022) use second-order moments to get just O(1)
training environments in the infinite sample limit.

Finite Samples and Invariant Risk Minimization: One
framework proposed to bypass structure learning difficul-
ties and directly look for invariant representations is to use
Invariant Risk Minimization (IRM) (Arjovsky et al., 2019).
(Arjovsky et al., 2019) show that under some general po-
sition assumptions on the population covariances of the
training distributions the exact invariant representation re-
covers the true causal parents. The work of (Ahuja et al.,
2020) makes similar assumptions to derive sample com-
plexity guarantees. (Kamath et al., 2021) also consider the
question of getting generalization guarantees from IRM for
general distributions, and address the number of training
intervention needed for IRM; however, they work in the
infinite sample limit with exact invariance and require an an-
alytical mapping between intervention index set and training
distributions. All these works assume regularity conditions
and provide deterministic guarantees for a test distribution.

Invariant Predictors on DAGs: Recent works (Sub-
baswamy et al., 2019) have assumed the knowledge of the
causal DAG behind the unseen test and/or train distributions
along with information about the nodes that are intervened
on in the test. It is then possible to characterize all pos-
sible invariant representations as a function of the graph.
In our study, we do not assume any such side information
about the SEM underlying our distributions. Finally, in
(Rothenhäusler et al., 2021), there is a known set of vari-
ables (anchors) whose effect is considered to be spurious (in
our setting, we do not know these). They study a weighted
projection that penalizes estimates that are aligned with the
anchor observations. In contrast, we study the IRM objec-
tive: rather than being a min-max of residual error over some
set of distributions, our objective encourages representations
that lead to invariant least squares solutions.

2. Model
2.1. Structural Equation Model

We consider a causal generative model specified by a lin-
ear Structural Equation Model (SEM) - data that is gen-
erated by linear equations on a directed acyclic graph
(DAG) of variables. Specifically, we work with a random
n + 1−dimensional vector X = (X1, X2, · · · , Xn, Xt).
We assume that there is some unknown directed acyclic
graph G with nodes (v1, v2, · · · , vn, vt) which specifies the
relationships between the variables in X , so that the node
vi corresponds to the random variable Xi. The variables are
related to each other by structural equations of the form:

Xθ
i =

(
βθi
)>

Paθi + ηθi =
∑
j∈Paθi

βθj,iX
θ
j + ηθi , (1)

Xt = β>t Pat + ηt =
∑
j∈Pa

βj,tXj + ηt. (2)

Here ηi are the exogenous variables in our system and Xi

denotes the endogenous variables in the system. Pai denote
the set of random variables (stacked as a column vector)
corresponding to the parents of node vi in G. The weights
of the linear SEM, when there is a directed edge between
node vj and vi are represented by βj,i. There is some target
node Xt that is special in that we would like to predict its
value given the rest of the variables. We will denote the
vector consisting of the rest of the variables as X−t. We
will denote by barred quantities the zero-padded versions of
the above vectors, so βt, is such that β>t Pat = β

>
t X−t.

2.2. Interventions

An important feature of Equation (1) is the superscript θ
for θ ∈ Θ, an element of some intervention index set Θ.
Θ specifies a parameterized intervention family, i.e. a fam-
ily of linear SEMs related to each other by interventions.
Conceptually various environments correspond to different
mechanisms by which causal parents influence children.
The changes in mechanisms are reflected in the weights βθj,i
parameterized by θ. Note that the conditional distribution
of the target variable Xt given its parents Pat is assumed
to be the same even for different θ ∈ Θ. This is a property
that we would like to exploit so that our task of predicting
Xt is robust to different interventions in Θ, i.e. there exists
at least one robust predictor for all environments. We begin
with an observational distribution with weights given by
βθ◦ . There are two common types of interventions studied:

Atomic or Hard Interventions: In hard interventions θ at
some node vi, we assign a value to Xi. This corresponds to
setting βj,i = 0 for all Xj ∈ Pai, and setting ηθi = aθi .

Soft Interventions: In soft interventions, the weights βθi 6=
βθ◦i are altered while keeping the noise the same ηθi = ηθ◦i .

The SEM parameters θ determine a joint distribution over
X , which we denote by ∆θ.

2.3. Data

Distributions over Interventions: In our model, we con-
sider a distribution D over Θ from which we assume that
our training and test data-sets are drawn by sampling the
intervention index θ independently and randomly from D.
We provide generalization bounds that work with high prob-
ability over the randomness of the choice of test distribution,
rather than deterministically as has been done in prior works
(as we will explore in more detail, providing deterministic
bounds is not possible without additional assumptions). For-
mally, Θtrain is an index set of interventions drawn i.i.d. from
D over Θ. The test intervention index θtest is also drawn
from D independently. The learner does not see any details
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about the intervention (which nodes are affected, etc), but
sees the distinct datasets from the distinct interventions.

Data generation: In this sense, the training data is gen-
erated by first sampling Θtrain from D, and then sampling
| Θtrain | training datasets Xθ ∼ ∆θ for θ ∈ Θtrain.

3. PAC-Invariant Representations
Motivated by Invariant Risk Minimization (IRM), we con-
sider the search for a model that performs well under a
variety of distributions in the hopes of attaining generaliza-
tion guarantees. Consider a prediction function f with loss
Rθ(f). Here the superscript θ represents the intervention
index. In this paper, we consider least squares regression,
f ∈ Rn is a vector, and the loss is given by

Rθ(f) = Eθ[
(
f>X−t −Xt

)2
] (3)

where the expectation is taken with respect to ∆θ. We are
interested in generalization guarantees for representations
Φ that satisfy the property that

f = arg min
f

Rθ(f ◦ Φ) ∀θ ∈ Θtrain, (4)

is invariant across environments. That is, the least squares
solution on top of the representation is the same for every
intervention. We will denote the set of all invariant repre-
sentations over a class of SEMs Θ′ by I(Θ′).

I(Θ′) = {Φ : ∃ f s.t. f = arg min
f

Rθ(f ◦ Φ) ∀θ ∈ Θ′}

We refer to the full model f ◦ Φ when Φ is invariant as an
invariant solution. We useRθΦ(f) to denote the loss for f
on top of representation Φ, soRθΦ = Rθ(f ◦ Φ). We refer
to f as the head of the model.

Feature selection, a motivation for the study of invariant
representations, corresponds to diagonal representations;
henceforth, we focus on the class of representations that are
feature selectors, given by diagonal matrices.

Invariance via gradients: Rather than working with the
loss itself, we follow (Ahuja et al., 2020), (Arjovsky et al.,
2019) and use the gradient of the loss instead (see Lemma
8.5).

Φ ∈ I(Θtrain) ⇐⇒ ∃f s.t. ∇fRθΦ(f) = 0 ∀θ ∈ Θtrain.

Unlike previous work, we do not further minimize the
weighted empirical loss over training environments. We
will instead consider the generalizability of any approxi-
mately invariant representation.

Finite samples and ε−approximately Invariant Repre-
sentations: Since we are working with finite samples, we

can no longer hope for exact invariance across environments.
We slightly change the definition of invariance to be about
the gradient being close to 0.

Φ ∈ Iε(Θtrain) ⇐⇒ ∃f s.t. ‖∇RθΦ(f)‖2 ≤ ε ∀θ ∈ Θtrain.
(5)

We refer to approximate versions of quantities using a su-
perscript ·ε, and, given specific datasets, we refer to finite
sample versions of these quantities using hats, so for in-
stance the set of representations that are invariant for some
set Θ′ is denoted I(Θ′), the set of ε−approximately in-
variant representations is given by Iε(Θ′), finally, given a
particular dataset, the set of ε−approximately invariant rep-
resentations would be denoted Îε(Θ′). Note that the finite
sample quantities are random (from the randomness of the
samples drawn from ∆θ), while the ε−approximate quanti-
ties are deterministic. The dataset of N points is denoted in
matrix form as X with X−t and Xt denoting the non-target
matrix and target vector respectively.

Significance of linear representations: A linear represen-
tation Φ affects invariance non-trivially by selecting an “ef-
fective” column space for the regression, that is, in determin-
ing the column space of Φ>X−t. Because we are looking
for a fixed (across environments) least-squares head on top
of the representation, Φ can be further composed with any
invertible linear map, only to be inverted at the head to
obtain another invariant solution (ΦA,A−1f) from an in-
variant solution (Φ, f). Because of this freedom, we can
actually choose to work with some fixed head f◦. When
the space of Φ is all matrices f◦ is chosen to be (1, 0 . . . 0).
When the space of Φ is only diagonal matrices, then f◦ is
taken to be (1, 1 . . . 1). These are formalized in Lemma
8.3 and Lemma 8.4. As we will see, a key construction is
that of Iεf◦(θ), defined as those Φ such that the gradient is
near-zero at f◦, that is,

Φ ∈ Iεf◦(θ) ⇐⇒ ‖∇RθΦ(f◦)‖ ≤ ε,

for some specific f◦. Similarly, for some set of interventions
Θ′, we define Iεf◦(Θ

′) =
⋂
θ∈Θ′ Iεf◦(θ). This allows us to

look at invariance as a property of a representation and
a single intervention, rather than that over collection of
interventions as in Equation 4. This is discussed further in
Remark 3.6.

3.1. Motivation for Probabilistic Guarantees

Consider a distribution D over interventions. During train-
ing, we see samples from specific interventions drawn from
this distribution Θtrain, and compute invariant representa-
tions for these interventions. Ideally, we would like to be
able to say that an invariant solution computed in this way
will generalize to all future interventions on the same DAG.
However, this is not possible without further assumptions,
as the following examples illustrate.
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X1

X2

X3

Xt

β12 = 1

β13 = a

β23 = b

β2,t = 1

β3,t = 1

Figure 1. Figure for Example 3.1 showing that there could be more
independencies in the data than apparent from the DAG alone.

Example 3.1 (Faithfulness). Consider a linear SEM on four
variables X1, X2, X3, Xt given by

X1 = N (0, 1), X2 = X1 +N (0, 1),

X3 = aX1 + bX2 +N (0, 1), Xt = X2 +X3 +N (0, 1).

depicted in Figure 1. This system has at least the follow-
ing two invariant representations of X = (X1, X2, X3) if
a = −b for every intervention: (X2, X3) and (X2). How-
ever, only the first continues to be invariant when a 6= −b.
In other words, given an arbitrary number of training envi-
ronments, each of which satisfies a = −b, we might decide
that (X2) is an invariant representation. However, this fails
to be invariant once we include a test intervention for which
a 6= −b. This happens because the joint distribution is not
faithful to the DAG provided. In short, this means that the
conditional independencies indicated by the DAG are not
the only ones found in the data. In our case, the effect of
X1 on X3 through the blue path and the red path exactly
cancel in all training interventions.
Example 3.2 (Degenerate Interventions). Consider the de-
generate situation in which each of the interventions is the
same. The Empirical Risk Minimization (ERM) solution
itself is invariant, however, the ERM solution comes with
no generalization guarantees to other interventions. It is
clear that some “diversity” condition among the training
environments is necessary to get generalization guarantees.

The key idea is that in such situations one might say that
these issues (faithfulness violations as in Example 3.1 or
degeneracies as in 3.2) will likely continue to manifest in
future distributions. In particular, if we assume that both
training and test intervention come from a single distribu-
tion over interventions, can we at least say that with high
probability over a test intervention also drawn from D, we
will generalize to that intervention? More formally, we ask:

How big should Θtrain be so that for θ ∼ D, Iεf◦(Θtrain) ∈
Iεf◦(θ) with high probability?

In other words, we would like invariance on our training
interventions to certify invariance over a future interventions
with high probability. To further clarify the type of guarantee
considered, we look at the following example.
Example 3.3. Consider the DAG given in Figure (2). Con-
sider the following distribution over interventions: We set

X1 X2 Xn−1 Xn

Xt

Figure 2. DAG for intervention in Example 3.3

X1 = 1. Independently and with probability 1/2 for each
node that is not X1 or Xt, we assign its value to be 0. Else
we set its value equal to its parent. The only invariant
representations in this case are (Xn) and (X1, Xn). Now
consider any training set of m interventions. If m � 2n,
we expect to never see the intervention in which none of
the edges are disconnected (i.e., an environment with no
intervention on any of X2, X3, .., , Xn−1), in which case
(X1) also appears to be invariant over every observed in-
tervention. However, it fails to be invariant on the discon-
nected intervention described above, which occurs with an
extremely low probability of 1/2n−1.

Our result instead gives a probabilistic guarantee that says
that with a certain probability over the randomness from
which we are drawing interventions, any representation
that appears to be invariant over the training set will also
be invariant when the set is expanded to include another
i.i.d. intervention (the test intervention). As demonstrated
in this example, we may need Θ(2n) interventions to get
deterministic guarantees while our poly(n) result highlights
the benefit of getting a probabilistic guarantee in this setting.

3.2. PAC Formulation

In this section, we show that the question of generalization
of ε−invariant representations introduced in the previous
section can be rewritten as a question of PAC generalization.

3.2.1. VC DIMENSION AND PAC GENERALIZATION

Let X ⊂ Rd be a subset of points. A function class G is
said to shatter X if every binary assignment toX is realized
by some element of G, that is, for any σ : X → {±1},
we have that there is some f ∈ G such that f(x) = σ(x)
for all x ∈ X . The VC dimension of a function class is
defined as the size of the largest set that is shattered by it.
The following result from PAC learning theory allows us to
determine how many interventions are needed to generalize.

Lemma 3.1 ((Shalev-Shwartz & Ben-David, 2014)). Con-
sider a class G of functions fromX to {±1} of VC dimension
D, and a distribution D̃ overX×{±1}. In the realizable set-
ting, when there exists f ∈ G such that P(X,Y )∼D̃[f(X) 6=

Y ] = 0, given m = O(
D+log 1

δ1

δ2
) samples (xi, yi)

m
i=1 and

f̃ such that f̃(xi) = yi for all i, with probability at least
1− δ1, f̃ satisfies P(X,Y )∼D̃[f̃(X) 6= Y ] < δ2.

5



PAC Generalization via Invariant Representations

We will need the following known VC dimension.

Lemma 3.2 ((Shalev-Shwartz & Ben-David, 2014)). The
VC dimension of halfspaces in RD, that is, the function class
G =

{
1{a>x < b} : a ∈ RD, b ∈ R

}
is D + 1.

3.2.2. PAC INVARIANCE

We will use PAC learning theory to study generalization for
representations. For that we will rephrase the invariance
problem to that of the generalization of binary classifiers.
The proof is deferred to the Appendix, Lemma 8.7.

Lemma 3.3. There is a function class G mapping interven-
tions θ ∈ Θ to {0, 1}, such that

Φ ∈ Iεf◦(Θtrain) ⇐⇒ ∃gεΦ ∈ G
such that gεΦ(θ) = 1 ∀θ ∈ Θtrain.

In summary, if we can bound the VC dimension of G, we
can specify interventional complexity guarantees. The proof
is deferred to the Appendix, Corollary 8.8

Corollary 3.4. If the VC dimension of G is bounded by D,
then given at least O(

D+log 1
δ

δ′ ) training interventions, if
Iε(Θ) 6= {}, we have with probability 1− δ over the set of
training interventions,

Pθ∼D(Iεf◦(Θtrain) 6⊂ Iεf◦(θ)) ≤ δ
′.

Finally, there is at least one truly invariant representation,
as demonstrated in the following Lemma.

Lemma 3.5. There exists an invariant representation.

Proof. The representation Φ = diag(βt) is invariant. That
is, the diagonal matrix with βt on the diagonal in indices
corresponding to Pat.

Remark 3.6. (Fixing a head is important for PAC learning)
Considering a fixed head f◦ allows us to certify invariance
locally, that is, looking at only a single intervention at a
time. This is in contrast with the previous characterization,
Equation (4), in which we simply ask for the best head on
top of a representation to be the same for all interventions
- a condition that we can only check for by considering all
interventions simultaneously.

3.3. The VC dimension of certain classes of
interventional distributions

Further, we show that for atomic interventions on some fixed
set of k nodes, O(k4) training interventions suffices. For
soft interventions on k nodes, assuming that each node has
in-degree bounded by d, we show that O(d4k) interventions
suffices. This captures the intuition that if there is only
some sparse, local change in the SEM, it should only take a

number of interventions that scales in the sparsity to capture
the invariances it leaves.

In the next section, we will show how to extend these results
to the finite sample setting.

3.3.1. GENERAL INTERVENTIONS

For this section we approach the task of bounding the VC
dimension from the perspective of the complexity of the
representation space. The class of interventions we consider
are any interventions that lead to joint distributions over the
variables that leave fixed the conditional distribution for the
target variable given its parents.

Theorem 3.7. Suppose that we are given O(
n4+log 1

δ

δ′ ) in-
terventions drawn independently from distribution D over
the intervention index set Θ. Then with probability at least
1− δ over the randomness in Θtrain, the following statement
holds:

Pθ∼D(Iεf◦(Θtrain) /∈ Iεf◦(θ)) ≤ δ
′.

In other words, an ε- approximate invariant representation
on the training environments generalizes with high proba-
bility to the test environment.

Connections to Causal Bayesian Networks: Invariance
Principle or (less popularly known as) the modularity con-
dition can be equivalently used to define causal Bayesian
Networks (Bareinboim et al., 2012) - the central object in
Pearlian Causal Models. With respect to all possible inter-
ventions wherein variable y has not been intervened on, only
the representation that involves the true causal parents of y
is invariant. In other words, the property of invariance can
be taken to be the signature of causality. An open question
in the setting has been the following: In how many inter-
ventional environments does this invariance property need
to hold before it generalizes to most unseen environments.
With respect to a random sampling on interventional envi-
ronments for linear SEMs, our result answers this via high
probability generalization guarantees without any faithful-
ness assumptions.

Structure Learning and Faithfulness: Invariance testing
between a given set of interventional environments has been
used to constrain the space of causal models (Yang et al.,
2018) in the literature. However, the learning algorithm that
synthesizes various invariances does require some notion of
interventional faithfulness, i.e. observed invariances imply
topological constraints on the true causal graph. In contrast,
we do not make any such assumptions about faithfulness.

Comparison to Regularity Conditions in Invariant Pre-
diction: Recently, invariant prediction (Arjovsky et al.,
2019) has been used for out of distribution generalization.
However, exact invariance holding deterministically in all
unseen distributions from a family of linear SEMs was de-
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sired. This required some general position conditions on
the population covariances of the training interventional
environments. The number of environments despite these
additional conditions, required was O(n2). Our result on
the interventional complexity is weaker but holds when we
need no such assumptions on covariances and it holds un-
der random sampling for approximate invariances. Similar
technical general position conditions were also required in
(Ahuja et al., 2020) for generalization.

In another recent work (Kamath et al., 2021), if the mapping
between the intervention index set Θ and the observed train-
ing distributions on X is analytic, then only two training
environments (almost surely) suffice for exact invariance
in the population setting (i.e., infinite samples) for the en-
tire index set. Here, we analyze approximate invariance
without any restrictions on the mapping being analytic. For
instance, their result does not apply in Example 3.3, where
we need two specific interventions (one in which each node
is assigned the value of the parent, and any other) to certify
invariance. In fact, any set of interventions needs to have the
specific intervention highlighted in the example to certify
invariance, and this happens with very low probability.

3.3.2. ATOMIC INTERVENTIONS

Here we consider the instance in which our family of in-
terventions consists of atomic interventions on a total of k
nodes At. An atomic intervention at node i replaces the gen-
erative equation Xi = γi(e)

>Pai + ηi by the assignment
Xi = ai for some scalar ai. Note that we can interpret this
as zeroing out the corresponding entries of B and changing
the noise variable to be a constant ai.

Theorem 3.8. Given |Θtrain| = O(
k4+log 1

δ

δ′ ) interventions
drawn independently from a distribution D over all atomic
interventions on some fixed set At of k nodes that with
probability at least 1−δ over the randomness in Θtrain, with
probability at least 1 − δ′ over the randomness in D, we
have for θ ∼ D, Iε(Θtrain) ⊆ Iε(θ)

3.3.3. SOFT INTERVENTIONS

Soft interventions are those in which the weights of the
SEM are modified while the underlying causal structure
remains the same. That is, a soft intervention at node vi is
equivalent to replacing the equation Xi = (βθ◦i )>X + ηi
with Xi = (βθi )>X + ηi. Note that this is equivalent also
to changing the ith row of Bθ.

Theorem 3.9. Given O(
d4k+log 1

δ

δ′ ) interventions drawn in-
dependently from a distribution D over all soft interven-
tions on some fixed set At of k nodes such that each in-
tervened node has in-degree at most d, we have that any
ε−approximately invariant representation Φ satisfies that
with probability at least 1− δ over the randomness in Θtrain,
with probability at least 1− δ′ over the randomness in D,

we have for θ ∼ D,Iε(Θtrain) = Iε(θ)

3.3.4. INDIRECT OBSERVATIONS

Finally, we consider the setting in which there is an under-
lying SEM which we observe after a linear transformation.
In particular, we consider the setting in which we observe
(S−t(X), St(X)) for some linear transformations S−t and
St. Here,X is generated as before, according to 1. Note that
the target variable is now St. We assume for realizability
(in particular, for Lemma 3.5) the following:

Assumption 3.10. There is some linear representation Φ
such that ΦS−t(X) = Pat.

Theorem 3.11. Given O(
n8+log 1

δ

δ′ ) interventions drawn in-
dependently from a distribution D interventions, we have
that any ε−approximately invariant representation Φ satis-
fies that with probability at least 1− δ over the randomness
in Θtrain, with probability at least 1−δ′ over the randomness
in D, we have for θ ∼ D,Iε(Θtrain) = Iε(θ)
Remark 3.12. Note that Theorem 3.11 encompasses models
that have latent variables, so long as the causal parents
are observed. Note that the existence of latent variables
typically precludes any guarantees for algorithms that rely
on CI-testing. One could consider this to be a factor in favor
of using IRM-based solutions for OOD generalization.
Remark 3.13. Note that we only need Assumption 3.10 to be
satisfied, and not that the functions S−t and St themselves
are linear. This is weaker than a linearity assumption, since
we could have non-linearity in the spurious components.

4. Finite samples
Note that the above discussion was about population statis-
tics. In practice, we only see finitely many samples from
each interventional distribution. We use an estimator similar
to that of (Ahuja et al., 2020) to get finite sample guarantees.
We need the following assumption for scale.

Assumption 4.1. The following bounds hold, ‖Φ‖2 ≤ 1,
‖X‖∞ < L.

Lemma 4.2. Given 4nL2

ε2

(
log 2n

δ + n2 log(1 + 8n3/2

ε )
)

samples from ∆θ, we have that with probability 1− δ over
the samples drawn in each interventional distribution1

Îεf◦(θ) ⊆ I
2ε
f◦(θ).

Proof Sketch. We show this using the standard concentra-
tion arguments for a single fixed representation Φ. We take
a union bound over an ε−net ofRθΦ to get a uniform bound
over all representations. See Lemma 10.3 for a proof.

1In contrast to claims over the randomness D over Θ from
previous theorems, this is a statement about the randomness ∆θ

for X .

7



PAC Generalization via Invariant Representations

We can now take a union bound over all θ ∈ Θtrain. In
conclusion, we have shown that with high probability over
the randomness in the samples we see in each of our in-
terventional distributions, ε−approximate invariance over
the training data certifies ε−approximate invariance over
a 1 − δ′ fraction of out full intervention set. The proof is
defered to the Appendix Theorem 10.4

Theorem 4.3. Given

m =


O(

k4+log 1
δ

δ′ ) Θ is k nodes, hard interventions

O(
d4k+log 1

δ

δ′ ) Θ is k nodes, soft interventions

O(
n4+log 1

δ

δ′ ) Θ any interventions

interventional datasets, and, in each dataset, at least
4nL2

ε2

(
log 2nm

δ + n2 log(1 + 8n3/2

ε )
)

samples, we have

that with probability 1 − δ, with probability 1 − δ′ for
θ ∼ D,

Îεf◦(Θtrain) ⊆ I2ε
f◦(θ).

5. Empirical Study
In this section we highlight the above results empirically.
The experiment is described in detail in Appendix 11.

X1

X4

X3X2

X5Xt

X6

Figure 3. Linear SEM for Section 5. Nodes {v3, v4, v5} (purple)
are used as intervention sites for Dhard and Dsoft. Each edge rep-
resents a weight of 1. Node Xt (green) is taken to be the target
node.

We consider the 7-node linear SEM in Figure 3. The tar-
get variable is taken to be Xt. Each edge weight is set
to 1 for the observational distribution. We consider an
interventional distribution Dhard with support over the set
of hard interventions on nodes {v3, v4, v5}. Recall that a
hard intervention consists of assigning a value to a node.
We draw m interventional distributions from Dhard as our
training interventions, and draw a sample consisting of
N = 200000 datapoints from each distribution. The cor-
responding plots with N ∈ {10000, 15000, 30000, 45000}

are available in Appendix 11. We use a notion of inter-
dataset variance of the least squares solutions to construct
a set shard = {S1, S2, · · · , } where each Si is an approx-
imately invariant representation derived from the training
datasets. Rather than using variance, we can use the norm
of the gradient; please see Appendix 11 for details. We then
generate an additional mtest = 100 test interventions from
Dhard, and generate datasets of size N = 200000 from each
of them. We use the same inter-dataset variance to count
the percentage of subsets in shard that continue to have low
variation between the least squares solutions on the new test
distributions and the average least squares solution on the
training distributions. We repeat the above for soft interven-
tions drawn from Dsoft. We consider soft interventions that
modify the weights of the edges into v3, v4, and v5. Please
see Appendix 11 for exact details about how the hard and
soft interventional ensembles are defined.
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number of training interventions
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Figure 4. Generalization of approximately invariant representa-
tions under different combinations of train and test interventional
distributions for the experiment described in Section 5. The ERM
solution almost always fails to generalize, and the corresponding
box plot is at ‘0’.

We also consider a different interventional distribution Drad
to test the generalization of representations that are approx-
imately invariant given training distributions drawn from
Dhard. These interventions are generated by randomly flip-
ping the signs of the edge weights in the original SEM.

Finally, to confirm that there is indeed variation across the
least squares solutions in the different environments, we
also plot the percentage of test distributions to which the
ERM solution on the training distributions is similar to ERM
solution of the test distributions (this percentage is almost
always 0; meaning that the ERM solution always fails to
generalize). We repeat this for m varying beteen 3 and 20.
The results are plotted in Figure 4.

The code is available at https://github.com/
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advaitparulekar/PAC IRM

Interpretation: While not every subset in shard and ssoft
generalizes to every test dataset, we see that most subsets
generalize to large percentage of test distributions. The
percentage that generalize when the train and test inter-
ventions are identically distributed exceeds the percentage
that generalizes to datasets that come from the (“adversar-
ial”) rademacher interventional family. This phenomenon
is captured in our bounds, which describe when most ap-
proximately invariant representations will continue to be
approximately invariant on most test distributions.
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Xi random variable in SEM, see Equation 1
βi linear weight vector, see Equation 1
Pai vector of random variables corresponding to parents of Xi, see 1
Θ set of possible interventions
Θtrain set of training interventions
D distribution from which training and test distributions are sampled
∆θ joint distribution over variables induced by intervention θ
I(Θ′) set of invariant representations with respect to Θ′

Iε(Θ′) set of approximately invariant representations with respect to Θ′

Îε(Θ′) set of approximately invariant representations with respect to Θ′ (finite samples)
Φ Diagonal matrix encoding a feature selector
d in-degree of nodes in Section 9.3
k number of nodes that have interventions in Section 9.2 and 9.3
δ randomness in samples in the interventional datasets
δ′ randomness in interventions drawn from D

Table 1. Notation table

6. Notation
For any quantity that depends on population statistics, A, we use Â to denote the corresponding sample estimate. For a
vector a ∈ Rn, we use a(k̇) to denote the vector consisting of all monomials of degree less than or equal to k with variables
in a. Thus, we have a(2̇) = (1, a1, a2, · · · , an, a2

1, a1a2, · · · , a2
n)>. We use a(k) (that is, with no dot) to denote the vector

consisting of all monomials of exactly degree k with variables in a, so a(2) = (a2
1, a1a2, a1a3, · · · a2

n)>. For a matrix A, we
use r(A) to denote the vector formed by flattening the matrix, so r(A) = (A11, A12, A13, · · · , An−1,n, Ann)>. Please see
Table 1 for a summary of notation used in the paper.

7. Auxillary proofs
7.1. General Results

Lemma 7.1. Consider a sequence of i.i.d. random vectors V1, V2, · · · , Vm ∈ Rd with mean µ such that ‖Vi‖∞ < L always.
Then for m > dL2

ε2 log d
δ , we have

P[‖ 1

m

m∑
i=1

Vi − µ‖ < ε] > 1− δ.

Proof. By a standard Hoeffding bound, with probability 1− δ, each entry of 1
m

∑m
i=1 Vi will be within ε√

d
of its mean for

m ≥ dL2

ε2 log d
δ . Then the squared norm of the error 1

m

∑m
i=1 Vi − µ will be less than ε.

Lemma 7.2 ((Vershynin, 2011)). The covering number of the Euclidean ball of radius R is (1 + 2R
ε )d.

Lemma 7.3. Let A ∈ Rn×n be a matrix and x ∈ Rn be a column vector, then we have‖Ax‖22 = r(A>A)x(2).

Proof. This follows by writing the norm squared as a quadratic form.

Lemma 7.4. Consider a diagonal matrix Φ ∈ Rn×n . Then there exists a fixed matrix V ∈ Rn2×n such that r(Φ) =
V diag(Φ).

Proof. To construct V , we take the n × n identity matrix and insert with n − 1 rows of all 0s between every row of the
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identity matrix obtain V ∈ Rn2×n which looks as follows:

V =



1 0 0 · · · 0
0 0 0 · · · 0
...
0 1 0 · · · 0
0 0 0 · · · 0
...
0 0 0 · · · 0
0 0 0 · · · 1


.

Lemma 7.5 ((Sullivant et al., 2010), (Uhler et al., 2013)). For the class of linear SEMs defined in Equation 1, we have the
following

• Σθ = J(1− Bθ)−1Ξθ
(
(1−Bθ)−1

)>
J> where Ξθ = Eθ[ηη>] and J is identity concatenated with one column of

zeros at the index corresponding to vt.

• (I −Bθ)−1 =
∑n−1
k=0 B

k
θ

• Σθ =
∑2n−2
k=0

∑
r+s=k
r,s<n−1

BrΞθ(B
>)s.

Proof. Note that the SEM equations can all be combined into a single vector equation of the form

X = BθX + η =⇒ X = (I −Bθ)−1η

for some lower triangular matrix Bθ ∈ Rn×n, and a noise vector η. We can then write the covariance of the features
X−t, Σθ, in terms of Bθ. Let J ∈ Rn×n+1 denote the matrix that is identity concatenated with an additional column
consisting of all zeros in the index corresponding to vt, such that it selects the submatrix of Eθ[XX>] corresponding to
Σθ = Eθ[X−tX>−t]

Σθ := J Eθ[XX>]J>

= J(I −Bθ)−1 Eθ[ηη>]
(
(I −Bθ)−1

)>
J>

Since ‖Bθ‖ < 1, we have (I −Bθ)−1 =
∑∞
k=0B

k
θ . Because Bθ is lower triangular, Bkθ = 0 for k ≥ n. So (I −Bθ)−1 =∑n−1

k=0 B
k
θ . Similarly ((I −Bθ)−1)> =

∑n−1
k=0(B>θ )k. The result follows by considering every cross term in the product of

the sums.

Σθ =

n−1∑
r=0

(Bθ)
rΞθ

n−1∑
s=0

(B>θ )s =

2n−2∑
k=0

∑
r+s=k
r,s<n−1

BrΞθ(B
>)s.

8. Invariant Representations
Consider the SEM model of Section 2.

Xi =
(
βθi
)>

Pai + ηi

Xt = β>Pat + ηt

We see that a representation that projects onto the parents is indeed invariant, Eθ[Xt|Pat] = β>Pat and the RHS has no
dependence on θ. If X is independent of ηt, actually more can be said: the identity representation itself is invariant!
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Lemma 8.1. If X ⊥⊥ ηt, then I ∈ I(Θ).

Proof. We begin with Equation (8)

∇RθΦ(f◦) = Φ>ΣθΦf◦ − Φ> Eθ[XθX
>
t ]

Plugging in Φ = I , we have

∇RθI(f◦) = Σθf◦ − Eθ[XθX
>
t ]

= Σθf◦ − Eθ[X
(
Pa>t β + ηt

)
]

= Σθf◦ − Eθ[X
(
X>β + ηt

)
]

= Σθf◦ − Σθβ + Eθ[Xηt]
= Σθf◦ − Σθβ + Eθ[X]Eθ[ηt]
= Σθ(f◦ − β)

So the loss is minimized at the common f◦ = β (that is, independent of intervention).

Remark 8.2. In the absence of anti-causal variables (variables other than the target variable Xt that are “downstream” from
Xt), the condition of Lemma 8.1 is satisfied, and we have the convenient result that the ERM solutions are actually already
invariant.

8.1. Representations

In this section, we will look more closely at the set of representations.

We show that when the space of representations is all matrix transformations, then the invariant regressor can be taken to be
f◦ = (1, 0 . . . 0).

Lemma 8.3. Let the set of candidate representations be from Rn×n. Let the set of candidate invariant regressors be Rn×1.
Any approximately invariant solution (Φ, f) ∈ Rn×n × Rn×1, corresponds to another invariant solution (Φ′, f◦) where
Φ′ = ΦA−1 for some invertible A, and f◦ = (1, 0, · · · , 0)T .

Proof. We will construct A as follows. For the first column, take A:,0 = f . Take the subspace orthogonal to f and
consider a basis b2 . . . bn that spans this. Then use Gram-Schmidt on bi’s to complete A, iteratively using columns
orthogonal to previous columns. This ensures that Af◦ = f , while also keeping A invertible. Furthermore, we have that
‖∇RθΦ′(f◦)‖ ≤ ε ⇐⇒ ‖∇RθΦ′A−1(Af◦)‖ ≤ ε ⇐⇒ ‖∇RθΦ(f)‖ ≤ ε

We show that when the space of representations is all diagonal matrices, then the invariant regressor can be taken to be
f◦ = (1, 1 . . . 1).

Lemma 8.4. Let the set of candidate representations be diagonal matrices of order n denoted by Dn. Let the set of
candidate invariant regressors be Rn×1 where the regressor has non-zero entries.Consider an approximately invariant
solution (Φ, f) ∈ Dn × Rn×1 : fi 6= 0 where fi is the i-th coordinate of vector f . This corresponds to another invariant
solution (Φ′, f◦) where f◦ = (1, 1 . . . 1)T

Proof. Consider the vector fTΦ that is an invariant solution. Since Φ acts as feature selector, without loss of generality
fi 6= 0, ∀i. Now, put the entries into a diagonal matrix denoted by diag(fTΦ) = diag(f)Φ. Now let Φ′ = Φdiag(f).
Clearly, diag(f)f◦ = f where f◦ = (1, 1 . . . 1)T . Therefore, for A = diag(f), we have ‖∇RθΦ′(f◦)‖ ≤ ε ⇐⇒
‖∇RθΦ′A−1(Af◦)‖ ≤ ε ⇐⇒ ‖∇RθΦ(f)‖ ≤ ε

In Sections 9.2,9.1 and 9.3 where diagonal representations (used as feature selectors) are used, f◦ = (1, 1 . . . 1). In Sections
9.4 where general representations are used, then f◦ = (1, 0 . . . 0).

Since the least squares objective is strongly convex, using gradients instead of loss values does not change the set of invariant
representations
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Lemma 8.5.
f◦ = arg minRθΦ(f) ∀θ ∈ Θ ⇐⇒ ∇RθΦ(f◦) = 0 ∀θ ∈ Θ

Proof. This follows from strong convexity of the loss function.

Lemma 8.6.
‖∇RθΦ(f◦)‖ = 2‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et)‖

Proof.

‖∇E[
(
f>Φ>X−t −Xt

)2 ∣∣
f=f◦
‖2

= 2‖E[Φ>X−t
(
X>−tΦf◦ −Xt

)
]‖ (6)

= 2‖Φ>ΣθΦf◦ − Φ> Eθ[X−tX>t ]‖
= 2‖Φ>Σθ(Φf◦ − βt)− Φ> Eθ[X>−tηt]‖
= 2‖Φ>Σθ(Φf◦ − β)− Φ> Eθ[J(1−Bθ)−1ηηt]‖
= 2‖Φ>Σθ(Φf◦ − β)− Φ>J(1−Bθ)−1 Eθ[ηηt]‖
= 2‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et)‖ (7)

Lemma 8.7. There is a function class G mapping interventions θ ∈ Θ to {0, 1}, such that

Φ ∈ Iεf◦(Θtrain) ⇐⇒ f εΦ(θ) = 1 ∀θ ∈ Θtrain

Proof. By Lemmas 8.6 and 7.5, the invariance condition can be simplified as follows (for approriate J, et defined in the
Lemma):

‖∇E[
(
f>Φ>X−t −Xt

)2 ∣∣
f◦
‖2 = 2‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et)‖ ≤ ε. (8)

Our desired function class is G = {f εΦ(θ)} parameterized by Φ where

f εΦ(θ) := 1{2‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et)‖ ≤ ε},

is a function mapping an intervention to {0, 1} such that Φ ∈ Iεf◦(θ) ⇐⇒ f εΦ(θ) = 1.

Corollary 8.8. If the VC dimension of G is bounded by d, then given at least O(
d+log 1

δ

δ′ ) training interventions, if Iε(Θ) is
not empty, we have that with probability 1− δ over the set of training interventions,

Pθ∼D(Iεf◦(Θtrain) 6⊂ Iεf◦(θ)) ≤ δ
′.

Proof. Let D̃ be a distribution over Θ × {±1} such that the marginal over Θ is D, and the marginal over {±1} is the
dirac-delta on the element ’1’ (i.e. it always takes value 1). We can now apply Lemma 3.1 to our function class G = {gεΦ(θ)}
and distribution D̃. By assumption, there exists a representation Φ ∈ Iεf◦(Θ) =

⋂
θ∈Θtrain

Iε(θ), which means f εΦ(θ) = 1

for all θ ∈ Θ. Since Θtrain ⊆ Θ, we have f εΦ(θ) = 1 for all θ ∈ Θtrain. PAC learnability now states that given O(
d+log 1

δ

δ′ )

interventions, if Φ̃ is such that Φ̃ ∈ gεΦ(Θtrain) (so that it is a hypothesis that fits the training data exactly), we have that with
probability at least 1− δ, Pθ∼D[gε

Φ̃
(θ) = 1] > 1− δ′.
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9. Intervention Models
9.1. General Interventions

Lemma 9.1. For some matrix Uθ, we have

Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et) = Uθr(Φ)(2).

Proof. We will see that both of these terms can be written as Uθr(Φ)(2̇) for some (different) choices of Uθ. We will
enumerate the coordinates of r(Φ)

(2̇)
(ij),(kl) as ΦijΦkl. Note that r(Φ)(2̇) also contains the individual Φij , and we will use ·

to indicate this extra alphabet. To clarify, some of the coordinates are then of the form r(Φ)
(2̇)
(·,(kl)) = Φkl. Now observe that

Φ>ΣθΦf◦ = U1
θ r(Φ)(2̇)

where

(U1
θ )a,((ij),(kl)) =

{
Σjk(f◦)l, a = i and (ij) 6= · and (kl) 6= ·
0, a 6= i or (ij) = · or (kl) = ·

The second term is almost in the form we would like already

Φ>(Σθβ − J(1−Bθ)−1et) = U2
θ r(Φ)(2̇)

where

(U2
θ )a,((ij),(kl)) =

{
(Σθβ − J(1−B)−1et)ij (ij) 6= · and (kl) = ·
0, (ij) = · or (kl) 6= ·

Our result follows by setting Uθ = U1
θ + U2

θ .

Theorem 9.2. Suppose that we are given O(
n4+log 1

δ

δ′ ) interventions drawn independently from distribution D over the
intervention index set Θ. Then with probability at least 1− δ over the randomness in Θtrain, the following statement holds:

Pθ∼D(Iεf◦(Θtrain) /∈ Iεf◦(θ)) ≤ δ
′.

In other words, an ε- approximate invariant representation on the training environments generalizes with high probability to
the test environment.

Proof. We again begin with our expression for the gradient of the loss given by Lemma 8.6.

∇RθΦ(f◦) = Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et).

We show in Lemma 9.1 that we can write this as ∇RθΦ(f◦) = Uθr(Φ)(2̇) for some matrix Uθ. From Lemma 7.3 we can
write the squared norm as ‖∇RθΦ(f◦)‖22 = r(U>θ Uθ)(r(Φ)(2̇))(2). Finally, we can now write our function class as a class of
halfspace classifiers.

gεΦ(θ) = 1 ⇐⇒ r(U>θ Uθ)(r(Φ)(2̇))(2) ≤ ε.

Now consider the map Ψ : diag(Φ(4̇))→ r(Φ)(2̇)(2). Because Φ is diagonal, this is well defined. Each term in r(Φ)(2̇)(2)

contains at most 4 terms of Φ, and each of these is an element of Φ(4̇). Also, since the relation between entries of r(Φ)(2̇)(2)

and entries of diag(Φ(4̇)) is fixed, Ψ is actually a linear transformation (that is, it is some sparse 0/1−matrix). We can then
write

gεΦ(θ) = 1 ⇐⇒ r(U>θ Uθ)Ψdiag(Φ(4̇)) ≤ ε.

Finally, note that diag(Φ(4̇)) ⊂ R(n+1)4 , that is, we have written the function class G as corresponding to some subset of all
halfspace classifiers in R(n+1)4 . By Lemma 3.2, we know that the VC dimension of G is bounded by (n+ 1)4. The result
follows from Corollary 3.4.
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9.2. Atomic interventions

Here we consider the instance in which our family of interventions consists of atomic interventions on a total of k nodes At.
An atomic intervention at node i replaces the generative equation Xi = γi(e)

>Pai + ηi by the assignment Xi = ai for
some scalar ai. Note that we can interpret this as zeroing out the corresponding entries of B and changing the noise variable
to be a constant ai.
Lemma 9.3. For some matrix U , we have

‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et)‖22 = r(Φ)(4̇)Ua(2̇).

Proof. We will examine the dependence of Eθ[X−tX>−t] and Eθ[X−tX>t ] on aiθ starting from Lemma 7.5.

For the former, note that (Σθ)ij can be interpreted as having one term corresponding to every path from i backwards to
some node k and then forwards to j. Because atomic interventions essentially cut off the connections between a node and its
parents, any path that consists initially of backwards edges and then forward edges can only have a quadratic dependence on
the parameters of the intervention, regardless of how many nodes are intervened on. It is only such paths that contribute to
the covariance matrix, and thus to the thresholded polynomials that determine approximate invariance. We will make this
explicit below.

The nature of atomic interventions is that Bθ = BΘ = BIΘ for each of the interventions θ ∈ Θ, where IΘ is an identity
matrix with zeros on the diagonal entries corresponding to At (we are disconnecting each of the sites of intervention from
their parents). In addition, the noise covariance changes. Previously, with independent unit variance noise, the covariance
was Ξθ = Eθ[ηη>] = I . Since we are incorporating the assignments for the atomic interventions into the noise, it is now
given by

(Ξθ)ij =


1, i = j 6∈ At
0, i ∈ At, j 6∈ At, i 6= j

0, i 6∈ At, j ∈ At, i 6= j

aθi a
θ
j i, j ∈ At

That is, we have replaced the submatrix corresponding to the sites of the interventions with aθ(aθ)> where aθ denotes the
vector of assigments aθ = (aθ1, a

θ
2, · · · , aθ|At|).

(Φ>ΣθΦf◦)j =

2n−2∑
k=0

∑
r+s=k
r,s<n

(Φ>JBrΘΞθ(B
>
Θ)sJ>Φf◦)j

=

2n−2∑
k=0

∑
r+s=k
r,s<n

∑
j1,j2,j3,j4,j5,j6,j7

Φj1,jJj1,j2(BrΘ)j2,j3(Ξθ)j3,j4 (BsΘ)j5,j4 J
>
j5,j6Φj6,j7(f◦)j7

=

2n−2∑
k=0

∑
r+s=k
r,s<n

∑
j1,j2,j3,j5,j6,j7

j2 6∈At

Φj1,jJj1,j2(BrΘ)j2,j3(Ξθ)j3,j3 (BsΘ)j5,j4 J
>
j5,j6Φj6,j7(f◦)j7+

∑
j1,j2,j3,j4,j5,j6,j7

j2,j3∈At

Φj1,jJj1,j2(BrΘ)j2,j3(Ξθ)j3,j4 (BsΘ)j5,j4 J
>
j5,j6Φj6,j7(f◦)j7

=

2n−2∑
k=0

∑
r+s=k
r,s<n

∑
j1,j2,j3,j5,j6,j7

j2 6∈At

Φj1,jJj1,j2(Brθ)j2,j3 (BsΘ)j5,j4 J
>
j5,j6Φj6,j7(f◦)j7+

∑
j1,j2,j3,j4,j5,j6,j7

j2,j3∈At

Φj1,jJj1,j2(BrΘ)j2,j3a
θ
j3a

θ
j4 (BsΘ)j5,j4 J

>
j5,j6Φj6,j7(f◦)j7

=

2n−2∑
k=0

∑
r+s=k
r,s<n

r(Φ)(2)U1,Θ,r,s
j a(2)
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= r(Φ)(2)U1,Θ
j a(2)

Stacking the U1,Θ
j together gives us Φ>ΣθΦf◦ = r(Φ)(2)U1,Θa(2).

Similarly to Lemma 9.1, we have

Φ>Σθβ =

2n−2∑
k=0

∑
r+s=k
r,s<n

∑
j1,j2,j3,j4

Φj1,j(B
r
θ)j1,j2(Ξθ)j2,j3(Bsθ)j4,j3βj4

=

2n−2∑
k=0

∑
r+s=k
r,s<n

∑
j1,j2,j4
j2 6∈At

Φj1,j(B
r
θ)j1,j2(Ξθ)j2,j3(Bsθ)j4,j3βj4 +

∑
j1,j2,j3,j4
j2,j3∈At

Φj1,j(B
r
θ)j1,j2(Ξθ)j2,j3(Bsθ)j4,j3βj4

=

2n−2∑
k=0

∑
r+s=k
r,s<n

∑
j1,j2,j4
j2 6∈At

Φj1,j(B
r
θ)j1,j2(Bsθ)j4,j3βj4 +

∑
j1,j2,j3,j4
j2,j3∈At

Φj1,j(B
r
θ)j1,j2aj2aj3(Bsθ)j4,j3βj4

=
2n−2∑
k=0

∑
r+s=k
r,s<n

r(Φ)(2)U2,r,s
j a(2)

= r(Φ)(2)U2
j a

(2)

Stacking the U2
j together, we get Φ>Σθγ

> = U2a(2). Now,

Φ>J(1−Bθ)−1et = r(Φ)(2)U3,Θa(2̇)

simply by noting that there is no dependence on the parameters ai. Taking the difference, we have for some U4,Θ,

Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et) = r(Φ)(2)U4,Θa(2).

Finally, the squared norm consists of terms that contain up to two terms of r(Φ)(2̇) and two terms of a(2̇), this can be written
as

‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et)‖22 = r(Φ)(4̇)UΘa(4̇).

Theorem 9.4. Given |Θtrain| = O(
k4+log 1

δ

δ′ ) interventions drawn independently from a distribution D over all atomic
interventions on some fixed set At of k nodes that with probability at least 1 − δ over the randomness in Θtrain, with
probability at least 1− δ′ over the randomness in D, we have for θ ∼ D, Iε(Θtrain) ⊆ Iε(θ)

Proof. Recall Equation (8.6):

‖∇RθΦ(f◦)‖2 = 2‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−BΘ)−1et)‖

We show in Lemma 9.3 that we can simplify this expression down to one of the form

‖∇RθΦ(f◦)‖22 = r(Φ)(4̇)UΘa(4)

for some different matrix Uθ. The function class G now consists of half-spaces,

f εΦ(θ) = 1 ⇐⇒ r(Φ)(4̇)UΘa(4) ≤ ε

We can thus re-parameterize G using r(Φ)(4) rather than Φ. Since these half-spaces live in Rk4 rather than Rn2

, by Lemma
3.2 the VC-dimension is bounded by k4. From Corollary 3.4, we have that O((k4 + log 1

δ )/δ′) interventions suffices to
ensure that any Φ̃ satisfying f ε

Φ̃
(θ) = 1 for all θ ∈ Θtrain satisfies f εΦ(θ) = 1 with probability 1− δ′ for θ ∼ D.
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9.3. Soft Interventions

Soft interventions are those in which the weights of the SEM are modified while the underlying causal structure remains
the same. That is, a soft intervention at node vi is equivalent to replacing the equation Xi = (βθ◦i )>X + ηi with
Xi = (βθi )>X + ηi. Note that this is equivalent also to changing the ith row of Bθ. β ∈ R

∑
i∈At |Pai| denote the vector

of all weights involved in the set of soft interventions we are considering. Let β(2k) denote the vector consisting of every
combination of up to 2k entries of β modulo terms of the form βθl2,l1β

θ
l3,l1

βθl4,l1 . In other words, β(2k) does not contain any
three weights from the same site.
Lemma 9.5. For some matrix U , we have

‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et)‖2 = r(Φ)(4̇)Uβ(2k)(2̇).

Proof. We will look at how Σθ and (1−Bθ)−1 depend on the parameters of the intervention.

Denote by Γki the set of directed paths from node vk to vi in G. From Lemma 7.5 we have

(Σθ)ij =
∑

γki∈Γki
γkj∈Γkj

∏
(l1,l2)∈γki
l2∈At

βθl1,l2

∏
(l1,l2)∈γki
l2 6∈At

βl1,l2

∏
(l′1,l

′
2)∈γkj
l′2∈At

βθl′1,l′2

∏
(l′1,l

′
2)∈γki

l′2 6∈At

βl1,l2

We can bound the number of terms in this expansion that depend on the intervention using a simple counting argument.
There are no terms that are multiples of βθl2,l1β

θ
l3,l1

βθl4,l1 since there can be no directed path that passes through a single
node twice (else we could find a cycle in the acyclic graph G). Thus each term in (Σθ)ij consists of at most two terms from
each site of intervention. There are k total sites, and d2 choices of two terms at each, for a total of (d2)k distinct possible
terms in the covariance.

So each entry in the covariance matrix is an inner product of some vector with β(2k).

Similarly, consider (1−Bθ)−1. We can write this as
∑n−1
k=0 B

r
θ (since Bθ is lower triangular, higher order terms are 0). We

have
((1−Bθ)−1)ij =

∑
γki∈Γki

∏
(l1,l2)∈γki
l2∈At

βθl1,l2

∏
(l1,l2)∈γki
l2 6∈At

βl1,l2 (9)

Similarly, each entry here is an inner product of some vector with β(k). In this case, no terms of the form βθl2,l1β
θ
l3,l1

occur,
since each backwards path can only pass through each site of intervention once.

We can then argue analogously to Lemma 9.3 that the complete each term in the gradient of the loss can be written using
terms consisting of elements of β(2k) and elements of r(Φ)(2̇). The squared norm of the gradient can then be written using
terms consisting of pairs of β(2k) and pairs of elements of r(Φ)(2̇). In other words,

‖Φ>ΣθΦf◦ − Φ>(Σθβ − J(1−Bθ)−1et)‖2 = r(Φ)(4̇)Uβ(2k)(2̇)

Theorem 9.6. Given O(
d4k+log 1

δ

δ′ ) interventions drawn independently from a distribution D over all soft interventions on
some fixed set At of k nodes such that each intervened node has in-degree at most d, we have that any ε−approximately
invariant representation Φ satisfies that with probability at least 1− δ over the randomness in Θtrain, with probability at
least 1− δ′ over the randomness in D, we have for θ ∼ D,Iε(Θtrain) = Iε(θ)

Proof. We show in the Lemma 9.5 that we can now write the norm of the gradient of the loss in terms of a product in a
lower dimensional space again, similar to what we did previously.

‖∇RθΦ(f◦)‖22 = r(Φ)(4)V β(4k).

to get an upper bound on the VC dimension of d4k. The theorem follows from Corollary 3.4.
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9.4. Indirect Observations

For this section, we change the observation model. There is assumed to be an underlying linear SEM, defined as in 1, but we
observe Z−t, Zt = (S−t(X), St(X)) for some S−t, St. Here Zt denotes the target variable, and Z−t denotes the “features”.
For instance, If St(X) was just Xt, and S−t was diagonal with elements in {0, 1}, then this would correspond to a setting
with latent (that is, hidden) variables. We need the following assumption on S−t to ensure that the function class is still
realizable, as in Lemma 3.5.

Assumption 9.7. There exists a matrix Φ such that ΦS−t(X) = Pat.

In the latent variables setting, this corresponds to the assumption that each of the true parents are actually visible. Finally,
because we are in a more general setting, we no longer restrict to representations Φ that are diagonal (that is, feature
selectors).

We use the same definition for the invariant representations, namely,

Φ ∈ Iεf◦(θ) ⇐⇒ ‖∇Eθ[f>ΦZ−t − Zt] |f◦ ‖2 ≤ ε.

Here lemma 8.6 should be modified to account for the indirect observations.

Lemma 9.8. We have,

‖∇Eθ[
(
f>ΦZ−t − Zt

)2
] |f◦ ‖2 = 2‖Φ> Eθ[S−t(X)S−t(X)>]Φf◦ − Φ> Eθ[S−t(X)St(X)]‖2

Proof. The proof is immediate. The expansions in Lemma 8.6 are due to linearity, which we do not leverage here.

The following Lemma is similar to Lemma 9.1; we have included it for completeness.

Lemma 9.9. For some matrix Uθ, we have

Φ> Eθ[S−t(X)S−t(X)>]Φf◦ − 2Φ> Eθ[S−t(X)St(X)] = Uθr(Φ)(2).

Proof. Observe that
Φ> Eθ[S−t(X)S−t(X)]Φf◦ = U1

θ r(Φ)(2̇)

where

(U1
θ )a,((ij),(kl)) =

{(
Eθ[S−t(X)S−t(X)>]

)
jk

(f◦)l, a = i and (ij) 6= · and (kl) 6= ·
0, a 6= i or (ij) = · or (kl) = ·

The second term is almost in the form we would like already

Φ> Eθ[S−t(X)St(X)] = U2
θ r(Φ)(2̇)

where

(U2
θ )a,((ij),(kl)) =

{(
Eθ[S−t(X)St(X)]

)
ij

(ij) 6= · and (kl) = ·
0, (ij) = · or (kl) 6= ·

Our result follows by setting Uθ = U1
θ + U2

θ .

Theorem 9.10. Suppose that we are given O(
n8+log 1

δ

δ′ ) interventions drawn independently from distribution D over the
intervention index set Θ. Then with probability at least 1− δ over the randomness in Θtrain, the following statement holds:

Pθ∼D(Iεf◦(Θtrain) /∈ Iεf◦(θ)) ≤ δ
′.

Proof. We again begin with our expression for the gradient of the loss given by Lemma 9.8. We show in Lemma 9.9 that
we can write this as ∇RθΦ(f◦) = Uθr(Φ)(2̇) for some matrix Uθ. From Lemma 7.3 we can write the squared norm as
‖∇RθΦ(f◦)‖22 = r(U>θ Uθ)(r(Φ)(2̇))(2). The result follows identically to Theorem 3.7. Note that the representation now has
n2 parameters already, so the half-space embedding is in dimension n8.
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10. Finite sample bounds

Lemma 10.1. Given dL2

ε2 log 2d
δ samples from ∆θ, we can compute ‖∇̂RθΦ(f◦)‖ such that with probability 1− δ over the

samples drawn in each interventional distribution, for any fixed Φ,

‖∇RθΦ(f◦)‖ − ‖∇̂RθΦ(f◦)‖2 ≤ ε.

Proof. Suppose we had 2m samples from ∆θ. Split these samples into m pairs (X2i, X2i+1)mi=1 randomly. Denote by
RθΦ(f,X) the loss at a point X , given by

RθΦ(f,X) = Φ>XX>Φf◦ − Φ>XXt

Then we can estimate ‖∇RθΦ(f◦)‖ as

‖∇̂RθΦ(f◦)‖ =
1

m

√√√√( m∑
i=1

RθΦ(f◦, X2i)

)>( m∑
i=1

RθΦ(f◦, X2i+1)

)

Each of the inner terms concentrate about their mean as given by Lemma 7.1.

1

m

√√√√( m∑
i=1

RθΦ(f◦, X2i)

)>( m∑
i=1

RθΦ(f◦, X2i+1)

)
− ‖RθΦ(f◦)‖

≤ 1

m

√√√√( m∑
i=1

RθΦ(f◦, X2i)−RθΦ(f◦)

)>( m∑
i=1

RθΦ(f◦, X2i+1)−RθΦ(f◦)

)
≤ ε

where the final inequality is true for m ≥ dL2

ε2 log 2d
δ with probability 1− δ.

Lemma 10.2. Consider the function class consisting of functions parameterized by Φ for a fixed θ

{RθΦ(f) := Φ>ΣeΦf − Φ> Eθ[XXt]
∣∣ ‖Φ‖2 = 1, ‖f‖ =

√
n}

Let Nε denote the covering number of this set with respect to the metric dist(Φ1,Φ2) = ‖RθΦ1
(f) − RθΦ2

(f)‖. Then

logNε = n2 log
(

1 + 4n3/2

ε

)
.

Proof. We have

dist(Φ1,Φ2) = ‖RθΦ1
(f)−RθΦ2

(f)‖
= ‖Φ>1 ΣθΦ1f − Φ>2 ΣθΦ2f + Φ>2 Eθ[X−tXt]− Φ>1 Eθ[X−tXt]‖
≤ ‖Φ>1 ΣθΦ1f − Φ>2 ΣθΦ2f‖+ ‖Φ>2 Eθ[−tXXt]− Φ>1 Eθ[X−tXt]‖
≤ ‖Φ>1 ΣθΦ1 − Φ>2 ΣθΦ2‖‖f‖+ ‖Φ1 − Φ2‖‖Eθ[X−tXt]‖
≤ ‖(Φ1 − Φ2)>Σθ(Φ1 − Φ2)‖‖f‖+ ‖Φ1 − Φ2‖‖Eθ[X−tXt]‖
≤ ‖Φ1 − Φ2‖2‖Σθ‖‖f‖+ ‖Φ1 − Φ2‖‖Eθ[X−tXt]‖

We have ‖f◦‖ =
√
n. Because ‖X‖∞ ≤ 1, we know that ‖Σθ‖ ≤ n and ‖Eθ[X−tXt]‖ ≤

√
n. Now we take φ to be

an ε
2n3/2 -covering of the space of representations Φ. We know from Lemma 7.2 that we can find one containing at most(

1 + 4n3/2

ε

)n2

representations. That is, given any Φ, ‖Φ‖ ≤ 1, we can find Φ′ ∈ φ such that ‖Φ− Φ′‖ ≤ ε
2n3/2 . Then we

have (assuming ε < 1, n > 1)

dist(Φ,Φ′) ≤
( ε

2n3/2

)2

n
3
2 +

ε

2n3/2

√
n ≤ ε.
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Putting these together,

Lemma 10.3. Given 4dL2

ε2

(
log 2d

δ + logNε/2
)

samples in a dataset, with probability 1 − δ, for every representation Φ
simultaneously we have

Î
ε
2

f◦
(θ) ⊆ Iεf◦(θ)

Proof. Consider Φ ∈ Î
ε
2

f◦
(θ). From the definition,

‖∇̂RθΦ(f◦)‖ <
ε

2
.

By Lemma 7.2 and Lemma 10.1, we know that

‖∇RθΦ(f◦)‖ − ‖∇̂RθΦ(f◦)‖ <
ε

2

Putting these together, we see that
‖∇RθΦ(f◦)‖ ≤ ε =⇒ Φ ∈ Iεf◦(θ).

Theorem 10.4. Given

m =


O(

k4+log 1
δ

δ′ ) Θ is k nodes, hard interventions

O(
d4k+log 1

δ

δ′ ) Θ is k nodes, soft interventions

O(
n4+log 1

δ

δ′ ) Θ any interventions

interventional datasets, and 4nL2

ε2

(
log 2nm

δ + n2 log(1 + 8n3/2

ε )
)

samples in each dataset, we have that with probability

1− δ, with probability 1− δ′ for θ ∼ D,
Îεf◦(Θtrain) ⊆ I2ε

f◦(θ).

Proof. From Lemma 4.2 we know that
Îεf◦(θ) ⊆ I

2ε
f◦(θ). (10)

With a union bound over Θtrain, we can establish Equation (10) at once over all interventions in the training set. Since
Iεf◦(Θtrain) =

⋂
θ∈Θtrain

Iεf◦(θ) and Îεf◦(Θtrain) =
⋂
θ∈Θtrain

Îεf◦(θ), we get that Îεf◦(Θtrain) ∈ Iεf◦(Θtrain). Finally, from
Theorems 3.7, 3.8, 3.9, we have Iεf◦(Θtrain) ⊆ Iεf◦(Θ) for each of the cases listed.

11. Empirical study
Construction of training and test interventional distributions: For the class of hard interventions, we consider assign-
ments drawn from Gaussians on nodes {v1, v2, v3}. Specifically, we take Xi = ai for i ∈ {3, 4, 5} with ai ∼ N (0, σ2)
independently for each node. For the class of soft interventions, we assign each nonzero entry of βθi ∼ N (0, σ2) for
i ∈ {3, 4, 5} independently. In our experiments, σ2 = 1. In this way, we generate m atomic-interventional datasets
{Nj,hard}j∈[m] and m soft-interventional datasets {Nj,soft}j∈[m] for m varying from 3 to 20.

Subsets as Representations: We iterate over the power-set of the nodes to make a list of approximately invariant represen-
tations. For every subset S of the non-target nodes, we consider ΦS to be the corresponding representation, diagonal, with a
one on each index in S (a projection onto S). We count the fraction of these representations that are approximately invariant,
as defined below.

Approximately Invariant Representations: Here, these are defined as being such that there is not much variation over the
least squares solutions on top of the representations. For every such representation ΦS , we denote by fS,j the least squares
solution on top of the representation ΦS for dataset Nj . We take as a measure of invariance the quantity

ρS =

∑
j1,j2∈[m] ‖fS,j1 − fS,j2‖2

(m− 1)‖
∑
j∈[m] fS,j‖2

.
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Figure 5. Comparison of generalization for various combinations of training and test interventional distributions. Here “hard” refers to
the i.i.d. interventions setting with hard interventions from the same distribution in both training and test interventions, similarly “soft”
refers to i.i.d. soft interventions, while “hard+rad” (respectively “soft+rad”) refer to hard interventions (respectively soft) in training with
rademacher interventions in test. We repeat the above for N = 10, 000, 15, 000, 30, 000, and 45, 000.
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Note that this is the ratio of the average distance between the various least squares solutions and the norm of the average
least squares solution. We expect this to be low when the various least squares solutions are close to one another. An
approximately invariant subset S is then taken to be one such that ρS < 0.02. Let shard, ssoft denote the approximately
invariant subsets given the training sets {Nj,hard}j∈[m], {Nj,soft}j∈[m]

Test distributions: We construct mtest test datasets induced by interventions drawn from each of the same families,
that is, {N test

j,hard}j∈mtest for atomic interventions, and {N test
j,hard}j∈mtest for soft interventions, as well as a set of datasets

{N test
α,j,rad}j∈mtest , drawn from the linear SEM constructed by flipping each edge weight in the original SEM with probability

α (except the ones connecting the parents of the target to the target). Note that this last dataset is not drawn from interventions
that are drawn from the same distribution as the training datasets. For each set in shard, we return the percentage of datasets
in {N test

j,hard}j∈mtest , {N test
j,soft}j∈mtest , and {N test

α,j,rad}j∈mtest such that the least squares solution on top of the subsets continues
to be approximately the same. The labels of the plots reflect in order the trianing and test interventional ditributions, so
“soft+rad(0.5)” means we are evaluating ssoft on 100 datasets {N0.5,j,rad}.

ERM generalization: To demonstrate that generalization in this sense is indeed non-trivial, we also plot the fraction of
least squares solutions to the observational datasets (where we pool together the training distributions) that exhibit low
variance in test interventional distributions. This box plot is essentially trivial at 0.

Norm of gradient: Rather than using an RMS variance, we can use the norm of the gradient. The empirical re-
sults are similar (in fact, these are related to each other, since ‖∇R1(f1)‖, ‖∇R2(f2)‖ = 0, ‖f1 − f2‖2 ≤ ε =⇒
‖∇R1( f1+f2

2 )‖, ‖∇R2( f1+f2
2 )‖ ≤ βε where β is the smoothness of the loss functions).
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