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Abstract

We consider the problem of privately estimating a parameter E[h(X1, . . . , Xk)],
where X1, X2, . . . , Xk are i.i.d. data from some distribution and h is a permutation-
invariant function. Without privacy constraints, the standard estimators for this
task are U-statistics, which commonly arise in a wide range of problems, includ-
ing nonparametric signed rank tests, symmetry testing, uniformity testing, and
subgraph counts in random networks, and are the unique minimum variance unbi-
ased estimators under mild conditions. Despite the recent outpouring of interest
in private mean estimation, privatizing U-statistics has received little attention.
While existing private mean estimation algorithms can be applied in a black-box
manner to obtain confidence intervals, we show that they can lead to suboptimal
private error, e.g., constant-factor inflation in the leading term, or even Θ(1/n)
rather than O(1/n2) in degenerate settings. To remedy this, we propose a new
thresholding-based approach that reweights different subsets of the data using local
Hájek projections. This leads to nearly optimal private error for non-degenerate
U-statistics and a strong indication of near-optimality for degenerate U-statistics.

1 Introduction
A fundamental task in statistical inference is to estimate a parameter of the form E[h(X1, . . . , Xk)],
where h is a possibly vector-valued function and {Xi}ni=1 are i.i.d. draws from an unknown distribu-
tion. U-statistics are a well-established class of estimators for such parameters and can be expressed
as averages of functions of the form h(X1, . . . , Xk). U-statistics arise in many areas of statistics and
machine learning, encompassing diverse estimators such as the sample mean and variance, hypothesis
tests such as the Mann-Whitney, Wilcoxon signed rank, and Kendall’s tau tests, symmetry and
uniformity testing [26, 21], goodness-of-fit tests [58], counts of combinatorial objects such as the
number of subgraphs in a random graph [30], ranking and clustering [19, 18], and subsampling [52].

U-statistics are a natural generalization of the sample mean. However, little work has been done on
U-statistics under differential privacy, in contrast to the sizable body of existing work on private mean
estimation [42, 39, 14, 40, 10, 41, 24, 11, 33, 15]. Ghazi et al. [29] and Bell et al. [8] consider U-
statistics in the setting of local differential privacy [43], while we are interested in privacy guarantees
under the central model. Moreover, existing work on private U-statistics focuses on discrete data,
and relies on simple privacy mechanisms (such as the Laplace mechanism [25]) which are usually
optimal in these settings.

Many U-statistics converge to a limiting Gaussian distribution with variance O(k2/n) when suitably
scaled. This is commonly used in hypothesis testing [35, 5, 37]. However, there are also examples
of non-degenerate U-statistics, which often arise in a variety of hypothesis tests [26, 58, 21], where
the statistic is degenerate at the null hypothesis (in which case the U-statistic converges to a sum of
centered chi-squared distributions [31]). Another interesting U-statistic arises in subgraph counts in
random geometric graphs [30]. When the probability of an edge being present tends to zero with n,
creating a private estimator by simply adding Laplace noise with a suitable scale may not be effective.
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Our contributions

1. We present a new algorithm for private mean estimation that achieves nearly optimal private and
non-private errors for non-degenerate U-statistics with sub-Gaussian kernels.

2. We provide a lower bound for privately estimating non-degenerate sub-Gaussian kernels, which
nearly matches the upper bound of our algorithm. We also derive a lower bound for degenerate
kernels and provide evidence that the private error achieved by our algorithm in the degenerate case
is nearly optimal. A summary of the utility guarantees of our algorithm and adaptations of existing
private mean estimation methods is presented in Table 1.

3. The computational complexity of our first algorithm scales as Õ(
(
n
k

)
). We generalize this algorithm

and develop an estimator based on subsampled data, providing theoretical guarantees for a more
efficient version with O(n2) computational complexity.

The paper is organized as follows. Section 2 reviews the background on U-statistics and key concepts
in differential privacy. Section 3 introduces an initial set of estimators based on the CoinPress
algorithm for private mean estimation [10]. Section 4 presents our main algorithm, which leverages
what we term local Hájek projections. Section 5 discusses applications of our algorithm to private
uniformity testing and density estimation in sparse geometric graphs. Section 6 concludes the paper.

2 Background and Problem Setup

Let n and k be positive integers with k ≤ n. Let D be an unknown probability distribution over
a set X , and let h : X k → R be a known function symmetric in its arguments1. Let H be the
distribution of h(X1, X2, . . . , Xk), where X1, X2, . . . , Xk ∼ D are i.i.d. random variables. We are
interested in providing a ϵ-differentially private confidence interval for the estimable parameter [32]
θ = E[h(X1, X2, . . . , Xk)], which is the mean of the distributionH, given access to n i.i.d. samples
from D; we use X1, X2, . . . , Xn to denote these n samples. The kernel h, the degree k, and the
estimable parameter θ are allowed to depend on n; we omit the subscript n for the sake of brevity.

We consider bounded kernels h and unbounded kernels h where the distributionH is sub-Gaussian.
We write Y ∼ sub-Gaussian(τ) if E[exp(λ(Y −EY ))] ≤ exp(τλ2/2) for all λ ∈ R. The quantity τ
is called a variance proxy for the distributionH and satisfies the inequality τ ≥ σ2 [59]. Throughout
the paper, we assume that the privacy parameter ϵ = O(1). We also use the notation Õ(·) in error
terms, which hides poly-logarithmic factors in n/α.

2.1 U-Statistics

Let [n] denote {1, . . . , n}, and let In,k be the set of all k-element subsets of [n]. Denote the n i.i.d.
samples by X1, X2, . . . , Xn. For any S ∈ In,k, let XS be the (unordered) k-tuple {Xi : i ∈ S}.
The U-statistic associated with the data and the function h is

Un :=
1(
n
k

) ∑
{i1,...,ik}∈In,k

h(Xi1 , . . . , Xik). (1)

The function h is the kernel of Un and k is the degree of Un. While U-statistics can be vector-valued,
we consider scalar U-statistics in this paper. The variance of Un can be expressed in terms of the
conditional variances of h(X1, X2, . . . , Xn). For c ∈ [k], we define the conditional variance

ζc := Var (E [h(X1, . . . , Xk)|X1, . . . , Xc]) . (2)

Equivalently, ζc = cov (h(XS1), h(XS2)) where S1, S2 ∈ In,k and |S1 ∩ S2| = c. The number of
such pairs of sets S1 and S2 is equal to

(
n
k

)(
k
c

)(
n−k
k−c
)
, which implies

Var(Un) =

(
n

k

)−1 k∑
c=1

(
k

c

)(
n− k

k − c

)
ζc. (3)

1That is, h(x1, x2, . . . , xk) = h(xσ(1), xσ(2), . . . , xσ(k)) for any permutation σ. We do not assume that the
distribution H itself is symmetric about its mean.
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Since E[Un] = θ, Un is an unbiased estimate of θ. Moreover, the variance of Un is a lower bound on
the variance of any unbiased estimator of θ. (cf Lee [45, Chapter 1, Theorem 3]). We also have the
following inequality from Serfling [54] (see Appendix A.2 for a proof):

ζ1 ≤
ζ2
2
≤ ζ3

3
≤ · · · ≤ ζk

k
. (4)

Infinite-order U-Statistics: Classical U-statistics typically have small, fixed k. However, important
estimators that appear in the contexts of subsampling [52] and Breiman’s random forest algorithm [56,
50] have k growing with n. These types of U-statistics are sometimes referred to as infinite-order U-
statistics [27, 48]). U-statistics also frequently appear in the analysis of random geometric graphs [30].
The difference between this setting and the examples above is that the conditional variances {ζc}
vanish with n in the sparse setting. (See Section 5.)

Degenerate U-statistics: A U-statistic is degenerate of order ℓ ≤ k − 1 if ζi = 0 for all i ∈ [ℓ]
and ζℓ+1 > 0 (if ζk = 0, the distribution is almost surely constant). Degenerate U-statistics arise in
hypothesis tests such as Cramer-Von Mises and Pearson tests of goodness of fit [31, 3, 55] and tests
for unformity [21]. They also appear in tests for model misspecification in econometrics [46, 47].
For more examples of degenerate U-statistics, see [20, 61, 34].

2.2 Differential privacy

The main idea of differential privacy [25] is that the participation or non-participation of a single
person should not affect the outcome significantly. A (randomized) algorithm M , that takes as input
a dataset D ∈ Xn and outputs an element of its range space S, satisfies ϵ-differential privacy if for
any pair of adjacent datasets D and D′ and any measurable subset S ⊆ S of the range space S,
Pr(M(D) ∈ S) ≤ eϵ Pr(M(D′) ∈ S). A dataset is D := (X1, X2, . . . , Xn) from some domain X ,
for some n which is public. Two datasets D and D′ are adjacent if they differ in exactly one index.
An important property of differentially private algorithms is composition. We defer composition
theorems for differentially private algorithms to Appendix A.2.

Basic DP algorithms. One way to ensure an algorithm satisfies differential privacy is through the
Laplace Mechanism [25]. The global sensitivity of a function f : Xn → S is

GS(f) = max
|D∆D′|=1

|f(D)− f(D′)|, (5)

where D∆D′ := |{i : Di ̸= D′i}| A fundamental result in differential privacy is that we can achieve
privacy for f by adding noise calibrated to its global sensitivity.
Lemma 1. (Laplace mechanism [25]) Let f : Xn → S be a function and let ϵ > 0 be the privacy
parameter. Then the algorithm A(D) = f(D) + Lap

(
GS(f)

ϵ

)
2 is ϵ-differentially private.

The global sensitivity of a function is the worst-case change in the function value and may be high
on atypical datasets. To account for the small sensitivity on “typical” datasets, the notion of local
sensitivity is useful. The local sensitivity of a function f : Xn → S at D is defined as

LS(f,D) = max
|D∆D′|=1

|f(D)− f(D′)|. (6)

Unfortunately, adding noise proportional to the local sensitivity does not ensure differential privacy,
because variation in the magnitude of noise itself may leak information. Instead, [49] proposed
the notion of a smooth upper bound on LS(f,D). A function SS(f, ·) is said to be an ϵ-smooth
upper bound on the local sensitivity of f if (i) SS(f,D) ≥ LS(f,D) for all D, and (ii) SS(f,D) ≤
eϵSS(f,D′) for all |D∆D′| = 1. Intuitively, (i) ensures that enough noise is added, and (ii) ensures
that the noise itself does not leak information about the data.
Lemma 2. (Smoothed Sensitivity mechanism [49]) Let f : Xn → S be a function, ϵ > 0, and
SS(f, · ) be an ϵ-smooth upper bound on LS(f, · ). Then, the algorithm A(D) = f(D) +
SS(f,D)/ϵ · Z, where Z has density h(z) ∝ 1

1+z4 , is ϵ/10-differentially private.

2The Laplace Distribution with parameter b > 0, denoted Lap(b), has density ℓ(z) ∝ exp (−|z|/b) .
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3 Lower Bounds and Application of Off-the-shelf Tools

Algorithm Sub-Gaussian, non-degenerate Bounded, degenerate
Private error Is non-private error Private error Is non-private error

O(Var(Un))? O(Var(Un))?

Naive (Proposition A.1) Õ
(

k
√
τ

nϵ

)
No Õ

(
kC
nϵ

)
[25] No

All-tuples (Proposition 1) Õ
(

k3/2√τ
nϵ

)
Yes Õ

(
kC
nϵ

)
[25] No

Main algorithm Õ
(

k
√
τ

nϵ

)
Yes Õ

(
k3/2C
n3/2ϵ

)
Yes

Corollary 1 Corollary 2

Lower bound Ω
(

k
√
τ

nϵ

√
log nϵ

k

)
Ω
(

k3/2C
n3/2ϵ

)
for private algorithms Theorem 1 Theorem 3

Table 1: We compare our application of off-the-shelf tools to Algorithm 1. We only provide the
leading terms in the private error. The non-private lower bound on E(θ̂ − Eh(X1, . . . , Xk))

2 for all
unbiased θ̂ is Var(Un), which our private algorithms nearly match.

We start with a simple, non-private estimator involving an average of independent quantities. Let
m = ⌊n/k⌋, and define Sj = {(j − 1)k+ 1, (j − 1)k+ 2, . . . , jk} for all j ∈ [m]. Define the naive
estimator θ̂naive :=

∑m
j=1 h(XSj )/m. Directly applying existing private mean estimation algorithms

[42, 40, 39, 10] to our setting yields an error bound of3

Õ

(√
Var(θ̂naive) + k

√
τ/(nϵ)

)
= Õ

(√
kζk/n+ k

√
τ/(nϵ)

)
, (7)

since Var(θ̂naive) = kζk/n. Note that this variance is larger than the dominant term k2ζ1/n of
Var(Un) (see Lemma A.1 and Eq 4); indeed, θ̂naive is a suboptimal estimator of θ.

In Algorithms A.2 and A.3, we present a general extension of the CoinPress algorithm [10], which is
then used to obtain a private estimate of θ with the non-private error term matching

√
Var(Un). For

completeness, we present the algorithms and their proofs in Appendix A.3.
Definition 1 (All-tuples family). Let M =

(
n
k

)
and let Sall = {S1, S2, . . . , SM} = In,k be the set of

all k-element subsets of [n]. Call Sall the “all-tuples” family.
Proposition 1. Suppose θ ∈ [−R,R]. Let Sall be the all-tuples family in Definition 1. Then
Wrapper 1, with f = all, failure probability α, and A = U-StatMean (Algorithm A.2) returns an
estimate θ̃all of the mean θ such that, with probability at least 1− α,

|θ̃all − θ| ≤ O
(√

Var(Unα
)
)
+ Õ

(
k3/2
√
τ

nαϵ

)
, (8)

as long as nα = Ω̃
(

k
ϵ log

R√
kτ

)
. Moreover, the algorithm is ϵ-differentially private and runs in time

Õ
(
log(1/α)

(
k + log R√

kτ

) (
nα

k

))
.

Remark 1. While Lemma 1 recovers the correct first term of the deviation, the private error term
is a
√
k factor worse. Moreover, we need k2/n = o(1) for the private error to be asymptotically

smaller than the non-private error. Note, however, that existing concentration [35, 5] or convergence
in probability results [58, 48] only require k = o(n) (see Lemmas A.1 and A.3 in the Appendix).
Remark 2 (Degenerate and sparse settings). While Lemma 1 improves over the naive estimator,
the private error can overwhelm the non-private error for degenerate and sparse U-statistics (see
Section 5). We show that for uniformity testing, using this estimator can lead to suboptimal sample
complexity if the distribution is already close to uniform.

Proposition 1 improves over the naive estimator at the cost of computational complexity. We can
trade off the computational and statistical efficiencies using a different family S parameterized by the
size M of S. In Appendix 3, we show a result similar to 1 for the subsampled family.

3Õ(.) hides logarithmic factors in the problem parameters k, n, τ, α, ζk, where α is the error probability.
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Definition 2 (Subsampled Family). Draw M i.i.d. samples S1, . . . , SM from the uniform distribution
over the elements of In,k, and let Sss := {S1, . . . , SM}. Call Sall the “subsampled” family.

The next result shows a nearly optimal dependence on n and ϵ in the bounds for θ̂naive and θ̃all. In
particular, the dependence of the modified Coinpress algorithm (Lemma 1) on k is suboptimal.
Theorem 1 (Lower bound for non-degenerate kernels). Let n and k be positive integers with k < n/2
and let ϵ = Ω(k/n). Let F be the set of all sub-Gaussian distributions over R with variance proxy 1,
and let µ̃ be the output of any ϵ-differentially private algorithm applied to n i.i.d. observations from
D. Then, suph,D:H∈F E |µ̃(X1, . . . , Xn)− E[h(X1, . . . , Xk)]| = Ω

(
k
nϵ

√
log nϵ

k

)
.

Among unbiased estimators, Un is the best non-private estimator [35, 45]. The most widely used
non-private estimators are U - and V -statistics, which share similar asymptotic properties [58]. The
above lower bound also has a log factor arising from an optimal choice of the sub-Gaussian proxy for
Bernoulli random variables [4]. Proofs are deferred to Appendix A.4.

3.1 Boosting the error probability via median-of-means

If we use Algorithm A.2 as stated with failure probability α, then the error in the algorithm has
a O(1/

√
α) factor, which is undesirable. Instead, we use the Algorithm with a constant failure

probability (say, 0.25) and then boost this failure probability to α via a median-of-means procedure.
We incorporate the median-of-means in all of our theoretical results.
Wrapper 1 (MedianOfMeans(n, k, Algorithm A, Parameters Λ, Failure probability α, Family type
f ∈ {all, ss})). Divide [n] into q = 8 log(1/α) independent chunks Ii, i ∈ [q] of roughly the same
size. For each i ∈ [q], run Algorithm A with subset family Si := Sf (Ii), Dataset {h(XS)}S∈Si , and
other parameters Λ for A to output θ̂i, i ∈ [q]. Return θ̃ = median(θ̂1, . . . , θ̂q).

In the above wrapper, Sf (Di) simply creates the appropriate family of subsets for the dataset Di.
For example, if Di = {X1, . . . Xnα}, f = all, then Sall(Di) is {h(XS)}S∈Inα,k

. If f = ss, then
Sss(Di) is {h(XS)}S∈Si , where Si is the set of M subsampled subsets of Di. Here, nα := n

8 log(1/α) .
Wrapper 1 can be used to boost the failure probability from constant to α by splitting the data into
O(log(1/α)) chunks, applying the algorithm on each of the chunks, and taking the median output.
The expense of this procedure is the reduction in the effective sample size to nα = Θ(n/ log(1/α)).
Details and proofs on the median-of-means procedure can be found in Section A.3.2.

4 Main Results

In Section 3, we showed that off-the-shelf private mean estimation tools applied to U-statistics either
achieve a sub-optimal non-private error (see Remark 1) or a sub-optimal private error. If the U-statistic
is degenerate of order 1, the non-private and private errors (assuming ϵ = Θ(1)) are Θ̃(1/n). We
now present an algorithm that achieves nearly optimal private error for sub-Gaussian non-degenerate
kernels. Our algorithm can be viewed as a generalization of the algorithm proposed in Ullman and
Sealfon [57] for privately estimating the edge density of an Erdős-Rényi graph. We provide strong
evidence that, for bounded degenerate kernels, we achieve nearly optimal non-private error. All
proofs for this section can be found in Section A.5.

4.1 Key intuition

Our key insight is to leverage the Hájek projection [58, 45], which gives the best representation of a
U-statistic as a linear function of the form

∑n
i=1 f(Xi):

Ŝn
(i)
=

n∑
i=1

E[Tn|Xi]− (n− 1)E[Tn]
(ii)
=

k

n

n∑
i=1

E[h(XS)|Xi]− (n− 1)θ.

Equality (i) gives the form of the Hájek projection for a general statistic Tn, whereas (ii) gives the
form when Tn is a U-statistic. Let I(i)n,k = {S ∈ In,k : i ∈ S}. In practice, one uses the estimates

Ê[h(XS)|Xi] :=
1(

n−1
k−1
) ∑

S∈I(i)n,k

h(XS), (9)
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which we call local Hájek projections. In some sense, this is the U-statistic when viewed locally at
Xi. When the dataset is clear from context, we write ĥIn,k

(i), or simply ĥ(i), for Ê[h(XS)|Xi].

4.2 Proposed algorithm

Consider a family of subsets S ⊆ In,k of size M . Let Si = {S ∈ S : i ∈ S} and Mi = |Si|, and
suppose Mi ̸= 0 for all i ∈ [n]. Assume also that S satisfies the inequalities

Mi/M ≤ 3k/n and Mij/Mi ≤ 3k/n (10)

for any distinct indices i and j in [n] (one such family is S = In,k, for which Mi/M = k/n and
Mij/Mi = (k − 1)/(n− 1) ≤ k/n, but there are other such families). Define

An(S) :=
1

M

∑
S∈S

h(XS), and ĥS(i) :=
1

Mi

∑
S∈Si

h(XS), ∀i ∈ [n]. (11)

Un in Eq (1) and Ê[h(XS)|Xi] in equation (9) are the same as the quantities An(In,k) and ĥIn,k
(i).

A standard procedure in private estimation algorithms is to clip the data to an appropriate interval [10,
41] in such a way that the sensitivity of the overall estimate can be bounded. Similarly, we use the
concentration of the local Hájek projections to define an interval such that each i can be classified as
“good" or “bad” based on the distance between ĥS(i) and the interval. The final estimator is devised
so the contribution of the bad indices to the estimator is low and the estimator has low sensitivity.

Let ξ and C be parameters to be chosen later; they will be chosen in such a way that with high
probability, (i) |ĥ(i)− θ| ≤ ξ for all i, and (ii) each h(XS) is at most C away from θ. Define

LS := argmin
t∈N>0

(∣∣∣{i : ∣∣∣ĥS(i)−An(S)
∣∣∣ > ξ + 6kCt/n

}∣∣∣ ≤ t
)
. (12)

In other words, LS is the smallest positive integer t such that at most t indices i ∈ [n] satisfy
|ĥS(i)−An(S)| > ξ + 6kCt

n (such an integer t always exists because t = n works). Define

Good(S) :=
{
i :
∣∣∣ĥS(i)−An(S)

∣∣∣ ≤ ξ + 6kCLS/n
}
, Bad(S) := [n] \ Good. (13)

For each index i ∈ [n], define the weight of i with respect to S as

wtS(i) := max
(
0, 1− ϵn

6Ck
· dist

(
ĥS(i)−An, [−ξ − 6kCLS/n, ξ + 6kCLS/n]

))
. (14)

Here, ϵ is the privacy parameter and dist(x, I) is the distance between x and the interval I .

Based on whether a datapoint is good or bad, we will define a weighting scheme that reweights the
h(XS) in equation (1). For each S ∈ S, let

wtS(S) := min
i∈S

wtS(i), and gS(XS) := h(XS)wtS(S) +An(S) (1− wtS(S)) .

In particular, if wtS(S) = 1, then gS(XS) = h(XS); and if wtS(S) = 0, then gS(XS) = An(S).
Finally, define the quantities

Ãn(S) :=
1

M

∑
S∈S

gS(XS), ĝS(i) :=
1

Mi

∑
S∈Si

gS(XS) ∀i ∈ [n]. (15)

To simplify notation, we will drop the argument S from L, An, Ãn, ĥ, ĝ, Good, and Bad.

Idea behind the algorithm: If all ĥ(i)’s are within ξ of the empirical mean An, then Bad = ∅
and Ãn = An. Otherwise, for any set S containing a bad index, we replace h(XS) by a weighted
combination of h(XS) and An. This averaging-out of the bad indices allows a bound on the local
sensitivity of Ãn. We then provide a smooth upper bound on the local sensitivity characterized by the
quantity L, which can be viewed as an indicator of how well-concentrated the data is. The choice of
ξ will be such that L = 1 with high probability and that the smooth sensitivity of Ãn at X is small.
This ensures that a smaller amount of noise is added to Ãn to preserve privacy.
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Algorithm 1 PrivateMeanLocalHájek(n, k, {h(XS), S ∈ S}, ϵ, C, ξ,S)
1: M ← |S|
2: Si ← {S ∈ S : i ∈ S}
3: Mi ← |Si|
4: if there exist indices i ̸= j such that Mi = 0 or Mi/M > 3k/n or Mij/Mi > 3k/n, then
5: return ⊥
6: end if
7: An ←

∑
S∈S h(XS)/M

8: for i = 1, 2, . . . , n do
9: ĥ(i)←

∑
S∈Si h(XS)/Mi

10: end for
11: Let L be the smallest positive integer such that

∣∣∣{i : ∣∣∣ĥ(i)−An

∣∣∣ > ξ + 6kCL
n

}∣∣∣ ≤ L

12: Good(S)←
{
i :
∣∣∣ĥ(i)−An

∣∣∣ ≤ ξ + 6kCL
n

}
;Bad(S)← [n] \ Good(S)

13: for i = 1, 2, . . . , n do
14: wt(i)← max

(
0, 1− ϵ

6Ck/ndist
(
ĥ(i)−An,

[
−ξ − 6kCL

n , ξ + 6kCL
n

]))
15: end for
16: for S ∈ S do
17: g(XS)← h(XS)mini∈S wt(i) +An (1−mini∈S wt(i))
18: end for
19: Ãn ←

∑
S∈S g(XS)/M

20: S(S)←max0≤ℓ≤n e−ϵℓ

(
k
n (ξ+

kC(L+ℓ)
n )(1+ϵ(L+ℓ))+

k2C(L+ℓ)2 min(k,(L+ℓ))

n2 (ϵ+ k
n )+

k2C
n2ϵ

)
21: Draw Z from distribution with density h(z) ∝ 1/(1 + |z|4)
22: return Ãn + S(S)/ϵ · Z

Theorem 2. Algorithm 1 is 10ϵ-differentially private for any ξ. Moreover, suppose h is bounded
with additive range C,4 and with probability at least 0.99, we have maxi |ĥS(i) − An| ≤ ξ. Run
Wrapper 1 with f = all, and A = PrivateMeanLocalHajek (Algorithm 1). With probability at least
1− α, the output θ̃ satisfies |θ̃ − θ| = O

(√
Var(Unα

) + kξ
nαϵ +

(
k2

n2
αϵ2 + k3

n3
αϵ3

)
C
)
.

Connections to Ullman and Sealfon [57]: Ullman and Sealfon [57] estimate the edge density of
an Erdős Renyi graph using strong concentration properties of its degrees. This idea can be loosely
generalized to a broader setting of U-statistics: consider a hypergraph with n nodes and

(
n
k

)
edges,

where the ith node corresponds to index i. An edge corresponds to a k-tuple of data points S ∈ In,k,
and the edge weight is given by h(XS). The natural counterpart of a degree in a graph becomes a
local Hájek projection, defined as in equation (9). In degenerate cases and cases where k2ζ1 ≪ kζk,
the local Hájek projections are tightly concentrated around the mean θ. We exploit this fact and
reweight the edges (k-tuples) so that the local sensitivity of the reweighted U-statistic is small.

4.3 Application to non-degenerate and degenerate kernels

Algorithm 1 can be extended from bounded kernels to sub-Gaussian(τ) kernels. First, split the
samples into two roughly equal halves. The first half of the samples will be used to obtain a
coarse estimate of the mean θ. For this, we can use any existing private mean estimation algorithm
to obtain an ϵ/2-differentially private estimate θ̃coarse such that with probability at least 1 − α,
|θ̃coarse − θ| = Õ(

√
kζk/n + k

√
τ/(nϵ)). By a union bound, with probability at least 1 − α,

|h(XS)− θ| is within 4
√
τ log

((
n
k

)
/α
)

for all S ∈ In,k, and therefore also within c
√

kτ log(n/α)

of the coarse estimate θ̃coarse, for some universal constant c, as long as ϵ = Ω̃(
√
k/n).

Define the projected function h̃(X1, X2, . . . , Xk) to be the value h(X1, X2, . . . , Xk) projected to
the interval [θ̃coarse − c

√
kτ log(n/α), θ̃coarse + c

√
kτ log(n/α)]. The final estimate of the mean

θ is obtained by applying Algorithm 1 to the other half of the samples, the function h̃, and the
4More precisely, suppose supx h(x)− infx h(x) ≤ C.
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privacy parameter ϵ/2. The following lemma shows that
√
2τ log(2n/α) is a valid choice of the

concentration parameter ξ for sub-Gaussian, non-degenerate kernels.

Lemma 3. IfH is sub-Gaussian(τ), the local Hájek projections ĥ(i) are also sub-Gaussian(τ). In
particular, with probability at least 1− α, we have max1≤i≤n |ĥ(i)− θ| ≤

√
2τ log(2n/α).

Combining these parameters with Theorem 2 gives us the following result:
Corollary 1 (Non-degenerate sub-Gaussian kernels). Suppose h is sub-Gaussian(τ) and the privacy
parameter ϵ = Ω̃(k1/2/n). Split the samples into two halves and compute a private estimate of the
mean by applying the naive estimator on the first half of the samples with privacy parameter ϵ/2 to ob-
tain θ̃coarse. Let h̃ be the projection of of the function h onto the interval θ̃coarse±O(

√
kτ log(2n/α)).

Run Wrapper 1 on the remaining half of the samples with f = all, failure probability α/2, algorithm
A = PrivateMeanLocalHájek (Algorithm 1), C =

√
2kτ log(n/2α), ξ =

√
2τ log(n/2α), func-

tion h̃, and privacy parameter ϵ/20. Then, the output θ̃ is ϵ-differentially private. Moreover, with
probability at least 1− α,

|θ̃ − θ| = O
(√

Var(Unα)
)
+ Õ

(
k
√
τ

nαϵ
+

k2.5
√
τ

n2
αϵ

2
+

k3.5
√
τ

n3
αϵ

3

)
.

From our lower bound on non-degenerate kernels in Theorem 1, we see that the above corollary is
optimal in terms of k, n, ϵ (up to log factors). In contrast, Lemma 1 is suboptimal in k.

Many degenerate U-statistics (e.g., all the degenerate ones in Section 5) have bounded kernels. For
these, we see that the local Hájek projections concentrate strongly around the U-statistic.
Lemma 4. Suppose H is bounded, with additive range C. Let i ∈ [n] be an arbitrary index and
Si ∈ In,k be a set containing i, and suppose xi ∈ R is some element in the support of D. With
probability at least 1− β

n , conditioned on Xi = xi, we have∣∣∣Ê[h(XS)|Xi = xi]− E [h(XSi)|Xi = xi]
∣∣∣ ≤ 2σi

√
k

n
log

(
2n

β

)
+

8Ck

3n
log

(
2n

β

)
, (16)

where Ê[h(XS)|Xi = xi] =
∑

S∈Si
h(XS)

(n−1
k−1)

, and σ2
i = Var (h(XSi

)|Xi = xi).

For bounded kernels with additive range C, σi ≤ C/2 by Popoviciu’s inequality [53]. Moreover, for
degenerate kernels, ζ1 = 0. That is, the conditional expectation E [h(XSi

)|Xi = xi] is equal to θ for
all xi, because the variance of this conditional expectation is ζ1. Based on this, we can show that the
choice of ξ = Õ

(
Ck1/2/n1/2

)
satisfies the requirement that the local Hájek projections are within ξ

of θ with probability at least 1− α.
Corollary 2 (Degenerate bounded kernels). Suppose h is bounded with additive range C and the
kernel is degenerate ζ1 = 0. Let ϵ = Ω(k1/2/n) be the privacy parameter. Run Wrapper 1 with
f = all, failure probability α, and algorithm A = PrivateMeanLocalHájek (Algorithm 1) with
ξ = O(C

√
k/n log(n/α)), to output θ̃. With probability 1− α, we have∣∣∣θ̃ − θ

∣∣∣ = O
(√

Var(Unα)
)
+ Õ

(
k1.5

n1.5
α ϵ

C +
k2

n2
αϵ

2
C +

k3

n3
αϵ

3
C

)
,

Obtaining a result for sub-Gaussian degenerate kernels poses difficulties on bounding the concentra-
tion parameter ξ. However, for bounded kernels, we see that the above result obtains better private
error than the application of off-the-shelf methods (Lemma 1). In the next subsection, we provide a
lower bound for degenerate bounded kernels, which, together with Corollary 2, gives strong indication
that our algorithm achieves optimal private error for private degenerate kernels.

4.4 Lower bound

To obtain a lower bound of the private error, we construct a dataset and kernel function such that the
local Hájek projections are 1/

√
n concentrated around the corresponding U-statistic. This is one way

of characterizing a degenerate U-statistic. The proof of the following theorem is in Appendix A.4.
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Theorem 3. For any n, k ∈ N with k ≤ n, ϵ = Ω((k/n)1−1/2(k−1)), and ϵ-differentially private
algorithm A : Xn → R, there exists a function h : X k → {0, 1} and dataset D such that
|ĥ(i)−Un| ≤

√
k/n (where ĥ(i) and Un are computed on D) for every i ∈ [n] and E|A(D)−Un| =

Ω
(

k3/2

n3/2ϵ

)
, where the expectation is taken over the randomness of A.

Remark 3. The above lower bound is in some sense informal because we created a deterministic
dataset and h that mimics the property of a degenerate U statistic; the local Hájek projections
concentrate around Un at a rate

√
k/n. However, it gives us a strong reason to believe that the

private error cannot be smaller than O(k3/2/n3/2ϵ) for degenerate U statistics of order k. Note that
for bounded kernels, Corollary 2 does achieve this bound, as opposed to Lemma 1.

4.5 Subsampling estimator

We now focus on subsampled U-statistics. Previous work has shown how to use random subsampling
to obtain computationally efficient approximations of U-statistics [38, 52, 17], where the sum is
replaced with an average of samples (drawn with or without replacement) from In,k.

Recall Definition 2. Let S := {S1, . . . , SM} denote the subsampled set of subsets, let Si := {S ∈
S : i ∈ S}, and let Mi := |Si|. The proof of Theorem 2 with S = In,k (cf. Appendix A.5) uses
the property of In,k that Mi/M = k/n and Mij/Mi = (k − 1)/(n− 1), so the inequalities (10)
certainly hold. Indeed, we can show that for subsampled data (cf. Lemma A.11), the following
inequalities hold with probability at least 1− α, provided M = Ω(n2/k2 log(n/α)):

Mi/M ≤ 3k/n and Mij/Mi ≤ 3k/n. (17)

Algorithmically, we check if the bounds (17) hold for S, and output ⊥ if not. Privacy is not
compromised because the check only depends on S and is agnostic to the data.
Theorem 4. Let Mn = Ω

(
(n2/k2) log n

)
. Then Algorithm 1, modified to output⊥ if the bounds (17)

do not hold, is 10ϵ-differentially private. Moreover, suppose that with probability at least 0.99, we
have maxi |ĥS(i) − An| ≤ ξ and |h(S) − θ| ≤ C for all S ∈ In,k. Run Wrapper 1 with f = ss,
failure probability α, and A = PrivateMeanLocalHajek (Algorithm 1) to output θ̃. With probability
at least 1− α, we have

|A(X)− θ| = O

(√
Var(Unα) +

√
ζk

Mnα

+
kξ

nαϵ
+

(
k2C

n2
αϵ

2
+

k3C

n3
αϵ

3

)
min

(
k,

1

ϵ

))
.

Remark 4. If the kernel is non-degenerate and the number of times we subsample (for each run
of the algorithm) is Ω̃

(
n2
α/k

2
)
, then Theorem 4 nearly achieves the same error as Algorithm 1

with S = In,k with a better computational complexity for k ≥ 3. The lower-order terms have an
additional min(k, 1/ϵ) factor, which can be removed with Ω(n3) subsamples.

5 Applications
We apply our methods to private uniformity testing and estimation in random networks. For more
applications, see Appendix A.6.4.

1. Uniformity testing: A fundamental task in distributional property testing [6, 7] is deciding
whether a discrete distribution is uniform on its domain, called the problem of uniformity testing.
Let X1, X2, . . . , Xn be n i.i.d. samples from a discrete distribution with support [m], characterized
by the probability masses p1, p2, . . . , pm on the atoms. Given an error tolerance δ > 0, the task is
to distinguish between approximately uniform distributions

{
p : ℓ2(p, U) ≤ δ/

√
2m
}

and far-from-
uniform distributions {p : ℓ2(p, U) ≥ δ/

√
m}.

Without the constraint of privacy, Diakonikolas et al. [21] perform this test by rejecting the uniformity
hypothesis whenever the test statistic Un :=

∑
i<j 1(Xi = Xj)/

(
n
k

)
> (1 + 3δ2/4)/m, and show

that this test succeeds with probability 0.9 as long as n = Ω
(
m1/2/δ2

)
. As detailed in Algorithm A.4

in the appendix, instead of using Un, we use the private estimate Ũn using Algorithm 1.

For our algorithm to work, we require the distributions to satisfy pi ≤ 2/m for all i. Let pi =

(1+ ai)/m for all i, with ai ∈ [−1, 1]. Under H1, we have E[1(X1 = X2)] = (1 + ∥a∥2 /m)/m ≥
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(1 + δ2)/m, where ∥a∥ is the ℓ2 norm of (a1, a2, . . . , am). Under H0, the mean is 1/m. The
difference between the threshold (1 + δ2/2)/m and the mean (under either of the two hypotheses)
is at least δ2/(2m). Moreover, [21] shows that the standard deviation of Un is much smaller than
the difference in the means under H0 and H1 as long as n = Ω(m1/2/δ2). However, we must
also account for the noise added to ensure privacy. In Appendix A.6.1, we show that the choice of
ξ = Θ̃(1/m+ 1/n) works and establish the following result:
Theorem 5. Let pi = (1+ai)/m with ai ∈ [−1, 1],

∑m
i=1 ai = 0. Let {Xj}nj=1 be i.i.d. multinomial

random variables such that P (X1 = i) = pi, for all i ∈ [m]. There exists an algorithm that
distinguishes between ∥a∥

2

m2 ≥ δ2

m from ∥a∥2
m2 < δ2

2m with probability at least 1 − α, as long as

nα = Ω
(

m1/2

δ2 + m1/2

(δϵ) + m1/2 log(m/δϵ)
δϵ1/2

+ m1/3

δ2/3ϵ
+ 1

δ2

)
, and is 10ϵ-differentially private.

The non-private error term of Theorem 5 is the same as in Theorem 1 of [21] and is optimal [22].
Proposition 1 shows that Algorithm A.2 with the all-tuples family leads to a private error bounded by
Õ(1/nϵ). This private error is O(δ2/m) only when n = Ω(m/δ2ϵ). In comparison, Algorithm A.4
has error O(δ2/m) for n = Ω

(
m1/2/min(δ2, δϵ)

)
, which is quadratically better in m.

Remark 5 (Comparison with existing algorithms). Existing results for private uniformity testing [1,
13] distinguish between the uniform distributions (ℓ1(p, U) = 0) and distributions away from
uniform in TV-distance (ℓ1(p, U) ≥ δ). Our algorithm considers the alternative hypothesis to be
ℓ2(p, U) ≥ δ/

√
m. Hence, our results are not strictly comparable. One caveat is that we restrict

ourselves to distributions p such that ℓ∞(p, U) ≤ 1/m. Our algorithm also allows some tolerance in
the null hypothesis, similar to [21] and other collision-based testers. That is, can allow some slack
and take the null hypothesis H0 : ℓ2(p, U) ≤ δ/

√
2m instead of ℓ2(p, U) = 0.

2. Sparse graph statistics: The geometric random graph (see [30]) has edges h(Xi, Xj) :=
1(∥Xi − Xj∥2 ≤ rn), where rn governs the average degree. Under a suitable distribution for
X1, . . . , Xn, the subgraph counts show normal convergence for a large range of rn [30]. Typically,
we only observe the graph and do not know the underlying distribution of the latent variables Xi

or the radius rn. This is why estimates of the network moments are of interest since they reveal
information about the underlying unknown distribution and parameters.

Let the Xi’s be uniformly distributed on the three-dimensional sphere to ignore boundary conditions.
For edge density, Eh(Xi, Xj) ∝ r2n. For any distinct indices i, j, k and a given Xi, the random
variables h(Xi, Xj) and h(Xi, Xk) are independent. Therefore, ζ1 = cov(h(Xi, Xj)h(Xi, Xk)) =
0. We have ζ2 = var[h(Xi, Xj)] = O(r2n), so the non-private error is O(rn/n). In Appendix A.6.2,
we provide Algorithm A.5 that uses Algorithm 1 to obtain a private estimate of the edge density of a
graph {h(Xi, Xj)}1≤i<j≤n. Note that the Xi’s themselves can be unknown. Our methods can also
be used for private triangle density estimation. See the extended version [16] for details.

Theorem 6. Let rn = Ω̃(n−1/2) and ϵ = Ω
(
1/nr2n

)
. Let {X1, . . . , Xn} be i.i.d. latent positions

such that Xi is distributed uniformly on ∂S2. Let the observed geometric network have adjacency
matrix {Aij , 1 ≤ i < j ≤ n} where Aij = 1(∥Xi −Xj∥ ≤ rn). There exists a 10ϵ-differentially
private algorithm that estimates the edge density θ of the geometric graph. With probability at least
1− α, the output θ̃ satisfies |θ̃ − θ| = Õ

(
rn
nα

+ 1
n2
αϵ2 + 1

n3
αϵ3

)
Remark 6. By Lemma 1, the all-tuples estimator (1) satisfies |θ̃all − θ| ≤ Õ (rn/n+

√
τ/nϵ) with

probability 1− α, where τ is the variance proxy of the distribution. Since τ = Ω̃(1) [4], the private
error overpowers the main variance term in sparse settings where rn = o(1).

6 Discussion
We have considered the problem of estimating θ := Eh(X1, . . . , Xk) for a broad class of kernel
functions h. The best non-private unbiased estimator is a U statistic, which is widely used in
estimation and hypothesis testing. While existing private mean estimation algorithms can be used for
this setting, they can be suboptimal for large k or for non-degenerate U statistics, which have O(1/n)
limiting variance. We provide lower bounds for both degenerate and non-degenerate settings. We
analyze bounded degenerate kernels motivated by typical applications with degenerate U statistics.
To extend this to the subgaussian setting is part of future work. We propose an algorithm that matches
our lower bounds for sub-Gaussian non-degenerate kernels and bounded degenerate kernels. We also
provide applications of our theory to private hypothesis testing and estimation in sparse graphs.
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Roadmap of Appendix
1. Section A.1: U statistics and concentration of U statistics
2. Section A.2: Composition theorems for differential privacy
3. Section A.3: Details on our extension of the Coinpress algorithm [10]
4. Section A.4: Proofs of lower bounds
5. Section A.5: Proofs of the main theorems 2 and 4
6. Section A.6: More applications and details on uniformity testing and edge-density estimation

A.1 U-Statistics

Let h : X k → R be a symmetric function, and let X1, . . . , Xn ∈ X . The U statistic on the n
variables X1, . . . , Xn, Un(h), associated with h is defined as

Un =
1(
n
k

) ∑
{i1,...,ik}∈In,k

h(Xi1 , . . . , Xik). (A.18)

The mean of Un based on iid variables X1, . . . , Xn ∼ D, for some distribution D on X , is simply
θ := E[h(X1, . . . , Xk)]. Moreover, the variance of Un can be expressed succinctly in terms of
conditional expectations [45]. For c = 1, 2, . . . , k, define hc : X c → R as

hc(X1, . . . , Xc) := E[h(X1, . . . , Xk)|X1 = x1, . . . , Xc = xc], (A.19)
and let

ζc = Var (hc(X1, . . . , Xc)) . (A.20)
Equivalently, ζc = cov (h(XS1), h(XS2)) where S1, S2 ∈ In,k and |S1 ∩ S2| = c. The number of
such pairs of sets S1 and S2 is equal to

(
n
k

)(
k
c

)(
n−k
k−c
)
, which implies implies Eq 3.

Hoeffding decomposition. A U statistic of degree k can be written as the sum of uncorrelated U
statistics of degrees 1, 2, . . . , k. Define

h(1)(X1) = h(X1)− θ

and for all 2 ≤ c ≤ k,

h(c)(X1, . . . , Xc) = (hc(X1, . . . , Xc)− θ)−
∑

ϕ⊊S⊊Ic,i

h(i) (XS) .

Then, Un can be written as

Un = θ +

k∑
c=1

(
k

c

)
U (c)
n , (A.21)

where U
(c)
n is the U statistic on X1, . . . , Xn based on the kernel h(c). Equation A.21 is called the

Hoeffding decomposition (or the H-decomposition) of Un [36]. [36] also shows that the c functions
h(1), . . . , h(k) are pairwise uncorrelated. That is, let 1 ≤ c < d ≤ k and let Sc and Sd be subsets of
[n] of sizes c and d respectively. Then,

cov
(
h(c)(XSc

), h(d)(XSd
)
)
= 0.

This allows us to write the variance of Un in terms of the variances of h(c). For all c ∈ [k], define

δ2c = Var(h(c)). (A.22)
Then,

Var(Un) =

k∑
c=1

(
k

c

)2(
n

c

)−1
δ2c . (A.23)

Moreover, the conditional covariances ζc are related to the variances δ2c in the following manner:

ζc =

c∑
i=1

(
c

i

)
δ2i , δ2c =

c∑
i=1

(−1)c−i
(
c

i

)
ζi. (A.24)
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Lemma A.1. Suppose k ≤ n/2.

(i) If ζ1 > 0, then

Var(Un) =
k2ζ1
n

+O

(
ζk

k2

n2

)
. (A.25)

(ii) If ζ1 = 0 and ζ2 > 0, then

Var(Un) =
k2(k − 1)2ζ2
2n(n− 1)

+O

(
ζk

k3

n3

)
. (A.26)

Proof. This result follows directly from a calculation appearing in the proof of Theorem 3.1 in [48].
Note that

ζk =

k∑
j=1

(
k

j

)
δ2j ≥

(
k

j

)
δ2j

for all j ∈ [k]. Moreover,

Var(Un) =

k∑
j=1

(
k

j

)2(
n

j

)−1
δ2j .

For part (i), we write

Var(Un) =
k2ζ1
n

+

k∑
j=2

(
k

j

)2(
n

j

)−1
δ2j ≤

k2ζ1
n

+

k∑
j=2

(
k

j

)(
n

j

)−1
ζk

≤ k2ζ1
n

+ ζk

k∑
j=2

(
k

n

)j

≤ k2ζ1
n

+
k2ζk
n2

(
1− k

n

)−1
≤ k2ζ1

n
+

2k2ζk
n2

.

For part (ii), we write

Var(Un) =
k2ζ1
n

+
k2(k − 1)2ζ2
2n(n− 1)

+

k∑
j=3

(
k
j

)2(
n
j

) ζj ≤ k2(k − 1)2ζ2
2n(n− 1)

+ ζk

k∑
j=3

(
k
j

)(
n
j

)
≤ k2(k − 1)2ζ2

2n(n− 1)
+ ζk

k∑
j=3

(
k

n

)j

=
k2(k − 1)2ζ2
2n(n− 1)

+
2k3ζk
n3

.

Lemma A.2. For all 1 ≤ c ≤ d ≤ k,

ζc
c
≤ ζd

d
. (A.27)

In particular, kζ1 ≤ ζk.

Proof. Using equation A.24,

ζc
c

=

c∑
i=1

1

c

(
c

i

)
δ2i =

c∑
i=1

1

i

(
c− 1

i− 1

)
δ2i ≤

c∑
i=1

1

i

(
d− 1

i− 1

)
δ2i ≤

d∑
i=1

1

d

(
d

i

)
δ2i =

ζd
d
.

Lemma A.3 (Concentration of U-statistics). [37, 9]

(i) IfH is sub-Gaussian with variance proxy τ , then for all t > 0, we have

P (|Un − θ| ≥ t) ≤ 2 exp

(
−
⌊nk ⌋t

2

2τ

)
. (A.28)
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(ii) IfH is almost surely bounded in (−C,C), then for all t > 0, we have

P (|Un − θ| ≥ t) ≤ exp

(
−
⌊
n
k

⌋
t2

2ζk + 2Ct/3

)
. (A.29)

Proof. Without loss of generality, let θ = 0. For any permutation σ of [n], let

Vσ :=
1

m

m∑
i=1

h(Xσ(k(i−1)+1), Xσ(k(i−1)+2), . . . , Xσ(ki)),

where m = ⌊n/k⌋. By symmetry, Un = 1
n!

∑
σ Vσ . For any s > 0,

P (Un ≥ t) = P
(
esUn ≥ est

)
≤ e−stE

[
esUn

]
= e−stE

[
exp

(
s

n!

∑
σ

Vn

)]

≤ e−stE

[
1

n!

∑
σ

exp(sVn)

]
= e−stE [exp(sVid)]

= e−stE
[
exp

( s

m
h(X1, . . . , Xk)

)]m
.

IfH is sub-Gaussian with variance proxy τ , then we can further bound the inequality above as

P (Un ≥ t) ≤ e−st
(
exp

(
s2τ

2m2

))m

= exp

(
−st+ s2τ

2m

)
.

Set s = tm
τ2 to get the desired result. Note how the argument is similar to the classical Hoeffding’s

inequality argument after applying Jensen’s inequality on Vσ . The second result follows similarly by
adapting the tricks of Bernstein’s inequality [9] to [37]; for a detailed proof, see [51].

A.2 Details on Privacy Mechanisms

Lemma A.4. (Basic Composition) If Ai : Xn → Si is ϵi-differentially private for all i ∈ [k], then
the mechanism A : Xn → S1 × · · · × Sk defined as

A (X1, . . . , Xn) = (A1 (X1, . . . , Xn) , . . . ,Ak (X1, . . . , Xn))

is
∑k

i=1 ϵi-differentially private.

Lemma A.5. (Parallel Composition) If Ai : Xn → Si is ϵ-differentially private for all i ∈ [k], then
the mechanism A : X kn → S1 × · · · × Sk defined as

A (X1, . . . , Xkn) =
(
A1 (X1, . . . , Xn) ,A2 (Xn+1, . . . , X2n) , . . . ,Ak

(
X(k−1)n+1, . . . , Xkn

))
is ϵ-differentially private.

A.2.1 Private mean estimation

A fundamental task in private statistical inference is to privately estimate the mean based on a set
of IID observations. One way to do this is via the global sensitivity method, wherein the standard
deviation of the noise scales with the ratio between the range of the distribution and the size of the
dataset. In the fairly realistic case where the range is large or unbounded, this leads to highly noisy
estimation even in the setting where typical samples are small in size.

To remedy this effect, a line of work [42, 39, 14, 40, 24, 11] has looked into designing better private
mean estimators for (sub)-Gaussian vectors. Our work will build on one such method: CoinPress [10].
The idea is to iteratively refine an estimate for the parameters until one obtains a small range
containing most of the data with high probability; noise is then added proportional to this smaller
range. Note that some dependence on the range of the mean is inevitable for estimation with pure
differential privacy [33, 15].
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A.3 Details for Section 3

A.3.1 General result

We will prove a more general theorem than Lemma 1, from which Lemma 1 and related Lemmas
using other families of subsets are derived.

In Algorithms A.2 and A.3, we present a natural extension of the CoinPress algorithm [10], which is
then used to obtain a private estimate of θ with the non-private term matching Var(Un). Originally,
this algorithm was used for private mean and covariance estimation of i.i.d. (sub)Gaussian data. We
extend the algorithm to take as input data {Yj}j∈[m] such that (i) each Yj is equal to h(XS) for
some S, (ii) the Yj’s are weakly dependent on each other, and (iii) each Yj , as well as their mean∑

j∈[m] Yj/m, has sufficiently strong concentration around the population mean.

For instance, suppose m = ⌊n/k⌋ and Yj = h(XSj ) for all j ∈ [m], where Sj = {(j − 1)k +
1, . . . , (j − 1)k + k}. Then Algorithm A.2 reduces to the CoinPress algorithm applied to n/k
independent observations h(XS1

), h(XS2
), . . . , h(XSm

).

Algorithm A.2 U-StatMean
(
n, k, h, {Xi}i∈[n] ,F = {S1, . . . , Sm}, R, ϵ, γ,Q(·), Qavg(·)

)
1: t← log (R/Q(γ)) , [l0, r0]← [−R,R]
2: for j = 1, . . . ,m do
3: Y0,j ← h(XSj )
4: end for
5: for i = 1, 2, ..., t do
6: {Yi,j}j∈[m], [li, ri]← U-StatOneStep

(
n, k, {Yi−1,j},F , [li−1, ri−1], ϵ

2t ,
γ
t , Q(·), Qavg(·)

)
7: end for
8: {Yt+1,j}j∈[m], [lt+1, rt+1]← U-StatOneStep (n, k, {Yt,j},F , [lt, rt], ϵ/2, γ,Q(·), Qavg(·))
9: return (lt+1 + rt+1)/2

Algorithm A.3 U-StatOneStep
(
n, k, {Yi}i∈[m] ,F , [l, r], ϵ′, β,Q(·), Qavg(·)

)
1: Yj ← projl−Q(β),r+Q(β) (Yj) for all 1 ≤ j ≤ m.
2: ∆← depn,k (F) (r − l + 2Q(β))

3: Z ← 1
m

∑m
j=1 Yj +W , where W ∼ Lap

(
∆
ϵ′

)
4: [l, r]←

[
Z −

(
Qavg(β) + ∆

ϵ′ log
1
β

)
, Z +

(
Qavg(β) + ∆

ϵ′ log
1
β

)]
5: return {Yj}j∈[m], [l, r]

Setting 1. Let n and k be positive integers with k ≤ n/2, and let h : X k → R be a symmetric
function and let D be an unknown distribution over X with E

[
h(Dk)

]
= θ such that |θ| < R for

some known parameter R.

Let m be an integer and F = {S1, S2, . . . , Sm} be a family of not necessarily distinct elements of
In,k. Define

fi :=
|{j ∈ [m] : i ∈ Sj}|

m
, (A.30)

the fraction of indices j such that Sj contains i, and define the maximal dependence fraction
depn,k (S) := max

i∈[n]
fi. (A.31)

For each j ∈ [m], let Yj denote h(XSj ). Clearly, E [Yj ] = θ. To allow for small noise addition while
ensuring privacy, it is desirable to choose S with small depn,k (S).

Define functions Q(β) = Qn,k,h,D,S(β) and Qavg(β) = Qavg
n,k,h,D,S(β) on β ∈ (0, 1] such that

P

(
sup
j∈[m]

|Yj − θ| > Q(β)

)
< β, P

∣∣∣∣∣∣ 1m
m∑
j=1

Yj − θ

∣∣∣∣∣∣ > Qavg(β)

 < β. (A.32)
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We will refer to Q(β) and Qavg(β) as β-confidence bounds for supj∈[m] |Yj − θ| and∣∣∣ 1m ∑j∈[m] Yj − θ
∣∣∣, respectively. We apply Theorem A.1 (specifically, the form obtained in

Lemma A.6) to different F to obtain private estimates of θ, with statistical and computational trade-
offs depending on the family F . As Remark A.7 suggests, we will also need to privately estimate
concentration bounds on the Yj’s and their average. Naturally, this requires a private estimate of the
variance ζk. We provide guarantees from Biswas et al. [10] for private variance estimation and mean
estimation here, where we have translated the mean estimation guarantee to fit our setting.

Before we do that, a natural approach to this problem is to view it as a standard private mean
estimation task: split the data into n/k equally-sized chunks, apply the function h to each chunk,
and run any existing private mean estimation algorithm to these n/k values. We show that the error
guarantee of such an algorithm is suboptimal compared to the error guarantee using the all-tuples
estimator 1 or even the subsampling estimator 2 if sufficiently many samples are used. Before stating
the propositions associated with these families, we state and prove the mother theorem.

Theorem A.1. For ϵ > 0, Algorithm A.2 with input
(
n, k, h, {Xi}i∈[n],F , R, ϵ, γ,Q(·), Qavg(·)

)
returns θ̃n such that

|θ̃n − θ| ≤ O


√

Var(
∑

j∈[m] Yj)

m
√
γ︸ ︷︷ ︸

non-private error

+
depn,k (F)Q(γ)

ϵ
· log

(
1

γ

)
︸ ︷︷ ︸

private error

 , (A.33)

with probability at least 1− 6γ,5 as long as

depn,k (F) ≤
Q(γ)ϵ

10tQ(γ/t) log t/γ
and Qavg(γ/t) < Q(γ), (A.34)

where t = ⌈C log (R/Q(γ))⌉. Moreover, Algorithm A.2 is ϵ-differentially private and runs in time
O(n+m log (R/Q(γ)) + k|F|).
Remark A.7. Theorem A.1 assumes that Q(·) and Qavg(·) are known, despite the mean θ being
unknown. Note that we only need to know the value of these functions at γ and γ/t, for a given γ. If
these bounds are not known, we may first need to (privately) compute Q(x) and Qavg(x) and then
use those privately computed bounds in the algorithm. For example, if the Y ′i s are sub-Gaussian
with variance proxy 1, then Q(x) =

√
log(m/x). We will see how to estimate these parameters for

various families F of indices used in Algorithm A.2.

Proof of Theorem A.1. We will prove privacy and accuracy guarantees separately.

Privacy. Algorithm A.2 makes t+ 1 calls to Algorithm A.3; let ∆i,Wi, and Zi be the values taken
by ∆,W, and Z in the ith call to Algorithm A.3, for 1 ≤ i ≤ t + 1. Let β := γ

t . It can be shown
inductively that the interval lengths ri − li and the values ∆i do not depend on the dataset. For any
1 ≤ i ≤ t, note that Yi,j = projli−1−Q(β),ri−1,Q(β) (Yi−1,j) for all 1 ≤ j ≤ m. Suppose we change
Xw to X ′w for some index w. For any 1 ≤ i ≤ t+ 1, conditioned on the values of Zi′ for 1 ≤ i′ < i,
at most a depn,k (F) fraction of {Yi,j}j∈[m] depend on w (this is true by the definition of depn,k (F)).
Since Yi,j = projli−1−Q(β),ri−1+Q(β/m) (Yi−1,j) has range ri−1 − li−1 + 2Q(β), the sensitivity of
1
m

∑m
j=1 Yi,j is at most depn,k (F) (ri−1 − li−1 + 2Q(β)) = ∆i. Therefore, by standard results (cf.

Lemma 1), for all 1 ≤ i ≤ t, the output Zi (and therefore the interval [li, ri]), conditioned on Zi′ for
1 ≤ i′ < i, is ϵ

2t -differentially private. Similarly, the output (lt+1 + rt+1)/2 = Zt+1, conditioned
on {Zi}i∈[t], is ϵ

2 -differentially private. By Basic Composition (see Lemma A.4), Algorithm A.2 is
ϵ-differentially private.

Utility. First, we show that if Algorithm A.3 is invoked with θ ∈ [l, r], it returns an interval [l′, r′]
such that θ ∈ [l′, r′] with probability at least 1− 3β. Consider running a variant of Algorithm A.2
with the projection step omitted in every call of Algorithm A.3. With probability at least 1 − β,
we have

∣∣ 1
m

∑m
i=1 Yi − θ

∣∣ ≤ Qavg(β), and with probability at least 1− β, we have |W | ≤ ∆
ϵ′ log

1
β .

5The following subsection modifies the algorithm so that the error depends polylogarithmically in α.

19



Therefore, with probability at least 1− 2β, we have

|Z − θ| ≤ Qavg(β) +
∆

ϵ′
log

1

β
,

in which case θ ∈ [l′, r′].

Finally, reintroducing the projection step only increases the error probability by at most β. Taking a
union bound over t steps, we see that θ ∈ [l′, r′], with probability at least 1− 3γ.

Next, we claim that if r − l > 28Q(γ), then r′ − l′ ≤ (r − l)/2. Using the assumption, we have

depn,k (F) ≤
Q(γ)ϵ

10tQ(γ/t) log t/γ
≤ min

(
ϵ′

5 log 1/β
,

Q(γ)ϵ′

5Q(β) log 1/β

)
,

where the second inequality follows from taking ϵ′ = ϵ
2t and using the fact that Q(γ) ≤ Q

(
γ
t

)
, since

the quantile function is nonincreasing. Furthermore, by the assumption Qavg(β) < Q(γ), we have

r′ − l′ =
2depn,k (F) log 1/β

ϵ′
(r − l) +

(
2Qavg(β) +

4depn,k (F)Q(β) log 1/β

ϵ′

)
≤ 2(r − l)

5
+

(
2Q(γ) +

4

5
Q(γ)

)
≤ r − l

2
.

Thus, after t = Ω
(
log
(

R
Q(γ)

))
iterations, we are guaranteed that the length of the final interval

[lt, rt] is at most 28Q(γ).

Finally, consider lines 8 and 9 of Algorithm A.2. The algorithm returns the midpoint of the interval
[lt+1, rt+1], which is Zt+1 in the final call of Algorithm A.3. By Chebyshev’s inequality, we have∣∣∣∣∣∣ 1m

m∑
j=1

Y0,j − θ

∣∣∣∣∣∣ ≤
√√√√ 1

γ
· Var

(
1

m

m∑
i=1

Y0,j

)
, (A.35)

with probability at least 1− γ, and with probability at least 1− γ, none of the Yi’s are truncated in
the projection step in the final call of Algorithm A.3. Finally, with probability at least 1− γ, we have

Wt+1 = O

(
∆t+1

ϵ

)
= O

(
depn,k (F)Q(γ)

ϵ
log

1

γ

)
.

The conclusion follows from a union bound over all events.

A.3.2 Boosting the error probability via median-of-means

Algorithm A.2 incurs a 1/
√
γ multiplicative factor in the non-private error, stemming from an

application of Chebyshev’s inequality to bound |
∑m

j=1 h(XSj )/m − θ|. For specific families F ,
we may be able to provide stronger concentration bounds for

∑m
j=1 h(XSj

)/m in inequality (A.35).
Instead, we complement the result of Theorem A.1 by applying the following median-of-means
procedure that allows for an improved dependence on the failure probability α with only a log (1/α)
multiplicative blowup in the sample complexity:
Lemma A.6. Let α ∈ (0, 1) and ϵ ≥ 0. Let A be an ϵ-differentially private algorithm. Consider

a size n dataset Dn
i.i.d∼ D, for a distribution D with some unknown parameter θ such that with

probability at least 0.75, we have

|A(Dn)− θ| ≤ rn.

Split Dn into q := 8 log(1/α) equal independent chunks,6 and run A on each chunk to obtain
ϵ-differentially private estimates {θ̃n,i}i∈[d] of θ. Let θ̃med

n be the median of these q estimates. Then
θ̃med
n is ϵ-differentially private, and with probability at least 1− α, we have∣∣∣θ̃med

n − θ
∣∣∣ ≤ rn/q. (A.36)

6Assume for simplicity that n is divisible by q and q is an odd integer.
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Proof. The privacy of θ̃med
n follows from parallel composition (Lemma A.5). For utility, we know

from the hypothesis that for each i ∈ [q], with probability at least 3/4, the estimate θ̃n,i satisfies

|θ̃n,i − θ| ≤ rn/q.

If more than half the estimates θ̃n,i satisfy the above equation, then so does the median. Let Ti be the
random variable that assumes the value 0 if θ̃n,i satisfies the above equation and assumes the value 1
otherwise. Then, E[Ti] ≤ 1/4, and it suffices to show that

Pr (T1 + T2 + · · ·+ Tq ≤ q/2) ≥ 1− α.

This follows from a standard Hoeffding inequality; as long as q ≥ 8 log(1/α),

Pr (T1 + T2 + · · ·+ Tq > q/2) ≤ Pr

(∑
i

(Ti − E[Ti]) > q/4

)
≤ e−2(1/4)

2q ≤ α.

A.3.3 Application to the all-tuples family: proof of Proposition 1

For any i ∈ [n], there are exactly
(
n−1
k−1
)

sets S ∈ In,k such that i ∈ S. Following the notation from
the setting of Theorem A.1, we have fi =

(
n−1
k−1
)
/
(
n
k

)
= k

n for all i ∈ [n], so depn,k (Fall) = k
n .

Moreover, for each S ∈ In,k, we have P (|h(XS)− θ| ≥ y) ≤ 2 exp
(
−y2

2τ

)
. Letting

Q(γ) :=

√
2τk log

(
2n

γ

)
>

√
2τ log

(
2

γ

(
n

k

))
,

we see that each Yi is within Q(γ) of θ with probability at least γ

(nk)
. A union bound implies that this

choice of Q(γ) is valid. For the concentration of the average 1
m

∑
j∈[m] Yj , which is simply Un, we

can use Lemma A.3) to see that

Qavg(γ) :=

√
2τk log 2

γ

n

is a valid choice. We now verify the conditions in Theorem A.1:

depn,k (S) =
k

n
≤ Q(γ)ϵ

10tQ(γ/t) log(t/γ)
=

ϵ

10t log(t/γ)

√
log 2n/γ

log 2nt/γ

if and only if

n ≥ 10kt log(t/γ)

ϵ

√
log 2nt/γ

log 2n/γ
.

Recalling that t = ⌈C log (R/Q(γ))⌉, we see that this holds under the sample complexity assumption
on n. Furthermore, we have Qavg(γ/t) ≤ Q(γ) if and only if√

2τk log 2t
γ

n
≤

√
2τk log

(
n

γ

)
⇐⇒ n ≥ log 2t/γ

log n/γ
,

which is also true by assumption. Therefore, with probability at least 1− 6γ, we have

|θ̃all − θ| ≤ O

(
1
√
γ

√
Var(Un) +

k

nϵ

√
2τk log

(
2n

γ

))
.

Algorithm A.3 uses a constant failure probability of γ = 0.01, which assures a success probability of
at least 0.75. This is further boosted by Wrapper 1. Now, an application of Lemma A.6 gives the
stated result.
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A.3.4 Application to the naive family

Definition A.3. Consider the following estimator: divide the n data points into n/k disjoint chunks,
compute h(XS) on each of these chunks, and apply the CoinPress algorithm [10] to obtain a private
estimate of the mean θ. We will call this naive estimator θ̂naive.

The following proposition records the guarantee of the naive estimator θ̂naive:

Proposition A.1. The naive estimator θ̂naive satisfies

|θ̂naive − θ| ≤ O

(√
kζk
n

)
+ Õ

(
k
√
τ

nϵ

)
,

with probability at least 0.9, as long as n = Ω̃
(

k
ϵ log

R√
τ

)
. The estimate θ̂naive is ϵ-differentially

private and the algorithm runs in time Õ
(
n+ n

k log R√
τ

)
.

First, suppose the variance ζk is known. It is easy to see that depn,k (Fnaive) =
k
n . By the assumption

that h(XS) is τ -sub-Gaussian, we have

P (|h(XS)− θ| ≥ y) ≤ 2 exp

(
− y2

2τ

)
.

Hence, with probability at least 1− γ/m, we have

|Yj − θ| ≤
√
2τ log(2m/γ), (A.37)

for each 1 ≤ j ≤ m, where we use the notation as in the setting of Theorem A.1. By a union bound,

we can take the quantile function Q(γ) =

√
2τ log

(
2n
kγ

)
. Moreover, since the Yj’s are independent,

the average 1
m

∑
j∈[m] Yj is τ

m -sub-Gaussian with variance ζk
m . Therefore, we have

P

∣∣∣∣∣∣ 1m
m∑
j=1

Yj − θ

∣∣∣∣∣∣ ≥ y

 ≤ 2 exp

(
−my2

2τ

)
.

This yields a bound of Qavg(γ) =
√

2kτ log(2/γ)
n . It remains to verify the conditions of Theorem A.1.

We have

k

n
≤ Q(γ)ϵ

10tQ(γ/t) log(t/γ)
⇐⇒ k

n
≤ ϵ

10t log(t/γ)

√
log(2n/kγ)

log(2nt/kγ)
,

and

Qavg(γ/t) < Q(γ) ⇐⇒
√

2kτ log(2t/γ)

n
≤
√

2τ log(2n/kγ)

⇐⇒ n ≥ k
log(2t/γ)

log(2n/kγ)
,

which are both true by the sample size assumption, noting that t = ⌈C log(R/Q(γ))⌉. Therefore,
with probability at least 1− 6γ, we have∣∣∣θ̂naive − θ

∣∣∣ ≤ O

(
1
√
γ

Var(θ̂naive) +
k

nϵ

√
2τ log(2n/kγ) log

1

γ

)
.

Choosing γ to be an appropriate constant, we arrive at the deisred result.
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A.3.5 Application to the subsampled family

Unlike the all-pairs family Sall, the subsampled Sss in Definition 2 is randomized. Define θ̂ss =∑M
j=1 h(XSj )/M . Recall from our discussion before (cf. Theorem A.1) that we want each of the

h(XSj
)’s, as well as θ̂ss, to concentrate around θ, and we also want depn,k (Sss) to be small. As

we show, the former concentration holds as in the all-tuples case, and the latter holds with high
probability.
Proposition A.2. Let Mn = Ω((n/k) log n). Then Wrapper 1, with f = ss, failure probability α,
algorithm A = U-StatMean (Algorithm A.2), S(Ii) a set of Mnα

i.i.d. subsets of size k picked with
replacement from Ii, returns an estimate θ̃ss such that, with probability at least 1− α,

|θ̃ss − θ| ≤ O
(√

Var(Unα
)
)
+ Õ

(√
ζk

Mnα

+
k3/2
√
τ

nαϵ

)
,

as long as nα = Ω̃
(

k
ϵ

(
log R√

kτ

))
. Moreover, the estimator θ̃ss is ϵ-differentially private and runs

in time Õ
(
log(1/α)

(
k + log R√

kτ

)
Mnα

)
.

First, we need the following helper lemmas:

Lemma A.7. Define θ̂ss =
1
M

∑
S∈Fss

h(XS). We have Var
[
θ̂ss

]
=
(
1− 1

M

)
Var(Un) +

1
M ζk.

Proof. Clearly, E[θ̂ss] = θ. We compute both terms of the following decomposition of the variance
of θ̂ss separately; recall that X = {Xi}i∈[n]:

Var
(
θ̂ss

)
= Var

(
E
[
θ̂ss|X

])
+ E

[
Var
(
θ̂ss|X

)]
.

Now,

Var
(
E
[
θ̂ss|X

])
= Var

E

 1

M

∑
j∈[M ]

h (XSi)

∣∣∣∣∣∣X
 = Var(Un),

and

E
[
Var
(
θ̂ss

∣∣∣X)] = E

Var

 1

M

M∑
j=1

h(XSj
)

∣∣∣∣∣∣X
 =

1

M
E [Var (h(XS)|X)]

=
1

M
E

 1(
n
k

) ∑
S∈In,k

h(XS)
2 −

 1(
n
k

) ∑
S∈In,k

h(XS)

2


=
1

M

((
ζk + θ2

)
−
(
Var(Un) + θ2

))
=

ζk − Var(Un)

M
.

Adding the two equalities yields the result.

Lemma A.8. Let γ > 0, and let M = Ω(nk log n
γ ). Then depn,k (Fss) ≤ 4k

n with probability at least
1− γ.

Proof. Let Zi be the number of sampled subsets of which i is an element. Observe that Zi ∼
Binom(M,k/n), with mean µ := Mk/n. By a Chernoff bound, for any δ > 0 and any i ∈ [n], we
have

P (Zi ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

. (A.38)
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By a union bound, we have

P
(

depn,k (Fss) >
4k

n

)
= P

(
max

i
Zi > 4µ

)
≤ n

(
e3

(1 + 3)1+3

)µ

≤ n exp

(
−Mk

n

)
,

which is at most γ by our choice of M .

Let Gγ denote the event that depn,k (Fss) ≤ 4k
n , which occurs with high probability by Lemma A.8.

Note also that conditioned on any family Fss of subsets of In,k, the run of Algorithm A.2 is ϵ-
differentially private. Since the randomness of Fss is independent of the data, the algorithm (along
with the private variance estimation) is still 2ϵ-differentially private.

Let

Q(γ) =

√
2τk log

(
4n

γ

)
and Qavg(γ) = 4

√
τk

min (M,n)
log

4n

γ
.

We show that these are indeed the corresponding confidence bounds for YS , S ∈ Fss and θ̂ss.

By a sub-Gaussian tail bound, for any S ∈ In,k, the probability that |h(XS)− θ| > Q(γ) is at most
2
(

γ
4n

)k ≤ γ
2nk . By a union bound over all

(
n
k

)
sets S, we then have |h(XS)− θ| ≤ Q(γ) for all

S ∈ In,k, with probability at least 1− γ
2 . Call this event Eγ .

Next, E[θ̂ss|X1, . . . Xn] = Un. Moreover, for any c > 0,

P
(
|θ̂ss − θ| ≥ c

)
≤ P

(
|θ̂ss − Un| ≥ c/2

)
+ P (|Un − θ| ≥ c/2)

≤ EX1,...,Xn
P
(
|θ̂ss − Un| ≥ c/2|X1, . . . , Xn

)
+ 2 exp

(
− nc2

8kτ

)
,

where we used Lemma A.3 to bound the second term. For the first term in inequality (A.40),
note that conditioned on the data X1, . . . , Xn, the h(XSj

)’s are independent draws from a uniform
distribution over the

(
n
k

)
values {h(XS)}S∈In,k

, with mean Un, and the
∣∣h(XSj

)− θ
∣∣’s are bounded

by maxS∈In,k
|h(XS)−θ| ≤ Q(γ). Therefore, each h(XSj

)−Un is sub-Gaussian(Q(γ)2), implying
that

E
[
P
(
|θ̂ss − Un| ≥ c/2|X1, . . . , Xn

)]
≤ 2E

[
exp

(
− Mc2

8Q(γ)2

)
|X1, . . . , Xn, Eγ

]
+ P (Ecγ)

≤ 2 exp

(
− Mc2

16τk log(4n/γ)

)
+ P (Ecγ)

≤ 2 exp

(
− Mc2

16τk log(4n/γ)

)
+

γ

2
. (A.39)

Combining inequalities (A.40) and (A.39), we have

P
(
|θ̂ss − θ| ≥ c

)
≤ 2 exp

(
− Mc2

16τk log(4n/γ)

)
+

γ

2
+ 2 exp

(
− nc2

8kτ

)
≤ γ, (A.40)

as long as

c ≥ 4

√
τk

min (M,n)
log

(
2n

γ

)
log

(
8

γ

)
.

This justifies the choice of Qavg(γ). We now verify the conditions in Theorem A.1. Conditioned on
Gγ , we have

depn,k(S) =
4k

n
≤ Q(γ)ϵ

10tQ(γ/t) log(t/γ)
=

ϵ

10t log(t/γ)

√
log 4n/γ

log 4nt/γ
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if and only if

n ≥ 40kt log(t/γ)

ϵ

√
log 4nt/γ

log 4n/γ
.

Recalling that t = ⌈C log (R/Q(γ))⌉, we see that the above holds under the sample complexity
assumption on n. Furthermore, Qavg(γ/t) ≤ Q(γ) iff

4

√
τk

min (M,n)
log

4nt

γ
≤

√
2τk log

(
4n

γ

)
⇐⇒ min(M,n) ≥ log(4nt/γ)2

log 4n/γ
.

Since M ≥ n
k log

(
n
γ

)
, the assumption on the sample complexity of n implies the above result.

Conditioned on Eγ , the projection steps are never invoked in Algorithm A.2 or A.3, so we have θ̃ss =

θ̂ss +Wt+1, where Wt+1 is a Laplace random variable with parameter 2∆
ϵ , where ∆ =

depn,k(F)Q(γ)

ϵ

(coming from the noise added to 1
M

∑M
i=1 Yi in the (t+ 1)th step of Algorithm A.2). Finally, using

Lemma A.8, we have

|θ̃ss − θ̂ss| = |Wt+1| ≤
2∆

ϵ
log

1

γ
=

2depn,k (S)Q(γ)

ϵ
log

(
1

γ

)
≤ 8k

nϵ
log

1

γ

√
2τk log

(
4n

γ

)
on the event Gγ . Combined with Lemmas A.6, A.7, inequality (A.40), and Theorem A.1, with
probability at least 1− 7γ, we obtain

|θ̃ss − θ| ≤ O

(
1
√
γ

√
Var(Un) +

1
√
γ

√
ζk
M

+
k

nϵ
log

1

γ

√
τk log

(
4n

γ

))
.

The success probability is 1−7γ instead of 1−6γ because we also require depn,k (Fss) ≤ 4k
n , which

holds with probability 1− γ as in Lemma A.8. Algorithm A.3 uses a constant failure probability of
γ = 0.01, which assures a success probability of at least 0.75. This is further boosted by Wrapper 1.
Now, an application of Lemma A.6 gives the stated result.

A.4 Proofs of Lower Bounds

In this appendix, we provide the proofs of our two lower bound results.

A.4.1 Proof of Theorem 1

Lemma A.9 (Lemma 6.2 in [41]). Let P = {P1, P2, . . . } be a finite family of distributions over
a domain X such that for any i ̸= j, the total variation distance between Pi and Pj is at most α.
Suppose there exists a positive integer n and an ϵ-differentially private algorithm B : Xn → [|P|]
such that for every Pi ∈ P , we have

Pr
X1,...,Xn∼Pi,B

(B(X1, . . . , Xn) = i) ≥ 2/3.

Then, n = Ω
(

log |P|
αϵ

)
.

Lemma A.10 (Proposition 4.1 in [4]). The Bernoulli distribution Bern(p) is sub-Gaussian with
optimal variance proxy τp, where

τp = τ1−p =
1
2 − p

log
(

1
p − 1

) ,
for p ∈ (0, 1) \ {1/2}. In particular, if 0 < p < 1/10, then τp ≤ 1

2 log 1
2p

.

Define D0 = Bern(1) and D1 = Bern(1− β), where β = c
nϵ and c > 0 is small enough such that

kβ < 1/10. The TV-distance betweenD0 andD1 is β. Since n = c
βϵ , we also choose c small enough
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such that Lemma A.9 is violated: for any ϵ-differentially private algorithm B : {0, 1}n → {0, 1},
there exists an i ∈ {0, 1} such that

Pr (B(X1, . . . , Xn) = i) < 2/3, (A.41)

by Lemma A.9.

Consider now the task of ϵ-privately estimating the parameter

θ(D) := EX1,...,Xk∼D [h(X1, X2, . . . , Xk)] ,

where Xi ∼ D and

h(X1, X2, . . . , Xk) =
1

√
τ(1−β)k

1 (X1 = X2 = · · · = Xk = 1) ,

for some distribution D. Suppose there exists an ϵ-differentially private algorithm A such that

EX1,...,Xn∼D,A

[
|A(X1, . . . , Xn)− θ(D)|

]
≤ 1

8
· 1− (1− β)k
√
τ(1−β)k

, (A.42)

for any D such that the distribution H of h(X1, . . . , Xk) is sub-Gaussian(1). If D = Bern(1) or
Bern(1−β), Lemma A.10 shows that the distributionH of h(X1, . . . , Xk) is indeed sub-Gaussian(1).
If inequality (A.42) holds, then by Markov’s inequality,

Pr
Xi∼Di

(
|A(X1, . . . , Xn)− θ (Di)| ≤

3

8
· 1− (1− β)k
√
τ(1−β)k

)
≥ 2

3
,

for i ∈ {0, 1}.

Also, θ (D0) = 1/
√
τ1−β and θ (D1) = (1− β)k/

√
τ1−β . The difference between these means is

θ (D0)− θ (D1) =
1− (1− β)k
√
τ(1−β)k

.

Therefore, the following algorithm violates inequality (A.41): Run A on X1, . . . , Xn to obtain θ̃.
Output 0 if θ̃ is closer to θ(D0) than to θ(D1), and output 1 otherwise.

This implies inequality (A.42) does not hold, so we have a lower bound on the expected error.
Theorem 1 follows from the calculation

1− (1− β)k
√
τ(1−β)k

≥ kβ

2
·

√
2 log

1

2 (1− (1− β)k)
= Θ

(
kβ

√
log

1

kβ

)
,

where we used 1− kβ < (1− β)k < 1− kβ/2 for kβ < 1/10.

A.4.2 Proof of Theorem 3

Consider two datasets D0 and D1 of size n each, differing in at most 1/ϵ data points. Suppose
EA|A(D) − Un(D)| < 1

10 |Un(D0) − Un(D1)| for D ∈ {D0, D1}. By Markov’s inequality, we
have

Pr

(
|A(D)− Un(D)| < 1

2
|Un(D0)− Un(D1)|

)
≥ 0.8,

for D ∈ {D0, D1}. Moreover, since A is ϵ-differentially private, we have

Pr

(
|A(D1)− Un(D0)| <

|Un(D0)− Un(D1)|
2

)
≥ 1

e
Pr

(
|A(D0)− Un(D0)| <

|Un(D0)− Un(D1)|
2

)
≥ 0.8

e
.

By the triangle inequality, the event
{
|A(D1)− Un(D0)| < |Un(D0)−Un(D1)|

2

}
is disjoint from the

event
{
|A(D1)− Un(D1)| < |Un(D0)−Un(D1)|

2

}
. The sum of the probabilities of these two events is
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at least 0.8 + 0.8e−1 > 1, a contradiction. Therefore, A has expected error Ω(|Un(D0)− Un(D1)|)
on at least one of D0 or D1. Next, we will define appropriate choices of D0 and D1.

For simplicity, assume 1/ϵ is an integer. Define bn = ⌈k+k1/(2k−2)n1−1/(2k−2)− 1
ϵ ⌉. The assumed

range of ϵ implies that bn ≥ 2k/ϵ. Let h(x1, . . . , xk) = 1(x1 = · · · = xk). We define D0 such that

xi =

{
1, i ≤ bn,

i, i > bn.

We define D1 = {y1, . . . , yn} such that yi = xi for all i ̸∈ {bn + 1, . . . , bn + 1/ϵ} and yi = 1 for
bn < i ≤ bn + 1

ϵ . Hence,

Un(D1)− Un(D0) =

(
bn+1/ϵ

k

)(
n
k

) −
(
bn
k

)(
n
k

) .
Furhtermore, for k

ϵ ≤ bn, using the fact that (1 + x)r ≤ 1
1−rx for x ∈ [−1, 1/r), we have

1−
(
bn
k

)(
bn+1/ϵ

k

) = 1−
k−1∏
i=0

bn − i

bn + 1/ϵ− i
≥ 1−

(
bn

bn + 1/ϵ

)k

= 1−
(
1− 1/ϵ

bn + 1/ϵ

)k

≥ 1− 1

1 + k/ϵ
bn+1/ϵ

=
k/ϵ

bn + (k + 1)/ϵ
,

implying that

Un(D1)− Un(D0) ≥
k/ϵ

bn + (k + 1)/ϵ

(
bn + 1/ϵ

k

)/(
n

k

)
. (A.43)

For i with xi = 1 in D0, we have ĥD0(i) =
(bn−1

k−1 )
(n−1
k−1)

≤ Un(D0). For i with xi = 1 in D1, we have

ĥD1
(i) =

(bn+1/ϵ−1
k−1 )
(n−1
k−1)

≤ Un(D1). Therefore, we have |ĥD(i) − Un(D)| ≤ ĥD(i) ≤ ξ for all i and

D ∈ {D0, D1}, where

ξ :=

(
bn+1/ϵ−1

k−1
)(

n−1
k−1
) =

k−1∏
i=1

(
bn + 1/ϵ− i

n− i

)
≤
(
bn + 1/ϵ

n

)k−1

= O

(√
k

n

)
,

by our choice of bn. Moreover, we have

ξ ≥
(
bn + 1/ϵ− k

n− k

)k−1

≥
(
k1/(2k−2)n1−1/(2k−2)

n

)k−1

=

√
k

n
. (A.44)

By inequality (A.43) and the definition of ξ, we see that

Un(D1)− Un(D0) ≥
k/ϵ

bn + 2k/ϵ

bn + 1/ϵ

n
ξ ≥ k

3nϵ
ξ,

where the second inequality follows from the assumption that k/ϵ ≤ bn. Using the lower bound on ξ
as in inequality (A.44), we obtain the desired result.

A.5 Proof of Theorems 2 and 4

We first prove Theorem 4 with S equal to any subsampled family that satisfies the inequalities (17).
In particular, the following lemma guarantees that the required bounds hold with high probability for
a subsampled family chosen uniformly at random from In,k:

Lemma A.11. Let γ > 0, and let M = Ω
(

n2

k2 log
(

n
γ

))
. Let S be a collection of M i.i.d sets

sampled uniformly from In,k. For each i ∈ [n], let Si be the number of sets in S containing i, and
define Mi = |Si|. For each i ̸= j ∈ [n], let Sij be the number of sets in S containing i and j, and
define Mij = |Sij |. With probability at least 1− γ, for all distinct indices i and j, we have

k

2n
≤ Mi

M
≤ 2k

n
,

k

2n
≤ Mij

Mi
≤ 2k

n
.
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Proof. Note that Mi ∼ Binom(M,k/n). By a Chernoff bound, for any δ > 0 and any i ∈ [n], we
have

Pr

(∣∣∣∣Mi −
kM

n

∣∣∣∣ > kM

2n

)
≤ e−(0.5)

2(kM/n)/3 ≤ e−Ω(
n
k log n

γ ),

which is much smaller than γ
2n . Call this event Ei, and for the remaining argument, assume Ei holds

for all i (which, by a union bound, holds with probability at least 1− γ
2 ). This gives the first inequality.

For any distinct i, j ∈ [n], conditioned on the value of Mi, we have Mij ∼ Binom(mi, (k− 1)/(n−
1)). By a Chernoff bound, for any δ > 0 and i, j ∈ [n] with j ̸= i, we have

Pr

(∣∣∣∣Mij −
(k − 1)Mi

(n− 1)

∣∣∣∣ > (k − 1)Mi

2(n− 1)

∣∣∣Mi

)
≤ e−

(0.5)2((k−1)Mi/(n−1))

3 ≤ e−
k2M
48n2 ≤ γ

2n2
,

using the fact that Mi ≥ kM
2n and our assumption on M . The second inequality then follows from a

union bound over all pairs of indices.

A.5.1 Proof of Theorem 4

Consider two adjacent datasets X = (X1, X2, . . . , Xn) and X′ = (X ′1, X
′
2, . . . , X

′
n) differing only

in the index i∗, that is, X ′i = Xi for all i ̸= i∗. Throughout the proof, we will use the superscript
prime to denote quantities related to X′.

Let B := (Bad(X) ∪ Bad(X′)) \ {i∗} and G := (Good(X) ∩ Good(X′)) \ {i∗}. Then

m
(
Ãn − Ã′n

)
=
∑
S∈S

(g(XS)− g(X ′S))

=
∑

S∩B ̸=∅
i∗ /∈S

(g(XS)− g(X ′S))

︸ ︷︷ ︸
T1

+
∑

S∩B=∅
i∗ /∈S

(g(XS)− g(X ′S))

︸ ︷︷ ︸
T2

+
∑
i∗∈S

(g(XS)− g(X ′S))︸ ︷︷ ︸
T3

. (A.45)

We bound each of the three terms separately. The term T2 is equal to 0: all indices i ∈ S have
weight 1, and i∗ /∈ S, so g(XS) = h(XS) = h(X ′S) = g(X ′S). We prove some preliminary lemmas
before bounding the first and last terms. Recall the definitions of L and wt in equations (12) and (14),
respectively.
Lemma A.12. We have:

(i) |An −A′n| ≤ 2kC
n and |L − L′| ≤ 1.

(ii) For all i ̸= i∗, we have ∣∣∣|ĥ′(i)−A′n| − |ĥ(i)−An|
∣∣∣ ≤ 4kC

n
, (A.46)

|wt(i)− wt′(i)| ≤ ϵ, (A.47)

and for S, such that i∗ ̸∈ S,

|wt(S)− wt′(S)| ≤ ϵ. (A.48)

Proof. For (i), note that

|An −A′n| =
1

M

∣∣∣∣∣∣
∑

S∈Si∗
(h(XS)− h(X ′S))

∣∣∣∣∣∣ ≤ MiC

M
≤ 2kC

n
, (A.49)

where the last inequality comes from Lemma A.11. Similarly, for any i ̸= i∗, we have∣∣∣ĥ(i)− ĥ′(i)
∣∣∣ = 1

Mi

∣∣∣∣∣∣
∑

S∈Sij

(h(XS)− h(X ′S))

∣∣∣∣∣∣ ≤ MijC

Mi
≤ 2kC

n
. (A.50)
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Figure A.1: Weighting scheme in Eq (14)

Therefore, if an index i ̸= i∗ is in Good(X), using inequalities (A.49) and (A.50), we have∣∣∣ĥ′(i)−A′n

∣∣∣ ≤ ∣∣∣ĥ′(i)− ĥ(i)
∣∣∣+ ∣∣∣ĥ(i)−An

∣∣∣+ |An −A′n| (A.51)

≤ 2kC

n
+

(
ξ +

6kCL

n

)
+

2kC

n
= ξ +

kC (4 + 6L)

n
,

which leaves at most 1 + L potential indices i for which |ĥ′(i)−A′n| > ξ + 6kC(1+L)
n : the indices

in Bad(X) and the index i∗. Therefore, L′ ≤ L + 1. Similarly, L ≤ L′ + 1.

For (ii), note that from inequalities (A.49) and (A.50), we have
∣∣∣|ĥ′(i)−A′n| − |ĥ(i)−An|

∣∣∣ ≤ 4kC
n

for i ̸= i∗. Recalling the definition (14), this implies that the difference between the weights on an
index i can never be greater than ϵ.

Finally, note that the weight of a subset S, wt(S) = mini∈S wt(i). Now, by inequality (A.47), each
wt(i) differs by ϵ. Say a = argmini∈S wt(i). In order to make the difference between wt(S) and
wt(S′) large we will set wt′(a) = wt(a) + ϵ and take some other b and set wt′(b) = wt(b) − ϵ
such that wt′(b) ≤ wt′(a). But then, wt(a) ≤ wt(b) ≤ wt(a) + 2ϵ. This completes the proof of
inequality (A.48).

Next, we show that the weighted Hájek variants ĝ(i) are close to the empirical mean An and have
low sensitivity.

Lemma A.13. For all indices i, we have |ĝ(i)−An| ≤ ξ + 9kCL
n + 6kC

nϵ . Moreover, if i ̸= i∗, we
have

|(ĝ(i)−An)− (ĝ′(i)−A′n)| ≤
(
ξ +

kC(14 + 6L)

n

)
ϵ+

10kC

n
+

4k2C

n2
(1 + 2L).

Proof. If wt(i) = 0, then g(XS) = An for all S ∋ i and ĝ(i) = An. For clarity, we add a picture of
this weighting scheme here: Otherwise, we write

ĝ(i)−An =
1

Mi

∑
S∈Si

(h(XS)−An)wt(S)

=
1

Mi

∑
S∈Si

(h(XS)−An)wt(i) +
1

Mi

∑
S∈Si

(h(XS)−An) (wt(S)− wt(i))

= (ĥ(i)−An)wt(i) +
1

Mi

∑
S∈Si

(h(XS)−An) (wt(S)− wt(i)) . (A.52)

From equation (14) and the assumption that the weight of index i is strictly positive, the magnitude
of the first term in equation (A.52) is bounded by ξ + 6kCL

n + 6kC
nϵ . For the second term, note
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that wt(S) = wt(i) unless an index j with a lower weight than i exists. Note that such an index
j is necessarily in Bad(X). Therefore, the absolute value of the second term is bounded above by
1
mi

∑
j∈Bad(X),j ̸=i C ≤

2kCL
n . This proves the first part of the lemma.

To bound the sensitivity of ĝ(i), by the triangle inequality, we have∣∣∣(ĥ(i)−An)wt(i)− (ĥ′(i)−A′n)wt′(i)
∣∣∣

≤
∣∣∣ĥ(i)−An

∣∣∣ |wt(i)− wt′(i)|+
∣∣∣(ĥ(i)−An)− (ĥ′(i)−A′n)

∣∣∣wt′(i)

≤
(
ξ +

kC (4 + 6L)

n
+

6kC

nϵ

)
ϵ+

6kC

n

=

(
ξ +

kC (10 + 6L)

n

)
ϵ+

6kC

n
, (A.53)

where the argument for the second inequality is as follows: To bound the first term, note that
when wt(i) = wt′(i), it is zero. If wt(i) > 0, then |ĥ(i) − An| ≤ ξ + 6kCL

n + 6kCL
nϵ . Now, if

|ĥ(i)−An| > ξ + 6kCL
n + 6kCL

nϵ + 4kC
n , then wt(i) = 0, and by inequality (A.46) of Lemma A.12,

we see that |ĥ(i) − A′n| > ξ + 6kCL
n + 6kCL

nϵ , so wt′(i) will also be zero. The second term is
bounded directly by Lemma A.12. Overall, we arrive at a bound on the sensitivity of the first term in
equation (A.52).

For the sensitivity of the second term of equation (A.52), note that if i has minimum weight among
the indices in S, then wt(S) = wt(i). Otherwise, some index j ∈ S has strictly lower weight than i.
Such an index j is necessarily in Bad(X)∪Bad(X′) because it has weight less than 1. If S also does
not contain the index i∗, then h(XS) = h(X ′S), so by Lemma A.12, we have

|(h(X ′S)−A′n)− (h(XS)−An)| ≤ |An −A′n| ≤
2kC

n
,

|(wt′(S)− wt′(i))− (wt(S)− wt(i))| ≤ 2ϵ,

and letting
TS := ((h(XS)−An) (wt(S)− wt(i))− (h(X ′S)−A′n) (wt′(S)− wt′(i))) ,

we have |TS | ≤ 2kC
n + 2Cϵ.

Moreover, there are at most Mi,i∗ sets S containing both i and i∗, and for each such set S, the change
in (h(XS)−An) (wt(S)− wt(i)) is at most 2C, since the weights lie in [0, 1] and |h(XS)−An| ≤
C. Combining these bounds, we obtain∣∣∣∣∣∣ 1

Mi

∑
S∈Si

((h(XS)−An) (wt(S)− wt(i))− (h(X ′S)−A′n) (wt′(S)− wt′(i)))︸ ︷︷ ︸
TS

∣∣∣∣∣∣
≤ 1

Mi

 ∑
S∈Si\Sii∗

|TS |1(|S ∩ (Bad(X) ∪ Bad(X′))| > 0) +
∑

S∈Sii∗
|TS |


≤
(
2Cϵ+

2kC

n

)
1

Mi

∑
S∈Si\Sii∗

1(|S ∩ (Bad(X) ∪ Bad(X′))| > 0) +
1

Mi

∑
S∈Sii∗

2C

≤
(
2Cϵ+

2kC

n

)
1

Mi

∑
j∈Bad(X)∪Bad(X′)

∑
S∈Sij

1 + 2C
Mi,i∗

Mi

≤
(
2Cϵ+

2kC

n

)
(|Bad(X)|+ |Bad(X′)|) sup

j∈Bad(X)∪Bad(X′)

Mi,j

Mi
+ 2C

Mi,i∗

Mi

≤ 2k

n

(
2Cϵ+

2kC

n

)
(1 + 2L) +

4kC

n
, (A.54)

where the first inequality uses the fact that the weights are all equal if S ∩ (Bad(X) ∪ Bad(X′)) = ∅,
and the last inequality uses Lemma A.11. Combining inequalities (A.53) and (A.54) into equa-
tion (A.52) yields the result.
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To bound the term T1 in (A.45), we decompose it as

T1 =
∑
i∈B

∑
S∈Si
i∗ /∈S

(g(XS)− g(X ′S))−
min(k,|B|)∑

a=2

∑
S∈S

|S∩B|=a
i∗ /∈S

(a− 1) (g(XS)− g(X ′S)) . (A.55)

The first term sums over all subsets that contain some element in B. However, this leads to over-
counting every subset with a elements in common with B exactly a − 1 times. The second term
corrects for this over-counting, akin to an inclusion-exclusion argument. The following lemmas
bound each of the two terms:
Lemma A.14. For all i ∈ B, we have

1

Mi

∣∣∣∣∣∣
∑

S∈Si,i∗ /∈S

(g(XS)− g(X ′S))

∣∣∣∣∣∣ ≤
(
ξ +

20kCL

n

)
ϵ+

12kC

n
+

14k2CL

n2
.

Proof. We have∑
S∈Si
i∗ /∈S

(g(XS)− g(X ′S)) = Mi (ĝ(i)− ĝ(i))−
∑

S∈Si,i∗
(g(XS)− g(X ′S)) . (A.56)

By Lemmas A.12 and A.13, we have

|ĝ(i)− ĝ(i)| ≤
(
ξ +

kC(14 + 6L)

n

)
ϵ+

12kC

n
+

4k2C

n2
(1 + 2L).

Moreover, the second term in equation (A.56) is clearly upper-bounded by

2CMi,i∗ ≤
4kC

n
Mi ≤

8k2C

n2
Mi.

Summing these two bounds yields the result.

For the second term of equation (A.55), we use the following lemma:
Lemma A.15. We have

min(k,|B|)∑
a=2

∑
S∈S

|S∩B|=a
i∗ /∈S

(a− 1) |g(XS)− g(X ′S)| ≤
36k2L2

n2

(
2Cϵ+

6kC

n

)
min(k, 2L)M.

Moreover, if S = In,k, with m =
(
n
k

)
, we have the stronger inequality

min(k,|B|)∑
a=2

∑
S∈S

|S∩B|=a
i∗ /∈S

(a− 1) |g(XS)− g(X ′S)| ≤
9k2L2

n2

(
2Cϵ+

6kC

n

)
m.

Proof. For any S not containing i∗, we have
|g(XS)− g(X ′S)| = |(h(XS)−An)wt(S) +An − (h(X ′S)−A′n)wt′(S)−A′n|

≤ |(h(XS)−An)(wt(S)− wt′(S))|+ |(h(XS)− h(X ′S))wt′(S)|+ |An −A′n|

≤ 2Cϵ+
6kC

n
,

using Lemma A.12 and the fact that the second term is zero. Moreover, we have
min(k,|B|)∑

a=2

∑
S∈S

|S∩B|=a
i∗ /∈S

(a− 1) ≤
k∑

a=2

∑
S∈S

|S∩B|=a

min(k, |B|) =
∑
S∈S

|S∩B|≥2

min(k, |B|)

≤
∑
i,j∈B
i̸=j

∑
S∈Sij

min(k, |B|) ≤ 9k2

n2
min(k, |B|)|B|2m.
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The last inequality follows from Lemma A.11, which implies that Mij

M = O
(

k2

n2

)
.

In the case when S = In,k, we have

min(k,|B|)∑
a=2

∑
S∈S

|S∩B|=a
i∗ /∈S

(a− 1) ≤
min(k,|B|)∑

a=2

(a− 1)

(
|B|
a

)(
n− |B|
k − a

)

=

(
n

k

)(
k|B|
n
− 1

)
+

(
n− |B|

k

)
≤
(
n

k

)(
k|B|
n
− 1

)
+

(
n

k

)(
1− |B|

n

)k

≤
(
n

k

)(
k|B|
n
− 1

)
+

(
n

k

)
1

k|B|
n + 1

≤ k2|B|2

n2

(
n

k

)
,

where the first equality used the identities
∑k

a=0

(
n
a

)(
m

k−a
)
=
(
n+m
k

)
and

∑k
a=0 a

(
n
a

)(
m

k−a
)
=

nk
m+n

(
n+m
k

)
, and the third inequality used the fact that (1 − x)k ≤ 1

1+kx for all x ∈ [0, 1]. The
statement in the lemma follows because |B| ≤ 2L+ 1 ≤ 3L.

Combining the results of Lemma A.14 and A.15 yields Lemma A.16.
Lemma A.16. We have

|T1| ≤
kM

n

((
ξ +

20kCL

n

)
2ϵ+

24kC

n
+

28k2CL

n2
+

9kL2

n

(
2Cϵ+

6kC

n

)
γ

)
,

where γ = 4min(k, 2L). If S = In,k, then the bound also holds for γ = 1.

It remains to bound the third term, T3, of equation (A.45), which we do in the following lemma:
Lemma A.17. We have

|T3| ≤
2k

n

(
2ξ +

kC(11 + 18L)

n
+

12kC

nϵ

)
M.

Proof. Using Lemmas A.12 and A.13, we have

1

Mi∗
|T3| = |ĝ(i∗)− ĝ′(i∗)| ≤ |ĝ(i∗)−An|+ |ĝ′(i∗)−A′n|+ |An −A′n|

≤
(
ξ +

9kCL

n
+

6kC

nϵ

)
+

(
ξ +

9kCL′

n
+

6kC

nϵ

)
+

2kC

n

≤ 2ξ +
kC(11 + 18L)

n
+

12kC

nϵ
.

The lemma follows after using the fact that Mi∗ ≤ 2k
n M .

Combining the bounds on T1 and T3 from Lemmas A.16 and A.17 in equation (A.45), the local
sensitivity of Ãn at X is then bounded as

LSÃn
(X) = O

(
k

n

(
ξ +

kCL

n

)
(1 + ϵL) +

k2CL2 min(k, L)

n2

(
ϵ+

kC

n

)
+

k2C

n2ϵ

)
.

Let g(ξ, L, n) denote the upper bound, where to simplify the following argument, we assume the
constant prefactor is 1, i.e.,

g(ξ, L, n) :=
k

n

(
ξ +

kCL

n

)
(1 + ϵL) +

k2CL2 min(k, L)

n2

(
ϵ+

k

n

)
+

k2C

n2ϵ
.

Note that g is strictly increasing in L. Also define

S(X) = max
ℓ∈Z≥0

e−ϵℓg(ξ, LX + ℓ, n). (A.57)
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Lemma A.18. The function S(X) is an ϵ-smooth upper bound on LSÃn
(X).

S(X) = O

(
k

n

(
ξ +

kC(1/ϵ+ L)

n

)
(1 + ϵL) +

k2C(1/ϵ+ L)2 min(k, 1/ϵ+ L)

n2

(
ϵ+

k

n

)
+

k2C

n2ϵ

)
.

Proof of Lemma A.18. Clearly, we have S(X) ≥ g(ξ, LX, n) ≥ LSÃn
(X), and for any two adjacent

X and X′, we have
S(X′) = max

ℓ∈Z≥0

e−ϵℓg(ξ, LX′ + ℓ, n) ≤ max
ℓ∈Z≥0

e−ϵℓg(ξ, LX + ℓ+ 1, n)

= max
ℓ∈Z>0

e−ϵ(ℓ−1)g(ξ, LX + ℓ, n) ≤ eϵ max
ℓ∈Z≥0

e−ϵℓg(ξ, LX + ℓ, n) = eϵS(X).

This shows that S is indeed a ϵ-smooth upper bound on the local sensitivity. As for the upper bound
on S, for any ℓ ≥ 0, we have

e−ϵℓg(ξ, LX + ℓ, n) =
k

n

(
ξe−ϵℓ/2 +

kC(ℓe−ϵℓ/2 + Le−ϵℓ/2)

n

)(
e−ϵℓ/2 + ϵ(ℓe−ϵℓ/2 + Le−ϵℓ/2)

)
+

k2

n2
C(ℓe−ϵℓ/3 + Le−ϵℓ/3)2 min(ke−ϵℓ/3, ℓe−ϵℓ/3 + Le−ϵℓ/3)

(
ϵ+

k

n

)
+

k2Ce−ϵℓ

n2ϵ

≤ k

n

(
ξ +

kC(1/ϵ+ L)

n

)
(1 + ϵ(1 + L)) +

k2

n2
C

(
2

ϵ
+ L

)2

min

(
k,

2

ϵ
+ L

)(
ϵ+

k

n

)
+

k2C

n2ϵ
,

where we used in multiple places the inequalities e−ϵℓ ≤ 1 and ℓe−ℓ/c ≤ c/e, for any c > 0.

By Lemma A.18, it is clear that the term S(X) added to Ãn in Algorithm 1 is the smoothed sensitivity
defined in equation (A.57).

Therefore, Ãn+
S(X)

ϵ ·Z, where Z is sampled from the distribution with density h(z) ∝ 1/(1+ |z|4),
is O(ϵ)-differentially private, by Lemma 2. Moreover, if S = In,k, the above bound on the smooth
sensitivity holds without the min(k, 1/ϵ+ L) term, due to Lemma A.15.

Utility. By Chebyshev’s inequality, we have

|An − θ| ≤ 1
√
γ

√
Var(An) =

1
√
γ

(√
Var(Un) +

√
ζk
m

)
,

with probability at least 1 − γ. Moreover, with probability at least 1 − γ, each of the Hájek
projections is within ξ of An. This implies that every index i has weight 1, which further implies
that g(XS) = h(XS) for all S ∈ S, and consequently, Ãn = An. Also, L = 1 for such an X.
Finally, with probability at least 1− γ, we have Z ≤ 3√

γ . Combining these inequalities and using
Lemma A.18, we have

|A(X)− θ| ≤
∣∣∣Ãn −An

∣∣∣+ |An − θ|+ |S(X)/ϵ · Z|

=
1
√
γ
O

(√
Var(Un) +

√
ζk
m

+
kξ

nϵ
+

(
k2C

n2ϵ2
+

k3C

n3ϵ3

)
min

(
k,

1

ϵ

))
, (A.58)

with probability at least 1−4γ, recalling that ϵ = O(1) when simplifying the expression. Algorithm 1
uses a constant failure probability of γ = 0.01, which ensures a success probability of at least 0.75.
This is further boosted by Wrapper 1. Now, an application of Lemma A.6 gives the stated result.

A.5.2 Proof of Theorem 2

The proof of this theorem proceeds nearly identically to that of Theorem 4 with some exceptions. If
S = In,k, the smoothed sensitivity bound has no min(k, 1/ϵ) term, owing to Lemmas A.15 and A.16,
which gives the bound

|A(X)− θ| ≤ 1
√
γ
O

(√
Var(An) +

kξ

nϵ
+

k2C

n2ϵ2
+

k3C

n3ϵ3

)
. (A.59)

Furthermore, since S = In,k, we have An = Un with probability at least 1− 3γ. Algorithm 1 uses a
constant failure probability of γ = 0.01. This ensures a success probability of at least 0.75, which is
further boosted by Wrapper 1. An application of Lemma A.6 gives the stated result.
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A.5.3 Concentration of local Hájek projections

Proof of Lemma 3. We first show that if Y1, Y2, . . . , Yt are random variables such that each Yj is
τj-sub-Gaussian, the sum Y1 + · · ·+ Yt is

(√
τ1 +

√
τ2 + · · ·+

√
τt
)2

-sub-Gaussian.

Define pj =
∑t

i=1

√
τi√

τj
. Clearly, we have

∑t
j=1 1/pj = 1. By Hölder’s inequality, for any λ > 0, we

have

E

[
exp

(
λ

t∑
i=1

Yi

)]
= E

[
t∏

i=1

exp(λYi)

]
≤

t∏
i=1

E [exp(λYi)
pi ]

1/pi ≤
t∏

i=1

(
exp

(
λ2p2i τi

2

))1/pi

=

t∏
i=1

exp

(
λ2piτi

2

)
= exp

(
λ2(
√
τ1 +

√
τ2 + · · ·+

√
τt)

2

2

)
.

Now, h(XS) is sub-Gaussian(τ) for all S ∈ In,k. Since ĥ(i) is the average of t =
(
n−1
k−1
)

such
quantities, it is clear from the previous claim that ĥ(i) sub-Gaussian with parameter

1

t2
(
√
τ +
√
τ + · · ·+

√
τ︸ ︷︷ ︸

t terms

)2 = τ.

Proof of Lemma 4. Define σ2
i := Var (h(XSi

)|Xi = xi). First, conditioned on Xi, the projection
ĥ(i) can be viewed as a U-statistic on the other n − 1 data points. First, for this lemma, we use
S = In,k, and

ĥ(i) = Ê [h(XS)|Xi] =

∑
S∈Si h(XS)(

n−1
k−1
)

Since h is bounded, the random quantity ĥ(i)− E [h(XS)|Xi] ∈ [−2C, 2C] satisfies the Bernstein
moment condition and also the Bernstein tail inequality (cf. Proposition 2.3 in [60]). By Bernstein’s
inequality for U-statistics (see inequality (A.29)), for all t > 0, we have

P
(∣∣∣ĥ(i)− E [h(XS)|Xi]

∣∣∣ ≥ t
∣∣∣Xi

)
≤ 2 exp

 −
⌊
n−1
k−1

⌋
t2

2σ2
i + 4Ct/3

 .

which is at most β/n as long as t = σi

√
4k
n

√
log
(

2n
β

)
+ 8Ck

n log
(

2n
β

)
.

A.6 Applications

A.6.1 Uniformity testing

To motivate the test, consider the expectation θ := E[h(Xi, Xj)] and the variance var(Un):

Lemma A.19. We have E[h(X1, X2)] =
1
m+ ∥a∥

2

m2 . In particular, the means under the two hypothesis
classes differ by at least δ2

2m .

Proof. We have

E[h(X1, X2)] =

m∑
i=1

p2i =

m∑
i=1

1 + 2ai + a2i
m2

=
1

m
+
∥a∥2

m2
.

Under approximate uniformity, this is at most δ2

2m ; and under the alternative hypothesis, this quantity
is at least δ2

m .
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Lemma A.20. The variance of Un is

var(Un) =
2

n(n− 1)

2(n− 2)
∑
i<j

pipj(pi − pj)
2 +

m∑
i=1

p2i −

(
m∑
i=1

p2i

)2
 .

Proof. The conditional variances ζ1 and ζ2 can be written as

ζ1 = cov(h(X1, X2), h(X1, X3))

= E[1[X1 = X2]1[X1 = X3]]− E[1[X1 = X2]]E[1[X1 = X3]]

=
∑
i

p3i −

(∑
i

p2i

)2

=
∑
i<j

(p3i pj + pip
3
j − 2p2i p

2
j ) =

∑
i<j

pipj(pi − pj)
2 ≥ 0, and

ζ2 = cov(h(X1, X2), h(X1, X2)) =

m∑
i=1

p2i −

(
m∑
i=1

p2i

)2

.

Also from equation (3), we have

var(Un) =

(
n

2

)−1
(2(n− 2)ζ1 + ζ2) .

Combining the above bounds with equation (3) shows the result.

Algorithm A.4 PrivateUniformityTest
(
n,m,X = {Xi}i∈[n] , ϵ

)
1: C ← 1, γ ← 0.01
2: ξ ← 6/m+ 8 log(4n/γ)/n
3: S ← {(i, j) : 1 ≤ i < j ≤ n}
4: θ̃ ← PrivateMeanHájek(n, 2, {1(Xi = Xj), (i, j) ∈ S}, ϵ, α, C, ξ,S)
5: if θ̃ ≥ 1+3δ2/4

m then
6: DEC← 1 {Reject approximate uniformity}
7: else
8: DEC← 0 {Accept approximate uniformity}
9: end if

10: return DEC

Proof of Theorem 5: Recall that θ̃ denotes the private test statistic, which is thresholded at the
value 1+3δ2/4

m to determine the output of the hypothesis test. We claim that the validity of the test is
established if we can show that

P
(
|θ̃ − E[Un]| ≤

δ2

4m

)
≥ 1−O(γ) (A.60)

under both hypotheses. Indeed, it would then hold that:

(i) Under approximate uniformity,

θ̃ <
1

m
+

δ2

2m
+

δ2

4m
=

1 + 3δ2/4

m
.

(ii) Under the alternative hypothesis,

θ̃ ≥ 1

m
+

δ2

m
− δ2

4m
=

1 + 3δ2/4

m
.

To establish inequality (A.60), we further write

P
(
|θ̃ − E[Un]| >

δ2

4m

)
≤ P

(
|θ̃ − Un| >

δ2

8m

)
+ P

(
|Un − E[Un]| >

δ2

8m

)
. (A.61)
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The second term can be controlled using an argument in Diakonikolas et al. [21], which further
develops the variance bound in Lemma A.20 for the two hypothesis classes and then uses Chebyshev’s
inequality. It is shown that the second probability term in inequality (A.61) can be bounded by α if
n = Ω

(√
m

γδ2

)
.

To bound the first probability term in inequality (A.61), we study the concentration parameter ξ for
the local Hájek projection ĥ(i) = 1

n−1
∑

j ̸=i h(Xi, Xj). We have the following result:

Lemma A.21. If ξ = 6
m + 8 log(4n/γ)

n and n ≥ 16
γ , then |ĥ(i)− Un| ≤ ξ for all i, with probability

at least 1− γ.

Proof. By the triangle inequality, we have

|ĥ(i)− Un| ≤ |ĥ(i)− E[h(X1, X2)|X1]|+ |E[h(X1, X2)|X1]− θ|+ |Un − θ|. (A.62)

We will provide a bound on each of these three terms. Note that

h(X1, X2)|X1 ∼ Bern(pX1
),

which has variance

σ2
i = var(h(Xi, Xj)|Xi) = pXi

(1− pXi
) ≤ 2

m
.

Hence, with probability at least 1− γ
2 , the first term in inequality (A.62) can be bounded as

|ĥ(i)− E[h(X1, X2)|X1]| ≤ 2

√
2

mn
log

(
4n

γ

)
+

16

3n
log

(
4n

γ

)
≤ 2

m
+

7

n
log

(
4n

γ

)
,

where we have used the AM-GM inequality. The second term in inequality (A.62) can be bounded as∣∣∣∣∣1 + aXi

m
−

(
1

m
+
∥a∥2

m2

)∣∣∣∣∣ ≤ aXi

m
+
∥a∥2

m2
≤ 2

m
.

Finally, by Chebyshev’s inequality, the third term can be bounded as |Un − θ| ≤
√

2var(Un)
γ with

probability at least 1− γ
2 . It remains to find the variance of Un.

By Lemma A.20, if |ai| ≤ 1 for all i, we have

var(Un) =
2

n(n− 1)

2(n− 2)
∑
i<j

(1 + ai)(1 + aj)(ai − aj)
2

m4
+
∑
i

(1 + ai)
2

m2
−

(∑
i

(1 + ai)
2

m2

)2


≤ 2

n(n− 1)

2(n− 2)
∑
i<j

(1 + ai)(1 + aj)(ai − aj)
2

m4
+
∑
i

(1 + ai)
2

m2


≤ 2

n(n− 1)

(
2(n− 2)

4

m4

(
m

2

)
+

4m

m2

)
≤ 8

m2n
+

8

mn2
. (A.63)

Combining the three bounds into inequality (A.62), with probability at least 1− γ, we have

|ĥ(i)− Un| ≤
(

2

m
+

7

n
log

(
4n

γ

))
+

2

m
+

√
2
√
γ

(
2
√
2

m
√
n
+

2
√
2√

mn

)

=
4

m
+

7 log(4n/γ)

n
+

4/
√
γ

m
√
n
+

4/
√
γ

√
mn

≤ 6

m
+

8 log(4n/γ)

n
,

where in the second inequality, we used the AM-GM inequality and the assumption n ≥ 16
γ . The

statement of the lemma follows after discarding lower-order terms.
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By Lemma A.21, with probability at least 1− γ, the weights of all projections in Algorithm 1 are
equal to 1 and Un = Ãn. Then |θ̃ − Un| is simply the magnitude of the noise added in the final step
of Algorithm 1 (which uses a constant γ = 0.01), which (cf. the proof of Theorem 2) takes the form

O

(
ξ

nϵ
+

1

n2ϵ2
+

1

n3ϵ3

)
= O

(
log n

n2ϵ
+

1

mnϵ
+

1

n2ϵ2
+

1

n3ϵ3

)
,

with probability at least 0.75. This is bounded by δ2

8m as long as

n = Ω

(
m1/2

δϵ1/2
log

(
m1/2

δϵ1/2

)
+

m1/2

δϵ
+

m1/3

δ2/3ϵ
+

1

δ2

)
.

Wrapper 1 further boosts this constant probability of success. Now, an application of Lemma A.6
gives the stated result.

A.6.2 Sparse graph statistics

Algorithm A.5 PrivateNetworkEdge(n,m, {Aij}1≤i<j≤n, ϵ)

1: C ← 1, γ ← 0.01
2: Un ← 1

(n2)

∑
i<j Aij

3: ν2 ← Un + 1
nϵZ, where Z is a standard Laplace random variable

4: if ν < 0 then
5: return ⊥
6: end if

7: ξ ← 24ν

√
1
n log

(
2n
γ

)
+ 16

3n log
(

2n
γ

)
+ 15ν

n

√
1
γ

8: S ← {(i, j) : 1 ≤ i < j ≤ n}
9: θ̃ ← PrivateMeanHájek(n, 2, {1(Aij = 1), (i, j) ∈ S}, ϵ, C, ξ,S)

10: return θ̃

A.6.3 Proof of Theorem 6

The privacy of the algorithm follows by composing (see Lemma A.4) the ϵ-privacy of ν and the
O(ϵ)-privacy of θ̃ conditioned on ν. It remains to show the utility of the algorithm.

The kernel h(x, y) = 1(∥x−y∥ ≤ rn) is degenerate, since P (∥Xi−Xj∥ ≤ rn|Xi) does not depend
on Xi. So var(E[h(Xi, Xj)|Xi = x]) = 0. We have var[h(Xi, Xj)] ≤ πr2n, so the non-private error
is O(rn/n) (Eq 3). Using Proposition 2.3 from Arcones and Gine [5], there exist universal constants
c1, c2, and c3 such that

P

(∣∣∣∣n− 1

2
(Un − r2n/4)

∣∣∣∣ ≥ t

)
≤ c1 exp

(
− c2t

c3rn + (t/n)1/3

)
.

Setting t = nr2n/16, we have, for large enough n, since rn = Ω(n−1/2),

P
(∣∣Un − r2n/4

∣∣ ≥ r2n/8
)
≤ c1 exp

(
− c2nr

2
n

c3rn + r
2/3
n

)
≤ c1 exp(−c′nr4/3n ) = Õ

(
exp(−n1/3)

)
.

Therefore, with probability 1− o(1), we have

Un ∈ [r2n/8, 3r
2
n/8]

ν2 := Un + Z/nϵ ∈ [r2n/9, r
2
n/2]. (A.64)

In particular, the probability that Un + Z
nϵ computed in step 3 of Algorithm A.5 is then positive.

From Lemma 4, we have∣∣∣ĥ(i)− E [h(X1, X2)|X1 = x1]
∣∣∣ ≤ 4σi

√
1

n
log

(
2n

γ

)
+

16

3n
log

(
2n

γ

)
, (A.65)
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with probability at least 1− γ, where σ2
i = Var (h(X1, X2)|X1 = x1) ≤ πr2n.

Thus, from Eq A.64, we see that:

σ2
i ≤ πr2n ≤ 9πν2

Moreover, since g is degenerate, we have E[h(Xi, Xj)|Xi] = θn. Using the fact that |Un − θn| ≤√
2Var(Un)

γ ≤ 5rn
n

√
1
γ with probability at least 1−O(γ), we have

max
i
|ĥ(i)− Un| ≤ max

i
|ĥ(i)− θn|+ |θn − Un|

= 4σi

√
1

n
log

(
2n

γ

)
+

16

3n
log

(
2n

γ

)
+

5rn
n

√
1

γ

≤ 24ν

√
1

n
log

(
2n

γ

)
+

16

3n
log

(
2n

γ

)
+

15ν

n

√
1

γ
=: ξ,

with probability 1−O(γ). Hence, using Theorem 2, and noting that ξ = Õ
(

rn√
n

)
, we can ensure

that the estimate θ̃ output by Algorithm 1 satisfies

|θ̃ − θ| = O

(√
Var(Unα

) +
kξ

nαϵ
+

(
k2

n2
αϵ

2
+

k3

n3
αϵ

3

)
C

)
.

= O

(
rn
nα

+
ξ

nαϵ
+

1

n2
αϵ

2
+

1

n3
αϵ

3

)
= Õ

(
rn
nα

+
rn

n
3/2
α ϵ

+
1

n2
αϵ

+
1

n2
αϵ

2
+

1

n3
αϵ

3

)
with probability at least 0.75. Wrapper 1 further boosts this probability of success from constant to
1− α. Now, an application of Lemma A.6 gives the stated result.

A.6.4 Other applications

In this section, we provide more applications of U statistics for important hypothesis testing problems.

1. Goodness-of-fit testing: The Cramer-Von Mises statistic for testing the hypothesis that the
cumulative distribution function of a random variable is equal to a function F0 is given by

1

n

n∑
i=1

n∑
j=1

∫
(1{Xi ≤ x} − F0(x)) (1{Xj ≤ x} − F0(x)) dF0(x).

Under the null H0 : X ∼ F0, the distribution of the statistic is degenerate [58]. Thus, our techniques
from Section 4.2 provide a method for private goodness-of-fit testing based on the Cramer-Von Mises
statistic. Private goodness-of-fit testing has so far mostly been studied in the setting of discrete
data [28, 1, 2]. For continuous distributions, we are only aware of work that analyzes the local DP
framework [23, 44, 12], which is therefore not directly comparable to our proposed approach.

2. Pearson’s chi-squared test: The chi-squared goodness of fit test is widely used to test if a discrete
random variable comes from a given distribution. The corresponding statistic (which can be written
as a U statistic plus a smaller order term) is degenerate [20].

3. Symmetry testing: Testing the symmetry of the underlying distribution of i.i.d. X1, . . . , Xn is
often used in paired tests. [26] use the test statistic

∑
i,j(g(Xi −Xj)− g(Xi +Xj))/n

2 (which
is a U statistic plus a lower-order term), where g is the characteristic function of some distribution
symmetric around 0. When the distribution of Xi is symmetric, this is degenerate.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have assured that the abstract and introduction accurately reflect our
contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have acknowledged any limitations of our work in the paper and in the
discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have provided proofs for all theoretical results in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents theoretical work whose goal is to advance the field of
differential privacy and statistics. There are many potential societal consequences of our
work, none of which we feel must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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