
Preprint

SEMANTIC PATCH EMBEDDING FOR SECURITY DE-
TECTION: A FINE-TO-COARSE GRAINED APPROACH

Xunzhu Tang1, Yewei Song1, Zhenghan Chen2, Haoye Tian1, Tegawendé F. Bissyandé1, and
Jacques Klein1

1University of Luxembourg
2Peking University

ABSTRACT

The surge in open-source software usage has heightened the risk of concealed vul-
nerabilities impacting downstream applications. Compounded by vendors silently
releasing security patches without explicit notifications, users remain unaware of
potential threats, providing attackers with opportunities. In navigating the intricate
realm of software patches, understanding patch semantics becomes crucial for se-
cure maintenance. Addressing this, we present MultiSEM, a multi-level Semantic
Embedder for security patch detection. It employs fine-grained word-centric vec-
tors and coarse-grained code-line representations, integrating patch descriptions
for a comprehensive semantic view. MultiSEM excels in security patch detec-
tion, outperforming state-of-the-art models by 22.46% on PatchDB and 9.21% on
SPI-DB in F1 metric evaluations.

1 INTRODUCTION AND RELATED WORKS

The rapid growth of the open source software (OSS) ecosystem has led to significant advancements
in computer software development. According to the 2021 OSSRA report Synopsys (2023), 98% of
codebases are now composed of open source components, with 84% containing at least one open-
source vulnerability. Moreover, 60% of them face high-risk vulnerability threats. The academic
and industry communities have explored multiple avenues to identify security patches. Traditional
methods have focused on machine learning (ML) models using syntax features Wang et al. (2020);
Tian et al. (2012). More recently, recurrent neural networks (RNNs) have been used to treat patch
code as sequential data Wang et al. (2021b); Zhou et al. (2021). However, these methods overlook
program semantics and suffer from high false-positive rates. ML-based solutions often miss intricate
dependencies between code statements, while RNN models, despite their NLP inspiration, neglect
the unique attributes of programming languages. As a result, these methods yield high false-positive
rates, with two RNN-based models showing rates of 11.6% and 33.2%, respectively. Given that
only 6-10% of all patches are security-centric Wang et al. (2021a), reducing these false positives is
crucial.

2 METHODS

In this project, we aim to address these challenges. Through a fine-to-coarse grained approach,
we present a novel method (MultiSEM) that not only detects security patches with a high degree
of accuracy but also reduces false positive rates. Drawing upon multilevel semantic embedding
techniques and capitalizing on the content-rich information contained within software patches, our
solution represents a quantum leap in the realm of security patch detection.

Our contributions are as follows:
Multilevel Semantic Embedding: We introduce a novel multilevel semantic embedding technique
tailored for software patches. This method captures both high-level and granular details of the
patches, ensuring a more nuanced and accurate representation.
Fine-to-Coarse Grained Approach: Our approach not only focuses on individual lines of code but

1

Preprint

also looks at the broader structure and flow of the patch. The multi-scale perspective objective is to
enhance the accuracy of security patch detection.
Experimental Results: We conduct exhaustive evaluations of our proposed method against state-
of-the-art solutions. Our results demonstrate superior performance, particularly in reducing false
positive rates, which has been a longstanding challenge in the field.

3 APPROACH

We introduce MultiSEM, a holistic framework with six components: Preprocessing, Multilevel
Compressed CNN (MCC), Semantic Alignment, Feature Refinement, Hybrid Feature Aggregation,
and Prediction. This model captures fine-to-coarse-grained multilevel semantic embedding of soft-
ware patches, using source code as input and processing it through these components for security
patch detection. The overall approach is visualized in Figure 1.

...

l1

ln

l2

ln-1

Hybrid Feature
Aggregation

Description: make sure to close the authfile before returning

diff --git a/util.c b/util.c
index 6cb4a79..32bca06 100644
--- a/util.c
+++ b/util.c
@@ -167,6 +167,8 @@ check_user_token (const char *authfile,
 {
 if(verbose)
 D (debug_file, "Match user/token as %s/%s",
username, otp_id);
+
+ fclose(opwfile);
 return AUTH_FOUND;
 }

description

word-granularity

sentence-granularity

Preprocessing

 0 (security)

fclose (opwfile word
granularity

fclose (opwfile)

if (verbose)

...

return AUTH_FOUND;

sentence
granularity

make sure ... description

Conv1d f1 Conv1d fm
... Conv1d f1 Conv1d fm

... Conv1d f1 Conv1d fm
...

ResBlock
r11

ResBlock
rm1

...
ResBlock

r11

ResBlock
rm1

...
ResBlock

r11

ResBlock
rm1

...

h1 hm h1 h1hm hm

ResBlock
r1p

ResBlock
rmp

...
ResBlock

r1p

ResBlock
rmp

...
ResBlock

r1p
ResBlock

rmp
...

...

+ + +

Self-Attentive Pooling

...

g1

gn

g2

gn-1

1

Prediction

M
ul

til
ev

el
 C

om
pr

es
se

d
C

N
N

2

Semantic
Alignment

3

4 5

+

Conv1d

Conv1d
tanh

X

Conv1d

+

Residual block

Fully Connected

H1p Hmp
H1p H1pHmp Hmp

Hw Hs Hd

l1 lP
lnlP+1

Figure 1: Architecture of MultiSEM

4 EXAMPLE AND EXPERIMENT

We evaluate MultiSEM on two popular datasets on security patch detection: PatchDB Wang et al.
(2021a) and SPI-DB Zhou et al. (2021).

Table 1: Comparison of TwinRNN, GraphSPD, and MultiSEM on PatchDB and SPI-DB with vari-
ous metrics (%).

Method Dataset AUC F1 Recall+ Recall- TPR

TwinRNN
Wang et al. (2021b)

PatchDB 66.50 45.12 46.35 54.37 50.67
SPI-DB 55.10 47.25 48.00 52.10 50.60

GraphSPD
Wang et al. (2023)

PatchDB 78.29 54.73 75.17 79.67 70.82
SPI-DB 63.04 48.42 60.29 65.33 65.93

MultiSEM PatchDB 83.15 77.19 79.52 86.78 79.52
SPI-DB 68.45 57.63 70.24 80.12 73.25

5 CONLUSION

MultiSEM surpasses GraphSPD with a 22.46% F1 improvement on PatchDB and 9.21% on SPI-
DB, establishing it as the optimal choice. While excelling in detecting major vulnerabilities, Mul-
tiSEM faces challenges with subtler ones due to data imbalances, outperforming GraphSPD in ad-
dressing the ”tail problem” of under-represented classes. In an ablation study, we assessed the impact
of different context levels (TL, SL, DL) on security patch detection by systematically omitting each.
Results guide our understanding of contextual contributions.

2

Preprint

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Synopsys. Open source security risk analysis, 2023. URL https://www.
synopsys.com/software-integrity/resources/analyst-reports/
open-source-security-risk-analysis.html.

Yuan Tian, Julia Lawall, and David Lo. Identifying linux bug fixing patches. In 2012 34th interna-
tional conference on software engineering (ICSE), pp. 386–396. IEEE, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, NeurIPS 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008,
2017.

Shu Wang, Xinda Wang, Kun Sun, Sushil Jajodia, Haining Wang, and Qi Li. Graphspd: Graph-based
security patch detection with enriched code semantics. In 2023 IEEE Symposium on Security and
Privacy (SP), pp. 2409–2426. IEEE, 2023.

Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. An empirical study of secret security
patch in open source software. Adaptive Autonomous Secure Cyber Systems, pp. 269–289, 2020.

Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. Patchdb: A large-scale security
patch dataset. In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 149–160. IEEE, 2021a.

Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, Sushil Jajodia, Sanae Benchaaboun, and Frank
Geck. Patchrnn: A deep learning-based system for security patch identification. In MILCOM
2021-2021 IEEE Military Communications Conference (MILCOM), pp. 595–600. IEEE, 2021b.

Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing Liu, and Yang Liu. Spi: Automated identifi-
cation of security patches via commits. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 31(1):1–27, 2021.

Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Günnemann.
Language-agnostic representation learning of source code from structure and context. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021, 2021.

A APPENDIX OF APPROACHES EXPLANATION

A.1 PREPROCESSING

As depicted in Figure 1(1), our first step is to decompose the input patches into three distinct
segments: tokens, lines, and descriptions. At the word granularity, we define a word sequence
w = {w1, w2, . . . , wnw}, where nw represents the sequence length. We utilize the random em-
bedding function from PyTorch to transform this sequence into a numerical vector. Hence, a word
wi translates to the vector ewi. The cumulative word embedding of the patch is thus articulated as
EW = {ew1, ew2, . . . , ewnw}. Analogously, for sequence granularity, we represent sequence vec-
tors as ES = {es1, es2, . . . , esns}, where ns indicates the number of lines, and the description vector
is denoted by ED = {ed1, ed2, . . . , ednd}, with nd marking the sequence length of the description.

3

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html

Preprint

A.2 MULTILEVEL COMPRESSED CNN (MCC)

Within the domain of our multilevel approach, feature compression across all representational levels
is pivotal. To this end, this section is bifurcated into two integral components:

• Multi-Channel Convolutional Block: Designed to harness contextual semantics inherent
within various level representations.

• Compressed Residual Block: A remedy to the vanishing or exploding gradient dilemma
often encountered in deep networks, especially given the elongated nature of patches. The
adoption of a residual structure enables gradients to directly traverse through residual con-
nections, thereby substantially curtailing the associated risks.

A.2.1 MULTI CHANNEL CONVOLUTIONAL BLOCK

To adeptly grasp patterns of varying lengths from our input, we adopt the multi-channel convolu-
tional neural network as proposed in Kim (2014). This approach utilizes filters, each characterized
by distinct kernel sizes, which in essence, define the word window size. For an array of m channels,
given as f1, f2, . . . , fm, we correspondingly assign kernel sizes k1, k2, . . . , km. With these con-
figurations, m 1-dimensional convolutions are executed on the input matrix E. This convolutional
operation can be mathematically described as:

hi =

n∧
j=1

tanh
(
WT

i E[j : j + ki − 1]
)
, (1)

where the symbol
∧n

j=1 demarcates the convolutional operations performed in a word sequence.
Crucially, the design choice ensures that the output word count n of hi remains invariant with the
input E. This intention preserves the sequence length post-convolution. The term df signifies the
out-channel size of a filter, with uniformity across filters in output dimensions. Delving deeper into
the matrix details, E[j : j + k1 − 1] = and E[j : j + km − 1] represent sub-matrices of E.

Therefore, after multi-channel convolutional block, we otain h1, . . . , hm for word-level vectors,
sentence-level vectors, and description-level vectors.

A.2.2 COMPRESSED RESIDUAL BLOCK

To refine the multi-channel convolved word embeddings, we incorporate a series of optimized resid-
ual blocks. These blocks offer not only a compact representation of features but also address poten-
tial challenges related to gradient dynamics, which is especially crucial for long word sequences.

A.3 RESIDUAL LAYER OVERVIEW

The field of neural networks has witnessed significant advancements in recent years. One pivotal
element that has consistently proven crucial in this evolution is the convolutional layer, responsible
for primary feature extraction from input data. However, the challenge arises when we delve deeper:
how can we maintain the hierarchical representation of features without the risk of information loss?
An elegant solution, inspired by the work of He et al. He et al. (2016), introduces the concept of
Residual Blocks, visualized in Figure 1.

Architecture of a Residual Block For the residual block rmi, its architecture comprises three
convolutional filters: rmi1 , rmi2 , and rmi3 . The computational procedure for these filters on the
input can be articulated as:

4

Preprint

X1 = rmi1(X) =

n∧
j=1

tanh
(
WT

mi1X[j : j + km − 1]
)
,

X2 = rmi2(X1) =

n∧
j=1

WT
mi2X1[j : j + km − 1],

X3 = rmi3(X) =

n∧
j=1

WT
mi3X[j : j + km − 1],

Hmi = tanh (X2 +X3) ,

(2)

In this context, X signifies the initial input to the block. Segments of this input, starting from
the j-th row and concluding at the j + km − 1-th row, undergo transformations facilitated by the
aforementioned filters.

Dimensionality and Spatial Relationships The matrix Hmi represents the output of each block
and conforms to dimensions Rn×di

. The parameters di−1 and di are crucial as they depict the input
and output channel sizes respectively. Consequently, the in-channel dimension for the initial block
is identified as df , whereas the concluding block corresponds to dp.

The convolutional filters, discerned by the weight matrices Wmi1 ,Wmi2 , and Wmi3 , exhibit dif-
ferential properties in terms of kernel sizes. Notably, while the first two filters align in kernel size
with their counterpart in the multi-filter convolutional layer, the third filter distinguishes itself with
a singular kernel size.

Summarizing the architecture, the output matrix Hmp stands as a testament to the intricate relation-
ship between the convolutional layer’s m-th filter and its series of residual blocks. With a total of
m filters, the ultimate output is a composite of individual outputs, mathematically represented as
H = H1p ⊕H2p ⊕ · · · ⊕Hmp).

Thus, after the residual block, we obtain Hw, Hs, Hd for word-level, sequence-level, and
description-level vectors, respectively.

A.4 SEMANTIC ALIGNMENT (SA)

In the vast realm of neural representations, it’s often the harmonious interplay between different
granularities of data that yields the most insightful results. The extraction of both coarse and fine
embeddings from patch code is no exception. In this section, we explore the strategic fusion of the
semantic nuances encapsulated in Hw (word-level) and Hs (sequence-level) vectors. By aligning
and juxtaposing these embeddings, we aim to achieve a holistic understanding, allowing the model
to seamlessly traverse between detailed token-level insights and broader sequence contexts. To fa-
cilitate this synthesis, our methodology is bifurcated into two main strategies: Self-Attentive Pooling
and Feature Refinement Layer. The former hones in on the weighted importance of various com-
ponents, while the latter serves to amalgamate and further process the pooled outputs, ensuring that
the final representation is both compact and informative.

A.4.1 SELF-ATTENTIVE POOLING

In our pursuit of an effective semantic fusion, we first amalgamate the vectors Hw and Hd to
formulate the composite vector Hwd. Leveraging this combined vector, we introduce an attention-
influenced soft-pooling technique to adeptly harmonize and integrate the underlying semantics of
Hw and Hd.

For an exemplar vector, represented as hwdj , and its contingent neighboring vectors
{hwdj+1, · · · , hwdj+g−1}, our approach begins by deducing the localized attention scores. This is
articulated by:

αi
j = Hwdi

αx
i
j + b (3)

5

Preprint

Subsequent to this, the softmax function is employed to yield:[
βi
j , · · · , βi

j+g−1

]
= softmax

([
αi
j , · · · , αi

j+g−1

])
s.t. αi

j =
(lijW

Q)(lij+g−1W
K)T

√
d

(4)

where d is the dimension of the hidden state, and WQ ∈ Rd×dq , WK ∈ Rd×dk , W V ∈ Rd×dv

are the learnable parameters matrices of the self-attention component. Here, we follow the previous
works (Vaswani et al., 2017; Zügner et al., 2021) and set dq = dk = dv = d.

In this context, both Hwdi
α and b are discerned as modifiable parameters. Post this determination,

we engage in a soft-pooling mechanism on the g embeddings, which gives rise to the succinct
representation:

oi
p =

j+g−1∑
q=j

βi
qx

i
q (5)

By adopting this structured approach, the entirety of nw + ns representations undergoes a
metamorphosis, culminating in P =

⌈
nw+ns

g

⌉
refreshed representations, succinctly denoted as{

oi
1,o

i
2, · · · ,oi

P

}
.

A.5 FEATURE REFINEMENT AND EMBEDDING SYNTHESIS

To extract high-level features from the transformed representations
{
oi
1,o

i
2, · · · ,oi

P

}
, they are

passed through a dense neural layer, serving as a bridge to the final output.

For each oi
k, where k ∈ [1, P], the transformation is:

yi
k = Wfco

i
k + bfc

s.t. lk = ReLU(yi
k)

(6)

Here, Wfc is the weight matrix and bfc is the bias vector of the fully connected layer. This re-
sults in the output vectors l1, l2, . . . , lP , which contain the distilled semantic information. The final
embedding is a concatenation:

l1, . . . , ln = (l1, . . . , lP)⊕Hd.

A.6 HYBRID FEATURE AGGREGATION THROUGH ADVANCED ATTENTION MECHANISM
(HFA)

In modern natural language processing and code understanding tasks, representing data with fea-
ture vectors plays a pivotal role. Among the concatenations derived from our model, the vector
(l1, l2, . . . , ln) stands out. This particular vector emerges from the fusion of two distinct embed-
dings, serving as a primary source of local feature representations.

Given the nuanced interplay of these embeddings, a simple aggregation might not suffice. Herein,
the key-query attention mechanism presents itself as an optimal solution. Not only does it weigh
the importance of each feature in the local context, but it also juxtaposes it against a broader, global
context, resulting in a more balanced and informative feature representation.

Mathematically, using the attention mechanism, the global features are articulated as:

gi =

n∑
j=1

exp(βij)∑n
k=1 exp(βik)

(xjW
V)

s.t. βij =
(liW

Q)(ljW
K)T

√
d

(7)

6

Preprint

where G = [g1, . . . , gP]. xi ∈ Rd.

Through this approach, each compressed word window in our dataset not only retains its inherent
local features but also gets enriched by the global context, thereby enhancing the overall representa-
tional power of our model.

A.7 BINARY PREDICTION LAYER

For the global vector Dg , a binary prediction is made with the sigmoid function:

ỹ = σ(w⊤Dg + b)

s.t. ỹ =
(
1 + exp

(
−w⊤Dg − b

))−1
,

(8)

Here, w represents the learnable weight vector, and b denotes the bias term. The cross-entropy loss
for binary prediction is:

L = −y log(ỹ)− (1− y) log(1− ỹ), (9)

Where y is the true label, and ỹ is the predicted probability. This loss guides the optimization of the
model’s parameters.

7

	Introduction and Related Works
	Methods
	Approach
	Example and Experiment
	Conlusion
	Appendix of Approaches Explanation
	Preprocessing
	Multilevel Compressed CNN (MCC)
	Multi Channel Convolutional Block
	Compressed Residual Block

	Residual Layer Overview
	Semantic Alignment (SA)
	Self-Attentive Pooling

	Feature Refinement and Embedding Synthesis
	Hybrid Feature Aggregation through Advanced Attention Mechanism (HFA)
	Binary Prediction Layer

