

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTIMODAL REPRESENTATION LEARNING CONDITIONED ON SEMANTIC RELATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal representation learning has advanced rapidly with contrastive models such as CLIP, which align image-text pairs in a shared embedding space. However, these models face limitations: (1) they typically focus on image-text pairs, underutilizing the semantic relations across different pairs. (2) they directly match global embeddings without contextualization, overlooking the need for semantic alignment along specific subspaces or relational dimensions. To address these issues, we propose Relation-Conditioned Multimodal Learning (RCML), a framework that learns multimodal representations under natural-language relation descriptions to guide both feature extraction and alignment. Our approach constructs many-to-many training pairs linked by semantic relations and introduces a relation-guided attention mechanism that modulates multimodal representations under each relation context. The training objective combines inter-modal and intra-modal contrastive losses, encouraging consistency across both modalities and semantically related samples. Experiments on different datasets show that RCML consistently outperforms strong baselines on both retrieval and classification tasks, highlighting the effectiveness of leveraging semantic relations to guide multimodal representation learning.

1 INTRODUCTION

Multimodal data is increasingly prevalent across domains such as e-commerce, social media, and scientific publishing. Learning unified representations from such data is crucial for enabling understanding, comparison, and generalization across modalities. Due to the lack of large-scale labeled data, contrastive learning became the dominant approach for this goal (Saunshi et al., 2019; Huang et al., 2024), as it learns from weakly paired samples by aligning matched image–text pairs while separating mismatched ones. This paradigm was pioneered by CLIP (Radford et al., 2021), which has since inspired rapid progress along several directions: data-centric scaling, label-supervised extensions, augmentation-enhanced variants, loss reformulations, and modality expansion.

Despite their success, these methods share several key limitations. First, they typically focus on image-text pairs, underutilizing the rich web of semantic relations that naturally exist across samples(e.g., different products, papers, etc.). Second, they match global embeddings directly without contextualization, failing to capture alignment along specific semantic dimensions such as function or style. These challenges are not merely technical, but have tangible impact in real-world use cases. For example, in baby product recommendation, a user focused on infant feeding may consider nursing pillows, milk storage bags, and bottle sterilizers to be closely related. These items span different categories and vary in both appearance and textual description, yet become meaningfully connected under the shared context of infant feeding. Similar issues arise in scientific literature, where content from different papers becomes related under a common methodological theme. On social media, posts about saving money or holiday planning may appear diverse in form but are connected by shared intent. These examples highlight the need to move beyond isolated pairwise contrast, toward modeling sample-level relations within and across modalities to support more contextual and semantically grounded representation learning. While graph-based approaches have also been proposed to capture relations, they largely emphasize graph-level embeddings. In contrast, our work focuses on learning multimodal representations under semantic relations.

To address these limitations, we propose the Relation-Conditioned Multimodal Learning (RCML) framework, which integrates semantic relations between samples into the representation learning

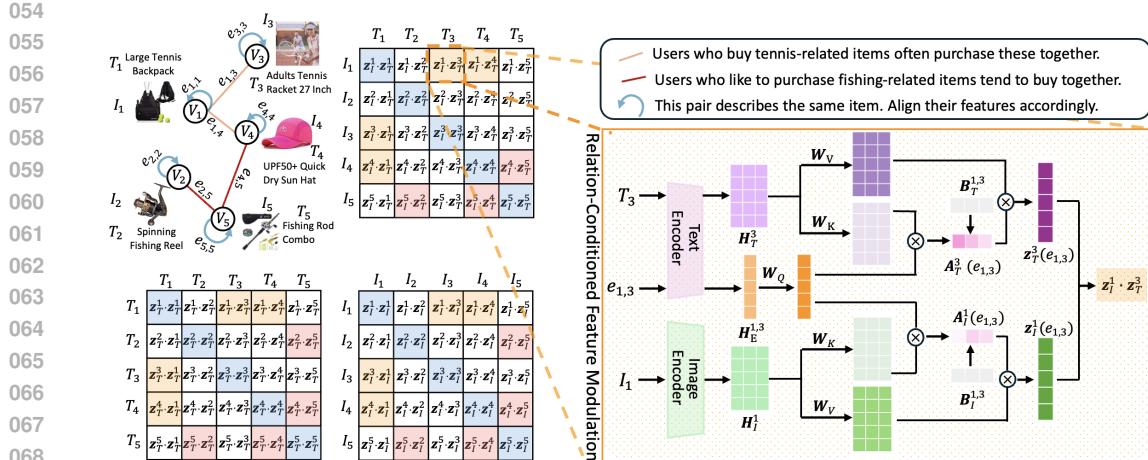


Figure 1: **Overview of the proposed framework.** Each sample consists of a text image pair. Colored elements (red, yellow, blue) represent different semantic relations, which are consistently reflected in sample connections, similarity matrix entries, and feature extraction paths.

process. Instead of relying on isolated image–text pairs, RCML constructs training pairs based on natural-language relations, allowing the model to learn from broader inter-sample structures. It further introduces a relation-guided attention contrastive structure, where relation semantics act as conditioning signals to guide feature interaction and alignment across modalities under specific relational contexts. Finally, RCML includes a contrastive objective that jointly captures cross-modal alignment and intra-modal consistency among related samples. These designs enable RCML to learn contextually grounded and relation-aware representations. Our contributions are summarized as follows: (1) We propose RCML framework that uses semantic relations to guide contextual feature extraction, allowing the model to encode modality-specific information under relational perspectives. (2) We enable contrastive learning across semantically diverse samples by modeling many-to-many inter-sample relations, going beyond traditional pairwise alignment or label-supervised grouping. (3) We conduct comprehensive experiments across two datasets, showing that our method consistently outperforms strong baselines on retrieval and classification tasks.

2 RELATED WORK

2.1 MULTIMODAL REPRESENTATION LEARNING

Many recent models aim to learn unified representations from multiple modalities such as images and text. Models such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) train on large-scale web-curated image–text pairs, while later efforts such as LAION (Schuhmann et al., 2022) and DataComp (Gadre et al., 2023) focus on scaling and curating training data at web scale. Subsequent works have explored various ways to improve learning: UniCL and LiT (Yang et al., 2022; ?) incorporate label supervision to relax strict pairwise alignment, but ultimately still rely on grouping samples under the same class; DeCLIP and SLIP (Li et al., 2021; ?) use data augmentation and auxiliary objectives to enforce consistency across different views of the same sample, but do not model relations across distinct samples; SigLIP (Zhai et al., 2023) reformulates the contrastive loss using a sigmoid-based objective, and ImageBind (Girdhar et al., 2023) extends joint representation learning to six modalities. Despite their success, these methods generally overlook the semantic relations that exist across different samples. In particular, they lack mechanisms to guide feature extraction under relational context or to align representations across and within modalities based on inter&intra-sample semantics.

2.2 GRAPH-BASED MULTIMODAL LEARNING

Graph-based methods have become a prevalent paradigm for modeling structural relationships in multimodal tasks. For example, Qiao et al. (2023) employed GNNs for multimodal sarcasm detection. Liu et al. (2023) leveraged graph structures for multimodal recommendation, and Memon et al. (2025) applied graph-based modeling for information diffusion. Recent works further com-

108 bine graphs with pre-trained models, such as GraphCLIP (Zhu et al., 2025) for text-attributed graphs
 109 and UniGraph2 (He et al., 2025) for unified multimodal graph representation learning. In contrast to
 110 these graph-based approaches that rely on GNN-based message passing, our framework is designed
 111 as a multimodal feature extraction model, where semantic relations condition the feature extraction
 112 process and guide representation learning.

113 **2.3 RELATION- AND CONTEXT-CONDITIONED LEARNING**

115 Prompt- and context-based methods provide another way to guide multimodal representation learning.
 116 Early works such as CoOp (Zhou et al., 2022) introduced contextual prompts for adapting vi-
 117 sion–language models, followed by extensions including, MaPLE (Khattak et al., 2023), PSRC (?),
 118 and TCP (Yao et al., 2024), MuGCP (Yang et al., 2025) which explore multimodal, semantic-
 119 regularized, and task-conditional prompt designs. While effective, these methods mainly perform
 120 intra-sample conditioning within single image–text pairs or class contexts. In contrast, our frame-
 121 work conditions feature extraction on inter-sample semantic relations, enabling many-to-many rela-
 122 tional modeling beyond task- or class-driven prompting.

123 **3 METHODOLOGY**

125 In this section, we first introduce the overall formulation of relation-conditioned contrastive learn-
 126 ing, and then describe two key components that support it: relation-guided pair construction and
 127 contextual feature modulation.

128 **3.1 RELATION-CONDITIONED CONTRASTIVE LEARNING**

129 As shown in Figure 1, each sample is denoted as $V_i = (T_i, I_i)$, where T_i and I_i are the textual
 130 and visual descriptions of the item. Pairs of samples (V_i, V_j) are associated with a natural-language
 131 semantic relation e_{ij} , which serves as contextual guidance for representation learning. When $i \neq j$,
 132 e_{ij} encodes inter-sample semantic relation, illustrated by the yellow or red connections in Figure 1.
 133 When $i = j$, e_{ii} reflects intra-sample semantic relation, depicted as blue connections in the figure
 134 (see Section 3.2 for details). Our goal is to learn an encoder \mathcal{F}_θ that produces relation-conditioned
 135 features $\mathbf{z}_T(e_{ij})$ and $\mathbf{z}_I(e_{ij})$ for each sample under the contextual semantics relation of e_{ij} .

136 Unlike traditional contrastive learning that operates only on matched pairs (i.e., the diagonal of the
 137 similarity matrix), our approach supports many-to-many alignment across samples linked by se-
 138 mantic relations. This is visualized in the colored regions of the similarity matrices in Figure 1,
 139 where multiple off-diagonal entries are treated as positive pairs, each conditioned on a distinct rela-
 140 tion. Different colors correspond to different semantic contexts, indicating that we extract features
 141 specifically modulated by the meaning of each e_{ij} rather than relying on a single global embedding.

142 To optimize such relation-aware alignment, we define a contrastive objective that operates over
 143 contextualized features. Beyond cross-modal alignment, we incorporate intra-modal consistency by
 144 enforcing that text and image features are coherent under the same semantic relation. Specifically,
 145 we design a unified loss with three components: (1) text-to-image and image-to-text contrast for
 146 cross-modal consistency, and (2) text-text and (3) image-image contrast for intra-modal coherence.
 147 This formulation enables RCML to learn features that are semantically aligned both across and within
 148 modalities, all under the conditioning of relation descriptions. The overall loss is given by:
 149

$$\mathcal{L} = (\mathcal{L}_{\text{txt-img}} + \mathcal{L}_{\text{img-txt}}) / 2 + \lambda (\mathcal{L}_{\text{txt-txt}} + \mathcal{L}_{\text{img-img}}), \quad (1)$$

150 where each term follows the same contrastive formulation:

$$\mathcal{L}_{x-y} = - \sum_{(i,j) \in \mathcal{P}} \log \frac{\exp(\text{sim}(\mathbf{z}_x^i(e_{ij}), \mathbf{z}_y^j(e_{ij}))/\tau)}{\sum_{k \in \mathcal{N}(i)} \exp(\text{sim}(\mathbf{z}_x^i(e_{ij}), \mathbf{z}_y^k(e_{ij}))/\tau)}, \quad (2)$$

151 where $x, y \in \{\text{txt, img}\}$ and τ is a temperature parameter. Relation-conditioned features $\mathbf{z}_x^i(e_{ij})$ is
 152 defined in Section 3.3, and the construction of positive/negative samples is described in Section 3.2.

153 **3.2 RELATION-CONDITIONED PAIR CONSTRUCTION**

154 A key component of contrastive learning is the construction of positive and negative sample pairs. In
 155 our framework, the positive set \mathcal{P} consists of all sample pairs (V_i, V_j) that are explicitly associated

162 with a semantic relation e_{ij} . These relations are provided as natural-language descriptions and later
 163 used to condition feature extraction (Section 3.3). We categorize such positive pairs into two types:
 164

165 **Intra-sample Relations.** These involve the text and image of the same sample $V_i = (T_i, I_i)$, paired
 166 under a generic semantic relation that indicates both views describe the same item. This encourages
 167 the model to align textual and visual modalities within a single sample.

168 **Inter-sample Relations.** These connect different samples (V_i, V_j) through semantic associations
 169 such as co-purchase, stylistic similarity, or functional complementarity. Each relation between
 170 vertices v_i and v_j comes with textual description e_{ij} which provide semantic meaning of the edge. For
 171 example, in recommender system, two items (e.g., product image and product description/review)
 172 may be correlated under different contexts, e.g., both bought by "school girls younger than 15",
 173 "astronomy enthusiasts", etc. Such context can be expressed as textual descriptions. Similary in
 174 book network, textual description can express the context about book relations such as two books
 175 under a shared specific tag or user type. Detailed setting of the edge texts for our evaluation data are
 176 elaborated in Section 4.1.

177 The negative set $\mathcal{N}(i)$ for a given anchor sample V_i consists of unrelated samples randomly drawn
 178 from the batch that are not paired with V_i under any semantic relation. Each positive pair $(i, j) \in \mathcal{P}$
 179 is contrasted against these negatives using the relation description e_{ij} , as defined in equation 2.

180 3.3 RELATION-CONDITIONED FEATURE MODULATION

182 We utilize CLIP to encode multimodal information for both nodes and edges. Given a sample
 183 $V_i \in \mathcal{V}$, its textual tokens T_i and image patches I_i are passed through the CLIP text encoder f_T and
 184 image encoder f_I , respectively:

$$185 \quad \mathbf{H}_T^i = f_T(T_i), \quad \mathbf{H}_I^i = \text{MLP}(f_I(I_i)), \quad (3)$$

187 where $\mathbf{H}_T^i \in \mathbb{R}^{d \times n}$ and $\mathbf{H}_I^i \in \mathbb{R}^{d \times m}$ denote token-level embeddings for the text and image modalities.
 188 An MLP projects the image features into the same d -dimensional space as the text. For each
 189 sample pair with an associated relation description e_{ij} , we extract a global semantic embedding
 190 $\mathbf{h}_E^{ij} = f_T^{\text{EOT}}(e_{ij}) \in \mathbb{R}^d$ from the EOT token.

191 While contrastive learning encourages positive pairs to be close in the embedding space, different
 192 relations imply different notions of similarity. To capture such contextual variations, we compute
 193 relation-conditioned features $\mathbf{z}_x^i(e_{ij})$ for each modality $x \in \{T, I\}$ using an attention-based aggre-
 194 gation mechanism (Vaswani et al., 2017).

$$195 \quad \mathbf{z}_x^i(e_{ij}) = \text{Norm}(\mathbf{A}_x^i(e_{ij})(\mathbf{W}_V \mathbf{H}_x^i)^\top \mathbf{W}_o), \quad (4)$$

197 where \mathbf{H}_x^i is the token-level representation, $\mathbf{W}_V, \mathbf{W}_o \in \mathbb{R}^{d \times d}$ are learnable projections, and
 198 $\text{Norm}(\cdot)$ denotes L2 normalization. The attention weight $\mathbf{A}_x^i(e_{ij}) \in \mathbb{R}^{1 \times n/m}$ is defined as:

$$199 \quad \mathbf{A}_x^i(e_{ij}) = \text{softmax} \left((1 - \beta) \cdot \mathbf{q}_E^{ij} + \beta \cdot \mathbf{B}_x^{ij} \right), \quad (5)$$

$$201 \quad \mathbf{q}_E^{ij} = (\mathbf{W}_Q \mathbf{h}_E^{ij})^\top (\mathbf{W}_K \mathbf{H}_x^i) / \sqrt{d}, \quad (6)$$

203 where $\mathbf{W}_Q, \mathbf{W}_K \in \mathbb{R}^{d \times d}$ are projection matrices and \mathbf{h}_E^{ij} is the embedding of the relation de-
 204 scription e_{ij} . The first term provides relation-aware contextual attention by allowing the semantic
 205 relation e_{ij} to attend to relevant regions in the modality. The second term \mathbf{B}_x^{ij} is a binary vector that
 206 activates only for intra-sample pairs ($i = j$), highlighting special tokens (e.g., [EOT] or [CLS]) to
 207 preserve global consistency. It is designed to capture the inherent alignment between modalities of
 208 the same sample, which goes beyond contextual similarity. The coefficient $\beta \in [0, 1]$ balances the
 209 influence of contextual relation guidance and undirected alignment.

210 **Remark.** CLIP is a special case of our framework with no relation guidance and only cross-modal
 211 self-pair training.

212 Our framework reduces to the original CLIP formulation under two conditions: (1) The attention
 213 reduces to global pooling. When $\beta = 1$ in equation 5, the relation-conditioned attention degenerates
 214 to $\mathbf{A}_x^i = \text{softmax}(\mathbf{B}_x^{ij})$, where \mathbf{B}_x^{ij} is a one-hot vector selecting the summary token. This eliminates
 215 the influence of e_{ij} , and $\mathbf{z}_x^i(e_{ij})$ becomes functionally equivalent to CLIP's global embedding, which
 pools modality information without contextual semantics.

(2) The objective reduces to pairwise cross-modal contrast. Since \mathbf{B}_x^{ij} is only defined for intra-sample pairs ($i = j$), setting $\beta = 1$ also restricts training to self-pairs. If the contrastive objective is further applied only to cross-modal directions ($x \neq y$), the overall loss reduces to:

$$\mathcal{L} = (\mathcal{L}_{\text{txt-img}} + \mathcal{L}_{\text{img-txt}}) / 2, \quad (7)$$

where each loss term is computed over same-item pairs:

$$\mathcal{L}_{x-y} = - \sum_{(i,i) \in \mathcal{P}} \log \frac{\exp(\text{sim}(\mathbf{z}_x^i, \mathbf{z}_y^i) / \tau)}{\sum_{k \in \mathcal{N}(i)} \exp(\text{sim}(\mathbf{z}_x^i, \mathbf{z}_y^k) / \tau)}. \quad (8)$$

Together with standard in-batch negative sampling, this configuration recovers the CLIP formulation as a special case of RCML. \square

Table 1: Hit@5 (%) for Relation-Guided Retrieval on 8 datasets using five similarity measures. **Bold** numbers indicate the best performance in each dataset.

Similarity	Elec	Auto	Office	Baby	Pet	Music	Sports	Goodread
CLIP (TT)	37.53	36.04	39.46	35.82	42.19	41.95	43.33	45.02
CLIP (II)	31.78	27.33	34.27	29.56	34.66	34.56	35.19	32.12
CLIP (TI)	33.44	30.40	36.48	30.63	36.93	39.00	39.45	37.70
CLIP (IT)	33.81	32.14	37.92	31.62	37.95	37.51	38.82	33.84
CLIP (AVG)	37.08	34.01	39.14	34.66	41.34	42.59	42.87	44.24
DeCLIP (TT)	28.46	27.76	30.11	29.06	29.57	28.01	29.13	29.25
DeCLIP (II)	24.43	24.83	26.05	26.54	24.74	27.48	25.72	25.11
DeCLIP (TI)	23.99	22.46	23.84	23.98	22.95	24.37	24.44	27.40
DeCLIP (IT)	25.00	22.38	24.02	24.03	23.55	25.22	23.83	24.05
DeCLIP (AVG)	27.50	27.42	29.64	30.66	28.81	29.14	29.20	28.80
UniCL (TT)	25.04	25.70	25.37	24.51	25.30	26.80	25.28	26.29
UniCL (II)	31.09	29.05	35.78	30.26	35.39	34.83	34.89	33.11
UniCL (TI)	24.87	25.14	23.48	22.58	23.56	24.25	23.30	25.14
UniCL (IT)	23.74	23.96	23.02	22.47	23.56	23.24	24.37	25.35
UniCL (AVG)	29.92	29.18	34.03	29.04	34.58	35.59	33.02	34.41
SigLIP (TT)	38.91	36.63	40.79	39.91	41.19	42.41	45.78	46.42
SigLIP (II)	36.60	30.57	37.25	33.79	37.66	38.90	41.97	35.66
SigLIP (TI)	36.51	33.63	38.00	34.92	40.65	42.29	46.14	37.69
SigLIP (IT)	36.09	33.47	38.41	34.40	38.64	41.36	45.42	34.02
SigLIP (AVG)	39.69	35.15	40.71	39.17	40.76	43.14	46.62	45.22
ImageBind (TT)	40.25	36.73	41.96	41.53	43.73	45.94	48.09	47.20
ImageBind (II)	38.93	31.38	39.57	36.43	39.56	41.95	42.47	38.06
ImageBind (TI)	38.01	35.22	39.20	35.60	41.46	44.61	46.79	39.02
ImageBind (IT)	38.01	34.51	38.90	35.30	40.36	41.66	45.90	34.61
ImageBind (AVG)	41.63	35.68	42.94	40.13	43.77	47.07	48.48	45.25
RCML (TT)	49.32	44.38	49.22	44.62	54.17	51.29	64.49	53.26
RCML (II)	40.09	35.96	42.98	35.10	44.89	40.52	46.77	38.66
RCML (TI)	42.49	37.28	43.93	38.42	48.11	41.32	52.66	39.42
RCML (IT)	48.00	39.77	46.33	41.20	50.00	43.50	63.36	31.43
RCML (AVG)	49.09	44.31	49.64	44.65	55.08	51.53	64.81	49.80

4 EXPERIMENTS

In this section, we first introduce the experimental setup and baseline models. We then evaluate our framework on three multimodal relation-aware tasks. Finally, we provide detailed analyses of the model’s performance and behavior.

4.1 EXPERIMENTAL SETUP

We conduct experiments on Amazon Product dataset (Hou et al., 2024) and Goodreads dataset (Wan et al., 2019) (Wan & McAuley, 2018). For Amazon Product dataset, most popular domains such as: Electronics, Automotive, Office Products, Baby, Pet Supplies, Musical Instruments, and Sports are considered. Each product is associated with a title and an image. Pairs of products are considered related if they are co-purchased by users with shared interests, and each relation is annotated with a natural-language description indicating its semantic context. For each domain, we create training and testing sets with no overlap, guaranteeing that both product pairs and individual products are strictly separated. Goodreads dataset shares the same input format as Amazon but defines relations via users’ co-reading behaviors. It serves exclusively as an out-of-domain evaluation set, with training restricted to the Amazon domains. Further details of the experimental settings and computing environment are provided in the Appendix A.1 and A.2 .

270 4.2 BASELINE MODELS
271

272 To provide a comprehensive evaluation, we compare our method against several strong vi-
273 sion–language baselines. CLIP (Radford et al., 2021) learns aligned image–text embeddings through
274 large-scale contrastive pretraining. DeCLIP (Li et al., 2021) enhances CLIP by introducing data aug-
275mentation and auxiliary objectives to improve robustness. UniCL (Yang et al., 2022) incorporates
276 label supervision to unify representations across modalities and domains. SigLIP (Zhai et al., 2023)
277 replaces CLIP’s loss with a sigmoid-based formulation to improve data efficiency, and is trained on
278 a larger dataset. ImageBind (Girdhar et al., 2023) extends contrastive pretraining to multiple modal-
279 ities including audio and depth and we focus on its vision–text component. Notably, it uses a much
280 larger model backbone with significantly more parameters than ours.

281 4.3 DOWNSTREAM TASKS
282

283 We evaluate our framework on three tasks designed to test relation-aware multimodal learning un-
284 der both zero-shot and supervised settings. The first two tasks assess generalization ability without
285 downstream tuning, evaluating whether the model can directly capture semantic alignment guided
286 by relational context. The third introduces a lightweight MLP to examine whether the learned rep-
287 resentations are sufficiently discriminative to support supervised relation reasoning.

289 4.3.1 RELATION-GUIDED RETRIEVAL
290

291 This task simulates a recommendation-style scenario(Wen et al., 2023; He et al., 2017). Given a
292 source product A and a semantic relation type (e.g., “bought together by people who like fishing”),
293 the goal is to retrieve the most relevant target product B from a candidate set. Each query includes
294 one positive and 20 randomly sampled negatives, forming a 21-way retrieval problem. We report
295 Hit@5 as the primary metric, reflecting realistic recommendation settings where users examine only
296 top-ranked results. For fairness, we concatenate the relation text with the original product text as
297 input to baseline models, ensuring that they have access to the same semantic information.

298 To compute relevance scores, we extract text and image embeddings using RCML and baselines. We
299 compute five similarities: (1) text-text (TT), cosine similarity between the textual embeddings of A
300 and B ; (2) image-image (II), cosine similarity between their image embeddings; (3) text-image (TI),
301 from A ’s text to B ’s image; (4) image-text (IT), from A ’s image to B ’s text; and (5) average (AVG),
302 cosine similarity between averaged text and image embeddings of each product. These scores rank
303 candidates and assess how well each model aligns multimodal features under relational context.

304 As shown in Table 1, our proposed RCML consistently outperforms all baselines across most set-
305 tings, achieving the best results on 36 out of 40 metrics. This highlights its strong ability to leverage
306 both multimodal content and relational semantics for context-aware feature extraction, leading to
307 superior retrieval performance. Compared to the standard CLIP backbone, RCML improves overall
308 Hit@5 by approximately 30.79%. While DeCLIP and UniCL are also trained with contrastive objec-
309 tives, they perform poorly on our relation-targeted retrieval task. DeCLIP emphasizes local consis-
310 tency, and UniCL relies on label-level supervision—neither captures contextual alignment across se-
311 mantically related samples. SigLIP performs relatively well, as its sigmoid-based objective enables
312 more flexible pairwise alignment, while ImageBind benefits from a powerful image encoder and
313 large model capacity, which explains its occasional advantage on image-dominant metrics. How-
314 ever, without explicit relation conditioning, both still underperform RCML overall. Furthermore,
315 RCML generalizes well to the out-of-domain Goodreads dataset, highlighting its robustness across
316 different domains of relational data.

316 4.3.2 RELATION TYPE PREDICTION
317

318 In this task, the model is given a product pair (A, B) and must identify the most likely semantic
319 relation connecting them from a predefined set of relation types (10 for Amazon domains, 8 for
320 Goodreads). For each candidate relation, we compute the similarity between A and B under the
321 corresponding relation-conditioned embedding, and select the one with the highest score. Since
322 baseline models do not support relation-specific encoding, we report results only for RCML, using
323 five similarity variants across unimodal and cross-modal configurations. We report Top-3 Accuracy
on all datasets where relation types are sufficiently meaningful to support evaluation.

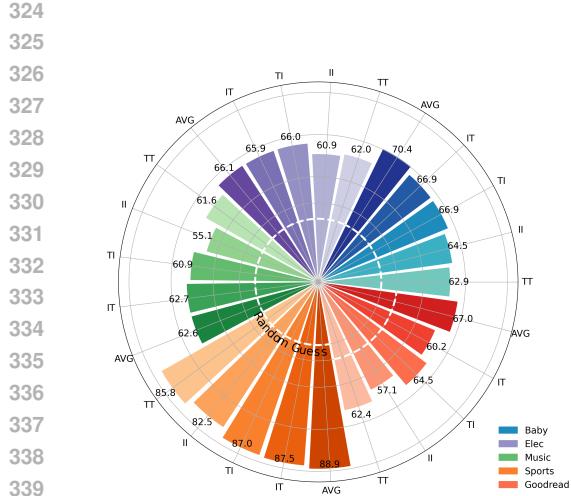


Figure 2: Top-3 accuracy for Relation Type Prediction across five similarity types.

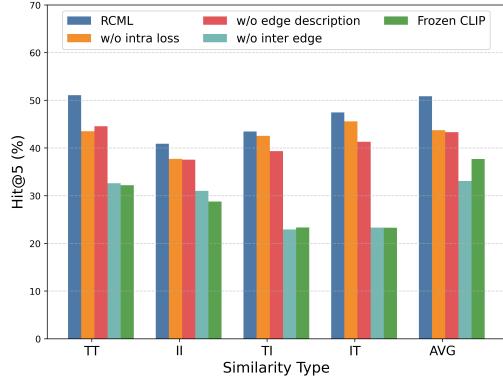


Figure 4: Ablation Results Across Similarity Types on Relation-Guided Retrieval.

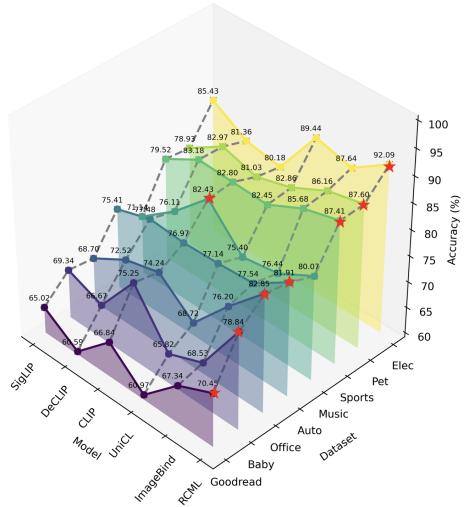


Figure 3: Accuracy on Relation Validity Prediction.★ denotes the best performance.

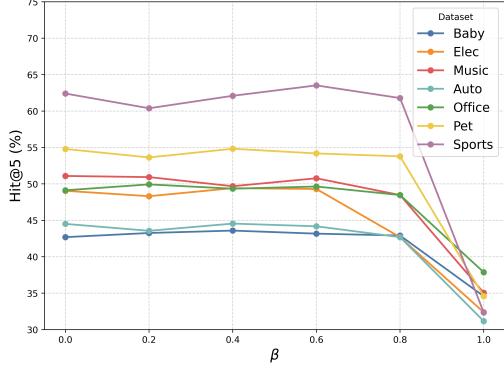


Figure 5: Sensitivity analysis of the attention coefficient β on Relation-Guided Retrieval.

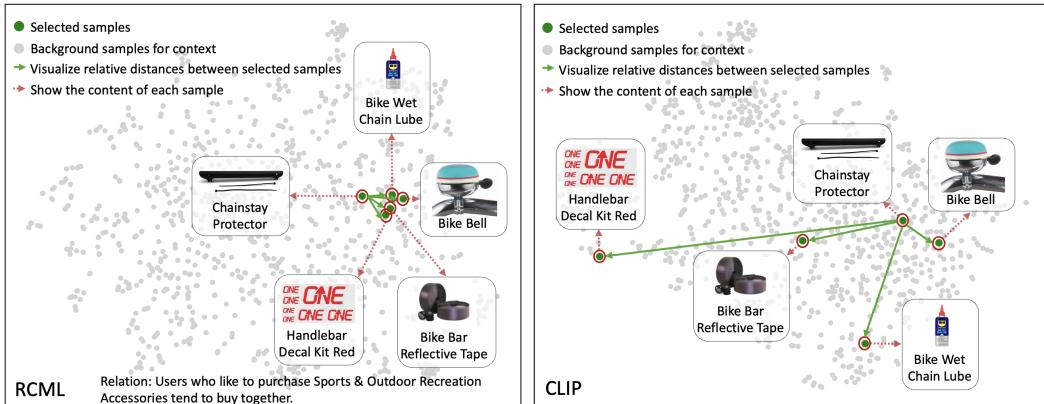
As shown in Figure 2, RCML demonstrates strong performance on both Amazon and Goodreads domains, consistently exceeding the random baseline by a substantial margin (30% for Amazon datasets and 37.5% for Goodreads). Among five similarity variants, the averaged configuration performs best overall, suggesting that combining textual and visual cues benefits relation inference.

4.3.3 RELATION VALIDITY PREDICTION

Unlike the previous task, which evaluates zero-shot selection among candidate relation types, this task focuses on supervised validation of specific relation instances. Given a product pair (A, B) and a candidate relation type, the model must predict whether a relation of that type exists between them. This is formulated as a binary classification problem, and we report classification accuracy as the evaluation metric. For fair comparison, all baseline models are kept frozen, and a lightweight linear classifier is trained on top of their extracted features. The input to the classifier is the concatenation of text and image embeddings from both products, along with the embedding of the relation label. This setup evaluates whether the learned multimodal representations can support relation-aware prediction when supervision is available.

As shown in Figure 3, RCML achieves strong performance across the evaluated domains, including the out-of-domain Goodreads dataset, demonstrating its robustness when relation-aware supervision is available. While models like CLIP show large domain variance and SigLIP or ImageBind benefit from scale and soft supervision, none incorporate explicit relation-aware mechanisms, leading to weaker performance on tasks requiring fine-grained relational reasoning.

378
379


4.4 FURTHER EVALUATION AND ANALYSIS

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

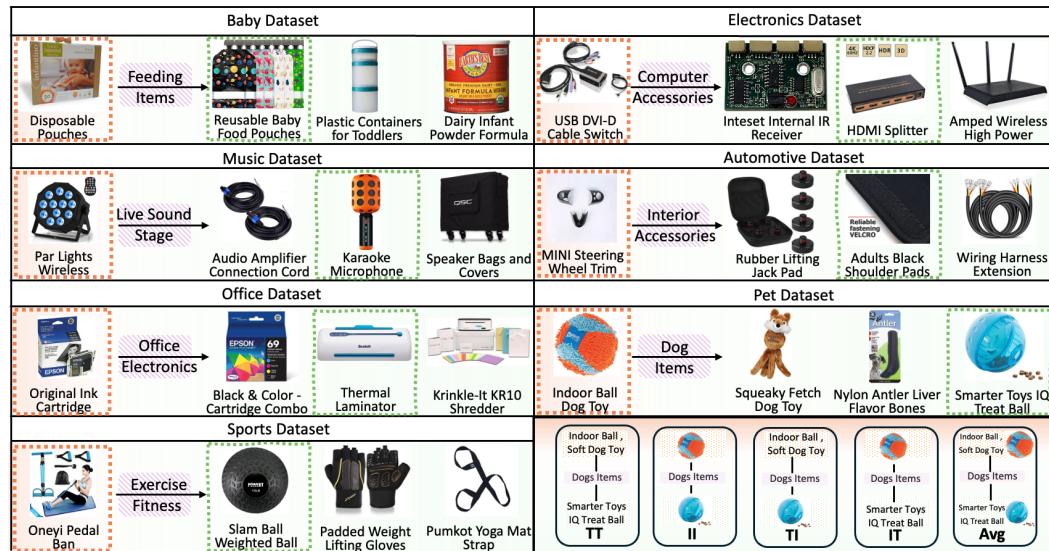
Ablation Studies. To evaluate the contributions of different components in our framework, we conduct ablation experiments on the Relation-Guided Retrieval task. Results are averaged over the seven datasets and reported across five similarity types, as shown in Figure 4. We compare five settings: (1) **w/o inter edge**: removes all inter-sample relations, resulting in the largest performance drop (38.68%), which confirms the importance of many-to-many learning across samples. (2) **w/o intra loss**: disables the intra-modal contrastive objective while retaining cross-modal training. The performance drop (8.50%) suggests that intra-modal alignment contributes meaningfully, though it is not the dominant factor. (3) **w/o edge description**: removes the semantic content of relations but retains relation connectivity. The decline (11.60%) highlights the value of contextual guidance in learning relation-aware representations. (4) **Frozen CLIP**: freezes the CLIP encoders and trains only the attention module. The significant drop (37.93%) shows the necessity of end-to-end adaptation for relation-aware learning. (5) **RCML**: our full model achieves the best performance, demonstrating the effectiveness of leveraging semantic relations through many-to-many contrastive supervision. These trends hold consistently across all similarity types, indicating that each component of our framework contributes positively to both unimodal and cross-modal alignment under relational context.

395
396
397
398
399
400
401
402
403

Sensitivity Analysis. As defined in equation 5, the coefficient $\beta \in [0, 1]$ controls the trade-off between relation-specific contextual attention and undirected alignment via global summary tokens. We evaluate the impact of this balancing coefficient in Figure 5. Model performance remains relatively stable across a broad range of β values (from 0.0 to 0.6), with the best results typically observed around $\beta = 0.4$ or 0.6. Notably, performance at $\beta = 0$ using only relation-guided attention—is nearly as strong, suggesting that contextual semantics alone provide valuable guidance. However, performance declines gradually at $\beta = 0.8$ and drops sharply at $\beta = 1.0$, where only global tokens from the CLIP encoder are used without any relation-specific modulation. This highlights the importance of integrating both global and contextual signals for relational alignment.

404
405
406
407
408
409
410
411
412
413
414
415
416
417

418


Figure 6: t-SNE visualization of multimodal embeddings under the semantic relation “*Co-purchased by people who primarily buy Sports & Outdoor Recreation Accessories.*”.

419
420
421
422
423
424
425
426
427
428

Visualization. To qualitatively evaluate our framework, we visualize the feature spaces learned by RCML and CLIP using t-SNE. We randomly sample a subset of products and extract their embeddings under the relation “Users who like to purchase Sports & Outdoor Recreation Accessories tend to buy together.” As shown in Figure 6, RCML produces more compact and semantically meaningful clusters. For example, items such as bike bells, chainstay protectors, and wet chain lubes are grouped closely together, reflecting their shared relevance to cycling enthusiasts. In contrast, CLIP embeddings appear more dispersed, indicating a lack of relation-aware organization. These results demonstrate that our model goes beyond surface-level similarity, capturing functional and intent-driven associations.

429
430
431

Case Study. Figure 7 shows representative examples from the Relation-Guided Retrieval task on Amazon dataset. In each case, the leftmost item (highlighted with a yellow dashed box) is the query A , and the top-3 retrieved candidates appear on the right. For convenience, each semantic relation is abbreviated as a label and displayed on the connecting arrow. Ground-truth targets are marked with

450 Figure 7: Case study showing the top-3 predictions ranked by our model in Relation-Guided Re-
 451 trieval. Highlighted items correspond to the query, relation context, and correct targets.

452
 453 green boxes. As shown, our model consistently retrieves contextually relevant items aligned with the
 454 intended relation. For instance, given a karaoke microphone and the relation “Live Sound & Stage,”
 455 the model retrieves accessories such as speaker bags and audio connectors, rather than irrelevant
 456 items with visual or textual similarity. The bottom panel illustrates the five similarity configurations
 457 (TT, II, TI, IT, AVG) used in scoring, which provide complementary perspectives for retrieval.
 458

459 **Efficiency and Model Size.** Table 2 compares inference latency and model size across all meth-
 460 ods. RCML computes relation-conditioned embeddings at inference time, yet remains efficient
 461 (14.32 ms/sample, 152.33M parameters), only slightly above CLIP and DeCLIP. Notably, Image-
 462 Bind incurs much higher cost (35.90 ms/sample, 1200M+ parameters) while still underperforming
 463 RCML on most tasks, making it less practical for retrieval scenarios. These results show that relation
 464 conditioning introduces minimal overhead while delivering superior performance.

465 5 CONCLUSION

466
 467 We presented RCML, a contrastive learning framework that conditions multimodal representation
 468 learning on semantic relations. Across multiple datasets and tasks, RCML consistently outperforms
 469 strong baselines. Further analysis shows that RCML delivers robust performance across domains and
 470 effectively organizes items under relation-defined contexts by bringing semantically related products
 471 closer in the embedding space. Beyond its empirical strength, RCML offers a general and adaptable
 472 learning paradigm that can be integrated into more advanced multimodal systems to support relation-
 473 aware representation learning.

474 Table 2: Inference time and parameter count for each model.

479 Model	480 Inference Time (ms/sample)	481 #Params (M)
482 CLIP	483 9.17	484 151.28
485 DeCLIP	11.29	158.76
UniCL	21.93	150.70
SigLIP	9.89	203.16
ImageBind	35.90	1200.78
RCML	14.32	152.33

486 REFERENCES
487

488 Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recommender sys-
489 tems: A survey of the state-of-the-art and possible extensions. *IEEE transactions on knowledge
490 and data engineering*, 17(6):734–749, 2005.

491 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smirnis, Thao
492 Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In
493 search of the next generation of multimodal datasets. *Advances in Neural Information Processing
494 Systems*, 36:27092–27112, 2023.

495 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
496 Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *Proceedings of
497 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.

498 Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural col-
499 laborative filtering. In *Proceedings of the 26th international conference on world wide web*, pp.
500 173–182, 2017.

501 Yufei He, Yuan Sui, Xiaoxin He, Yue Liu, Yifei Sun, and Bryan Hooi. Unigraph2: Learning a unified
502 embedding space to bind multimodal graphs. In *Proceedings of the ACM on Web Conference
503 2025*, pp. 1759–1770, 2025.

504 Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. Bridging language
505 and items for retrieval and recommendation. *arXiv preprint arXiv:2403.03952*, 2024.

506 Weiquan Huang, Aoqi Wu, Yifan Yang, Xufang Luo, Yuqing Yang, Liang Hu, Qi Dai, Chunyu
507 Wang, Xiyang Dai, Dongdong Chen, et al. Llm2clip: Powerful language model unlocks richer
508 visual representation. *arXiv preprint arXiv:2411.04997*, 2024.

509 Chao Jia, Yinfai Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
510 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
511 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
512 PMLR, 2021.

513 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
514 baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on
515 computer vision and pattern recognition*, pp. 19113–19122, 2023.

516 Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu,
517 and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-
518 training paradigm. *arXiv preprint arXiv:2110.05208*, 2021.

519 Kang Liu, Feng Xue, Dan Guo, Peijie Sun, Shengsheng Qian, and Richang Hong. Multimodal graph
520 contrastive learning for multimedia-based recommendation. *IEEE Transactions on Multimedia*,
521 25:9343–9355, 2023.

522 Zeeshan Memon, Chen Ling, Ruochen Kong, Vishwanath Seshagiri, Andreas Zufle, and Liang Zhao.
523 Deep identification of propagation trees. *arXiv preprint arXiv:2503.00646*, 2025.

524 Yang Qiao, Liqiang Jing, Xuemeng Song, Xiaolin Chen, Lei Zhu, and Liqiang Nie. Mutual-
525 enhanced incongruity learning network for multi-modal sarcasm detection. In *Proceedings of
526 the AAAI conference on artificial intelligence*, volume 37, pp. 9507–9515, 2023.

527 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
528 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
529 models from natural language supervision. In *International conference on machine learning*, pp.
530 8748–8763. PMLR, 2021.

531 Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar.
532 A theoretical analysis of contrastive unsupervised representation learning. In *International con-
533 ference on machine learning*, pp. 5628–5637. PMLR, 2019.

540 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 541 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 542 open large-scale dataset for training next generation image-text models. *Advances in neural in-*
 543 *formation processing systems*, 35:25278–25294, 2022.

544
 545 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 546 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 547 *tion processing systems*, 30, 2017.

548 Mengting Wan and Julian J. McAuley. Item recommendation on monotonic behavior chains. In
 549 Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John O’Donovan (eds.), *Proceedings*
 550 *of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada,*
 551 *October 2-7, 2018*, pp. 86–94. ACM, 2018. doi: 10.1145/3240323.3240369. URL <https://doi.org/10.1145/3240323.3240369>.

552
 553 Mengting Wan, Rishabh Misra, Ndapa Nakashole, and Julian J. McAuley. Fine-grained spoiler
 554 detection from large-scale review corpora. In Anna Korhonen, David R. Traum, and Lluís
 555 Márquez (eds.), *Proceedings of the 57th Conference of the Association for Computational Lin-*
 556 *guistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp. 2605–
 557 2610. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1248. URL
 558 <https://doi.org/10.18653/v1/p19-1248>.

559
 560 Haokun Wen, Xian Zhang, Xuemeng Song, Yinwei Wei, and Liqiang Nie. Target-guided composed
 561 image retrieval. In *Proceedings of the 31st ACM international conference on multimedia*, pp.
 562 915–923, 2023.

563 Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Bin Xiao, Ce Liu, Lu Yuan, and Jianfeng Gao. Uni-
 564 fied contrastive learning in image-text-label space. In *Proceedings of the IEEE/CVF conference*
 565 *on computer vision and pattern recognition*, pp. 19163–19173, 2022.

566
 567 Shijun Yang, Xiang Zhang, Wanqing Zhao, Hangzai Luo, Sheng Zhong, Jinye Peng, and Jian-
 568 ping Fan. Multi-modal mutual-guidance conditional prompt learning for vision-language models.
 569 *arXiv preprint arXiv:2507.08410*, 2025.

570 Hantao Yao, Rui Zhang, and Changsheng Xu. Tcp: Textual-based class-aware prompt tuning for
 571 visual-language model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 572 *Pattern Recognition*, pp. 23438–23448, 2024.

573
 574 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 575 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 576 pp. 11975–11986, 2023.

577 Jia Zhang, Yaojin Lin, Menglei Lin, and Jinghua Liu. An effective collaborative filtering algorithm
 578 based on user preference clustering. *Applied Intelligence*, 45(2):230–240, 2016.

579
 580 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 581 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.

582 Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng, Chuntao Hong, and
 583 Siliang Tang. Graphclip: Enhancing transferability in graph foundation models for text-attributed
 584 graphs. In *Proceedings of the ACM on Web Conference 2025*, pp. 2183–2197, 2025.

585
 586
 587 **A APPENDIX**

588
 589 **A.1 IMPLEMENTATION FRAMEWORK.**

590
 591 Our RCML model and CLIP baseline are implemented using the Hugging Face CLIPModel and
 592 CLIPProcessor with a ViT-B/32 backbone. Other baselines (DeCLIP, UniCL, SigLIP, ImageBind)
 593 are evaluated using their released checkpoints. All reported results are averaged over three runs with
 different random seeds.

594 We perform grid search over multiple hyperparameters and select the best setting based on validation
 595 performance. The final configuration is as follows: batch size of 512, AdamW optimizer, learning
 596 rate of 5×10^{-5} with cosine decay, and early stopping based on validation performance (training
 597 typically converged within 3 epochs). The contrastive temperature τ is set to 0.1, the intra-modal
 598 weight λ to 0.5, and the attention balance coefficient β to 0.6.

599 All experiments are conducted on a single NVIDIA RTX A6000 GPU with 48GB memory. The
 600 software environment consists of Python 3.9, PyTorch 1.12, Transformers 4.26, and CUDA 11.6.
 601

602 A.2 EDGE TEXT DESCRIPTIONS 603

604 For intra-sample relations, all datasets share the same edge text: *"These two items represent the
 605 same product. Align their features accordingly."*

606 For inter-sample relations, the relation texts are dataset-specific. To obtain relation texts e_{ij} , we
 607 follow established practices in recommender systems that use user clustering and profiling to cap-
 608 ture group-level preferences (Zhang et al., 2016) (Adomavicius & Tuzhilin, 2005). Concretely, we
 609 represent each user’s purchase or reading history as a distribution over product categories, cluster
 610 users based on these distributions, and summarize each cluster with a natural-language description
 611 that converts structured statistics into interpretable context. This design grounds edges in real user
 612 behavior while providing semantic descriptions that serve as contextual input for relation-aware
 613 representation learning. Detailed examples are provided below:

614 A.2.1 DATASET: BABY 615

617 Cluster	Edge Text Description
618 Cluster_0	Co-purchased by people who primarily buy Car Seats & Accessories, 619 along with Nursery and Feeding, while showing lower engagement in 620 Diapering, Baby Care, and Safety, and minimal interest in Strollers & 621 Accessories, Activity & Entertainment, Gifts, and Potty Training.
622 Cluster_1	Co-purchased by people who overwhelmingly favor Feeding, with 623 much lower interest in Nursery, Diapering, Baby Care, Safety, Strollers 624 & Accessories, Car Seats & Accessories, Gifts, Activity & 625 Entertainment, and Potty Training.
626 Cluster_2	Co-purchased by people who strongly prefer Safety, while also buying 627 Nursery and Feeding, with moderate interest in Diapering and Baby 628 Care, and minimal interest in Strollers & Accessories, Car Seats & 629 Accessories, Gifts, Activity & Entertainment, and Potty Training.
630 Cluster_3	Co-purchased by people who heavily favor Diapering, with secondary 631 but lower preference for Nursery and Feeding, minor engagement in 632 Baby Care and Safety, and almost no interest in Strollers & 633 Accessories, Car Seats & Accessories, Gifts, Activity & Entertainment, 634 and Potty Training.
635 Cluster_4	Co-purchased by people who strongly favor Potty Training, with 636 balanced interest in Nursery, Feeding, and Diapering, while showing 637 low purchases in Baby Care and Safety, and negligible interest in 638 Strollers & Accessories, Car Seats & Accessories, Gifts, and Activity 639 & Entertainment.
640 Cluster_5	Co-purchased by people who dominantly prefer Baby Care, followed 641 by Nursery and Feeding, while showing almost no interest in 642 Diapering, Safety, Strollers & Accessories, Car Seats & Accessories, 643 Gifts, Activity & Entertainment, and Potty Training.

644
 645
 646
 647

648	Cluster	Edge Text Description
649	Cluster_6	Co-purchased by people who are highly engaged in Activity & Entertainment, together with Nursery and Feeding, while showing relatively low purchases of Diapering, Baby Care, and Safety, and minimal interest in Strollers & Accessories, Car Seats & Accessories, Gifts, and Potty Training.
650	Cluster_7	Co-purchased by people who overwhelmingly buy Gifts, along with Nursery and Feeding, while showing significantly lower interest in Diapering, Baby Care, Safety, Strollers & Accessories, Car Seats & Accessories, Activity & Entertainment, and Potty Training.
651	Cluster_8	Co-purchased by people who show a striking preference for Strollers & Accessories, with secondary interest in Nursery and Feeding, while showing low purchases in Diapering, Baby Care, and Safety, and minimal interest in Car Seats & Accessories, Gifts, Activity & Entertainment, and Potty Training.
652	Cluster_9	Co-purchased by people who primarily buy Nursery, followed by Feeding, Diapering, and Baby Care, while showing minimal interest in Safety, Car Seats & Accessories, Strollers & Accessories, Gifts, Activity & Entertainment, and Potty Training.
653		
654		
655		
656		
657		
658		
659		
660		
661		
662		
663		
664		
665		
666		
667		
668		
669		
670	A.2.2 DATASET: ELECTRONICS	
671		
672	Cluster	Edge Text Description
673	Cluster_0	Co-purchased by people who primarily buy Computers & Accessories, along with Camera & Photo, while showing lower engagement in Television & Video, Headphones, Earbuds & Accessories, and Car & Vehicle Electronics, and minimal interest in Portable Audio & Video, Home Audio, Accessories & Supplies, Wearable Technology, and Power Accessories.
674		
675		
676		
677		
678		
679	Cluster_1	Co-purchased by people who overwhelmingly favor Wearable Technology, with much lower interest in Computers & Accessories, Camera & Photo, Television & Video, Headphones, Earbuds & Accessories, Car & Vehicle Electronics, Portable Audio & Video, Home Audio, Accessories & Supplies, and Power Accessories.
680		
681		
682		
683		
684	Cluster_2	Co-purchased by people who strongly prefer Portable Audio & Video, while also buying Computers & Accessories and Camera & Photo, with moderate interest in Television & Video, Headphones, Earbuds & Accessories, and Car & Vehicle Electronics, and minimal interest in Home Audio, Accessories & Supplies, Wearable Technology, and Power Accessories.
685		
686		
687		
688		
689		
690	Cluster_3	Co-purchased by people who heavily favor Camera & Photo, with secondary but lower preference for Computers & Accessories, minor engagement in Television & Video, Headphones, Earbuds & Accessories, Car & Vehicle Electronics, and Portable Audio & Video, and almost no interest in Home Audio, Accessories & Supplies, Wearable Technology, and Power Accessories.
691		
692		
693		
694		
695		
696	Cluster_4	Co-purchased by people who strongly favor Car & Vehicle Electronics, with balanced interest in Computers & Accessories and Camera & Photo, while showing low purchases in Television & Video and Headphones, Earbuds & Accessories, and negligible interest in Portable Audio & Video, Home Audio, Accessories & Supplies, Wearable Technology, and Power Accessories.
697		
698		
699		
700		
701		

702	Cluster	Edge Text Description
703	Cluster_5	Co-purchased by people who dominantly prefer Television & Video, followed by Computers & Accessories and Camera & Photo, while showing almost no interest in Headphones, Earbuds & Accessories, Car & Vehicle Electronics, Portable Audio & Video, Home Audio, Accessories & Supplies, Wearable Technology, and Power Accessories.
704	Cluster_6	Co-purchased by people who are highly engaged in Power Accessories, together with Computers & Accessories and Camera & Photo, while showing relatively low purchases of Television & Video, Headphones, Earbuds & Accessories, Car & Vehicle Electronics, Portable Audio & Video, Home Audio, Accessories & Supplies, and Wearable Technology.
705	Cluster_7	Co-purchased by people who overwhelmingly buy Headphones, Earbuds & Accessories, along with Computers & Accessories and Camera & Photo, while showing significantly lower interest in Television & Video, Car & Vehicle Electronics, Portable Audio & Video, Home Audio, Accessories & Supplies, Wearable Technology, and Power Accessories.
706	Cluster_8	Co-purchased by people who show a striking preference for Home Audio, with secondary interest in Computers & Accessories and Camera & Photo, while showing low purchases in Television & Video, Headphones, Earbuds & Accessories, Car & Vehicle Electronics, and Portable Audio & Video, and minimal interest in Accessories & Supplies, Wearable Technology, and Power Accessories.
707	Cluster_9	Co-purchased by people who primarily buy Accessories & Supplies, followed by Computers & Accessories and Camera & Photo, while showing minimal interest in Television & Video, Headphones, Earbuds & Accessories, Car & Vehicle Electronics, Portable Audio & Video, Home Audio, Wearable Technology, and Power Accessories.
708		
709		
710		
711		
712		
713		
714		
715		
716		
717		
718		
719		
720		
721		
722		
723		
724		
725		
726		
727		
728		
729		
730		
731		
732		
733	A.2.3	DATASET: MUSICAL INSTRUMENTS
734		
735	Cluster	Edge Text Description
736	Cluster_0	Co-purchased by people who overwhelmingly buy Instrument Accessories, with significantly lower engagement in Live Sound & Stage, Microphones & Accessories, Drums & Percussion, and Guitars, and minimal interest in Studio Recording Equipment, Amplifiers & Effects, Electronic Music, DJ & Karaoke, Keyboards & MIDI, and Band & Orchestra.
737	Cluster_1	Co-purchased by people who primarily buy Studio Recording Equipment, followed by Instrument Accessories, with moderate interest in Live Sound & Stage, Microphones & Accessories, Drums & Percussion, and Guitars, while showing minimal interest in Amplifiers & Effects, Keyboards & MIDI, Electronic Music, DJ & Karaoke, and Band & Orchestra.
738	Cluster_2	Co-purchased by people who strongly prefer Electronic Music, DJ & Karaoke, while also buying Instrument Accessories, with moderate interest in Live Sound & Stage, Microphones & Accessories, Drums & Percussion, Guitars, and Studio Recording Equipment, and minimal engagement in Amplifiers & Effects, Keyboards & MIDI, and Band & Orchestra.
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756	Cluster	Edge Text Description
757	Cluster_3	Co-purchased by people who heavily favor Microphones & Accessories, while also purchasing Instrument Accessories, with moderate engagement in Live Sound & Stage and minimal interest in Drums & Percussion, Guitars, Studio Recording Equipment, Amplifiers & Effects, Electronic Music, DJ & Karaoke, Keyboards & MIDI, and Band & Orchestra.
758	Cluster_4	Co-purchased by people who primarily buy Band & Orchestra, followed by Instrument Accessories, with moderate interest in Live Sound & Stage, Microphones & Accessories, Drums & Percussion, Guitars, and Studio Recording Equipment, while showing minimal engagement in Amplifiers & Effects, Electronic Music, DJ & Karaoke, and Keyboards & MIDI.
759	Cluster_5	Co-purchased by people who heavily favor Drums & Percussion, followed by Instrument Accessories, with moderate interest in Live Sound & Stage and Microphones & Accessories, while showing minimal engagement in Studio Recording Equipment, Guitars, Amplifiers & Effects, Electronic Music, DJ & Karaoke, Keyboards & MIDI, and Band & Orchestra.
760	Cluster_6	Co-purchased by people who strongly prefer Keyboards & MIDI, followed by Instrument Accessories, with moderate interest in Live Sound & Stage, Microphones & Accessories, Drums & Percussion, Guitars, and Studio Recording Equipment, while showing minimal engagement in Amplifiers & Effects, Electronic Music, DJ & Karaoke, and Band & Orchestra.
761	Cluster_7	Co-purchased by people who overwhelmingly buy Live Sound & Stage, with significant engagement in Instrument Accessories, while showing minimal interest in Microphones & Accessories, Drums & Percussion, Guitars, Studio Recording Equipment, Amplifiers & Effects, Electronic Music, DJ & Karaoke, Keyboards & MIDI, and Band & Orchestra.
762	Cluster_8	Co-purchased by people who primarily buy Amplifiers & Effects, followed by Instrument Accessories, with moderate engagement in Live Sound & Stage, Microphones & Accessories, Drums & Percussion, Guitars, and Studio Recording Equipment, while showing minimal interest in Keyboards & MIDI, Band & Orchestra, and Electronic Music, DJ & Karaoke.
763	Cluster_9	Co-purchased by people who primarily buy Guitars, followed by Instrument Accessories, with moderate interest in Live Sound & Stage, Microphones & Accessories, and Drums & Percussion, while showing minimal engagement in Studio Recording Equipment, Amplifiers & Effects, Electronic Music, DJ & Karaoke, Keyboards & MIDI, and Band & Orchestra.

800 A.2.4 DATASET: AUTOMOTIVE

801	Cluster	Edge Text Description
802	Cluster_0	Co-purchased by people who overwhelmingly buy Replacement Parts, with significantly lower engagement in Motorcycle & Powersports, Exterior Accessories, and Interior Accessories, and minimal interest in Lights & Lighting Accessories, Tires & Wheels, Tools & Equipment, Car Care, RV Parts & Accessories, and Paint & Paint Supplies.

810

811

812

813

814

815

816

817

Cluster	Edge Text Description
Cluster_1	Co-purchased by people who primarily buy Motorcycle & Powersports, followed by Replacement Parts, with moderate interest in Exterior Accessories and Interior Accessories, while showing minimal engagement in Lights & Lighting Accessories, Tires & Wheels, Tools & Equipment, Car Care, RV Parts & Accessories, and Paint & Paint Supplies.
Cluster_2	Co-purchased by people who strongly prefer Lights & Lighting Accessories, followed by Replacement Parts, with moderate interest in Motorcycle & Powersports, Exterior Accessories, and Interior Accessories, while showing minimal engagement in Tires & Wheels, Tools & Equipment, Car Care, RV Parts & Accessories, and Paint & Paint Supplies.
Cluster_3	Co-purchased by people who heavily favor Interior Accessories, followed by Replacement Parts, with moderate engagement in Motorcycle & Powersports and Exterior Accessories, while showing minimal interest in Lights & Lighting Accessories, Tires & Wheels, Tools & Equipment, Car Care, RV Parts & Accessories, and Paint & Paint Supplies.
Cluster_4	Co-purchased by people who primarily buy Car Care, followed by Replacement Parts, with moderate interest in Motorcycle & Powersports, Exterior Accessories, and Interior Accessories, while showing minimal engagement in Lights & Lighting Accessories, Tires & Wheels, Tools & Equipment, RV Parts & Accessories, and Paint & Paint Supplies.
Cluster_5	Co-purchased by people who heavily favor Exterior Accessories, followed by Replacement Parts, with moderate interest in Motorcycle & Powersports, while showing minimal engagement in Interior Accessories, Lights & Lighting Accessories, Tires & Wheels, Tools & Equipment, Car Care, RV Parts & Accessories, and Paint & Paint Supplies.
Cluster_6	Co-purchased by people who strongly prefer RV Parts & Accessories, followed by Replacement Parts, with moderate interest in Motorcycle & Powersports, Exterior Accessories, and Interior Accessories, while showing minimal engagement in Lights & Lighting Accessories, Tires & Wheels, Tools & Equipment, Car Care, and Paint & Paint Supplies.
Cluster_7	Co-purchased by people who primarily buy Paint & Paint Supplies, followed by Replacement Parts, with moderate interest in Motorcycle & Powersports, Exterior Accessories, and Interior Accessories, while showing minimal engagement in Lights & Lighting Accessories, Tires & Wheels, Tools & Equipment, Car Care, and RV Parts & Accessories.
Cluster_8	Co-purchased by people who heavily favor Tires & Wheels, followed by Replacement Parts, with moderate engagement in Motorcycle & Powersports, Exterior Accessories, and Interior Accessories, while showing minimal interest in Lights & Lighting Accessories, Tools & Equipment, Car Care, RV Parts & Accessories, and Paint & Paint Supplies.
Cluster_9	Co-purchased by people who primarily buy Tools & Equipment, followed by Replacement Parts, with moderate engagement in Motorcycle & Powersports, Exterior Accessories, and Interior Accessories, while showing minimal interest in Lights & Lighting Accessories, Tires & Wheels, Car Care, RV Parts & Accessories, and Paint & Paint Supplies.

863

864 A.2.5 DATASET: OFFICE PRODUCTS
865

866 Cluster	867 Edge Text Description
868 Cluster_0	869 Co-purchased by people who overwhelmingly buy Office & School 870 Supplies, with much lower engagement in Office Electronics and Office 871 Furniture & Lighting, and minimal interest in Education Store, Brother 872 Remf Ink & Toner, Office Organization, Brands, Office Supplies 873 Outlet, Leather Bags, and promotional discounts.
874 Cluster_1	875 Co-purchased by people who primarily buy Office Electronics, 876 followed closely by Office & School Supplies, with moderate 877 engagement in Office Furniture & Lighting, while showing minimal 878 interest in Education Store, Brother Remf Ink & Toner, Office 879 Organization, Brands, Office Supplies Outlet, Leather Bags, and 880 promotional discounts.
881 Cluster_2	882 Co-purchased by people who strongly prefer promotional discounts 883 (e.g., Elmers, Sharpie), followed by Office & School Supplies, with 884 moderate interest in Office Electronics and Office Furniture & 885 Lighting, while showing no engagement in Education Store, Office 886 Supplies Outlet, Brands, Office Organization, Brother Remf Ink & 887 Toner, or Leather Bags.
888 Cluster_3	889 Co-purchased by people who heavily favor Office Furniture & 890 Lighting, followed by Office & School Supplies, with moderate 891 engagement in Office Electronics, while showing minimal interest in 892 Education Store, Brother Remf Ink & Toner, Office Organization, 893 Office Supplies Outlet, Brands, Leather Bags, and promotional 894 discounts.
895 Cluster_4	896 Co-purchased by people who primarily buy Brother Remf Ink & Toner, 897 followed by Office & School Supplies, with moderate interest in Office 898 Electronics and Office Furniture & Lighting, while showing minimal 899 engagement in Education Store, Office Supplies Outlet, Brands, Office 900 Organization, promotional discounts, and Leather Bags.
901 Cluster_5	902 Co-purchased by people who heavily favor Leather Bags, followed by 903 Office & School Supplies, with moderate interest in Office Electronics 904 and Office Furniture & Lighting, while showing minimal engagement 905 in Education Store, Brands, Office Supplies Outlet, Office 906 Organization, Brother Remf Ink & Toner, and promotional discounts.
907 Cluster_6	908 Co-purchased by people who strongly prefer Office Supplies Outlet, 909 followed by Office & School Supplies, with moderate engagement in 910 Office Electronics and Office Furniture & Lighting, while showing 911 minimal interest in Education Store, Brands, Office Organization, 912 Brother Remf Ink & Toner, promotional discounts, and Leather Bags.
913 Cluster_7	914 Co-purchased by people who primarily buy Office & School Supplies 915 and Brands, with moderate engagement in Office Electronics and 916 Office Furniture & Lighting, while showing minimal interest in 917 Education Store, Office Supplies Outlet, Office Organization, Brother 918 Remf Ink & Toner, promotional discounts, and Leather Bags.
919 Cluster_8	920 Co-purchased by people who heavily favor Office & School Supplies 921 and Office Organization, with moderate engagement in Office 922 Electronics and Office Furniture & Lighting, while showing minimal 923 interest in Education Store, Office Supplies Outlet, Brands, Brother 924 Remf Ink & Toner, promotional discounts, and Leather Bags.

918	Cluster	Edge Text Description
919	Cluster_9	Co-purchased by people who primarily buy from the Education Store, followed by Office & School Supplies, with moderate engagement in Office Electronics and Office Furniture & Lighting, while showing no interest in promotional discounts, Brother Remf Ink & Toner, Office Supplies Outlet, Brands, Office Organization, or Leather Bags.

925
926
927 A.2.6 DATASET: PET SUPPLIES

928	Cluster	Edge Text Description
929	Cluster_0	Co-purchased by people who primarily buy Cats and Dogs, with moderate engagement in Fish & Aquatic Pets and Birds, while showing minimal interest in Small Animals, Horses, Reptiles & Amphibians, Top Dog Supplies, Top Cat Supplies, and Top Selection from AmazonPets.
930	Cluster_1	Co-purchased by people who overwhelmingly buy Dogs, with significantly lower engagement in Cats and Fish & Aquatic Pets, while showing minimal interest in Birds, Small Animals, Horses, Reptiles & Amphibians, Top Dog Supplies, Top Cat Supplies, and Top Selection from AmazonPets.
931	Cluster_2	Co-purchased by people who heavily favor Birds, followed by Dogs and Cats, with moderate engagement in Fish & Aquatic Pets, while showing minimal interest in Small Animals, Horses, Reptiles & Amphibians, Top Dog Supplies, Top Cat Supplies, and Top Selection from AmazonPets.
932	Cluster_3	Co-purchased by people who primarily buy Fish & Aquatic Pets and Dogs, with moderate engagement in Cats, while showing minimal interest in Birds, Small Animals, Horses, Reptiles & Amphibians, Top Dog Supplies, Top Cat Supplies, and Top Selection from AmazonPets.
933	Cluster_4	Co-purchased by people who heavily favor Horses, followed by Dogs and Cats, with moderate engagement in Fish & Aquatic Pets and Birds, while showing minimal interest in Small Animals, Reptiles & Amphibians, Top Dog Supplies, Top Cat Supplies, and Top Selection from AmazonPets.
934	Cluster_5	Co-purchased by people who primarily buy Top Selection from AmazonPets, followed by Dogs and Cats, with moderate engagement in Fish & Aquatic Pets and Birds, while showing minimal interest in Small Animals, Horses, Reptiles & Amphibians, Top Dog Supplies, and Top Cat Supplies.
935	Cluster_6	Co-purchased by people who heavily favor Small Animals, followed by Dogs and Cats, with moderate engagement in Fish & Aquatic Pets and Birds, while showing minimal interest in Horses, Reptiles & Amphibians, Top Dog Supplies, Top Cat Supplies, and Top Selection from AmazonPets.
936	Cluster_7	Co-purchased by people who primarily buy Reptiles & Amphibians, followed by Dogs and Cats, with moderate engagement in Fish & Aquatic Pets and Birds, while showing minimal interest in Small Animals, Horses, Top Dog Supplies, Top Cat Supplies, and Top Selection from AmazonPets.

969
970
971

972	Cluster	Edge Text Description
973	Cluster_8	Co-purchased by people who heavily favor Top Cat Supplies, followed by Dogs and Cats, with moderate engagement in Fish & Aquatic Pets and Birds, while showing minimal interest in Small Animals, Horses, Reptiles & Amphibians, Top Dog Supplies, and Top Selection from AmazonPets.
974	Cluster_9	Co-purchased by people who primarily buy Top Dog Supplies, followed by Dogs and Cats, with moderate engagement in Fish & Aquatic Pets and Birds, while showing minimal interest in Small Animals, Horses, Reptiles & Amphibians, Top Selection from AmazonPets, and Top Cat Supplies.

A.2.7 DATASET: SPORTS

985	Cluster	Edge Text Description
986	Cluster_0	Co-purchased by people who primarily buy Sports & Outdoor Recreation Accessories, along with Sports, Exercise & Fitness, and Outdoor Recreation, while showing lower engagement in Fan Shop and Hunting & Fishing, and minimal interest in Clothing, Sports Medicine, Memorabilia Display & Storage, and Tennis & Racket.
987	Cluster_1	Co-purchased by people who overwhelmingly favor Sports, with significantly lower interest in Outdoor Recreation, Sports & Outdoor Recreation Accessories, Exercise & Fitness, Fan Shop, Hunting & Fishing, Clothing, Sports Medicine, Memorabilia Display & Storage, and Tennis & Racket.
988	Cluster_2	Co-purchased by people who strongly prefer Tennis & Racket, while also buying Sports, Outdoor Recreation, Exercise & Fitness, Fan Shop, and Sports & Outdoor Recreation Accessories, with moderate interest in Hunting & Fishing and Clothing, and minimal interest in Sports Medicine and Memorabilia Display & Storage.
989	Cluster_3	Co-purchased by people who heavily favor Outdoor Recreation, with secondary but lower preference for Sports, and minor engagement in Sports & Outdoor Recreation Accessories, Fan Shop, Exercise & Fitness, and Hunting & Fishing, while showing almost no interest in Clothing, Sports Medicine, Memorabilia Display & Storage, and Tennis & Racket.
990	Cluster_4	Co-purchased by people who strongly favor Clothing, with balanced interest in Outdoor Recreation, Exercise & Fitness, Sports, Fan Shop, and Sports & Outdoor Recreation Accessories, while showing low purchases in Hunting & Fishing and negligible interest in Sports Medicine, Memorabilia Display & Storage, and Tennis & Racket.
991	Cluster_5	Co-purchased by people who dominantly prefer Fan Shop, followed by Sports, Outdoor Recreation, Exercise & Fitness, and Hunting & Fishing, while showing almost no interest in Sports & Outdoor Recreation Accessories, Clothing, Sports Medicine, Memorabilia Display & Storage, and Tennis & Racket.
992	Cluster_6	Co-purchased by people who are highly engaged in Memorabilia Display & Storage, together with Sports, Fan Shop, Outdoor Recreation, Exercise & Fitness, Hunting & Fishing, and Sports & Outdoor Recreation Accessories, while showing relatively low purchases of Clothing, Sports Medicine, and no interest in Tennis & Racket.

1026	Cluster	Edge Text Description
1027	Cluster_7	Co-purchased by people who overwhelmingly buy Hunting & Fishing, along with Outdoor Recreation, Sports, and Exercise & Fitness, while showing significantly lower interest in Sports & Outdoor Recreation Accessories, Fan Shop, Clothing, Sports Medicine, Memorabilia Display & Storage, and Tennis & Racket.
1028	Cluster_8	Co-purchased by people who show a striking preference for Sports Medicine, with secondary interest in Sports, Outdoor Recreation, Exercise & Fitness, Fan Shop, Sports & Outdoor Recreation Accessories, and Hunting & Fishing, while showing minimal interest in Clothing, and no purchases in Memorabilia Display & Storage or Tennis & Racket.
1029	Cluster_9	Co-purchased by people who primarily buy Exercise & Fitness, followed by Sports, Outdoor Recreation, Sports & Outdoor Recreation Accessories, and Fan Shop, while showing minimal interest in Hunting & Fishing, Clothing, Sports Medicine, Memorabilia Display & Storage, and Tennis & Racket.
1030		
1031		
1032		
1033		
1034		
1035		
1036		
1037		
1038		
1039		
1040		
1041		
1042		
1043		
1044		
1045		
1046		
1047		
1048		
1049		
1050		
1051		
1052		
1053		
1054		
1055		
1056		
1057		
1058		
1059		
1060		
1061		
1062		
1063		
1064		
1065		
1066		
1067		
1068		
1069		
1070		
1071		
1072		
1073		
1074		
1075		
1076		
1077		
1078		
1079		

A.2.8 DATASET: GOODREADS

1049	Cluster	Edge Text Description
1050	Cluster_0	Co-read mostly by people whose primary interest is Children's literature, while Fantasy & Paranormal frequently appears as a secondary theme.
1051	Cluster_1	Co-read mainly by readers drawn to Comics & Graphic works, with History & Biography often forming a complementary interest.
1052	Cluster_2	Frequently co-read by those immersed in Fantasy & Paranormal, who also tend to branch into Mystery, Thriller & Crime.
1053	Cluster_3	Predominantly co-read by readers focused on History & Biography, who also show a marked tendency toward Mystery, Thriller & Crime.
1054	Cluster_4	Typically co-read by people with a strong taste for Mystery, Thriller & Crime, while Romance emerges as a notable accompanying category.
1055	Cluster_5	Commonly co-read by readers who appreciate Poetry, with History & Biography serving as a frequent additional interest.
1056	Cluster_6	Co-read largely by readers whose core preference lies in Romance, and who often extend their engagement into Young Adult literature.
1057	Cluster_7	Co-read primarily by readers centered on Young Adult, with Romance frequently appearing as a closely associated genre.
1058		
1059		
1060		
1061		
1062		
1063		
1064		
1065		
1066		
1067		
1068		
1069		
1070		
1071		
1072		
1073		
1074		
1075		
1076		
1077		
1078		
1079		