
Under review as a conference paper at ICLR 2023

KNOWLEDGE UNLEARNING FOR MITIGATING
PRIVACY RISKS IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretrained Language Models (LMs) memorize a vast amount of knowledge during
initial pretraining, including information that may violate the privacy of personal
lives and identities. Previous work addressing privacy issues for language mod-
els has mostly focused on data preprocessing and differential privacy methods,
both requiring re-training the underlying LM. We propose knowledge unlearning
as an alternative method to reduce privacy risks for LMs post hoc. We show that
simply applying the unlikelihood training objective to target token sequences is
effective at forgetting them with little to no degradation of general language mod-
eling performances for larger LMs; it sometimes even substantially improves the
underlying LM with just a few iterations. We also find that sequential unlearning
is better than trying to unlearn all the data at once and that unlearning is highly
dependent on which kind of data (domain) is forgotten. By showing comparisons
with a previous data preprocessing method and decoding method known to miti-
gate privacy risks for LMs, we show that unlearning can give a strong empirical
privacy guarantee in scenarios where the data vulnerable to extraction attacks are
known a priori while being orders of magnitude more computationally efficient
and robust. We release the code and dataset needed to replicate our results at
http://www.omitted.link/.

1 INTRODUCTION

Recent work has shown that an adversary can extract training data from Pretrained Language Mod-
els (LMs) including Personally Identifiable Information (PII) such as names, phone numbers, and
email addresses, and other information such as licensed code, private clinical notes, and 128-bit
UUIDs (Carlini et al., 2021; Lee et al., 2022; Huang et al., 2022; Lehman et al., 2021). In 2021, an
AI chatbot Iruda became the first AI system to be sued for violating the Personal Information Protec-
tion Act after generating the exact home addresses and bank account numbers of actual individuals
unintentionally (Park, 2021). Heikkilä (2022) has also shown that GPT-3 (Brown et al., 2020), one
of the most well known LM currently in commercial use, offered detailed private information about
the Editor-in-Chief of MIT Technology Review including his family members, work address, and
phone number. Considering findings that show extracting training data gets easier as LMs scale to
larger sizes (Carlini et al., 2022a) and that it is common practice for practitioners to release billion
parameter pretrained LMs for public use (Gao et al., 2020; Black et al., 2021; Zhang et al., 2022), it
has become important to provide privacy guarantees for large LMs.

Practitioners are required to delete personal information from the LMs by individuals’ request be-
cause each individual has the “Right To Be Forgotten (RTBF)” (Mantelero, 2013; Graves et al.,
2021) and can limit the direct and indirect commercial use of their personal information (Villaronga
et al., 2018). Previous methods addressing privacy risks for language models attempt to remove all
private information from the training data (data preprocessing) (Aura et al., 2006; Dernoncourt et al.,
2017; Lison et al., 2021; Kandpal et al., 2022) or attempt to design algorithms that ensure differen-
tial privacy (DP) (Dwork, 2008; Dwork et al., 2006; Abadi et al., 2016; Anil et al., 2021; Li et al.,
2022; Yu et al., 2022). Both approaches require retraining the underlying LM every time individuals
want to practice their RTBF, which makess them inadequate for large LMs that are extremely costly
to retrain. Furthermore, as pointed out by Brown et al. (2022), data preprocessing methods assume
private information to be easily identifiable, specified, and removed and DP algorithms can only
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Figure 1: Comparison of previous approaches and knowledge unlearning when an individual practices his/her
Right-To-Be-Forgotten (RTBF).

guarantee protection for information that has clear privacy borders, which make them inadequate in
the real-world scenarios where the standard of privacy might differ by each individuals.

To this end, we propose knowledge unlearning (Figure 1) as an efficient solution that can be applied
with just a few parameter updates instead of pretraining the underlying LM again. We perform ex-
periments on GPT-Neo LMs (125M, 1.3B, 2.7B) (Black et al., 2021) and show that simply changing
the gradient descent to the opposite direction during language modeling (which can also be seen as
maximizing instead of minimizing the loss function) is effective at protecting target sequences from
extraction attacks with little to no performance degradation on the initial LM capabilities measured
via 9 common NLP classification benchmarks (Hellaswag (Zellers et al., 2019), Lambada (Paperno
et al., 2016), Winogrande (Sakaguchi et al., 2021), COPA (Gordon et al., 2012), ARC-Easy (Clark
et al., 2018), ARC-Challenge (Clark et al., 2018), Piqa (Bisk et al., 2020), MathQA (Amini et al.,
2019), and PubmedQA (Jin et al., 2019)) and 4 dialogue tasks (Wizard of Wikipedia (Dinan et al.,
2019), Empathetic Dialogues (Rashkin et al., 2019), Blended Skill Talk (Smith et al., 2020), and
Wizard of Internet (Komeili et al., 2022)). For some cases, knowledge unlearning unexpectedly
shows significant improvements in LM performance for some of the benchmarks.

We compare our approach with data deduplication method (Kandpal et al., 2022) and differential
privacy decoding method (Majmudar et al., 2022) which are both known to mitigate privacy risks,
and show the effectiveness of knowledge unlearning by providing a strong privacy protection while
being much more efficient and robust. We also provide a general guideline that can be used to
quantify the memorization and extraction likelihood of target token sequences and suggest when we
can empirically consider them to have been “forgotten”. Specifically, we introduce a novel metric
that measures the extraction likelihood by varying the prefix length of the target token sequence and
quantifying how much of the suffix is actually extracted from the LM.

Surprisingly, for knowledge unlearning, we find that it is easier to forget a chunk of instances se-
quentially rather than trying to forget them all at once. We provide further analysis and show that
the difficulty of knowledge unlearning depends heavily on the target data being forgotten, especially
the domain of the target data. We also provide empirical examples of performing extraction attacks
and how exactly knowledge unlearning provides a privacy protection for the LM.

To summarize, our main contributions are fourfold:

• We compare knowledge unlearning with two approaches from literature known to mitigate
privacy risks: a data preprocessing approach and a Differential Privacy (DP) Decoding ap-
proach. We show that our approach results in little to no performance degradation of gen-
eral capabilities (sometimes resulting in improvement) while providing a strong privacy
protections in situations individuals practice their RTBF whereas the data preprocessing
approach provides a weaker privacy protection while being orders of magnitude compu-
tationally demanding and the DP Decoding approach results in a severe degradation of
modeling performance.
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• We perform additional experiments to determine which factors contribute to the difficulty
of knowledge unlearning and find that (1) trying to forget many samples at once results in
substantial LM performance degradation which can be mitigated by sequentially forgetting
chunks of data and that (2) the domain of the target data (Code, License, Wikipedia, etc.)
plays a critical role in determining how hard they are to forget.

• We provide a novel metric and a general guideline for quantifying the privacy risks for LMs
and determine when they should be considered to have “forgotten” a given target sequence.

• Knowledge unlearning surprisingly seems to make LMs stronger where the extreme cases
bring +8.0% (37.6% → 45.6%), +10.1% (57.4% → 67.5%), and +7.9% (62.2% → 70.1%)
improvements on Lambada for GPT-NEO 125M, 1.3B, and 2.7B, respectively.

2 RELATED WORK

2.1 PRIVACY METHODS FOR LANGUAGE MODELS

Prior work that tries to mitigate privacy risks for LMs can be divided mainly into data pre/post-
processing methods and differential privacy methods.

(Data) Pre/Post-Processing Data preprocessing aims to sanitize the training data; it aims to get
rid of all data that might violate any kind of privacy from the training data prior to training. These
methods mostly utilize measures such as parsers and classification models that try to identify and
predict patterns that constitute private information. This is effective at identifying well-formatted
private information such as social security numbers or special forms of medical notes (Aura et al.,
2006; Dernoncourt et al., 2017; Lison et al., 2021; Kandpal et al., 2022). However, as pointed out by
Brown et al. (2022), considering that private information is mostly context-dependent and sometimes
in a non-specific format, data preprocessing methods cannot fully claim that they provide privacy
guarantees, especially guarantees that match each individual’s standards. Methods that attempt to
utilize post-processing methods such as applying censorship to the LM outputs still face the same
limitations.

In this work, we compare our proposed method with a data preprocessing approach proposed by
Kandpal et al. (2022) which shows that deduplicating the training corpora before pretraining helps
pretrain LMs that show stronger robustness against extraction attacks than an LM pretrained under
the same circumstances without deduplicating the pretraining corpora. However, we highlight that
this approach, which may still be effective at mitigating the overall privacy risks, is not the most
suitable approach when considering a realistic scenario of individuals requesting the removal of
their information from the implicit parameters of the LMs.

Differential Privacy Differential Privacy (DP) aims to guarantee that the effect of an individual
input on the output of a specific function is bounded (Dwork, 2008; Dwork et al., 2006). In the
context of deep neural networks, DP, which needs to be applied during the training phase, aims
to construct models that can provide general guarantees that the individual information within the
training data cannot be inferred (Abadi et al., 2016). While DP has shown to be surprisingly ef-
fective at fine-tuning LMs (Li et al., 2022; Yu et al., 2022), pretraining LMs with DP still suffers
from substantial performance gap, expensive computation, and slow convergence (Anil et al., 2021).
Furthermore, as pointed out by Brown et al. (2022), DP can only provide limited guarantees for LMs
because DP requires a unified definition for privacy boundaries, which is inherently impossible for
natural language data. Most importantly, in a realistic scenario where individuals may practice their
Right-To-Be-Forgotten (RTBF) dynamically after model deployment, it is nontrivial to apply ex-
isting descent-based DP algorithms such as DP-SGD to only protection against targeted extraction
attacks.

2.2 MACHINE UNLEARNING

Machine unlearning has received attention as an alternative approach to overcome data privacy issues
in machine learning (Cao & Yang, 2015; Ginart et al., 2019; Bourtoule et al., 2021; Graves et al.,
2021). Several studies attempt to explore machine unlearning for deep neural networks (Golatkar
et al., 2020; Mehta et al., 2022). However, they mostly focus on proposing algorithms for image
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classification models where they aim to forget a whole class; that is, achieve random performance
for specific image classes such as “cats” or “ships”. We are the first, to the best of our knowledge,
to explore unlearning a specific sequence of tokens for LMs which is a quite different set-up from
traditional image classification models (∼tens of image classes vs. a sequence of tokens that can
each be classified into V ∈ R∼50,000). In this work, we coin this approach as knowledge unlearning
since we are more focused on forgetting specific knowledge represented by sequences of tokens.

Zhou et al. (2022) focus on how forgetting can be leveraged to improve the performance of the un-
derlying model. They propose “forget-and-relearn” that unifies existing iterative training algorithms
by selectively removing undesirable information and re-learning good features, helping boost per-
formance for the task of image classification and multi-agent emergence communication. The un-
derlying assumption is that it is often easier to define and stop unwanted behavior than to teach good
behavior. We also show this phenomenon in Section 4 where we unintentionally find unlearning just
a few sequences of tokens sometimes boosts general LM capabilities.

2.3 MEMORIZATION IN LANGUAGE MODELS

Previous work that explores to which extent LMs have memorized their training data approach the
phenomenon with two different viewpoints. Some work view memorization of LMs simply as a
threat to individual privacy (Carlini et al., 2021; 2022a; Jagielski et al., 2022) and utilize metrics
that quantify how much the LMs are susceptible to adversarial attacks. These metrics are mostly
dependent on the specific types of attacks such as the membership inference attack (Shokri et al.,
2017) and measure the privacy risks of LMs by quantifying the success rate of these attacks. In our
work, we instead focus on more targeted extraction attacks.

Another line of work simply quantifies how much knowledge is accumulated and forgotten during
pretraining by extracting relational knowledge about the world (Petroni et al., 2019; Lazaridou et al.,
2021; Jang et al., 2022b;a). This line of work does not view memorization as a negative trait, but as
a positive one that can be leveraged to extract world knowledge from its implicit parameters and per-
form knowledge-intensive tasks such as question answering or training knowledgeable conversation
agents.

Our work is highly related to Jagielski et al. (2022)’s work where they also assert that forgetting
can be a relaxed version of differential privacy. However, there are two main differences between
our work and theirs. First, they only analyze forgetting as a passive form of mitigating privacy,
asserting that data seen early in large-scale training obtain privacy benefits, whereas we suggest a
more active form of forgetting. Second, they only show analysis results with image classification
and audio generation models while we specifically focus on large LMs.

3 KNOWLEDGE UNLEARNING FOR LANGUAGE MODELS

3.1 METHODOLOGY

We propose simply negating the original training objective of minimizing the negative log-likelihood
of the token sequences as our main method of knowledge unlearning in LMs. Specifically, given
a sequence of tokens x = (x1, ..., xT ), our unlearning training objective is simply maximizing the
following loss function:

LUL(fθ,x) = −
T∑

t=1

log(pθ(xt|x<t)) (1)

where x<t denotes the token sequence x = (x1, ..., xt−1) and pθ(xt|x<t) denotes the conditional
probability of predicting the next token to be xt when given x<t to an LM f with parameters θ.

Prior work refer to this training objective as unlikelihood training and combines it together with the
original loss of minimizing the negative log-likelihood for the final objective of enhancing language
modeling quality (Welleck et al., 2020) and few-shot learning for downstream NLP tasks (Tam
et al., 2021). In contrast, we simply optimize the unlikelihood training objective since we are only
concerned with forgetting. While this method seems simple, it is highly effective at forgetting
specific token sequences without affecting the overall LM capabilities as shown in Section 4.
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3.2 QUANTIFYING PRIVACY RISKS OF LANGUAGE MODELS

In this subsection, we introduce two metrics we use to quantify the privacy risks given a specific
token sequence and how we empirically define the token sequence to be forgotten. In this work, we
do not utilize metrics such as membership inference attack recall (Shokri et al., 2017) since we are
not interested in quantifying the general privacy risks of LMs, but instead the privacy risks on the
specific target token sequences.

Extraction Likelihood (EL) We first introduce a new metric, EL. Given a sequence of tokens
x = (x1, ..., xT ) and an LM f with pre-trained parameters θ, we define EL to be as follows:

ELn(x) =

∑T−n
t=1 OVERLAPn(fθ(x<t), x≥t)

T − n
(2)

OVERLAPn(a, b) =

∑
c∈n-grams(a) 1{c ∈ n-grams(b)}

|n-grams(a)|
(3)

where n-grams() denotes the list of n-grams in the given token sequence and fθ(x<t) denotes the
output token sequences from the LM fθ when given x<t as input that can have max lengths |x≥t|
but may be shorter when the EOS (end-of-sequence) token is generated beforehand.

The process of varying the prefix length |x<t| can be seen as varying the strength of adversarial
attacks. This is based on the assumption that the more prior information is provided about the
target token sequence, the easier the LM will be able to extract it. Overall, EL can be seen as
estimating the general extraction likelihood since we are measuring the average success rate of
varying extraction attacks quantified via getting the n-gram overlap of generated and target token
sequences. While previous metrics quantifying the privacy risks of LMs are dependent on specific
adversarial attacks, this characteristic of EL allows it to quantify the general likelihood of extraction
without any dependency on specific extraction attacks.

We regard n to be a hyper-parameter that can be varied depending on the stringency of privacy
standards. The higher n is set, the stricter we set the standard for a successful extraction attack.

Memorization Accuracy (MA) We define Memorization Accuracy (MA) as follows:

MA(x) =

∑T−1
t=1 1{ argmax(pθ(·|x<t)) = xt}

T − 1
(4)

MA quantifies how much fθ has memorized the given token sequences and was proposed by Tiru-
mala et al. (2022) to analyze the training dynamics of large LMs.

Empirical Definition of Forgetting By utilizing both ELn and MA, we empirically define a spe-
cific token sequence x to be forgotten and is no longer susceptible to extraction attacks when the
following conditions are met:

ELn(x) ≤
1

|D′|
∑

x′∈D′

ELn(x
′) and MA(x) ≤ 1

|D′|
∑

x′∈D′

MA(x′) (5)

where D′ represents a validation corpora not seen during training. In other words, we define x to be
forgotten when the ELn(x) and MA(x) reach a value that is lower than the average ELn and MA
on token sequences that were not seen during training.

4 EXPERIMENTS

4.1 MODELS, DATASETS, AND CONFIGURATIONS

Baselines For the experiments, we use the GPT-NEO (125M, 1.3B, 2.7B) LMs (Black et al., 2021)
initially pretrained on all of the Pile corpora (825GB) (Gao et al., 2020), and the OPT (125M, 1.3B,
2.7B) LMs (Zhang et al., 2022), pretrained on a subset of the deduplicated version of the Pile as well
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as other corpora from different domains. For the experiments, we perform unlearning the GPT-NEO
LMs and quantify the privacy risks of the target data compared to the OPT LMs to measure how
effective our proposed approach is in contrast to deduplicating the training corpora before pretraining
the underlying LM Kandpal et al. (2022). We do not use the exact LMs from Kandpal et al. (2022)
because the LMs were not open-sourced, and thus use the OPT LMs instead. We also consider the
Differential Privacy (DP) Decoding (Majmudar et al., 2022) as one of the baselines; This approach
proposes a decoding strategy that performs linear interpolation of the original logits with the uniform
distribution and performs nucleus sampling, which they theoretically show provides DP guarantees.
λ is set as the linear interpolation weight where λ = 0 performs nucleus sampling from the uniform
distribution and λ = 1 performs regular nucleus sampling, using the logits as weights during random
sampling.

Target Data For the actual target data used to quantify the privacy risks of the LMs, we sample
instances from the Training Data Extraction Challenge 1 where 15,000 examples (each are 200 token
sequences long) from 16 different domains of the Pile corpora that are identified to be somewhat
easy-to-extract are provided. For our experiments, we randomly sample s samples from the 15,000
examples and make the underlying LM forget the s samples at once. As a default, we show the
average results of 5 random samplings of s samples for all of our experimental settings. We only
provide the average of the 5 samplings and do not separately report the standard deviation. Instead,
we provide the results of each individual run in Appendix A.

Evaluation Datasets Provding stronger privacy protections for LMs may become meaningless
if it requires sacrificing their original capabilities. Thus, while quantifying the privacy risks of
LMs, we also quantify the original LM capabilities by evaluating the LMs on 9 different clas-
sification tasks quantifying the general capabilities: Hellaswag (Zellers et al., 2019) and Lam-
bada (Paperno et al., 2016) benchmarks to measure linguistic reasoning abilities, Winogrande (Sak-
aguchi et al., 2021) and COPA (Gordon et al., 2012) to measure commonsense reasoning abilities,
and ARC-Easy (Clark et al., 2018), ARC-Challenge (Clark et al., 2018), Piqa (Bisk et al., 2020),
MathQA (Amini et al., 2019), PubmedQA (Jin et al., 2019) benchmarks to measure the scientific
reasoning abilities. We also evaluate on 4 dialogue tasks (Wizard of Wikipedia (Dinan et al., 2019),
Empathetic Dialogues (Rashkin et al., 2019), Blended Skill Talk (Smith et al., 2020), and Wizard
of Internet (Komeili et al., 2022)) to evaluate the generation capabilities of the LMs. We use the
test set for Lambada and the validation set for the rest of the datasets. We also show the results of
measuring the perplexity on the validation corpora of Pile and Wikitext in Appendix B. We do not
include measuring perplexity as one of the main evaluations because perplexity might not be the
most suitable metric for quantifying general LM performance, especially in the case of unlearning
(further explanation given in Appendix B. We evaluate DP Decoding only on the 4 dialogue tasks
because the decoding strategy cannot be applied for performing the classification tasks which is
evaluated by utilizing a verbalizer.

Configurations For the learning rate, we set it to 5e-5. We show the effect of varying learning
rates in Appendix D. We use a constant learning rate scheduling throughout the run. We fix the
global batch size to be the same as s (how many samples are forgotten at once) because having
global batch sizes smaller than s proved to degrade general LM capabilities 2. For ELn, we set n=10
which means EL measures the extraction likelihood of extracting n consecutive tokens of varying
extraction attack 3. For calculating EL10 and MA, we use a naı̈ve greedy decoding strategy. We set
both the dropout and weight decay rates to 0. Lastly, while we provide a guideline of empirically
deciding a single token sequence to be forgotten in Section 3.2, for considering a chunk of s token
sequences to be forgotten, we use the average EL10 and MA as an approximation of the individual
EL10 and MA.

4.2 MAIN EXPERIMENTS

Forgetting Threshold First, we show how we get the Forgetting Threshold for EL10 and MA,
the values where we consider the token sequence to be forgotten and unsusceptible from extraction

1https://github.com/google-research/lm-extraction-benchmark
2In Section 4.3, We show that s plays a critical role in determining how much the unlearning will degrade in general capabilities of the

LM since s = 128 shows to result in much degradation. Method to mitigate this is proposed in Section 4.3 as well.
3We set the n value to 10 since we empirically consider an extraction to be successful when 10 consecutive token sequences are successfuly

generated by the LM. We show varying the n with values from [5,10,20,40] in Appendix H.
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Table 1: Forgetting Threshold for GPT-NEO LMs

Model (Size) EL10(%) MA(%)
Threshold Threshold

GPT-NEO (125M) 4.99 29.94

GPT-NEO (1.3B) 5.68 33.27

GPT-NEO (2.7B) 5.53 34.02

Table 2: Main Results showing the average of 5 random sampling of s = 32 (forgetting 32 samples at
once). OPT represents the LM with deduplication applied. NEO denotes the initial GPT-NEO LM, NEO +
DPD+ represents applying the DP Decoding strategy by varing the λ to match the forgetting criteria, NEO
+ UL represents performing unlearning on the initial NEO until it provides a stronger security for the target
sequences than OPT, NEO + UL+ represents performing unlearning on GPT-NEO until target sequences match
the forgetting criteria, LM Avg. denotes the average accuracy of the 9 classification datasets, and Dialogue Avg.
denotes the average F1 score of the 4 dialogue datasets. Best comparable performances are bolded and second
best underlined.

Model # EL10 MA LM Avg. Dialogue Avg. EpochParams (%) ↓ (%) ↓ (ACC) ↑ (F1) ↑

OPT 125M 8.6 52.9 42.4 10.2 -
NEO 125M 30.9 77.4 43.4 9.4 -
NEO + DPD+ 125M 0.0 27.4 N/A 7.3 -
NEO + UL 125M 3.7 50.1 42.6 8.0 11.0
NEO + UL+ 125M 1.0 27.4 39.9 2.6 17.2

OPT 1.3B 23.3 67.1 50.6 12.4 -
NEO 1.3B 67.6 92.2 49.8 11.5 -
NEO + DPD+ 1.3B 0.0 21.4 N/A 7.1 -
NEO + UL 1.3B 11.0 62.2 49.7 11.6 8.0
NEO + UL+ 1.3B 1.9 30.4 49.7 8.5 13.8

OPT 2.7B 25.6 69.2 52.7 12.9 -
NEO 2.7B 70.4 93.4 52.3 11.5 -
NEO + DPD+ 2.7B 0.0 24.2 N/A 6.9 -
NEO + UL 2.7B 13.0 66.0 52.3 12.5 5.4
NEO + UL+ 2.7B 1.6 31.0 51.9 11.1 10.8

attacks, for all model sizes of GPT-NEO LMs in Table 1. For D′, we perform weighted sampling
(same domain distribution as the Pile training corpora) of 10,000 instances each with token lengths
200 from the Pile validation corpora and measure the average EL10 and MA (Equation 5), which
are empirically set as the Forgetting Threshold values.

Main Results Table 2 shows the main results of performing unlearning on LMs of varying sizes
and the baselines. While we provide the average performances of the 5 random samplings in Table
2, we provide each individual runs in Appendix A for reference.

We highlight five main observations regarding the results. (1) OPT LMs show a much lower EL10

and MA than GPT-NEO LMs, confirming that deduplicating the pretraining corpora is indeed help-
ful for mitigating privacy risks. (2) NEO + DPD+ enables effective protection against extraction
attacks demonstrated via the lowest EL and MA score; however, it brings severe degradation of
generation capabilities measured via the Average F1 score of the 4 dialogue generation tasks. (3)
NEO + UL+ results in severe degradation of both classification and dialogue tasks for the 125M,
only severe degradation of dialogue tasks for 1.3B LM while for the 2.7B LMs, it enables re-
taining most of its previous capabilities. (4) While the LMs scale to larger sizes, it takes fewer
epochs for the target sequences to be forgotten. Together with (3), this implies that larger LMs are
strong unlearners. (5) While NEO + UL+ provides a stronger privacy protection than OPT without
sacrificing its performance from NEO for the 2.7B LM, it is much more computationally efficient
(3,500,000x) than re-training the underlying LM, which is required for all data preprocessing ap-
proaches 4.

4Computational efficiency is measured via FLOPs which is calculated by (6 × Total Training Tokens × Parameter Size) as in Brown et al.
(2020). FLOPs for OPT LMs were estimated using information from Zhang et al. (2022). We provide the FLOPs for the methods in Appendix
C.
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Figure 2: Average LM performance on the 9 classification benchmarks when varying the total number of
samples forgotten at once is shown in (a) and the average LM performances when the 128 samples are divided
into 4 chunks and are forgotten sequentially is shown in (b). The lines denote the average performances of 5
random samplings and the standard deviation is shown as the shaded regions. The dotted lines in (b) denotes
the s = 128 performance in (a) for comparison purposes.

Overall, results show unlearning to be an effective approach to providing a strong privacy protection
while retaining and sometimes even improving general LM capabilities.

Sequential Unlearning is more Stable than Batch Unlearning. We show the effect of varying
s (the # of data instances to be forgotten at once) in Figure 2a across model scales. We denote this
approach as batch unlearning. As shown by the s = 128 results, it is harder to forget more samples
at once, resulting in substantial degradation of average LM performance regardless of how large the
LM is. Since s ≤ 32 does not show much degradation, we explore if sequentially unlearning can
be a solution. In Figure 2b, we show the result of dividing the 128 samples into 4 chunks of 32
and performing sequential unlearning; we unlearn each chunk at a time until the chunk reaches the
forgetting threshold. Surprisingly, as shown by the performance gap at s = 128 between the dotted
lines (the s = 128 performance of Figure 2a) and straight lines, the end result is vastly different
even though exactly the same instances were forgotten. Sequential unlearning shows almost no
degradation of average LM performance. In Appendix G, we show that chunks once forgotten stay
forgotten and that later chunks are forgotten much faster compared to the initial chunk. This result
hints at the generalization of unlearning, which we do not further explore in the scope of this work.
The result also suggests that knowledge unlearning can be continually applied to LMs when needed.

4.3 ANALYSIS OF KNOWLEDGE UNLEARNING

Providing Better Intuition of What Exactly Happens During Knowledge Unlearning. To
show exactly what happens to the LM during knowledge unlearning, we show how the performance
of each of the LM benchmarks changes as we perform 10 runs of unlearning to the GPT-NEO
(1.3B) model (each run with s = 1) in Figure 3. As shown in the figure, the LM performance for
each benchmark varies tremendously on which sample is chosen to be forgotten. Furthermore, the
ending time of each run is different, indicating that some samples are forgotten faster than others.
We also show empirical examples of performing actual extraction attacks with prefix length of 100
in Appendix F.

Towards Understanding Why Some Instances are Harder to Forget To measure why some
instances are harder to forget, we perform 5 random samplings of s = 8 from 8 different domains
from the Training Data Extraction Challenge 5 and perform unlearning on the GPT-NEO 1.3B
LM. We also show the results of each individual run in Appendix A. As shown in Table 3, despite
undergoing the same number of token updates (10 epochs of unlearning), different domains result
in vastly different outcomes; ENRON EMAILS results in the average LM performance degradation
of only -0.4% while USPTO BACKGROUNDS results in -4.5% degradation. Furthermore, the final
EL10 varies depending on the domain, suggesting that some domains (e.g., FREELAW) are harder to
forget than others. Lastly, domains that are more structured, which means the data consists of some
kind of patterns such as a list of emails (ENRON EMAILS) or code (GITHUB (CODE)), seem to result
in less degradation of LM performance in contrast to domains that are more unstructured, which
means the data consist of mostly raw English text such as a review for journal submission (PUBMED

5https://github.com/google-research/lm-extraction-benchmark
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Figure 3: Performance on the 9 classification benchmarks as we perform 10 different unlearning runs on GPT-
NEO 1.3B where s = 1.

Table 3: Unlearning GPT-NEO 1.3B on token sequences sampled from 8 different domains. We fix the epoch
to 10, set s = 8 and show the result of the average of 5 random samplings. Italicized () denotes the ∆ from
INITIAL.

Domains Initial Final Hella. Lamba. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg.
EL10 EL10 (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

INITIAL - - 37.0 57.4 54.9 70.0 56.6 25.8 70.4 21.9 53.8 49.8 (0.0)

FREELAW 60.4 12.1 37.2 52.2 53.9 68.4 55.5 26.2 70.1 21.7 53.5 48.7 (-1.1)
GIT. (CODE) 63.9 0.6 37.3 53.4 54.4 69.2 56.3 26.0 69.9 21.5 49.8 48.7 (-1.1)
GIT. (LICENSE) 75.8 0.0 37.1 52.0 54.2 69.0 56.4 26.4 70.1 21.8 51.8 48.8 (-1.0)
ENRON EMAILS 77.3 0.0 36.9 57.2 54.8 68.4 55.8 26.3 69.8 21.8 53.1 49.4 (-0.4)
BOOKS3 70.2 0.0 36.4 49.5 54.2 70.8 55.6 25.5 69.9 21.7 47.4 47.9 (-1.9)
PILE CC 67.8 0.0 35.7 45.9 53.8 70.4 54.2 26.9 69.7 21.8 52.0 47.8 (-2.0)
USPTO BACK. 59.4 0.0 33.7 44.7 53.5 67.0 45.9 24.0 67.0 21.5 50.3 45.3 (-4.5)
PUBMED CENT. 71.8 0.0 36.5 44.5 54.1 69.6 55.6 24.8 70.0 21.9 46.4 47.0 (-2.8)

CENTRAL). We provide examples from each domain in Appendix E. However, further analysis of
understanding exactly which components make unlearning work should be made in future work.

5 CLOSING

In this paper, we propose knowledge unlearning as a method for mitigating privacy risks in LMs
that provides a strong privacy protection with little to no degradation of general LM capabilities
measured by evaluating on 9 common LM classification benchmarks and 4 dialogue benchmarks
for the larger sized LMs. As large LMs expand their use cases, potentially affecting the daily lives
of people, the research community should make sure that the privacy of individuals is not violated
intentionally or unintentionally by the knowledge stored in the implicit parameters of these models.
Since it is inherently impossible to prevent and predict all future privacy concerns prior to pretrain-
ing the LM, we suggest the community consider knowledge unlearning for ensuring privacy upon
individuals’ requests post hoc pretraining. 6

6We provide some limitations of our work in Appendix I.
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A FULL RESULTS

We provide all of the results for the 5 random samplings for our main experimental setting in Table
4 and the full results for the domain analysis setting in Table 5. We also provide the evaluation of
the 4 dialogue tasks for s = 32 for all model sizes in Table 6

B MEASURING PILE AND WIKITEXT PERPLEXITY

Table 7 shows the results of measuring perplexity on 500 samples from the validation set of Pile and
Wikitext corpora on the LMs from the main experimental setting (Table 2). Results show that LMs
that underwent knowledge unlearning show higher perplexity while the main experimental table
(Table 2) does not show degradation of performance on 9 different LM benchmarks. We believe
the discrepancy to be due to the inherent attributes of performing unlearning: since we are doing
gradient ascent, we are likely softening the probability to generate each token from the vocabulary,
giving it a more uniform distribution that will inevitably result in a higher perplexity. However,
since it does not show much degradations in the LM benchmarks, it also means that the argmax of
the most likely token to be generated has not changed much. However, further exploration of what
exactly knowledge unlearning does to the representations of the LM should be done in future work.
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Figure 4: Varying the learning rate for unlearning the GPT-NEO 1.3B with s = 32. We report the average
of 3 random samplings and display the standard deviations as the shaded regions. Red dotted lines denote the
memorization accuracy forgetting threshold of the 1.3B model reported in Table 1.

C COMPUTATION COMPARISON BETWEEN DEDUPLICATION AND
KNOWLEDGE UNLEARNING

We show the FLOPs of pretraining OPT denoted as DEDUPLICATION and the average FLOPs of
performing knowledge unlearning until s = 32 token sequences reach the Forgetting Threshold
denoted as UNLEARNING in Table 8. We calculate FLOPs by (6 × Total Training Tokens × Parameter
Size) following Brown et al. (2020).

D VARYING THE LEARNING RATE

In Figure 4, we show the results of varying the learning rate for knowledge unlearning where we
fix the total epoch to 10 and perform 3 random runs with s = 32 on the GPT-NEO 1.3B. Overall,
we observe that higher learning rates lead to faster forgetting, but with substantial LM performance
degradation. While lower learning rates retain the LM performance, they fail to meet the Forgetting
Threshold within 10 epochs. Thus, we set the learning rate to 5e-5 for our experiments to get the
best trade-off.

14



Under review as a conference paper at ICLR 2023

0 3 6 9 12 15 18
Epochs

0

10

20

30

40

(a) 125M

0 3 6 9 12 15
Epochs

0

20

40

60

(b) 1.3B

0 2 4 6 8
Epochs

0

20

40

60

EL10 1
EL10 2
EL10 3
EL10 4
Avg. LM Performance

(c) 2.7B

Figure 5: Additional results of sequential unlearning for GPT-NEO 125M, 1.3B, and 2.7B. Red dotted lines
denote the memorization accuracy forgetting threshold reported of each model in Table 1.

E TEXT EXAMPLE FROM EACH DOMAIN

We show an example token sequence from each of the 8 domains used for the analysis section in
Table 9.

F MORE EXAMPLES OF PERFORMING EXTRACTION ATTACKS

In addition to the extraction attack example shown in the analysis section, we provide 3 additional
examples to provide readers with more empirical examples of how knowledge unlearning ensures
protection against extraction attacks in Table 10.

G ADDITIONAL RESULTS OF SEQUENTIAL KNOWLEDGE UNLEARNING

We show how the EL10 of each individual chunks and the average LM performance change as we
perform sequential unlearning in Figure 5. Results show that the chunks that are forgotten stay
forgotten and that later chunks are forgotten much faster (one or two epochs) compared to the initial
chunk. We hypothesize that this might be because of the similarity of the token sequences from the
15,000 examples from the Training Extraction Challenge Benchmark. Also, this result hints at the
generalization of unlearning, which we do not further explore because of the scope of this work.

H THE EFFECT OF VARYING N FOR EXTRACTION LIKELIHOOD (EL)
METRIC

First we show the Extraction Liklihood (EL) Forgetting Threshold values for n=[5,10,20,40] by
measuring the value on the 10,000 validation instances unseen during training in Table 11. Next,
we show the average LM performance (on the 9 classification benchmarks) where we perform un-
learning on the LM on 32 samples until the target token sequences are forgotten (the EL MA value
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are both lower than the threshold values) in Table 12. Performance shows the average of 5 random
samplings.

I LIMITATIONS

While we provide privacy guarantee through unlearning, our Forgetting Threshold is dependent on
which data samples are chosen as D′. Furthermore, varying the prefix length can be seen as a naı̈ve
way of varying the strength of the extraction attacks. In a real-world scenario, extraction attacks
may be more complicated and may require other prevention methods. Also, we could not directly
compare our approach with a Differential Privacy (DP) (Anil et al., 2021) approach because there are
no open-sourced LMs pretrained with a DP algorithm. We could not replicate the pretrainig phase
because of the heavy computational resources needed to pretrain an LM with DP which is estimated
to require thousands of GPU hours. We leave this comparison for future work. Finally, a recent
work (Carlini et al., 2022b) has suggested that machine unlearning (for the vision domain) can bring
negative effects harming the privacy of other users. Future work should explore this phenomenon in
the setting of performing unlearning on large language models as well.
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Table 4: All of the individual runs for the Main Results

Model (s) # EL10 MA Hella. Lamba. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg. EpochParams (%) ↓ (%) ↓ (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

NEO 125M 30.9 77.4 28.2 37.6 51.8 62.0 45.6 22.0 63.3 22.5 57.6 43.4 -
∆ - - - +0.2 +8.0 +1.9 +5.0 +0.0 +2.2 +0.0 +0.3 +0.0 +2.0 -

NEO + UL+ (s = 1)

125M 3.1 28.1 28.1 41.0 52.5 62.0 43.2 21.0 63.0 22.8 57.6 43.5 14.0
125M 0.0 27.6 28.1 24.9 50.8 67.0 42.3 23.7 62.8 21.9 57.6 42.1 10.0
125M 0.0 27.1 28.1 42.1 52.5 63.0 44.1 20.3 62.6 22.5 57.6 43.7 5.0
125M 0.0 25.6 28.2 44.9 52.0 62.0 41.8 21.4 62.6 22.2 57.6 43.6 11.0
125M 0.0 28.1 28.4 33.9 51.5 66.0 44.8 21.7 62.8 22.3 57.6 43.2 10.0

NEO + UL+ (s = 4)

125M 0.9 28.8 27.8 44.1 51.9 52.0 37.4 19.7 60.5 22.3 57.6 41.5 16.0
125M 0.0 28.6 27.4 2.5 49.4 59.0 38.6 23.1 60.5 21.2 43.8 36.2 19.0
125M 3.6 28.8 27.7 33.4 51.8 55.0 37.7 21.0 61.0 22.3 57.6 40.8 20.0
125M 2.6 28.9 27.6 29.9 52.4 50.0 36.5 19.0 60.3 22.2 57.6 39.5 18.0
125M 0.0 28.4 27.6 6.7 49.7 61.0 42.5 22.7 61.0 21.4 50.6 38.1 16.0

NEO + UL+ (s = 8)

125M 0.0 28.5 27.6 35.0 51.8 51.0 37.6 18.0 60.1 22.4 57.6 40.1 16.0
125M 2.2 28.1 27.7 5.4 49.6 62.0 40.6 21.0 61.2 21.8 52.4 38.0 19.0
125M 0.3 29.6 28.0 41.2 52.2 55.0 40.2 21.4 61.0 21.9 57.6 42.0 18.0
125M 5.0 25.3 27.4 1.3 49.6 65.0 37.6 24.4 59.2 21.2 33.8 35.5 23.0
125M 0.0 28.2 27.9 5.3 50.5 61.0 41.6 22.4 60.7 21.5 51.4 38.0 18.0

NEO + UL+ (s = 32)

125M 0.3 28.4 27.2 42.3 53.7 56.0 38.1 21.0 59.7 22.4 57.6 42.0 20.0
125M 0.8 27.1 27.0 17.1 52.4 53.0 34.0 20.0 59.8 21.5 57.6 38.0 18.0
125M 0.2 24.1 27.3 45.6 51.9 50.0 38.6 20.7 59.6 22.6 57.6 41.5 13.0
125M 3.0 28.7 27.5 2.6 49.2 59.0 37.7 21.4 58.4 20.9 46.8 35.9 20.0
125M 0.7 28.5 27.3 44.5 53.0 54.0 39.0 20.3 59.5 22.5 57.6 42.0 15.0

NEO + UL+ (s = 128)

125M 1.3 28.1 27.1 4.6 50.5 58.0 37.9 21.3 57.5 21.4 47.8 36.2 16.0
125M 3.1 27.5 26.9 1.8 50.5 60.0 36.4 22.3 56.6 21.2 41.8 35.3 18.0
125M 3.9 26.7 27.0 3.9 50.9 59.0 35.2 21.3 56.0 21.3 49.6 36.0 17.0
125M 2.4 26.6 26.9 2.7 50.2 56.0 35.9 22.3 57.2 21.2 43.8 35.1 16.0
125M 3.8 27.3 27.0 6.4 50.9 57.0 37.3 21.3 57.2 21.2 52.0 36.7 17.0

NEO 1.3B 67.6 92.2 37.0 57.4 54.8 70.0 56.6 25.8 70.4 21.9 53.8 49.8 -
∆ - - - +0.4 +10.1 +2.1 +2.0 +1.1 +3.4 +0.3 +0.4 +3.8 +2.6 -

NEO + UL+ (s = 1)

1.3B 0.0 27.6 36.8 52.1 54.7 72.0 55.9 27.8 69.7 21.5 53.0 49.3 9.0
1.3B 0.0 30.2 36.6 54.6 54.9 69.0 55.4 26.8 70.7 21.7 53.4 49.2 6.0
1.3B 0.0 29.7 36.7 58.2 55.4 70.0 56.1 25.4 69.9 22.0 53.2 49.7 4.0
1.3B 0.0 32.2 37.1 52.4 53.7 68.0 56.1 24.4 70.1 21.8 54.2 48.6 8.0
1.3B 0.0 27.6 37.3 60.1 55.6 70.0 57.5 25.1 70.0 21.7 55.2 50.3 10.0

NEO + UL+ (s = 4)

1.3B 0.0 30.3 37.3 48.3 54.4 70.0 55.0 29.2 69.9 20.6 56.0 49.0 12.0
1.3B 0.0 29.7 36.8 49.4 53.4 69.0 55.2 26.8 70.6 21.4 52.8 48.4 9.0
1.3B 1.0 29.2 36.8 51.3 54.9 70.0 55.2 26.8 70.3 21.5 54.0 49.0 10.0
1.3B 4.8 31.4 37.2 59.2 54.8 71.0 54.9 25.8 69.5 21.9 50.2 49.4 10.0
1.3B 1.7 31.8 37.0 58.4 54.4 71.0 57.7 24.7 70.2 22.0 54.0 49.9 9.0

NEO + UL+ (s = 8)

1.3B 0.3 29.7 37.1 66.5 54.5 70.0 52.0 26.8 69.4 21.7 56.8 50.5 13.0
1.3B 1.9 29.5 36.8 43.0 53.1 71.0 51.3 27.5 70.4 21.0 42.4 46.3 13.0
1.3B 0.2 26.2 37.2 47.3 54.2 72.0 55.2 25.8 70.4 21.8 54.8 48.7 12.0
1.3B 3.1 32.0 37.4 57.6 54.3 70.0 56.1 26.8 69.8 21.5 54.8 49.8 14.0
1.3B 1.4 32.0 37.1 57.4 54.5 71.0 57.0 26.1 70.0 21.9 54.2 49.9 11.0

NEO + UL+ (s = 32)

1.3B 0.7 33.0 36.5 63.2 55.9 70.0 52.4 25.1 69.7 21.8 55.4 50.0 13.0
1.3B 1.7 29.8 36.7 50.9 53.5 71.0 56.3 27.8 70.7 22.0 39.4 47.6 14.0
1.3B 0.7 28.4 37.0 64.8 56.9 69.0 54.3 26.4 69.1 21.9 55.8 50.6 13.0
1.3B 4.2 31.2 35.8 67.5 55.3 67.0 51.5 25.4 68.1 21.3 56.6 49.8 14.0
1.3B 2.1 29.5 35.8 63.9 55.7 70.0 54.1 26.4 69.5 22.3 56.8 50.5 15.0

NEO + UL+ (s = 128)

1.3B 0.4 24.5 31.1 54.2 55.2 69.0 53.2 24.7 66.1 21.9 56.4 48.0 6.0
1.3B 4.9 19.8 27.8 2.2 54.8 69.0 50.9 23.3 57.9 21.8 55.8 40.4 8.0
1.3B 4.2 30.2 30.6 41.6 55.1 69.0 54.4 26.0 63.8 22.1 55.0 46.4 6.0
1.3B 2.9 23.6 27.6 8.8 52.9 68.0 44.5 18.9 57.7 21.6 57.4 39.7 9.0
1.3B 1.3 23.1 28.5 48.6 55.5 69.0 48.8 21.6 62.3 22.2 57.6 46.0 8.0

NEO 2.7B 70.4 93.4 40.8 62.2 56.4 75.0 59.6 25.4 73.0 21.4 57.0 52.3 -
∆ - - - +0.8 +7.9 +1.0 +0.0 +1.5 +4.3 +0.3 +1.1 +1.0 +2.0 -

NEO + UL+ (s = 1)

2.7B 0.0 3.0 40.8 62.2 56.6 72.0 55.7 26.4 73.1 21.8 57.6 51.8 10.0
2.7B 0.0 23.6 40.5 56.8 54.4 74.0 59.6 26.1 72.8 21.3 56.6 51.3 8.0
2.7B 0.0 27.6 40.6 62.5 57.0 75.0 59.1 24.7 73.0 21.5 56.6 52.2 6.0
2.7B 0.0 20.6 40.5 60.3 55.8 74.0 58.9 25.8 73.0 21.7 57.2 51.9 10.0
2.7B 0.0 29.7 40.6 62.2 56.4 72.0 58.0 27.1 72.2 21.2 57.4 51.9 9.0

NEO + UL+ (s = 4)

2.7B 0.4 22.6 41.5 60.0 54.9 72.0 55.0 26.4 69.9 21.3 57.8 51.0 12.0
2.7B 0.0 30.0 41.6 46.5 53.4 71.0 55.6 25.1 72.0 21.3 57.2 49.3 9.0
2.7B 0.7 23.7 40.4 59.7 54.9 74.0 58.7 23.7 72.5 20.8 57.4 51.3 9.0
2.7B 3.2 32.4 41.2 67.2 56.0 73.0 57.3 28.1 73.3 22.3 57.2 52.8 8.0
2.7B 0.2 31.9 40.3 61.2 55.7 74.0 60.0 27.5 72.0 21.4 57.2 52.1 10.0

NEO + UL+ (s = 8)

2.7B 0.3 29.5 41.2 64.6 55.4 71.0 52.9 27.1 69.5 21.7 58.0 51.3 10.0
2.7B 2.1 26.4 40.6 48.7 52.9 67.0 55.0 25.8 72.1 21.8 57.2 49.0 11.0
2.7B 0.5 31.2 41.1 54.1 55.0 74.0 59.3 25.1 72.5 22.1 57.4 51.2 11.0
2.7B 1.9 33.8 40.7 65.7 57.4 72.0 58.4 27.1 72.6 21.9 57.0 52.5 8.0
2.7B 0.0 20.4 40.0 60.7 55.8 73.0 60.1 28.5 72.5 21.5 57.2 52.2 11.0

NEO + UL+ (s = 32)

2.7B 0.6 31.7 40.8 68.2 56.1 68.0 54.4 28.0 71.9 21.4 57.0 51.8 11.0
2.7B 1.1 32.4 40.9 56.9 55.6 69.0 58.1 26.7 71.8 22.1 56.8 50.9 10.0
2.7B 1.2 29.0 41.5 65.8 56.9 68.0 59.3 27.0 72.0 22.3 57.8 52.3 11.0
2.7B 3.4 29.9 39.7 70.1 57.7 68.0 54.8 29.7 71.6 22.0 57.6 52.4 11.0
2.7B 1.9 31.9 41.4 61.6 56.6 73.0 61.1 26.4 72.7 21.7 57.0 52.4 11.0

NEO + UL+ (s = 128)

2.7B 0.4 31.5 35.3 64.2 56.8 68.3 51.8 26.7 70.2 21.9 56.7 50.2 10.0
2.7B 3.8 16.5 26.0 0.4 51.6 57.7 29.0 16.6 54.2 20.0 57.9 34.8 10.0
2.7B 0.6 31.4 34.9 58.9 55.2 69.2 54.8 24.7 70.0 22.5 57.7 49.8 9.0
2.7B 2.2 31.1 31.3 22.9 50.6 62.5 40.0 18.2 60.8 21.3 40.9 38.7 8.0
2.7B 4.7 29.0 33.5 56.5 55.0 66.3 51.9 23.6 68.6 22.4 57.7 48.4 9.0
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Table 5: All of the individual runs for the Domain Analysis Results for GPT-NEO 1.3B LM.

Domains Initial Final Hella. Lamba. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg.
EL10 EL10 (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

INITIAL - - 37.0 57.4 54.9 70.0 56.6 25.8 70.4 21.9 53.8 49.8

FREELAW

64.6 4.8 37.3 53.5 54.1 68.0 57.5 27.1 70.5 21.5 54.0 49.3
52.0 2.4 37.3 62.9 54.2 67.0 52.9 26.1 69.2 21.5 54.4 49.5
60.6 15.2 36.8 42.0 54.5 67.0 56.6 25.1 70.1 21.7 51.4 47.2
55.2 13.8 37.3 51.4 53.5 69.0 55.4 26.8 70.5 21.9 54.6 48.9
69.5 24.1 37.4 51.4 53.2 71.0 54.9 26.1 70.0 21.8 53.0 48.7

GITHUB (CODE)

67.0 1.2 37.3 51.1 54.1 71.0 57.3 27.1 70.1 21.3 41.2 47.8
56.7 0.3 37.1 49.9 54.9 68.0 56.1 26.4 69.1 21.4 48.4 47.9
62.0 0.2 37.2 50.2 54.2 68.0 56.6 25.8 70.5 21.8 54.4 48.7
60.4 1.1 37.5 59.7 54.7 68.0 55.9 25.4 70.1 21.9 53.8 49.7
73.6 0.0 37.3 55.9 54.1 71.0 55.4 25.4 69.9 21.2 51.4 49.1

GITHUB (LICENSE)

87.5 0.2 37.5 57.4 54.5 68.0 56.8 26.4 70.1 21.8 53.8 49.6
74.3 0.0 37.3 48.9 54.1 70.0 57.1 27.1 70.7 21.7 48.4 48.4
70.7 0.0 36.4 40.6 53.1 70.0 55.2 25.4 70.2 21.8 49.0 46.9
74.8 0.0 37.3 60.3 54.8 69.0 55.9 27.1 70.0 21.5 55.6 50.2
71.8 0.0 37.0 52.6 54.3 68.0 56.8 26.1 69.5 22.0 52.2 48.7

ENRON EMAILS

81.6 0.0 36.4 59.8 55.2 69.0 53.6 27.5 69.0 21.9 54.8 49.7
70.3 0.0 37.2 54.9 54.5 68.0 57.5 25.4 70.1 22.4 51.8 49.1
74.2 0.0 37.1 56.3 55.0 68.0 55.6 25.1 69.8 21.6 54.2 49.2
83.9 0.0 36.7 55.2 54.8 69.0 55.9 25.4 70.4 21.7 52.2 49.0
76.8 0.0 36.9 60.0 54.6 68.0 56.4 28.1 69.9 21.5 52.4 49.7

BOOKS3

59.7 0.0 36.2 39.4 53.9 72.0 55.2 24.4 69.9 21.9 50.0 47.0
65.4 0.0 35.9 65.2 55.7 67.0 53.3 25.1 69.9 21.6 55.8 49.9
71.7 0.0 37.1 47.4 54.6 74.0 57.0 26.8 69.8 21.7 44.2 48.1
74.7 0.0 36.4 40.7 53.4 70.0 55.7 25.4 69.6 21.6 41.2 46.0
79.5 0.0 36.7 54.9 53.6 71.0 56.6 25.8 70.2 21.8 46.0 48.5

PILE CC

74.9 0.0 35.3 30.7 53.0 68.0 55.2 26.4 69.9 22.1 50.4 45.7
68.0 0.0 36.3 45.9 53.4 72.0 55.6 27.1 69.6 21.7 51.4 48.1
71.6 0.0 36.3 48.9 52.9 70.0 55.9 26.4 70.2 21.9 51.8 48.3
57.8 0.0 34.0 66.3 55.7 69.0 49.9 26.1 69.0 21.4 57.4 49.9
66.6 0.0 36.4 37.7 54.0 73.0 54.5 28.1 69.9 22.1 49.2 47.2

USPTO BACKGROUNDS

53.7 0.0 30.7 48.4 53.4 68.0 39.0 22.0 64.2 20.7 55.2 44.6
56.7 0.0 31.0 19.4 50.6 69.0 36.9 24.1 63.3 21.2 33.4 38.8
64.9 0.0 36.0 51.4 54.1 68.0 50.8 24.4 70.0 22.1 56.6 48.2
54.6 0.0 35.5 57.2 55.1 65.0 52.0 23.7 68.9 22.0 56.2 48.4
67.2 0.0 35.3 47.4 54.3 65.0 50.8 25.8 68.4 21.7 50.2 46.5

PUBMED CENTRAL

73.8 0.0 35.7 39.0 53.5 69.0 55.6 25.1 69.6 21.9 44.2 46.0
75.1 0.0 36.1 36.3 53.2 69.0 54.1 25.1 69.8 22.6 44.4 45.6
67.4 0.0 37.0 47.5 54.0 71.0 56.3 24.4 69.9 21.1 48.4 47.7
71.1 0.0 37.2 55.3 55.6 68.0 57.0 24.7 70.0 22.0 51.0 49.0
71.9 0.0 36.8 44.4 54.1 71.0 55.0 24.7 70.6 22.1 43.8 46.9

Table 6: All of the individual runs for s = 32 for the dialogue tasks in the Main Results.

Model (s) # EL10 MA WoW ED BST WoI Avg. EpochParams (%) ↓ (%) ↓ (F1) (F1) (F1) (F1) (F1)

NEO 125M 30.9 77.4 8.4 8.4 9.6 11.2 9.4 -
∆ - - - +0.0 +0.0 +0.0 +0.0 +0.0 -

NEO + UL+ (s = 32)

125M 0.3 28.4 1.6 1.8 0.9 1.8 1.5 20.0
125M 0.8 27.1 0.1 0.1 0.0 0.0 0.0 18.0
125M 0.2 24.1 6.9 6.7 7.0 7.9 7.1 13.0
125M 3.0 28.7 2.1 2.5 1.4 2.3 2.1 20.0
125M 0.7 28.5 2.0 3.5 1.3 2.2 2.2 15.0

NEO 1.3B 67.6 92.2 9.6 10.5 12.2 13.7 11.5 -
∆ - - - +2.3 +0.0 +0.0 +0.0 +0.0 -

NEO + UL+ (s = 32)

1.3B 0.7 33.0 10.0 8.4 9.3 10.9 9.6 13.0
1.3B 1.7 29.8 11.9 8.4 10.6 12.4 10.8 14.0
1.3B 0.7 28.4 10.0 8.3 9.5 10.8 9.6 13.0
1.3B 4.2 31.2 6.4 5 4.9 6.8 5.8 14.0
1.3B 2.1 29.5 6.9 5.9 5.9 7.5 6.5 15.0

NEO 2.7B 70.4 93.4 9.2 10.9 12.4 13.6 11.5 -
∆ - - - +3.8 +1.8 +0.0 +0.5 +1.5 -

NEO + UL+ (s = 32)

2.7B 0.6 31.7 10.8 8.6 9.6 11.1 10.1 11.0
2.7B 1.1 32.4 11.9 9.7 11.5 12.1 11.3 10.0
2.7B 1.2 29.0 12.4 10.5 12.0 13.3 12.1 11.0
2.7B 3.4 29.9 8.8 8.2 8.4 10.3 8.9 11.0
2.7B 1.9 31.9 13.0 12.7 12.4 14.1 13.0 11.0

18



Under review as a conference paper at ICLR 2023

Table 7: Measuring perplexity on Pile and Wikitext corpora for the main unlearning experiments (Table 2).

Model # Pile Wikitext
Params (PPL) ↓ (PPL) ↓

NEO 125M 17.83 38.27
NEO + UL 125M 34.02 75.24
NEO + UL+ 125M 577.56 1986.07
OPT 125M 32.26 38.74

NEO 1.3B 11.46 18.63
NEO + UL 1.3B 15.56 20.26
NEO + UL+ 1.3B 15.83 26.82
OPT 1.3B 19.55 19.39

NEO 2.7B 10.44 16.15
NEO + UL 2.7B 11.32 16.84
NEO + UL+ 2.7B 17.93 21.13
OPT 2.7B 17.81 16.81

Table 8: Training compute comparison of methods mitigating privacy risks in LMs for sizes 125M, 1.3B, and
2.7B measured via FLOPs.

Method (Size) FLOPs

DEDUPLICATION (125M) 2.25E+20
UNLEARNING (125M) 5.28E+13

DEDUPLICATION (1.3B) 2.34E+21
UNLEARNING (1.3B) 6.69E+14

DEDUPLICATION (2.7B) 4.86E+21
UNLEARNING (2.7B) 1.12E+15
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Table 9: Examples from each of the 8 domains from the Pile corpora.

Domain Text

FREELAW

U. S. (2010) 1 Opinion of the Court NOTICE: This opinion is subject to formal revision before publication in the preliminary print of the
United States Reports. Readers are requested to notify the Reporter of Decisions, Supreme Court of the United States, Washington, D. C. 20543,
of any typographical or other formal errors, in order that corrections may be made before the preliminary print goes to press. SUPREME COURT
OF THE UNITED STATES

GITHUB (CODE)

= pc func (iov *Iovec) SetLen(length int) { iov.Len = uint64(length) } func (msghdr *Msghdr) SetControllen(length int) { msghdr.Controllen
= uint64(length) } func (cmsg *Cmsghdr) SetLen(length int) { cmsg.Len = uint64(length) } //sys poll(fds *PollFd, nfds int, timeout int)
(n int, err error) func Poll(fds []PollFd, timeout int) (n int, err error) { if len(fds) == 0 { return poll(nil, 0, timeout) } return poll(&fds[0],
len(fds), timeout)

GITHUB (LICENSE)

## Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files
(the ”Software”), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the
following conditions: ## The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the
Software. ## THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE

ENRON EMAILS

To: Hedy Govenar hgovenar@govadv.com , Mike Day MDay@GMSSR.com , Bev Hansen bhansen@lhom.com , Jeff Dasovich jdasovic@
enron.com , Susan J Mara smara@enron.com , Joseph Alamo JAlamo@enron.com , Paul Kaufman paul.kaufman@enron.com , David Parquet
David.Parquet@enron.com , Rick Johnson rick.johnson@enron.com , Marcie Milner mmilner@enron.com , Sandra
McCubbin Sandra.McCubbin@enron.com , Tim Belden Tim.Belden@enron.com

BOOKS3

About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia
http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada
http://www.harpercollinsebooks.ca New Zealand HarperCollins Publishers (New Zealand) Limited P.O. Box 1 Auckland, New Zealand
http://www.harpercollinsebooks.co.nz United Kingdom HarperCollins Publishers Ltd. 77-85 Fulham Palace Road London, W6 8JB, UK
http://www.harpercollinsebooks.co.uk

PILE CC

This website and its associated newspaper adheres to the Independent Press Standards Organisation’s Editors’ Code of Practice. If you have
a complaint about editorial content which relates to inaccuracy or intrusion, then contact the Editor by clicking here. If you remain dissatisfied
with the response provided then you can contact the IPSO by clicking here. Bury Free Press provides news, events and sport features from the
Bury St Edmunds area. For the best up to date information relating to Bury St Edmunds and the surrounding areas visit us at Bury Free Press
regularly or bookmark this page. For you to enjoy all the features of this website Bury Free Press requires permission to use cookies. Find Out
More What is a Cookie? What is a Flash Cookie? Can I opt out of receiving Cookies?

USPTO BACKGROUNDS

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared
according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into
association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly
and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary,
shaping the product. The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not
limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas.

PUBMED CENTRAL

I am pleased to inform you that your manuscript has been formally accepted for publication in PLOS Computational Biology. Your manuscript
is now with our production department and you will be notified of the publication date in due course. The corresponding author will soon
receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript
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Table 10: Examples performing extraction attacks on token sequences, showing knowledge unlearning pro-
vides protection against extraction attacks. Underlined denotes the model generated text given the prefix of
length 100 as input. For the extraction attack, we utilize a naı̈ve greedy decoding strategy.

Domain Status Text

BOOKS3

Original

About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia
http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada
http://www.harpercollinsebooks.ca New Zealand HarperCollins Publishers (New Zealand) Limited P.O. Box 1 Auckland, New Zealand
http://www.harpercollinsebooks.co.nz United Kingdom HarperCollins Publishers Ltd. 77-85 Fulham Palace Road London, W6 8JB, UK
http://www.harpercollinsebooks.co.uk

Text

Before

About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia
http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada
http://www.harpercollinsebooks.ca New Zealand HarperCollins Publishers (New Zealand) Limited P.O. Box 1 Auckland, New Zealand
http://www.harpercollinsebooks.co.nz United Kingdom HarperCollins Publishers Ltd. 77-85 Fulham Palace Road London, W6 8JB, UK
http://www.harpercollinsebooks.co.uk

Unlearning

After

About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia
http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada
http://www.harpercollins.com.au/Publishers/ Publisher: level three Level two is levels one and two together. The new face of a already great
title! Level one: Just right. Level two: Great. Level three: Awesome. The BloomsburyPublishersPublishers.com.au/PublishersPublishers
Levels are for bibliographic information or advanced level. s

Unlearning

PILE CC

Original

James Gurney This daily weblog by Dinotopia creator James Gurney is for illustrators, plein-air painters, sketchers, comic artists, animators,
art students, and writers. You’ll find practical studio tips, insights into the making of the Dinotopia books, and first-hand reports from art
schools and museums. CG Art Contact or by email:gurneyjourney (at) gmail.com Sorry, I can’t give personal art advice or portfolio reviews.
If you can, it’s best to ask art questions in the blog comments. Permissions All images and text are copyright 2015 James Gurney and/or their
respective owners. Dinotopia is a registered trademark of James Gurney. For use of text or images in traditional print media or for any commercial
licensing rights, please email me for permission. However, you can quote images or text without

Text

Before

James Gurney This daily weblog by Dinotopia creator James Gurney is for illustrators, plein-air painters, sketchers, comic artists, animators,
art students, and writers. You’ll find practical studio tips, insights into the making of the Dinotopia books, and first-hand reports from art
schools and museums. CG Art Contact or by email:gurneyjourney (at) gmail.com Sorry, I can’t give personal art advice or portfolio reviews.
If you can, it’s best to ask art questions in the blog comments. Permissions All images and text are copyright 2015 James Gurney and/or their
respective owners. Dinotopia is a registered trademark of James Gurney. For use of text or images in traditional print media or for any commercial
licensing rights, please email me for permission. However, you can quote images or text without

Unlearning

After
James Gurney This daily weblog by Dinotopia creator James Gurney is for illustrators, plein-air painters, sketchers, comic artists, animators,
art students, and writers. You’ll find practical studio tips, insights into the making of the Dinotopia books, and first-hand reports from art
schools and museums. CG Art Contact or by email:gurneyjourney (at) gmail.com I’ve been working on a CG art project for a while now, and I’ve been
working on it for a while now. I’ve been working on it for a while now, and I’ve been working on it for a while now. I’ve been working on it for a
while now, and I’ve been working on it for a while now. I’ve been working on a CG art project for a while now, and I’ve been working on it for a while

Unlearning

ENRON EMAILS

Original
Rick Shapiro rshapiro@enron.com , Jim Steffes james.d.steffes@enron.com , Alan Comnes acomnes@enron.com , Chris Calger ccalger@enron.com ,
Mary Hain mary.hain@enron.com , Joe Hartsoe Joe.Hartsoe@enron.com , Donna Fulton Donna.Fulton@enron.com , Steven Kean Steven.J.Kean@
enron.com , Karen Denne kdenne@enron.com , Beverly Aden beverly.aden@enron.com , Bill Votaw bill.votaw@enron.com , Carol Moffett carol.
moffett@enron.com , Debora Whitehead deb

Text

Before
Rick Shapiro rshapiro@enron.com , Jim Steffes james.d.steffes@enron.com , Alan Comnes acomnes@enron.com , Chris Calger ccalger@enron.com ,
Mary Hain mary.hain@enron.com , Joe Hartsoe Joe.Hartsoe@enron.com , Donna Fulton Donna.Fulton@enron.com , Steven Kean Steven.J.Kean@
enron.com , Karen Denne kdenne@enron.com , Beverly Aden beverly.aden@enron.com , Bill Votaw bill.votaw@enron.com , Carol Moffett carol.
moffett@enron.com , Debora Whitehead

Unlearning

After Rick Shapiro rshapiro@enron.com , Jim Steffes james.d.steffes@enron.com , Alan Comnes acomnes@enron.com , Chris Calger ccalger@enron.com ,
Mary Hain mary.hain@enron.com , Joe Hartsoe Joe.Hartsoe@enron.com , Donna Fulton Dabat, state+[D@calenergy.com]Unlearning

PILE CC

Original

? About Me Alvin McEwen is 46-year-old African-American gay man who resides in Columbia, SC. McEwen’s blog, Holy Bullies and Headless
Monsters, and writings have been mentioned by Americablog.com, Goodasyou.org, People for the American Way, PageOneQ.com, The Washington
Post, Raw Story, The Advocate, Media Matters for America, Crooksandliars.com, Thinkprogress.org, Andrew Sullivan’s Daily Dish, Melissa Harris-
Perry, The Last Word with Lawrence O’Donnell, Newsweek, The Daily Beast, The Washington Blade, and Foxnews.com. In addition, he is also a
past contributor to Pam’s House Blend,Justice For All, LGBTQ Nation, and Alternet.org. He is a present contributor to the Daily Kos and the Huffington
Post, He is the 2007 recipient of the Harriet Daniels Hancock Volunteer of the Year Award and

Text

Before

? About Me Alvin McEwen is 46-year-old African-American gay man who resides in Columbia, SC. McEwen’s blog, Holy Bullies and Headless
Monsters, and writings have been mentioned by Americablog.com, Goodasyou.org, People for the American Way, PageOneQ.com, The Washington
Post, Raw Story, The Advocate, Media Matters for America, Crooksandliars.com, Thinkprogress.org, Andrew Sullivan’s Daily Dish, Melissa Harris-
Perry, The Last Word with Lawrence O’Donnell, Newsweek, The Daily Beast, The Washington Blade, and Foxnews.com. In addition, he is also a
past contributor to Pam’s House Blend,Justice For All, LGBTQ Nation, and Alternet.org. He is a present contributor to the Daily Kos and the Huffington
Post, He is the 2007 recipient of the Harriet Daniels Hancock Volunteer of the Year Award and

Unlearning

After
? About Me Alvin McEwen is 46-year-old African-American gay man who resides in Columbia, SC. McEwen’s blog, Holy Bullies and Headless
Monsters, and writings have been mentioned by Americablog.com, Goodasyou.org, People for the American Way, PageOneQ.com, The Washington
Post, Raw Story, The Advocate, Media Matters for America, Crooksandliars.com, Thinkprogress, and more. The British singer has been in the news
for his recent singles, including “I’m Not Sure” and “What Makes You Beautiful.” The singer has been in the news for his recent singles, including
“I’m Not Sure” and “What Makes You Beautiful.” The singer has been in the news for his recent singles, including “I’m Not Sure”

Unlearning

Table 11: Forgetting Threshold for GPT-NEO LMs for varying n.

Model (Size) EL5(%) EL10(%) EL20(%) EL40(%) MA(%)
Threshold Threshold Threshold Threshold Threshold

GPT-NEO (1.3B) 7.85 5.68 4.07 2.66 33.27
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Table 12: The average of the 9 classification tasks for GPT-NEO + UL+ for the 1.3B LM when performing
unlearning until the Forgetting Threshold for each n.

Model (Size) LM Avg. (Acc)

EL5 49.93

EL10 49.93

EL20 49.85
EL40 49.88
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