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ABSTRACT

To develop autonomous agents capable of executing complex, multi-step decision-
making tasks as specified by humans in natural language, existing reinforce-
ment learning approaches typically require expensive labeled datasets or access
to real-time experimentation. Moreover, conventional methods often face diffi-
culties in generalizing to unseen goals and states, thereby limiting their practical
applicability. This paper presents TEDUO, a novel training pipeline for offline
language-conditioned policy learning. TEDUO operates on easy-to-obtain, unla-
beled datasets and is suited for the so-called in-the-wild evaluation, wherein the
agent encounters previously unseen goals and states. To address the challenges
posed by such data and evaluation settings, our method leverages the prior knowl-
edge and instruction-following capabilities of large language models (LLMs) to
enhance the fidelity of pre-collected offline data and enable flexible generalization
to new goals and states. Empirical results demonstrate that the dual role of LLMs
in our framework—as data enhancers and generalizers—facilitates both effective
and data-efficient learning of generalizable language-conditioned policies.

1 INTRODUCTION

Motivation. A central aim of Al research is to develop autonomous agents capable of solving com-
plex, multi-step decision-making tasks based on human-provided instructions articulated in natural
language. Current approaches, which rely on traditional reinforcement learning (RL) methods, re-
quire either vast amounts of data in the form of offline expert demonstrations or data collected from
real-time interactions with the environment. Such data is expensive to gather and online experi-
mentation may be impractical in many real-world scenarios. Moreover, even with substantial data,
RL agents are often constrained to a limited set of previously attained goals, or their performance
deteriorates significantly when tested on new goal-reaching tasks (Yang et al.,[2023).

Problem setting. Given the above, this paper approaches the problem of learning generalizable
language-conditioned policies under minimal data requirements. Specifically, we consider a fully
offline setup with access to a pre-collected dataset of state-action transitions, D, alongside an un-
paired set of natural language commands, G*". The dataset D consists of triplets (z, a, z’), where
and x’ belong to a high-dimensional state space X, and a represents actions within an action space
A. The natural language goals g € G'" describe a subset of tasks achievable within the environ-
ment. We posit that such data is often easy to obtain by simply recording agents interact with the
environment and creating a list of natural language commands corresponding to the tasks typically
performed within that environment. For instance, in household robotics, D may be derived from
random exploration of the environment, while G'" may describe tasks such as “Go and open the
window” or “Fetch me a cup of tea.” In the case of personal assistants, D might be collected by
recording the daily activities of a human interacting with their mobile device, while G would de-
scribe goals like “Book a restaurant for 7 PM” or “Send an email to John.” With no assumptions
regarding how the offline data has been collected, nor access to the ground-truth state-transition dy-
namics or rewards, our aim is to learn a language-conditioned policy, 7*, that can determine optimal
actions for previously unseen goals g ¢ G'" and states = ¢ D. For a formal definition of the problem
setup, please refer to section 2}
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Figure 1: Overview of TEDUO. Q) The unlabeled dataset of state-action transitions is pre-processed
with LLM-automated hindsight labeling and state abstraction. ) The resulting labeled dataset of
abstract state transitions is used as the input to an offline RL algorithm to learn the optimal goal-
conditioned policies for the finite set of training goals. (3) Knowledge of the optimal actions for each
observed training goal is distilled into a base LLM via SFT. The fine-tuned LLM acts as a language
conditioned policy generalizing to previously unseen states and language commands.

Challenges. The task of learning 7* from D and G*" alone might seem impossible without resorting
to human supervision. We can immediately identify the following challenges: C1) Unlabeled data.
The dataset D lacks explicit labels linking states z € X to the goals g € G'". Nor does it include
any rewards indicating the optimality of actions in relation to these goals. C2) Limited exploration.
We are in an offline setup with our knowledge of the environment dynamics being constrained to
the state-action transitions observed in D. C3) Unknown data collection policy. We make no
assumptions regarding the optimality of the data collection policy concerning the training or testing
goals. The actions in D could be entirely random or generated by policies aimed at solving goals
with an unknown relationship to those in G¢”. C4) Generalization to new goals and states. Beyond
solving goals from G'” and taking optimal actions in previously observed states z € D, we want our
agent to generalize to new states and language commands corresponding to novel goal states.

Proposed Solution: LLMs to elevate conventional RL. Recent advances in LLMs offer a promis-
ing solution to these challenges. LLMs, pre-trained on vast amounts of Internet data, possess the
requisite prior knowledge to understand natural language commands and follow simple instructions.
However, while LLMs excel at general language comprehension, their ungrounded knowledge is in-
sufficient for executing complex, multi-step decision-making tasks in dynamic environments (Finn,
2024; Szot et al. 2024). In this paper, we propose a novel training pipeline for offline language-
conditioned policy learning—TEDUO: Teaching the Environment Dynamics from Unlabeled Ob-
servations. TEDUO distills knowledge of the environment dynamics into a pre-trained LLM through
supervised fine-tuning. This knowledge is obtained by learning optimal policies with traditional RL,
based on the offline dataset augmented with LLM-generated state abstractions and labels. Thus,
within TEDUO, LLMs fulfill the dual role of cheap data enhancers and flexible generalizers, ele-
vating conventional RL to address challenges C1-C4.

Contributions. 1) We introduce TEDUO—a novel LLM fine-tuning pipeline, which, to the best
of our knowledge, is the first to enable the learning of generalizable language-conditioned policies
based solely on an unlabeled dataset of state-action transitions and an unpaired set of natural lan-
guage commands. 2) We demonstrate that LLMs can be effectively employed both as cost-effective
data enhancers—automating critical tasks typically handled by humans—and as versatile general-
izers—acting as a general language-conditioned policy capable of solving new tasks in previously
unseen scenarios. 3) We empirically show that TEDUO enhances both the data efficiency and gener-
alization capacity of offline training, outperforming competing approaches by a significant margin.
We analyze the scalability of our method and provide insights into the learning process, showing
that fine-tuned LLMs acquire core skills, rather than simply memorize optimal actions.

2 PROBLEM FORMALISM

Inputs. We are given a dataset D of past interactions of an agent acting according to a data collection
policy . This dataset is represented as a collection of trajectories:

D = {7itier. 7 = {(®t, a6, 2041) }iigs o ~ P, Tip1 ~ P, ar), ap ~ 7P (), (1)
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where P is the state transition function determining the next state given an action a; € A and state
ry € X and p represents a distribution of initial states. Alongside D, we are provided with an
unpaired set of training goals G'” describing a subset of tasks an agent may attempt to solve within
the environment. Each goal g is expressed in a goal representations space G. In this paper, we focus
on learning language-conditioned policies, taking G to be the space of natural language.

Modeling assumptions. Denoting by P(X’) the powerset of X', we assume there exists a ground-
truth mapping ¢ : G — P(X) associating each goal g with a subset of the state space, ¢(g) = X, C
X. We say that g is achieved at time step t, if x; lies in Xgﬂ Then, the cumulative discounted
reward: Y% 0 v* Ry (x4, ar, w113 9), With Ry (2, ar, t44159) = 1{x11 € ¢(g)} measures the
optimality of actions taken by an agent with respect to achieving the goal g, where v € [0,1)
is the discount factor penalizing long sequences of actions. We make no assumptions regarding the
optimality of the data collection policy 7 with respect to G” and thus, in what follows, we will view
our pre-collected data as an un-ordered collection of state-action-state transitions, in short denoted
as D = {(x,a,2’)}. We also do not assume access to either of the ground-truth state-transition
dynamics P or the goal-to-state mapping ¢, and consequently the reward Z4. We only require that
G'" contains goals corresponding to states that have been visited in D

The goal. Given D and G*", our objective is to learn a language-conditioned policy 7*, where

T = arg max Egeg.zonp ZPytE“tN‘fT('Vft;g)ﬁft-*—lNP('\-Ttyﬂt,) [1(z141 € 6(9))] 2)
g t=0

Crucially, 7* should generalize to novel goals g ¢ G' and previously unseen states x ¢ D. We
also require that 7* not only generalizes to synonymous language commands, but also to goals
corresponding to new goal-states, emphasizing our focus on evaluation in the wild.

3 THE METHOD: TEDUO

To address the problem of learning language-conditioned policies solely based on the inputs D and
G'", we must overcome the challenges C1-C4 outlined in the introduction. While conventional RL
methods are successful at learning optimal policies within well-explored environments, they typi-
cally require additional data labeling and are limited in generalization to new, previously unseen lan-
guage commands and states. In contrast, although LLMs can understand the meaning of sentences
in natural language describing each goal, their skills lack grounding in relation to the environment’s
dynamics. Our pipeline, TEDUO, employs LLMs to enhance conventional RL, effectively address-
ing challenges C1-C4. TEDUO consists of three main steps:

Step 1. Construction of abstract MDPs. For each goal, g € G'", we construct an ab-
LLMs as data stract MDP by employing LLM-automated hindsight labeling and state abstraction,
enhancers addressing C1 and C2, respectively.

Step 2. Goal-conditioned policy learning with offline RL After obtaining a labeled dataset
for each goal in G'", we solve the set of abstract MDPs using an out-of-the-box
offline RL algorithm. As a result, we obtain a set of learned policies {7rg 1g € g”}.
The learned policies improve on naive imitation learning, addressing C3.

Step 3. LLM supervised fine-tuning. We distill the knowledge about the environment dy-

LLMs as namics and optimal actions into a pre-trained LLM with supervised instruction fine-

generalizers  tuning (SFT). This step grounds the prior knowledge of the base LLM in the en-
vironment dynamics, thus enabling generalization to new, previously unseen states
and goals, addressing both challenges C2 and C4.

In the following paragraphs we explain in detail individual steps of TEDUO.

'In this paper, we focus on simple goals representable as a subset of the state space. This definition can
easily be extended to more complex goals using temporal logic. We leave such extensions for future work.

*In practice, G" can consist of a much larger set of training goals. This set will be effectively reduced to
the set of visited goals after the first step of our training pipeline.
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3.1 STEP 1. CONSTRUCTION OF ABSTRACT MDPs

Starting with the dataset of unlabeled observations D and the training goals G'", we first construct
a set of abstract MDPs { MY : g € G'"}, where MY := (89, A, P9, RY, p,~), with S being the
abstract state space for the goal g, P9 the induced transition operator, and R the reward function
with respect to the goal g. To define our abstract MDPs, we employ hindsight labeling and state
abstraction with LLM-based operators.

3.1.1 STATE ABSTRACTION

The goal of state abstraction is to reduce the size of the environmental state space by grouping
together similar states in a way that reduces the complexity of the underlying problem being solved
(L1 et al., 2006). With a well-designed state abstraction, RL algorithms can learn more efficiently,
requiring fewer samples of data, which is particularly relevant in our offline setup. Formally, let
F : X x G — §Y be an abstraction operator that given a goal g maps a single observation z € X to
an abstract state s9 = F'(x; g). The abstraction map, F, should be such that |X| > |S9|.

Goal g : Put the purple ball next to the purple chest LLM@ebstret (g)(x) —l

Raw state T Abstract state §9 Abstracted features S%
relevant for identifying the
completion of the goal

A goal object is on tile:
(6,10)

A goal location is on tile:
(20,14)

Inventory: []

The agent is currently at
the tile: (13,10)

Figure 2: An example of state abstraction for a grid world. The LLM-induced abstraction function
reduces the complexity of the original state by treating irrelevant distractors as walls, disregarding
the color of opened doors, and identifying the object to be picked up (marked with “O”) and its
designated location (marked with “L”).

In this paper, we use natural language to guide state abstraction, so that the resulting abstract states
contain only the goal-relevant information. Namely, we consider environments that can be repre-
sented in a d-dimensional feature space, X = X' x X2 x ... x X9, We assume that only a relatively
small subset of these variables is relevant for solving a specific goal g and an even smaller subset is
required to identify the goal states ¢(g).

The state abstraction operator is implemented as a collection of Python functions built on top of
the feature selection made by a prompted language model, F/( - ;g) = LLM®*"“(¢)(.). Using
LLM powered Python functions instead of directly applying the LLM to create an abstraction of
each state reduces the number of LLM calls from | X'||G'"| to |G*"| and ensures that the abstraction
is consistent across all states. The prompt for generating the code includes contextual information
about the environment, a list of features, and a description of the goal, instructing the LLM to
create a function that removes features of a state that are irrelevant to achieving the specified goal.
Additionally, state abstraction functions separate the set of relevant features into two subsets: s‘é

and s%, so that s U s%. The features in s7 are the ones which are necessary for identifying if
the underlying low-level state achieves g, i.e. if x € ¢(g). The remaining features, which are
relevant for solving the task specified by g but not strictly necessary for identifying if this goal is

achieved are found in s%. We introduce this separation of abstracted features to even further reduce

the dimensionality of the state space for hindsight labeling (see next section). Figure [2] shows an
example effect of applying our LLM state abstraction on a grid-world from the BabyAl environment.

3.1.2 GOAL-CONDITIONED HINDSIGHT LABELING.

Following recent works (Kwon et al.l [2023)), we hypothesize that the existing abilities of LLMs in
natural language understanding are sufficient to perform the simple task of identifying whether a
particular state belongs to the set of goal states ¢(g) associated with a given goal description g.
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In order to perform hindsight labeling of our dataset D, we wish to approximate ¢, and thus the
reward Ry(-; g), with a prompted language model LLM™rd 1 (g is achieved in s9)- NOte, we assign
the rewards in the abstracted spaces SY and not the original state space X'. Given the large number
of goals and states, to reduce the number of LLM calls needed, instead of using language models
directly, we train proxy reward models—lightweight neural networks trained to predict the labels
generated by the prompted language model, LLM"“"¢. For each goal g, we build a supervised
dataset, {(s9,79) : 79 = LLM"™"%(s9;g),s9 € S9}, where SY is a small, diverse subset of the
abstract space S¢ and r9 € {0,1}. We train a neural network Ry( - ;¢) : 89 — {0, 1} to predict
binary rewards for the entire abstract state space SY. The subset SY is chosen so that for any two
abstract states, the set of features relevant for goal-identifications is distinct, i.e. Vs] # s§ €
S9, s% 67 sg’ - This maximizes the chances of including goal-states in S, mitigating the potential
issue of generating a highly-imbalanced dataset for training our proxy neural networks. These proxy
reward functions provide a much more cost-effective way to perform hindsight labeling compared
to labeling all states from D for all goals from G*" directly by LLM prompting or with human
annotators. Appendix [D] shows that for the BabyAl environment, depending on the goal, proxy
rewards reach near 100% accuracy in comparison to the ground truth rewards of the environment.

3.2 STEP 2. SOLVING THE ABSTRACT MDPs

After applying state abstractions and hindsight labeling to our offline dataset D, for each goal g €
G'", we obtain an offline dataset DY := {(s9, a, s%,79)}. Given these data, we can apply any offline
reinforcement learning method to learn optimal policies 79, for each goal g € G'". In practice,
however, to learn the goal-conditioned policies, the chosen RL method should be scalable, as we
must solve multiple MDPs, one for each goal in G'”. Therefore, in our instantiation, we discard
computationally intensive methods. Furthermore, as the generalization to new states is tackled by
the next step, we do not require at this stage that the learned policies generalize to unseen states.
Given these considerations, we simply choose tabular Q-learning (Watkins & Dayan, |1992) to solve
the set of abstract MDPs. At the end of this stage, we obtain a set of learned policies {9 : g € G'" }.
These policies are limited to the set of training goals and the set of states observed in D. The final
step of our pipeline addresses these limitations.

3.3 STEP 3. TRAINING THE LLM AS A GOAL-CONDITIONED POLICY

To enable generalization to previously unseen states, and more importantly, generalization to novel
goals, the final step of our method distills the knowledge of the optimal actions per each abstract
state and goal into a pre-trained LLM. We build a supervised dataset D57 consisting of goal
commands, initial abstract states and the sequence of optimal actions with respect to the learned
policies. Concretely, we have

DT = {(g, s oy 0?9 €67, 5§ € DY, ap? = mgmax(a | sf).
a
Stg+1 = arg I;laX Pg(5|8i]7a:79)}’ ng s.t. Ré(siq+1;g) = 1}3
seSY ’

where P is the empirical state transition function based on the abstract datasets DY, obtained during
Q-learning in step 2. We then fine-tune a pre-trained large language model on DS¥7 using the
standard next-word prediction objective. We integrate description of the goal g and the state s into
a prompt and set the sequence [ay”, . .. ,a;‘;gg ] as the expected completion. We expect that the fine-
tuned language model combined with the state abstraction function LLM®*$"" can effectively act
as a proxy for the general, goal-conditioned policy 7* from equation (Z), generalizing to any new

goal g ¢ G*" and previously unobserved low-level state € X.

4 RELATED WORK

LLMs for decision making. There is growing interest in using general-purpose LLMs directly as
decision-making agents (Yao et al.,[2023)). Various prompting techniques, such as chain of thought
(Wei et al.||2023)) and self-reflection (Ji et al.||2023)), have been developed to enhance LLMs’ abilities
in long-term planning tasks. However, as demonstrated in previous works (Szot et al., 2024; Finn}
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2024), prompting techniques alone are insufficient for solving complex decision-making tasks in
dynamic environments. To effectively utilize the knowledge embedded in LLMs for RL problems,
these models must be grounded in the dynamics of the environment. This grounding can be achieved
either through in-context learning (Wang et al.l [2023; [Wu et al.| [2023) or fine-tuning (Carta et al.,
2023; Tan et al.,[2024} |Brohan et al., 2023a). A key limitation of in-context learning is its restricted
window size. In this work, we focus on fine-tuning; however, unlike prior studies, we significantly
reduce the requirements on input data for fine-tuning the decision-making agent.

LLMs as data enhancers. To apply conventional RL methods in search of optimal goal-conditioned
policies, we must augment our dataset of state-action transitions with goal-dependent rewards. This
process, known as hindsight labeling, has traditionally been performed manually by human anno-
tators or through learning the reward function from expert demonstrations (Ziebart et al., 2008} [Fu
et al., [2018; | Bahdanau et al.| 2018)). Recent studies, however, have demonstrated that task-specific
rewards can be effectively generated using pre-trained LLMs (Yu et al.| [2023bj; Ma et al.| 2023} Xie
et al.,|2023)). While successful, most LLM-based approaches rely on iterative prompting strategies,
which are costly in terms of LLM calls. Our approach to hindsight labeling reduces this cost by ap-
proximating the LLM-induced reward function with a lightweight neural network. Furthermore, we
assign rewards in abstracted state spaces, significantly reducing the number of states to be labeled.
Similar to the work of [Peng et al.|(2023), our state abstraction function uses the language command
to guide the elimination of irrelevant state features.

Language-conditioned RL. Numerous previous studies have explored learning language-
conditioned policies by assuming access to ground-truth environment rewards (Jiang et al., 2019
Co-Reyes et al.| 2018), real-time experimentation (Fu et al., [2018}; [Bahdanau et al., 2018; Mirchan-
dani et al.,2021)), or expert demonstrations paired with language annotations (Stepputtis et al., 2020;
Lynch & Sermanet, 2021} Xiao et al.,[2023; Brohan et al., [ 2023bga). In contrast, our approach aims
to learn language-conditioned policies from entirely offline datasets, which may be highly subopti-
mal and which are unlabeled, with no environment- or human-provided reward signals. Regarding
policy evaluation, much of the prior work in language-conditioned RL and IL tests agents on new
language commands synonymous with those seen during training (Lynch & Sermanet, 2021} |[Nair
et al.l [2022). Similar to the works of (X1ao et al., 2023} Brohan et al.,[2023a; Shridhar et al.,[2021a;
Jang et al.|[2022), our focus lies on novel instructions corresponding to previously unsolved goals.

Refer to Appendix [Alfor an extended discussion of the related work.

5 EXPERIMENTS

Questions. In our experiments we aim to answer the following questions: (Q1) Does the use of a
pre-trained language model enable generalization to new language commands and new states? (Q2)
How does our method compare to simpler prompting-based methods and alternative approaches to
language-conditioned RL? (Q3) As a result of SFT, does the language model memorize the optimal
actions or does it learn generalizable and compositional skills? (Q4) How does our method scale
with computer power and what is the effect of language abstractions on data efficiency?

Experimental Setup. For the experiments we require a controlled environment where a wide variety
of distinct goals can be specified, and where the semantics of the states and actions are easily in-
terpretable by an LLM. Thus, we choose the BabyAlI environment (Chevalier-Boisvert et al.,|2018)),
a grid world platform for instruction following where an agent receives natural language goal in-
structions such as: “Go to the tile (3,2)”, “Pick up the blue key” or “Look behind the green locked
door”. A detailed discussion on the environment choice can be found in Appendix |Al The grids
can consist of multiple rooms connected by open or locked doors and different distractor objects
that the agent can interact with (boxes, keys, balls, etc.). The action space A consists of several
navigation primitives (forward, pickup, etc.). In our setup, we assume full observability of the
original state space. Each state can be represented as a long list of features and their coordinates
(see Appendix [B.Z]for example state representations in a text format).

Metrics. We rely on the following metrics to evaluate our learned policies: success rate: proportion
of attempts in which the agent achieves the goal within the time limit (500 steps); episode Length:
the average number of steps taken to reach the goal or the time limit; invalid actions: ratio of invalid
actions (e.g., moving into a wall) to total actions.
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5.1 Q1: ONLINE EVALUATION: GENERALIZATION BENCHMARK

Setup. We choose the collection of |Synth environments from BabyAl as the main test bed for
TEDUO. All environments are constructed as a 22x22 grid and containing 9 rooms. They dif-
fer in the type, position, and color of the distractors. The tasks include goals such as “go to the
{color} {object}”, “pick up the {color} {object}”, or “put the {color} {object} next to the {color}
{object}”. We use a list of 500 goals as G'". The set of testing goals contains 100 goals that are
semantically distinct from those in G*". We also augment the set of testing goals by asking GPT-4 to
paraphrase the original commands provided by BabyAl. We train a Llama-3-8B model with TEDUO
based on a dataset D containing 800k non-unique state-action-state triplets generated according to a
policy that is a random mixture of default policies from BabyAlI (see Appendix [B.1]for details).

Baselines. We compare our fine-tuned Llama-3-8B agent with non-fine-tuned LLMs: Llama-3-8B
and Llama-3-70B using a) vanilla and b) chain-of-thought prompting |Wei et al.| (2023) with addi-
tional demonstrations provided in-context (in-context+CoT). The latter integrates expert demonstra-
tions generated during step 2 of TEDUO to test the in-context learning ability of the LLM. Following
recent works Mezghani et al.| (2023)); [L1 et al.| (2022); |Cao et al.| (2023)), we also compare against
BabyAI-IL-bot, the baseline proposed by the authors of BabyAlI (Chevalier-Boisvert et al., |2018),
which is the combination of a GRU to encode the instruction, CNN+FILM layers to encode the
grid and an LSTM memory. We train this method via imitation learning on the policy generated by
TEDUO, steps 1&2. Implementation details of the baselines can be found in Appendix [B.6|

Table 1: Online evaluation of generalization performance. Results averaged over 400 (g, s9) pairs.
Standard error in brackets.

Method Environ-  Goals Success Episode Invalid
ment Rate [%] Length Actions [%]

Llama-3-8B (vanilla) train/test train/test 17 (z0.9) 444 (+3.2) 42 (+0.1)

Llama-3-70B (vanilla) train/test train/test 14 #0.7) 452 (#3.0) 55 (x0.2)

Llama-3-8B (in-context+CoT) train/test train/test 16 (x0.7) 443 (+3.3) 42 (+0.1)
Llama-3-70B (in-context+CoT)  train/test train/test 21 (20.9) 432 (+3.8) 47 (x0.3)

train train 69 (x1.2) 248 (+4.9) 17 (x0.6)
TEDUO: steps 1 & 2 test train 45 (£1.2) 344 z4.8) 19 z0.6)
+ BabyAI-IL-bot train test 15 (%0.8) 453 (#2.9) 44 (x0.7)
test test 16 (£0.8) 447 (£3.1) 36 (+0.6)
train train 65 (+1.4) 203 (+6.7) 21 (x0.7)
test train 53 (#1.1) 257 #5.4) 27 (0.7
TEDUO-Llama-3-88 train test 55 (*1.6) 241 (#7.5) 22 (1.1)
test test 45 (£1.3) 286 (+6.1) 31 (*1.2)

Results. Based on the results presented in Table [1| we make the following observations:

* Prior knowledge of LLMs is insufficient. We find that non-fine-tuned LLMs, irrespective of their
parameter count or prompting method struggle in solving tasks from the BabyAlI environments.
Low success rate and high invalid action ratios indicate the inability of LLMs to understand the
dynamics of the environment. Common failures include only using the action “move forward”
without considering the agent’s direction or attempting final actions (e.g. door opening) without
first navigating to the correct location, The observed poor performance, underscores the need
for developing data-efficient methods of distilling knowledge of the environment-dynamics into
LLMs. Our fine-tunning strategy brings the success rate of the Llama-3-8B language model from
17% to 65% in its training setting and 45% for the in-the-wild setting.

* Generalization to new environments and goals. We further look at the generalization abilities
of our fine-tuned TEDUO-Llama-3-8B model to new environments and goals. When the LLM
is tested on new environments unseen during training, a performance drop of 12% is observed,
significantly lower than BabyAI-IL-bot baseline with a drop of 24%. This difference can be
explained by the RL baseline’s overfitting due to the limited offline training data, while TEDUO-
Llama-3-8B benefits from the zero-shot capabilities of the pretrained LLM. This effect is even
more pronounced with new goals, where TEDUO experiences only an 8% decrease in success
rate, compared to a 40% drop for the BabyAI-IL-bot. Overall, TEDUO achieves nearly three
times better performance than the RL baseline when generalizing to both new natural language
commands and environments. We analyze success rates per goal type in Appendix [D.I]


https://minigrid.farama.org/environments/BabyAI/Synth/
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5.2 Q2: ONLINE EVALUATION: ABLATION STUDY

Setup. Using the same experimental setup as in the previous section, we compare our full fine-tuning
pipeline with its ablations. After obtaining the abstract datasets DY with the first step of TEDUO,
we generate goal-conditioned policies with naive behavioral cloning (step 1 + GCBC). We also
compare our fine-tuned Llama-3-8B against the performance of the GCRL policies obtained with
offline Q-learning in step 2. Note, neither of GCBC nor GCRL can generalize to new, previously
unseen language commands. Therefore, in this study, we are only looking at performance on goals
from G'". Ablation of the abstraction function is delayed to the next section.

Table 2: Ablation study. Results averaged over Results. The results of GCBC and GCRL can
400 (g, s) pairs. Standard error in brackets. be seen as ablations of our pipeline. We first
Method Success Episode Invalid note that the success rate of naive behavioural

Rate [%] Length  Actions [%] cloning is low, indicating low fidelity of the
Step 1 7 @06 474 223 11 200 data'collectioh policy 'and highlighting the need
+ GCBC for incorporating ofﬂine. policy-l(?arning meth-
ods. Moreover, the significantly improved per-
formance of the Q-learning policies (GCRL) vali-

Steps 1 &2 16 (z0.8) 430 3.9 10 0.1)

(GCRL) dates the effectiveness of the first two steps within
All steps 65 1.4y 203 @267 21 (x0.7) our pipeline. Thus, the synthetically constructed
Llama-3-8B abstract MDPs are meaningful offline constructs

that yield, given the data available, optimal poli-
cies effective during online testing. Finally, the improved performance of our fine-tuned Llama-3-8B
over the Q-learning/GCRL policies on training goals and environments confirms the importance of
the third step of our method and suggests that the ungrounded, prior knowledge of large language
models improves generalization to new previously unseen states.

5.3 Q3: LEARNING AND EXPLOITING CORE SKILLS

The aim of the first part of our experiments is to investigate the generalization abilities of the LLM
fine-tuned with our pipeline. We wish to investigate if by learning the optimal policies for diverse
goals and environments, the LLM can integrate the core skills required to achieve these goals and
how such skills can be transferred across tasks. We also investigate the aspect of skill composition-
ality. Does the prior knowledge of the LLM, now grounded in the environment dynamics, suffice to
compose together learned skills to solve novel tasks?

5.3.1 SKILL TRANSFER AND COMPOSITIONALITY.
Setup. We are working with the following three types of illustrative environments:

Type A: A grid with 2 rooms, an open door and a box. The language commands
are of two types: “go to the tile (x,y)” and “pick up the {color} box™.

Type B: A grid with 2 rooms and a closed door. The language commands are
the types: “go to the tile (x,y)” and “open the {color} door”. The agent and the
object are in different rooms, so the agent must pick up the key and open the
door first.

Type C: A grid with 2 rooms, a closed door and a box. The language commands
are the types: “pick up the {color} box”. The agent and the object are in different
rooms, so the agent must open the door first and then pick up the box.

The position and color of the door and box vary across different instantiations of the environments.
We use type A and B environments for training and type C environments for testing. We note that
tasks from type C environments require the internalization of three core skills: moving to a given
location, opening a door, picking up a box. The skill of moving to a location can be obtained from
both environments A and B, but the skill of picking up a box or opening the door can only be
obtained from one of the environments, A or B, respectively. This setup allows us to investigate the
transferability of learned skills across environments and their compositionality.
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Table 3: Performance on test tasks from type C en- Results. Table [3] demonstrates that the LLM
vironments. TEDUO A and TEDUO B have been fine-tuned on tasks from both Type A and B en-
trained in only one environment whereas TEDUO  vironments achieves a 60% success rate, com-
A&B has been trained in both. pared to the non-fine-tuned baseline, which
Moethod Success Episode Invalid fails entire'ly. Although the §nvir0nment i§ sim-
Rate [%] Length Actions [%)] pler, baseline performana.i is lowey than in Ta-
ble [T] due to shorter maximum episode length
LLM (vanilla) 0 @00) 20 @0.0) 7505 (20 vs. 500). The agent trained only in En-
%Egggg 8&88; %g Efgg; ;é Efgz vironment A (TEDUO A) reaches a 99% suc-
= = = cess rate in tasks without closed doors (Type A
TEDUO A&B 60 @21 1602 37l0 grids), but consistently fails when the g}c])gl is
behind a door. Similarly, TEDUO B achieves an 81% success rate in new grids from Type B but
cannot generalize to Type C. The observation that TEDUO A&B can generalize to a new environ-
ment C that requires a combination of both skills independently seen during training indicates that
the fine-tuned LLM does not merely memorize optimal trajectories for individual tasks. Instead,
it learns core, generalizable abilities that can be combined to address novel tasks in new settings.
This result contrasts with the failure of an LLM trained in only one environment, emphasizing the
significance of multi-skill learning for successful generalization, which our framework enables.

5.3.2 INTERNALIZATION OF CORE SKILLS.

One of the core skills required to successfully solve tasks from the BabyAl environments is to
identify whether the agent at its given location is facing an object or a wall, or it is free to move
forwards. This section provides additional insights into the behaviour and internal representation of
states of the LLM fine-tuned with TEDUO in comparison to a base LLM.

Vanilla Llama-3-88 TEDUO Llama-3-8B Is facing an object Is facing a wall

0.8 |

ity

5 ®
3 5
a %)
: § 2
204 N 5 0.7
& \ \ g
Y N N “ 06
3 0.2 Iy § | | § 6
= L N N
v N N . N 0.5
0.0 & N N N - N N N N 0 10 20 30 0 10 2 30
) 1 2 3 4 5 6 0 1 2 3 4 5 6 Layer index
Is Facing: Action index LLM
None Wall SN Object —— TEDUO  ---- Vanilla

(a) Action probabilities. The action codes are: 0: turn left, 1: turn  (b) ROC-AUC score of the linear
right, 2: move forward, 3: pick up an object, 4: drop an object, 5:  probe.
toggle an object, 6: done completing the task

Figure 3: Interpretability results for detection of walls and objects.

Setup. We operate within the Synth BabyAl environments as in the main evaluation benchmark
and generate a dataset consisting of 10 random goals and 512 states per each goal. We embed each
goal-state pair into our prompt template for eliciting actions and fine-tuning the language models
and pass them through both the base and fine-tuned Llama-3-8B from experiments[5.I]and[5.2] We
record the logprobabilities of the tokens [0, 1, ..., 6] as well as the hidden representation of states at
each layer. We label our dataset according to whether at the given state the agent is facing a wall, an
object, or it is free to move forwards. For each layer, we fit two linear probes on top of the hidden
representations: one to predict if the agent is facing a wall and the other if it is facing an object.

Results. First, from Figure [3(a)l we observe that a non-fine-tuned Llama-3-8B puts a high proba-
bility on the action 'move forwards’ irrespective of whether the agent is facing an obstacle or not;
this results in a high ratio of invalid actions, as previously observed in the benchmark experiments.
After fine-tuning with TEDUO, the probability of moving forwards when facing an obstacle is sig-
nificantly reduced, putting more weight on the actions of moving left or right to avoid the obstacle.
We also observe, that our TEDUO method taught the LLM that objects can be picked-up (action 3),
only when the agent is directly facing it. From the linear probe experiments (Figure [3(b)) we ob-
serve that after fine-tunning, the internal representations of states directly encode the information of
whether the agent is facing an obstacle. At the final layers, the ROC-AUC score of predicting both
types of labels is near 100%, in sharp contrast with the score of around 80% for the non-fine-tuned
model. Yet, the score of 80% is still relatively, high, indicating that the original state representa-
tions are sufficient to identify whether the agents is facing an obstacle, but, since the non-fine-tuned
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LLM lacks grounding of this knowledge with respect to the environment dynamics, it struggles to
translate it into an optimal action to be taken. This result underscores the claims of previous works
that out-of-the-box LLMs struggle to translate their prior knowledge into low-level actions within
dynamic environments (Finn| |2024;|Szot et al., 2024)).

5.4 Q4: DATA EFFICIENCY AND SCALING OF TEDUO

Success Rate Episode Length Invalid Actions Table 4: Performance Vs compute power/num-

ber of training goals.

- 20 0.05 TFlops|G'"| Success Episode Invalid
o0 10 Rate Length Actions
1000 2000 3000 1000 2000 3000 1000 2000 3000 [%] [%]

Number of unique state-action pairs collected
Original —— Abstracted 5'267 266 33 342 32
8.6e7 372 36 330 40

Figure 4: Performance vs. offline dataset size.

The abstraction function enhances data efficiency. 14e8 534 45 286 31

Impact of state abstraction. In Figure 4] we look at the performance of the learned Q-learning
policies (i.e. the policies {7} cgt- obtained at the end of TEDUO step 1+2 for different sizes of
observational dataset D. This experiment is realized with and without the ablation of the abstrac-
tion function during step 1. As anticipated, the efficacy of the learned policies improves with the
increasing size of the dataset D until reaching a plateau. On average, our LLM-based state abstrac-
tion function reduces the number of unique states within each abstract MDP by 10% (Fig. [C.8]in
the Appendix). Due to the reduction in state space size, the abstraction function significantly en-
hances the data efficiency of our training method across all three performance metrics. Furthermore,
the size of the state spaces SY, corresponding to the subset of features relevant for identifying the
completion of the goal is reduced to just around 20% of the original state space size (Fig. in
the Appendix). This reduces the size of the goal detection datasets for training and the subsequent
goal-identification described in section [3.1.2]5-fold.

Compute power is the new bottleneck. Given a fixed observational dataset D, we can expand at no
extra cost the fine-tuning dataset D57 by introducing more training goals in G*". Yet, larger D557
necessitates more compute power for training the LLM agent. Table [4] demonstrates the scaling
of our method with compute power. As expected, training on a wider range of goals results in an
improved performance on unseen test goals. We do not observe a plateau in performance metrics,
suggesting that with additional compute further gains may be possible. Consequently, our approach
shifts the bottleneck from the limited availability of real observational data to computational power.

6 DISCUSSION

Limitations. Leveraging LLMs’ prior knowledge enables efficient policy generation with minimal
data. However, some applications may benefit more than others. First, certain scenarios may be
out of distribution even for LLLMs trained on extensive Internet data. Second, we assume that the
environment state can be represented textually, which, although feasible for many applications due
to language’s expressiveness, may not be ideal in all cases. Third, due to the discrete nature of LLM
tokenization, using fine-tuned LLMs to directly output actions requires discretization of the action
space, which can hinder performance in continuous control tasks. Lastly, while data requirements
are minimal, they still assume some practitioner knowledge of the environment and the data D to
propose training goals G'” likely achievable in D (see Appendix for details).

Conclusions. TEDUO introduces a novel framework for developing natural language instruction-
following agents capable of generalizing to new states and instructions in a zero-shot setting, using a
collection of unlabeled state-action transitions. This is the first RL pipeline to create natural language
goal-conditioned policies in an offline setting using unlabeled data. It surpasses the current state-of-
the-art in zero-shot generalization for both goal and domain adaptation. To achieve this, we propose
a data-driven approach to teach environment dynamics to a large language model, enabling it to
interact effectively with the environment—a task where LLMs typically underperform. This result
could potentially extend the applicability of LLMs to new domains requiring multi-step reasoning
and dynamic interaction with the environment.
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Reproducibility statement. The environment used to analyze and benchmark the methods are
publicly available. Within the TEDUO pipeline and for benchmarking we use open-source language
models. Every step of our method is clearly stated in Section[3] Additional details to reproduce the
experiments, including prompts and implementation of baselines, are presented in Appendix [B] The
code for this paper is provided as supplementary material.
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A EXTENDED RELATED WORK

A.1 GENERALIZATION IN OFFLINE REINFORCEMENT LEARNING

Following the work of Mediratta et al. (2024), we separate the generalization abilities of offline
reinforcement learning algorithms into two categories: new instruction following and adaptation to
new states or environments.

Goal-conditioned RL. Goal-conditioned Reinforcement Learning (GCRL) is a subfield of RL ded-
icated to developing policies capable of achieving multiple goals within the same environment dy-
namics. These policies are conditioned on an additional input, g, indicating the goal that the next
action should aim to achieve. While most recent research has focused on online settings (Islam et al.,
2022 Han et al., 2021; |Hong et al., [2023} |Yang et al.,[2021)), only a few methods have addressed the
offline GCRL problem (Yang et al.| 2022 Ma et al.}|2022; (Chebotar et al., 2021)). (Yang et al.|[2023)
offers a comparison of these methods and highlights the key challenges in offline GCRL. Addition-
ally, these approaches typically restrict goal representations to those expressible as a single state in
the state space (Chebotar et al.l 2021), a scalar parameter (Ma et al., 2022)), or a fixed set of known
goals (Yang et al.| 2022).

Language-conditioned RL. Our work addresses the problem of goal-conditioned RL, where goals
are expressed in natural language. While using language to specify goals is natural and broadens
the range of possible goals it comes with the challenge of grounding the semantics of language
in the environment state space and dynamics. Such language-instruction following agents have
been widely studied in both reinforcement learning and imitation learning contexts. However, most
existing methods either rely on access to an online environment for interaction (Fu et al.| 2018;
Bahdanau et al.| [2018; Jiang et al.|[2019; Mirchandani et al., 2021} or require costly, goal-annotated
expert datasets of offline demonstrations (Stepputtis et al., [2020; [Lynch & Sermanet, 2021} Xiao
et al., 2023} Brohan et al.| [2023bza). In contrast, our approach does not assume any environment-
provided reward signal or access to real-time exploration. Furthermore, in terms of generalization
to new natural language instructions, we distinguish between evaluation on instructions that simply
paraphrase the training goals (Nair et al.,|2022; |Lynch & Sermanet, 2021)) from those that represent
semantically novel goals. Similar to the works of | Xiao et al.|(2023)); Brohan et al.|(2023a); Stepputtis
et al.| (2020); [Shridhar et al.| (2021a); Jang et al.| (2022), our focus is on the latter, more challenging
scenario.

Domain Generalization. While the previous section addressed generalization to new goals, this sec-
tion focuses on generalization to novel state-action transitions. This type of generalization extends
beyond goal-conditioned RL, as it is essential even for single-goal RL. It has been widely studied
and observed that Offline RL methods often overfit to the training distribution of state-action tran-
sitions, resulting in poor performance when the test distribution differs. Various approaches have
been proposed to address this distribution shift, including regularization techniques |[Kostrikov et al.
(2021)); Kumar et al.|(2020), model-based RL |Yu et al.|(2020); Kidambi et al.|(2021)), and enhanced
representation learning Mazoure et al.| (2021); [Fan & Li (2022). In TEDUO, we intentionally avoid
domain generalization when solving the abstract MDPs in step 2 to prevent providing incorrect ex-
amples to the LLM in step 3. However, our method achieves domain generalization by leveraging
the zero-shot capabilities of the fine-tuned LLM. Future work could enhance TEDUO by replacing
tabular Q-learning in step 2 with a method that generalizes to new state-action transitions.

A.2 OFFLINE POLICY LEARNING WITH MINIMAL DATA REQUIREMENTS.

This paper focuses on realistic requirements regarding the training inputs. We work under offline
setting, with a limited number of unlabeled environment transitions (i.e., (z, at, x¢11) triplets) and
without any assumptions about the policy that generated the actions. To address this scenario, we
employ LLMs to label the data, enabling the use of RL methods, and as an abstraction function to
enhance sample efficiency. Below we discuss the related work regarding these two steps.

Hindsight labeling. Labeling data for goal-conditioned RL requires the design of reward functions
for each goal. The most common approach for designing the rewards relies on handcrafted meth-
ods that are often require multiple refinements through trial and error (Knox et al., [2022). With a
large number of goals, manual reward design becomes infeasible. Inverse Reinforcement Learning
(Ziebart et al., [2008; |[Fu et al., 2018) attempts to generate reward functions directly from data, but it
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requires a large amount of expert demonstrations. Recent studies have explored the use of LLMs and
VLMs as reward functions. These methods typically involve creating a preference dataset (Klissarov
et al., [2023), comparing the cosine similarity between natural language goals and state representa-
tions, or leveraging the coding abilities of LLMs (Yu et al.,[2023a), especially in an online iterative
fashion (Ma et al., 2023} | Xie et al., [2024). These approaches are however aimed at densifying the
reward signal. In contrast, our method requires generating reward labels for a large number of goals
(approx. 100-1000), making the scalability of the process crucial. Therefore, we focus on gener-
ating rewards with a limited number of LLM calls. Our approach relies on LLM-based detection
of task completion, which has been proven effective by [Kwon et al.[(2023)). We further reduce the
number of LLM calls by approximating the LLM-generated rewards with lightweight proxy neural
networks.

State abstraction. State abstraction aims to reduce the complexity of the state space by eliminat-
ing irrelevant features, thereby improving the efficiency of learning algorithms. Early work in this
area focused on state aggregation, where similar states are grouped together to form more compact
representations, with state similarity defined through the transition dynamics, value- or Q-functions
(Andre & Russell, 2002 ILi et al.| 2006}, |Givan et al., 2003} |Abel et al.l |2018). Recent advance-
ments have explored more sophisticated methods, such as deep learning-based state abstractions,
employing neural networks to learn abstract representations of states (Allen et al., [2021). In this
work, we explore the use of LLMs to accomplish the task of state abstraction. Our approach relies
on prompting a pre-trained LLM to remove the features of a state that are irrelevant in solving the
given goal. Such LLM-based state abstraction has been previously shown effective in the context of
robotics by [Peng et al.| (2023) who employ LL.Ms to translate the language command into a binary
mask highlighting the location of the goal-object.

A.3 LARGE LANGUAGE MODELS FOR DECISION MAKING

Decision Transformers. Pre-trained models based on the Transformer architecture have been
widely used to address decision-making problems. However, this paper does not focus on Decision
Transformer (DT) models (Chen et al.,2021)). Although DTs have been applied in goal-conditioned
RL and IL (Xu et al., 2022; Raparthy et al.l [2023]; |Putterman et al., [2022), the joint modelling of
goal, state, and action representations remains challenging and requires large labeled datasets. In-
stead of training a decision transformer, this papers leverages the prior knowledge accumulated in
LLMs trained on Internet data to a) enable effective use of the limited offline, unlabeled data, b)
enable generalization to previously unseen goals and states.

General-purpose LLMs for decision making. Utilizing off-the-shelf LLMs has gained significant
attention due to its simplicity. In decision-making, LLMs have been used to create assistance func-
tions within training pipelines to enrich data (Klissarov et al.,|2023}Yu et al.,2023a;|Ma et al., 2023;
Xie et al.| [2023; |Laskin et al., 2022)), and as high-level planners during inference to guide traditional
RL policies (Shah et al., 2023} |Ahn et al.| [2022)). Additionally, there has been growing interest in
using general-purpose LLMs directly as decision-making agents (Yao et al., 2023)). Improving the
reasoning capabilities of LLM agents is now an active research area, focusing on methods that are
independent of traditional RL. These include iterative prompting techniques such as self-reflection
(J1 et al,, [2023), chain of thought reasoning (Wer et al.l 2023)), and integration with planning al-
gorithms like Monte Carlo Tree Search (Pouplin et al., |2024). Nevertheless, such methods have
been shown inefficient in completing complex, multi-step decision-making tasks in dynamic envi-
ronments (Finn, |2024; Szot et al., [2024)). To effectively use the knowledge embedded in LLMs for
solving RL problems, these models need to be grounded in the dynamics of the environment.

Grounding LLMs with the environment dynamics. An LLM agent grounded in an environment
can link the semantics of both observations and possible actions to its internal representation system,
enabling appropriate decision-making (Carta et al.} |2023; Harnad, |1990). One approach to achieve
such grounding is through in-context learning. For instance, Voyager (Wang et al.,2023)) pushes the
concept of an LLM agent to its limits by developing an automatic curriculum for GPT-4, supported
by alibrary of executable programs, to play Minecraft. Another method involves providing the LLM
with a game manual (Wu et al., 2023). However, these approaches either rely on extensive expert
knowledge, such as carefully designed prompts, or on game manuals, which may not always be
available. Additionally, in-context learning has limitations in data-driven scenarios, partly due to the
restricted context window size, which is insufficient for incorporating entire datasets. An alternative
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approach involves fine-tuning LLMs to achieve grounding. Studies such as (Tan et al., |2024) and
(Carta et al.l |2023) use Proximal Policy Optimization (PPO) (Schulman et al., [2017) to propose
online fine-tuning of LLMs. In the robotics domain, RT2 (Brohan et al., 2023a) demonstrates that
co-fine-tuning on both web-scale data and expert robot demonstrations improves performance of
VLMs for decision making in the context of robotics. Our method differs from previous work by
significantly lowering the requirements on input data, as we do not need online interaction or labeled
expert demonstrations. Furthermore, while RT2 implements co-fine-tuning, our method utilizes an
off-the-shelf pre-trained LLM, which is then fine-tuned.

A.4 TESTING ENVIRONMENTS

This paper uses the Minigrid-BabyAlI environment to benchmark its method. This choice was mo-
tivated by several factors. Most importantly, we require a sandbox environment in which a wide
range of goal reaching tasks can be expressed in natural language. Robotic environments (Todorov
et al.| (2012); James et al.[(2019)) were excluded due to precise control of robotic components be-
ing beyond LLM’s prior knowledge and the need to discretize continuous actions to match LLM’s
tokenized output. Additionally, 3D environments (Fan et al.| (2022); Puig et al.| (2018))) were not
considered due to computational constraints. Text-based games (Cot¢ et al.| (2018)); |Shridhar et al.
(2021b))) were also excluded as they involve high-level text interactions, contrary to this paper’s
focus on low-level control task for language models.

Given the significant computational resources and time required to perform all three steps of our
pipeline, in particular fine-tuning an LLM agent, our current scope is necessarily limited to BabyAl.
Nonetheless, the insights derived from this controlled setting are broadly applicable and provide a
foundation for future work in environments with similar tabular structures, such as NetHack (Kiittler
et al.| (2020)) and Overcooked (Carroll et al.| (2020)), which differ mainly in thematic focus (video
game dungeon crawling and collaborative cooking, respectively).

B EXPERIMENTAL DETAILS

B.1 DATA COLLECTION

To collect the data D used throughout the experiments, we rely on the default goal-oriented policies
from the BabyAl environment. We denote these policies by 7°(-; ¢). Our data collection policy
that is random mixture of the policies 7(+; g). Given a randomly sampled initial state 7o € X and
an unknown goal g randomly sampled from the set of original BabyAl language commands, we let
the agent interact with the environment according to 7°(-; g) until either g is reached or the limit
of 500 steps is reached.This policy simulates agents attempting to accomplish multiple task within
the environment. Examples of real-world unlabeled data that could be generated from such policy
include CCTYV footage of employees at work, logs of medical procedures performed on a patient, or
YouTube videos.

Refer to Appendix for an analysis of how the data collection policy affects our pipeline, com-
paring goal-oriented data collection with fully random data collection.

B.2 ABSTRACTION FUNCTION

The abstraction function utilizes contextual understanding of LLMs to identify goal-relevant fea-
tures. We prompt an LLM with the given goal, a randomly sampled state representation as an
exmple, and two in-context examples of the expected output. Figure[B.T|shows the prompt template
used. The LLM returns the goal relevant features which are then passed to a python function that
processes states according to the following rules:

* Distractors identified in the selected features are labeled as either “’goal object” or “goal
location.”

¢ Distractors not included in the selected features are labeled as obstacles.

* Doors not referenced in the selected features are assigned uniform colors.
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« If all relevant objects are within the agent’s current room, the environment outside the room
is disregarded.

For this step we use the Llama-3-70B-Instruct language model with the following parameters:
{temperature: 0, top k: 1, maximum number of tokens: 8000}.

<|begin_of_text|><|start_header_-id|>system<|end_header.id|>You are helping a Reinforcement learning
agent in the minigrid environment. Always answer as helpfully as possible, while being truthful
.<|eot.id|><|start_header.id|>user<|end_-header_id|>Given a grid, its features and a goal, can
you simplify the features of the grid by detecting all the objects related to the goal and if
necessary goal location. if necessary , make sure to flag all the relevant object and not just
one.

I'm giving you two examples on the same grid:

Grid : ”It is a 22 by 22 tiles grid. The features of the environment are:

0. The following tiles are wall: (1,7) (1,14) (2,7) (2,14) (3.,7) (3.,14) (4.,7) (5.7) (5.,14) (6,14)
(7,1) (7.,2) (7.,3) (7.,4) (7.5) (7,6) (7.,7) (7.8) (7.,9) (7,10) (7,11) (7,13) (7.,14) (7,15) (7,16)
(7,17) (7,18) (7,19) (7,20) (8,7) (8,14) (9.,14) (10,7) (10,14) (11,7) (11,14) (12,7) (13.,7)
(13,14) (14.,1) (14.,2) (14.,3) (14.,4) (14.,5) (14.,6) (14.,7) (14.,9) (14,10) (14,11) (14,12) (14,13)
(14,14) (14,16) (14,17) (14,18) (14,19) (14.,20) (15.,7) (15.,14) (16.,7) (16,14) (17,7) (17,14)
(18.,7) (18,14) (19,14) (20,7) (20,14)

1. A open purple box is on tile (1,20)

2. A open green box is on tile (5.8)

3. A open yellow box is on tile (6,5)

4. A open blue box is on tile (8,13)

5. A open purple box is on tile (15,3)

6. A open grey box is on tile (18,10)

7. A open red box is on tile (20,19)

8. A closed yellow door is on tile (4,14)
9. A closed purple door is on tile (6,7)
10. A locked grey door is on tile (7,12)
11. A closed red door is on tile (9,7)
12. A closed yellow door is on tile (12,14)
13. A closed grey door is on tile (14,8)
14. A closed grey door is on tile (14,15)
15. A closed red door is on tile (19,7)
16. A blue key is on tile (3,5)

17. A grey key is on tile (8,10)

18. A blue key is on tile (11.,4)

19. A purple ball is on tile (1,16)

20. A green ball is on tile (2,20)

21. A blue ball is on tile (3,19)

22. A red ball is on tile (9,12)

23. A grey ball is on tile (9,13)

24. A yellow ball is on tile (13,1)

25. A grey ball is on tile (13,6)

26. A yellow ball is on tile (17,6)

27. Inventory : []

Exemple 1

The goal is “Pick up a blue key”.
Following the indications , the correct output is these simplified features
{”goal object” : (3,5) (11,4)}

Example 2
The goal is ”Put a green box next to a grey ball”.

Following the indications , the correct output is these simplified features

{”goal object” : (18,10),
”goal location” : (9,13) (13,6),}

Now, my goal is “{goal}” and I am in the following grid
“It is a 22 by 22 tiles grid. The features of the environment are:

{state}

Let’s think step by step. First, tell me about your knowledge of the Minigrid/BabyAl reinforcement
learning environment. Then, provide an analysis of the environment and the goal. Finally , write
simplified features in the same format as the example.<|eot_id|><|start_header_id|>assistant <|
end_header_id|>

Figure B.1: Prompt template for selecting the relevant features to achieve the goal.
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0. The following tiles are wall: (1,7) (1,14) (2,7) (2,14) (3,7) (3,14) (4,14) (5,7) (6.7) (6,14) (7,1) (7.,2)
(7.,3) (7.,4) (7.,5) (7.,6) (7,7) (7.,9) (7,10) (7,11) (7,12) (7,13) (7,14) (7,15) (7,16) (7,17) (7,18)
(7,19) (7,20) (8,7) (8,14) (9,7) (10,7) (10,14) (11,7) (11,14) (12,7) (12,14) (13,14) (14,1) (14.,2)
(14.,3) (14.,4) (14,6) (14.,7) (14.,8) (14.,9) (14,10) (14,11) (14,12) (14,14) (14,15) (14,16) (14,18)
(14,19) (14,20) (15,14) (16,7) (16,14) (17,7) (17,14) (18,7) (18,14) (19,7) (19,14) (20,7) (20,14)

red ball is on tile (4,19)

purple ball is on tile (9,5)

purple ball is on tile (12,2)

blue ball is on tile (16,19)

25. Inventory : []

26. The agent is currently at the following tile: (6,10)
27. The agent is facing up

1. A open red box is on tile (1,2)
2. A open yellow box is on tile (4.,9)
3. A open blue box is on tile (6,8)
4. A open grey box is on tile (16,15)
5. A open grey box is on tile (17,1)
6. A open red box is on tile (20,6)
7. A closed blue door is on tile (4,7)
8. A closed red door is on tile (5,14)
9. A closed purple door is on tile (7.,8)
10. A closed blue door is on tile (9,14)
11. A closed yellow door is on tile (13,7)
12. A closed yellow door is on tile (14,5)
13. A closed red door is on tile (14,13)
14. A closed red door is on tile (14,17)
15. A closed grey door is on tile (15,7)
16. A grey key is on tile (5,20)
17. A yellow key is on tile (9,15)
18. A green key is on tile (15.,5)
19. A yellow key is on tile (16,12)
20. A green key is on tile (17,15)

A

A

A

A

Figure B.2: An example of BabyAl textualized state before state abstraction.

The following tiles are wall: (1,7) (1,14) (2.,7) (2,14) (3.,7) (3,14) (4,14) (5.,7) (6.,7) (6,14) (7.1) (7.,2)
(7.,3) (7.,4) (7,5 (7.,6) (7.,7) (7,9) (7,10) (7,11) (7,12) (7,13) (7,14) (7.,15) (7,16) (7,17) (7,18)
(7,19) (7,20) (8,7) (8,14) (9.,7) (10,7) (10,14) (11.,7) (11,14) (12.,7) (12,14) (13,14) (14.1) (14.,2)
(14.,3) (14.,4) (14.,6) (14,7) (14.,8) (14.,9) (14,10) (14,11) (14,12) (14,14) (14,15) (14,16) (14,18)
(14,19) (14,20) (15,14) (16,7) (16,14) (17,7) (17,14) (18,7) (18,14) (19,7) (19,14) (20,7) (20,14).

The following tiles are obstacles : (1,2) (4,9) (16,15) (17,1) (20,6) (5,20) (9,15) (15,5) (16,12) (17,15).

The following tiles are closed doors : (6,8) (4.,7) (5,14) (6,8) (4.7) (5,14) (7.,8) (9,14) (13.,7) (14.,5)
(14,13) (14,17) (15.7).

A goal object is on the tile (4,19).

A goal object is on the tile (9,5).

A goal object is on the tile (12,2).

A goal object is on the tile (16,19).

Inventory : [].

The agent is currently at the tile (6,10).

The agent is facing up.

Figure B.3: Textualized state fromafter applying state abstraction for the goal “pick up a ball”.
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B.3 REWARD SHAPING

As detailed in Section[3.1.2] the reward shaping process involves two stages.

In the first stage, a large language model LLM, Llama-3-70B-Instruct, is utilized to generate a
supervised dataset of labeled goals. The LLM is configured with parameters {temperature: 0, top-k:
1, max tokens: 8000}, using the prompt template shown in Figure For each goal g, up to 5000
states are randomly sampled from S9 and labeled.

In the second stage, a collection of neural networks is trained on this dataset. The state representa-
tions are transformed from text to a grid format. The network architecture consists of a small con-
volutional neural network with one convolutional layer (output dimension: 32, kernel size: (2,2)),
followed by two linear layers (hidden dimension: 32, output dimension: 1). A Sigmoid activation
function is applied after the final linear layer, and ReLU is used after all other layers. Dropout lay-
ers are added before each linear layer. The network is trained with the following hyperparameters:
learning rate of le-5, maximum of 3000 epochs, and dropout rate of 0.1. The dataset is split into
training and validation sets (90%/10%), and the model weights with the lowest validation loss are
retained.

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a helpful and honest judge of good
progress in the Minigrid/BabyAlI reinforcement learning environment with respect to a specific
GOAL. Always answer as helpfully as possible, while being truthful , simple and concise. If you
don’t know the answer to a question, don’t share false information.

<|eot-id|[><|start-header-id|>user<|end-header-id|>I will present you a GOAL to be achieved and the
descriptions of a STATE of the environment. Examples of goal are “opening a door”, “go to a
specific location™, ”putting an object next to another other” or ”picking up an object”.

First, tell me about your knowledge of the Minigrid/BabyAl reinforcement learning environment related
to the goal.

Then, write an analysis describing the semantics of the state strictly using information from the
description and your knowledge of Minigrid/BabyAl.

Finally , respond by explicitly declaring if the state indicates that the GOAL has been achieved at
any point in the past, writing either (”goal achieved”: True), or (”goal achieved”: False). If
you have a doubt, you could also say (”goal achieved”: NA).

The environment is a 22 by 22 tiles grid. An object that has been picked up is placed in the agent
inventory .

The agent or an object is considered at an object location if it is on an adjacent tile to the object
(for example, (4,2) and (5,3) are not adjacent as their Manhattan distance [4-5| + [2-3| = 2 is
strictly superior to 1) or it is in the inventory. If the goal explicitly mentions the agent
going to an object or putting an object near another object, compute the Manhattan distance ,
show the details of the computation, explicitly compare the result to 1 and then verify your
reasoning does not have any mistakes and base your decision only on the Manhattan distance. Don’
t say they are adjacent if their Manhattan distance is higher than 1. Don’t forget to check the
inventory . If the coordinates of the destination are mentioned, the agent must go to this exact
tile .

For other types of goals, do not compute them and ignore the previous paragraph.
{”STATE”: {state}}

{"GOAL™: {goal}}<|eot_id|><|start_header_id|>assistant <|end_header_id|>

Figure B.4: Prompt template for labeling states as goal states or not.

B.4 TABULAR Q-LEARNING
In TEDUO’s step 2, the abstract MDPs are solved using tabular Q-learning. For each goal g, a

Q-value table Q9 of size |S9| x |A| is constructed. The Q-values are updated iteratively using the
Bellman equation:

Qheulsesa] (1= a)Q[stai] +a (Rlsi ar) +7maxQ[ses1.a]) .

The learning rate « is set to 0.1, and the discount factor -y is set to 0.7. Subsequent states sy
are restricted to transitions observed in D. Iterations stop when ||Q2,,, — Q|| < € Where € =
1 x 1076,
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B.5 LLM FINE-TUNING

Table B.1: Fine-tuning hyperparameters

TEDUO’s step 3 involves fine-tuning a large lan- Hyperparameter Value
guage model using the generated supervised dataset ~ Batch size (per device) 10
DS In this paper, the fine-tuned model is Llama- | carning rate 6.5
3-8B-Instruct. We use Low-Rank Adaptation (Hu Maxi Gradient 03
et al.[{(2021)) to reduce the compute cost. The hyper- aximuam .ra tentnorm '
parameters used for the fine-tuning step are detailed =~ Warmup ratio 0.01
in Table[B.1] The model weights with the lowest val-  Maximum number of epochs 3
1dat¥0n loss are retained. The fine-tunings have been | GR A rank 512
realised on a cluster of 4 A100 (80GB VRAM). The

computing power provided in figure [ is determined ~ LORA alpha 512
by multiplying the number of GPU hours by the peak ~ LORA dropout 0.1
Tﬂqps (312 for A100 in bf16) and the estimated util-  Split train/val ratio 0.1
isation rate (90%). Tensor type bil16

s N

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a Reinforcement learning agent in
the minigrid environment. You select the sequence of optimal actions to achieve the GOAL. Always
answer as helpfully as possible, while being truthful.<|eot_id|><|start_-header_id|>user<|
end_header_id|>The state of the environment is given by the STATE. The environment is a 22 by 22
tiles grid. The possible actions are { 0: turn left, 1: turn right, 2: move forward in the
direction faced by the agent, 3: pick up an object, 4: drop an object, 5: toggle/activate an
object, 6: done completing the task}.

You only output the list of numbers associated with the optimal sequence of action to achieve the
GOAL.

STATE : {state}

GOAL : {goal}.<|eot.id|><|start-header-id|>assistant <|end_-header-id|>

Figure B.5: This prompt template is employed to generate a sequence of optimal actions to achieve
the given goal while being in the given state.

B.6 BASELINES

BabyAI-IL-bot. This baseline employs the official implementation from (?) using Imitation Learn-
ing (IL) with the largest default model parameters: memory dimension = 2028, recurrence = 80,
batch size = 768, instruction architecture = AttentionGRU, instruction dimension = 256, learning
rate = 5 x 10~°. Training is performed on the supervised dataset D*7 from TEDUO step 2 instead
of an expert demonstration dataset.

LLMs (vanilla). The vanilla Large Language Model baseline utilizes Llama-3-8B-Instruct or
Llama-3-70B-Instruct prompted with the template shown in Figure[B.5] This prompt provides basic
information about the environment, current goal, and a textual (non abstracted) representation of the
state.

LLMs (in-context + CoT). This baseline extends the vanilla LLM approach by using the prompt
in Figure which includes detailed environment information, similar to a game manual, as de-
scribed in (Wu et al., |2023). It also integrates expert demonstrations using textual grid examples and
goals with their optimal action sequences. The “Chain-of-Thought” (CoT) prompting technique is
employed to guide the LLM through multi-step reasoning and self-reflection.
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The state of the environment is given by the STATE. The environment is a {env[0]} by {env[1]} tiles
grid. The possible actions are { 0: turn left, 1: turn right, 2: move forward in the direction
faced by the agent, 3: pick up an object, 4: drop an object, 5: toggle/activate an object, 6:
done completing the task}. An object that has been picked up is placed in the agent inventory.
The agent or an object is considered at an object location if it is on an adjacent tile to the
object (For example, (4,2) and (5.3) are not adjacent as their Manhattan distance |4-5| + |2-3|
= 2 is strictly superior to 1) or it is in the inventory. If the coordinates of the destination
are mentioned , the agent must go to this exact tile. Make sure you are facing the right
direction before using the action 727.

You only output the list of numbers associated with the optimal sequence of action to achieve the

GOAL.

To help you achieving the GOAL, I provide examples of optimal sequences of actions for multiple
examples GOAL with different examples STATE.

###Example 1

GOAL : {Example goal 1}.

STATE : {Example state 1}.

Sequence of actions : {Example action 1}

###Example 2

GOAL : {Example goal 2}.

STATE : {Example state 2}.

Sequence of actions : {Example action2}

Now, I will present you a GOAL to be achieved. First, tell me about your knowledge of the BabyAl
reinforcement learning environment. Second, explain how you can use the proposed actions to move
around the grid. Third, similar to the example, output a Python list that contains the sequence
of action keys (1-6) chosen to achieve the goal.

GOAL : {goal}.

STATE : {state}.

Figure B.6: This prompt template is employed to generate a sequence of optimal actions to achieve
the given goal while being in the given state. It uses in-context learning and Chain-of-Thought
prompting.
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B.7 EVALUATION SETUP

The evaluation setup outlined in Table |1|includes training and testing configurations for both envi-
ronments and goals.

Environments. An environment in this context refers to a grid setup, which includes the arrange-
ment of rooms, doors, and objects. The training environments consist of the grid setups included D.
This implementation uses 40 distinct environments for training the model. Testing environments are
entirely new grid setups not encountered during training. For this benchmark, we utilize 2 different
grid setups for testing.

Goals. Training goals are defined as the goal contained in G'", a subset of natural language in-
structions provided by BabyAl without any modifications. Testing goals differ both grammatically
and semantically from training goals. They are derived from BabyAI’s original instructions, distinct
from G*", and reformulated using alternative phrasings and synonyms. Tables andpro-
vide the alternative formulations and synonyms for objects and colors used in these reformulations.

Table B.2: Alternative formulations for the natural language commands.

Original instruction  Alternative formulation

Go to the tile (X,Y) Move to the location at the coordinate (X,Y) / Reach the position at (X,Y) /
Navigate to the point (X,Y)

Pickupa X Grab a X / Acquire a X / collect a X
GotoaX Move to a X/ Reach a X / Naviguate to a X
Open a X Push a X open / Swing open a X

Puta X nexttoaY Set a X and a Y next to each other / Position a X alongside a Y / Place a X beside
ayY

Table B.3: Synonyms used for the objects.

Original word Synonyms
Box Container / Crate / Chest
Key Passcode / Lock-opener / Unlocker
Ball Sphere / Globe / Orb
Door Portal / Gate / Hatch

Table B.4: Synonyms used for the colors.

Original Color Synonyms
Blue Azure / Cobalt / Navy
Red Scarlet / Crimson / Ruby
Green Emerald / Jade / Lime
Yellow Golden / Amber / Canary
Purple Violet / Lavender / Mauve
Grey Ash / Charcoal / Silver
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C ADDITIONAL RESULTS

C.1 DATA COLLECTION POLICY

We examine the effect of the data collection policy on our pipeline’s performance. Specifically, we
demonstrate that our pipeline remains effective irrespective of the optimality of the data collection
policy with respect to the set G

Given the observational dataset D collected under a policy 77, let GP represent the set of goals
corresponding to goal states that have been visited in D. This set is defined as:

GP ={gcG:3(z,a,2') € Dsit. Ry(z,a,2'59) = 1}. 3)

We can measure the alignment between the dataset D and the training goals G by the size of
GP NGt ie. the set of goals from G'” that have been visited in D. A key point is that, in step 2 of
TEDUO, we cannot generate a policy 79 for any goal g not present in G”. As discussed in section
[5.4] the performance of the fine-tuned LLM depends on the size of the synthetically generated dataset
DFT making |GP N G| an import ant metric for evaluating the fidelity of our training inputs: D
and G*".

To empirically analyze this, we consider two randomized policies:

* A) Goal-oriented policy: This is the policy used for data collection in the main experimental
section. For each trajectory, a random goal from a set of goals G” is drawn and the agents acts
according to the goal-oriented policy provided in the BabyAl environment in order to achieve
it. This policy simulates agents attempting to accomplish multiple task within the environment.
Examples of real-world unlabeled data that could be generated from such policy include CCTV
footage of employees at work, logs of medical procedures performed on a patient, or YouTube
videos.

* B) Random policy: Actions are drawn uniformly at random from the action space. This policy
represents an agent that explores the environment without a specific goal. Although this scenario is
less common in real-world settings—where agents typically pursue objectives—it remains appli-
cable forSo batch RL, particularly when learning from untrained agents with no prior knowledge.

o

—— go to a ball
- go toa key

Goal | 9€G,
False

%

True
- go to a blue key

o
>

—— go to a yellow ball
—— pick up a ball

|S| (min-max scaled)

(=] (=]
RS

pick up a red key
- pick up a yellow key
—— pick up a purple ball
0%  25%  50%  75%  100% oo geg. 0.0 2% 50 75 100
% of D collected with the goal-oriented policy - ( 4G . . .
9% Yn % of D collected with the goal-oriented policy
(@ (b)

Figure C.7: Impact of data collection policy. The x-axis shows the proportion of data D col-
lected with policy A vs. policy B for a fixed size of D. a) The y-axis shows |Sj| := {s§ :
(9,83, [ad",ad",...]) € DSFT}, ie. the number of unique initial abstract states s{ for which g
is reachable with the learned policy 79. Values are min-max normalized across all 5 mixture poli-
cies. b) The y-axis shows the same values as plot a), averaged across 14 goals, bars represent the

standard error.

Figure illustrates that the optimal data collection policy varies by goal. For some goals policy
A works better, while for others it is the fully random policy. Importantly, a comparable amount
of synthetic action sequences for fine-tunning the LLM can be extracted using either policy A or
B. Averaging across all goals, we find that policy A tends to perform better for goals in G, than
those not in G,. Future work could explore optimizing the set of training goals G to maximize the
alignment of G with a given dataset D. Yet, the necessity of aligning D and G'" is moderated by

26



Under review as a conference paper at ICLR 2025

two factors. First, as shown in subsection [5.4] the abstraction function reduces the complexity of
the abstract MDPs, requiring fewer data samples. Second, since extending the list of goals in G" is
computationally inexpensive, we can continually seek better alignment.

C.2 ABSTRACTION FUNCTION

go to a red key

pick up a blue ball

put a purple ball next to a yellow key
go to a ball

pick up a key

put a yellow key next to a ball

put a grey key next to a purple box
put a grey box next to a yellow box
put a yellow key next to a yellow box
go to the tile (15,15)

go to the tile (17,16

go to the tile (18,19

go to the tile (17,12)

go to the tile (19,8

go to the tile (8,12

[87]/1%]
S31/1%]

0.00 0.25 0.50 0.75 1.00
Ratio of original to abstract states

Figure C.8: Reduction in count of unique states due to applying the LLM(g) abstraction functions
and the relative size of the reduced abstract feature space S, containing only features necessary to
identify the completion of a goal g.

D REWARD SHAPING EVALUATION

This section evaluates the performance of the reward-shaping step. We utilize pre-trained LLMs to
identify states where a specific goal g is achieved. As discussed in Section[3.1.2] the large number
of states (around 200k) for each goal makes direct LLM usage impractical due to computational
constraints. Therefore, the process is divided into two steps: (a) constructing a supervised dataset
by labelling a subset of states (5k) using an LLM, and (b) training a lightweight neural network
Ry(+; g) on this dataset.

Table D.5: Reward Shaping Benchmark. The accuracy, precision, and recall metrics are computed
with a classification threshold ensuring at least 95% precision.

Goals ROC-AUG Accuracy (%) Precision (%) Recall (%)
Go to a box 0.90 89 96 38
Pick up a ball 0.75 98 95 83
Open a door 0.92 85 95 85
Go to red door 0.98 94 100 0.2
Go to the tile (5,6) 1.0 100 100 100
Put a box next to a blue ball 0.64 100 100 25

Table shows the performance of Ry(-; g) for various types of goals compared to ground truth
rewards. The benchmark setup is consistent with the main experiments; details are provided in
the Appendix All goals achieve 95% precision, a crucial metric since false positives lead to
generating incorrect data points for D37 in TEDUO?’s step 2. Conversely, false negatives only
reduce data points in D°F7T which is less critical given our synthetic data abundance (see Section
BE[). Performance varies across goals; for instance, ’go to the red door” has low recall (0.2%), likely
due to limited positive examples in the dataset. Expanding the dataset could improve such outcomes.

D.1 BENCHMARK RESULTS PER GOAL CATEGORY
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Table D.6: Online evaluation of generalization performance split per goal category. This is the
success rate [ %] presented in Tablewith the 400 (g, s§) grouped by goal category. Standard error
in brackets.

Method Environ- Goals Pick up Go to Open a Put an X
ment aX the X X nexttoaY
Llama-3-8B train/test  train/test 11  1.6) 35 23) 8 @11 0 +0.0)
(vanilla)
Llama-3-70B train/test  train/test 13 «1.7) 33 (x22) 2 (£0.5) 0 0.0
(vanilla)
Llama-3-8B  (in- train/test train/test 6 (+1.3) 36 (x2.1) 10 1.9 0 0.0
context+CoT)
Llama-3-70B (in- train/test train/test 9 (x1.4) 45 @ 1.7) 14 =12 0 0.0
context+CoT)
train train 46 2.0 92 (x1.2) 100 +0.0) 7 (£2.9)
TEDUO: steps 12 test train 30 (= 1.6) 58 (£1.7) 100 0.0) 6 2.1
+ BabyAl-IL-bot  train test 5@12) 44 25 4 (+09) 0 £0.0)
test test 712 40 22) 5 =09 0 0.0
train train 46 +2.3) 85 +1.3) 100 (+0.0) 0 0.0
TEDUO (Llama- test train 39 (x24) 65 (2.0 100 0.0) 0 0.0
3-8B) train test 20 +3.8) 87 32 83 (+1.8) 0 0.0
test test 26 (3.0 70 (+2.8) 61 2.6) 0 0.0
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