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Abstract
We study the problem of obtaining optimal and
realistic prescriptions when using neural networks
for data-driven decision-making. In this setting,
the network is used to predict a quantity of interest
and then is optimized to retrieve the decisions that
maximize the quantity (e.g. find the best prices
that maximize revenue). However, optimizing
over-parameterized models often produces unre-
alistic prescriptions, far from the data manifold.
This phenomenon is known as the Optimizer’s
Curse. To tackle this problem, we model the
requirement for the resulting decisions to align
with the data manifold as a tractable optimiza-
tion constraint. This is achieved by reformulat-
ing the highly non-linear Local Outlier Factor
(LOF) metric as a single linear or quadratic con-
straint. To solve the problem efficiently for large
networks, we propose an adaptive sampling algo-
rithm that reduces the initial hard-to-solve opti-
mization problem into a small number of signifi-
cantly easier-to-solve problems by restricting the
decision space to realistic polytopes, i.e. poly-
topes of the decision space that contain at least
one realistic data point. Experiments on publicly
available networks demonstrate the efficacy and
scalability of our approach.

1. Introduction
In recent years, deep learning has proven to be an extremely
powerful tool for solving a wide variety of problems in
various fields such as computer vision, natural language un-
derstanding, and biology (LeCun et al., 2015; Jumper et al.,
2021; Min et al., 2023). Even though most applications have
focused on prediction and generation, optimizing trained
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neural networks for decision-making is a question that has
recently emerged.

Practitioners and academics have been increasingly incor-
porating machine learning in data-driven optimization prob-
lems for decision-making. By leveraging the predictive
capabilities of deep learning, it is possible to model com-
plex systems more accurately and, as a result, suggest more
informed decisions. There are multiple areas where this
paradigm is followed in practice. In operations management
(Carbonneau et al., 2008; Glaeser et al., 2019; Ban & Rudin,
2019), machine learning models can be used to predict
and then optimize the allocation of resources. In revenue
management (Ferreira et al., 2016; Ettl et al., 2020; Chen
et al., 2022) machine learning models can be trained on
data including historical sales, market trends, and customer
demographics to predict future revenue and then optimize to
obtain informed decisions about how to set prices that maxi-
mize revenue. In healthcare, (Bertsimas et al., 2016; Fairley
et al., 2019; Bertsimas et al., 2020), machine learning mod-
els can be used to predict the outcomes of clinical trials to
find the optimal combination of regimens to be tested.

As a general rule, the more accurate the model is at pre-
dicting the outcome of interest, the better the model will
be able to inform decision-making processes. Typically,
highly accurate models, such as neural networks, are highly
complex. However, when using a complex model to predict
a quantity of interest and then optimize over it, the resulting
prescription may not be representative of the actual data.
The reason for this behavior is that in many real-world ap-
plications, data lie on or near manifolds characterized by
significantly lower dimensions than the corresponding in-
put space (Lin & Zha, 2008; Osher et al., 2017). In deep
learning, although there is evidence (Basri & Jacobs, 2016)
indicating that neural networks can effectively extract the
intrinsic, low-dimensional coordinates of data, optimizing
an over-parameterized neural network may yield unrealistic
prescriptions, i.e. solutions in the input space that have low
or not at all data density. This phenomenon extends to gen-
eral highly complex machine learning models and is known
as the “Optimizer’s Curse” (Smith & Winkler, 2006).

In this work, we study the problem of generating both opti-
mal and realistic prescriptions when optimizing over trained
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neural networks for data-driven decision-making. We first
focus on neural networks with ReLU activations, which
are among the most widely used in deep learning (Agarap,
2018), and then we extend our method to general neural net-
works. In particular, we focus on the optimization problem:

max
x∈P

f(x)

subject to x is realistic,
(1)

where the decision space is a bounded polyhedron P and
we maximize a quantity predicted by a neural network f(x)
under the constraint that the resulting decision should be
realistic. The main contributions of the paper are:

• We show how to explicitly model the requirement that
the resulting decision should align with the data man-
ifold as a tractable optimization constraint. This is
achieved by reformulating the highly non-linear LOF
(Breunig et al., 2000), a widely used metric for deter-
mining whether a new data point is an inlier or outlier
with respect to the existing data, as a single linear or
quadratic constraint.

• We propose a tractable, adaptive, sampling-based algo-
rithm for obtaining realistic prescriptions from ReLU
networks. The algorithm takes advantage of the geom-
etry of ReLU networks and reduces the initial hard-to-
solve optimization problem (mixed-integer program)
into a small number of significantly easier-to-solve
problems (linear or second-order cone programs). This
is achieved by restricting the search space to realistic
polytopes, i.e. polytopes of the decision space gener-
ated by the network that contain at least one realistic
data point, and carefully selecting a subset of realis-
tic polytopes as the search space. We then extend the
algorithm to any differentiable model or any model
that can be expressed using mixed-integer constraints,
including linear regression and tree ensembles.

• We empirically evaluate our proposed method by con-
ducting numerous experiments on publicly available,
pre-trained neural networks. The results demonstrate
that our method consistently yields realistic decisions
with the highest objective values compared to other
state-of-the-art optimization strategies and can scale
for neural networks with millions of parameters. Addi-
tionally, we showcase the effectiveness of the proposed
realistic constraint by visualizing the solution of the
optimization algorithm with and without the proposed
constraint on real-world datasets.

2. Related Literature
A crucial requirement for data-driven decision-making is
realism in the decisions. Given that complex models suffer

from the Optimizer’s Curse, decision-makers have focused
on simpler models, like linear regression and shallow deci-
sion trees, to ensure realism (Bertsimas et al., 2016; Ferreira
et al., 2016; Cohen et al., 2020). However, such approaches
do not utilize the predictive capabilities of deep learning
and impose realism in the decisions implicitly through low
model complexity. In contrast, we show how neural net-
works can be optimized to obtain realistic prescriptions by
explicitly imposing realism by reformulating the highly non-
linear LOF (Breunig et al., 2000), one of the most widely
used metrics for verifying whether a data point is an inlier,
as a single tractable constraint in the optimization problem.
LOF has been mostly used in the field of counterfactual
explanations (Guidotti, 2022; Dutta et al., 2022; Lucic et al.,
2022). Except for Kanamori et al. (2020), which utilized
LOF as a regularization term for generating counterfactual
explanations for linear and tree models, and Tsiourvas et al.
(2024) which used it as an explicit constraint to generate
counterfactual explanations solely for ReLU networks, ex-
isting works have used LOF as an evaluation metric.

In recent years, deep learning has gained significant atten-
tion due to its exceptional performance on a wide variety of
tasks (LeCun et al., 2015; Jumper et al., 2021; Min et al.,
2023). Among deep learning architectures, ReLU networks
have gained significant attention because of their piecewise
linear nature (Lee et al., 2019) that allows for analytical
tractability. Fischetti & Jo (2018) first showed that optimiz-
ing over an already trained ReLU network can be expressed
as a mixed-integer optimization program. Since then, multi-
ple works have focused on optimizing already trained ReLU
networks, utilizing both mixed-integer optimization (Ander-
son et al., 2020; De Palma et al., 2021; Tsay et al., 2021) and
approximate methods (Katz et al., 2017; 2019; Perakis &
Tsiourvas, 2022; Tong et al., 2024). This structure has also
been utilized for a variety of applications, such as robust-
ness verification (Tjeng et al., 2017), network compression
(Serra et al., 2020), prescriptive analytics (Sun & Tsiourvas,
2023) and molecular design (McDonald et al., 2023).

To optimize ReLU networks, most researchers have focused
on MIP-based algorithms (Huchette et al., 2023). Even
though such approaches offer optimality guarantees on the
solution, their scalability is stressed when the network has
more than 2 − 3 hidden layers (Strong et al., 2023). On
the other hand, to optimize general deep learning models,
most researchers have focused on gradient-based methods
(Kingma & Ba, 2014; Loshchilov & Hutter, 2017) due to
their scalability, failing however to provide guarantees re-
garding the optimality and the realism of the solution. In this
work, we tackle these problems by introducing a general,
scalable adaptive sampling algorithm that reduces the initial
hard-to-solve optimization problem into a small number
of easier-to-solve problems and leads to certified realistic
solutions with high objective value. In what follows we
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introduce ReLU networks and their underlying geometry,
which we then utilize to reformulate LOF into a single
tractable constraint.

3. Methodology
3.1. ReLU Neural Networks

We begin with some useful definitions. Let P ⊆ Rd denote
the input space that we assume to be a bounded polyhedron
and let D = {xi ∈ P}mi=1 be the dataset on which the net-
work was trained. Throughout the paper, the terms decision
space, feasible region, and domain of the input will be used
interchangeably. We also define that [n] := {1, . . . , n}. We
denote the ReLU network as the function fθ : P → Y ⊆ R,
where θ is the set of weights of the network and Y is the
output space. The analytical form of fθ is

fθ(x) = wT
LxL−1 + bL,xl = σ(Wlxl−1 + bl),∀l ∈ [L],

where L is the number of hidden layers, nl is the number
of neurons of the hidden layer l, σ(·) : R → R is the non-
linear, continuous and sub-differentiable ReLU activation
function, i.e. σ(x) = max{x, 0}, Wl ∈ Rnl×nl−1 is the
weight matrix of layer l, bl ∈ Rnl is the bias term of layer
l and θ := {wL, bL, . . . ,W1, b1}. For ease of notation,
we define x0 to be equal to the input vector x ∈ P with
n0 := d. Therefore, problem (1) can be re-written as

max
x0∈P,x1,...,xL−1

wT
LxL−1 + bL

subject to xl = max{Wlxl−1 + bl, 0}, ∀l ∈ [L],
x0 is realistic.

(2)

Due to the non-linear nature of the ReLU activation function,
even without the realistic constraint, solving problem (2)
directly is a computationally challenging task since problem
(2) is a non-convex, non-linear optimization problem.

3.2. A Mixed-Integer Optimization Approach

Recent research has focused on solving problem (2) (without
the realistic constraint) by reformulating the equality con-
straint using mixed-integer programming (MIP) techniques.
Fischetti & Jo (2018) first proposed a re-formulation of the
equality constraint into a set of mixed-integer optimization
constraints. Specifically, for layer l, the authors observed
that the constraint xl = max{Wlxl−1+bl, 0} is equivalent
to the constraint xl ∈ C(xl−1) where

C(xl−1) =

y

∣∣∣∣∣∣∣∣
y ≥Wlxl−1 + bl,
y ≤Wlxl−1 + bl − ll ⊙ (1− zl),
y ≤ ul ⊙ zl,
y ≥ 0, zl ∈ {0, 1}nl

 .

In this definition, nl is the number of neurons at hidden layer
l, zl ∈ {0, 1}nl is a vector of binary variables that indicates

whether a neuron of layer l is activated or not, ul ∈ Rn
l is a

vector of upper bound values for the output of each neuron
of layer l, ll ∈ Rnl is a vector of lower bounds for the
output of each neuron of layer l and ⊙ denotes the element-
wise product between two vectors. Fischetti & Jo (2018)
suggested that ul = M · 1, ll = −M · 1 where M > 0 is a
large positive value and 1 is a vector of dimension nl that
contains 1 at each position. For x0, the upper and lower
bounds are obtained from P . By combining all of the above,
we obtain the following MIP re-formulation of problem (2).

max
x0∈P,x1,...,xL−1,z1,...,zL

wT
LxL−1 + bL

subject to xl ∈ C(xl−1), ∀l ∈ [L],
x0 is realistic.

(3)

3.3. Geometry of ReLU Neural Networks

The previous reformulation shows analytically that ReLU
networks are piecewise linear functions. Given a trained
ReLU neural network and a fixed activation pattern, i.e. a
fixed configuration of the activation values or equivalently
of the binary variables z of problem (3), the ReLU network
reduces into a linear model (Huchette et al., 2023) over
the feasible set defined by the activation pattern. For a
given activation pattern, this feasible set is a polyhedron
that is a subset of the input space P (Sun & Tsiourvas,
2023). Feasible sets, coming from all feasible activation
patterns, partition P into a finite number of polyhedra such
that Pj ∩ Pj′ = ∅, ∀j ̸= j′, and ∪jPj = P . To illustrate
the partitioning scheme, we present an example in Figure 1.

Example 1: Let P = [0, 1]2, and f be the trained ReLU
network with one hidden layer shown in Figure 1 (left). We
have f(x) = −0.5max{x1 − x2, 0} + 2max{x1 + x2 −
0.5, 0}. By enumerating all possible activation patterns for
the hidden layer, i.e. all possible combinations of ReLU
activations for the two hidden neurons, we obtain four poly-
topes, i.e., P1,P2,P3 and P4, that partition the input space
P as shown in Figure 1 (right). The partitions of the input
space P and the corresponding linear model resulting from
the ReLU network at each partition are:

• P1 = {(x1, x2) ∈ P : x1 − x2 ≥ 0, x1 + x2 − 0.5 ≥
0}, f(x) = 1.5x1 + 2.5x2 − 1,∀x ∈ P1.

• P2 = {(x1, x2) ∈ P : x1 − x2 ≥ 0, x1 + x2 − 0.5 <
0}, f(x) = −0.5x1 + 0.5x2,∀x ∈ P2.

• P3 = {(x1, x2) ∈ P : x1 − x2 < 0, x1 + x2 − 0.5 <
0}, f(x) = 0,∀x ∈ P3.

• P4 = {(x1, x2) ∈ P : x1 − x2 < 0, x1 + x2 − 0.5 ≥
0}, f(x) = 2x1 + 2x2 − 1,∀x ∈ P4.

It is seen that problem (3) can be solved optimally, by solv-
ing a subproblem over each feasible polytope Pj and then,
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Figure 1. (Left) A ReLU network with one hidden layer. (Right) The partition of the decision space P by the network into 4 polytopes.

reporting the solution that leads to the highest value of fθ.
Each subproblem is significantly simplified since a fixed
configuration of activations (equivalent to fixing all binary
variables z) results in the initially mixed-integer set of con-
straints xl ∈ C(xl−1), l ∈ [L], to become a linear set of
constraints. Omitting the realistic constraint, for the network
of Example 1 we only need to solve 4 simpler subproblems
(four linear programs (LPs); one over each Pj) instead of
a single harder-to-solve MIP and output as the optimal so-
lution, the solution that gives the highest objective out of
the 4 solutions. For general ReLU networks, this approach
generalizes and requires solving N subproblems, where N
is the number of all feasible polytopes.

4. Realistic Prescriptions
4.1. On the Realistic Constraint

So far, we have not focused on the constraint x is realistic.
To model the constraint tractably and identify whether a
data point is an outlier or not we use the LOF (Breunig
et al., 2000). LOF is a well-known metric in the literature
that quantifies whether a sample follows the underlying
data distribution. It identifies anomalous data points by
measuring the local deviation of a data point with respect to
its neighbors in D. We present the formal definition of LOF.

Definition 4.1. (Local Outlier Factor (LOF); Breunig et al.
(2000)) For x ∈ D, let Nk(x) to be its k−Nearest
Neighbors in D. The k−reachability distance rdk
of x with respect to x′ is defined by rdk(x,x

′) =
max{δ(x,x′), dk(x

′)}, where dk(x
′) is the distance δ

between x′ and its k−th nearest instance in D. The
k−local reachability density of x is defined by lrdk(x) =
|Nk(x)|(

∑
x′∈Nk(x)

rdk(x,x
′))−1. Then, the k−LOF of

x on D is defined as

LOFk,D(x) =
1

|Nk(x)|
∑

x′∈Nk(x)

lrdk(x
′)

lrdk(x)
. (4)

For the distance metric δ : P × P → R≥0, typically the ℓp
norm with p ∈ {1, 2,∞} is used. In this paper, we focus on
the case with p = 2. A value of LOFk,D(x) ≲ 1 indicates
that x is an inlier, while LOFk,D(x)≫ 1 indicates that x
is an outlier. In practice, to quantify whether x is an inlier
or not, we check whether LOFk,D(x) is less or equal to a
predefined threshold t, that is close to 1. In section D of the
Appendix, we argue on the choice of the LOF to model the
realistic constraint, and we compare it with the Wasserstein
distance that is widely used in the literature.

Example 2: In Figure 2 (left) we observe the partition of the
input space P by the hidden layer of the ReLU network of
the previous example along with the data points on which it
was trained. In Figure 2 (right), we observe the LOF scores
determined by the LOF classifier of scikit-learn (Buitinck
et al. (2013)) for each data point. The LOF score can effec-
tively identify both inliers and outliers for this example. For
the data points in P1,P2 the LOF is ≈ 1, indicating that
these data points are inliers. In contrast, for the isolated data
point in P4 LOF is 8.65, a score significantly greater than 1,
suggesting that this data point is an outlier.

To impose that the resulting prescription should be realistic,
we incorporate the constraint LOFk,D(x) ≤ t directly into
problem (3). We obtain the following optimization problem:

max
x0∈P,x1,...,xL−1

wT
LxL−1 + bL

subject to xl ∈ C(xl−1), ∀l ∈ [L],
LOFk,D(x0) ≤ t.

(5)

Solving problem (5) to optimality leads to the realistic so-
lution with the highest possible objective. However, there
are 2 caveats. First, the constraint LOFk,D(x0) ≤ t in its
current form is highly non-linear, and thus makes problem
(5) intractable. Second, even if the constraint was tractable
(for example, a linear constraint), solving problem (5) to
optimality would still require solving an MIP, which would
not scale for large ReLU networks, that are used in practice.
In what follows, we take advantage of the underlying geom-
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Figure 2. (Left) The partition of the input space P by the hidden layer of the ReLU network of Example 1 along with the dataset points on
which the network was trained. (Right) The LOF score for each dataset point.

etry of ReLU networks and propose a tractable and scalable
optimization algorithm for solving problem (5).

4.2. The Concept of Realistic Polytopes

LOF compares the local density of a data point to the local
densities of its neighbors. A data point, to be considered
realistic with respect to LOF, should be close to an existing
point or group of data points that are inliers. This obser-
vation helps us reduce significantly the decision space to
areas that contain realistic data points. To do so, we begin
by introducing the concept of t-realistic polytopes.
Definition 4.2. (t-Realistic Polytope) Given a trained ReLU
network fθ, a t-realistic polytope of fθ is a feasible polytope
generated by fθ that contains at least one data point of the
dataset with LOF score less or equal to t.

Example 3: In Figure 2 (right) we observe that, according
to the definition, P1 and P2 are 1.1-realistic polytopes as
they contain at least one data point with LOF less than 1.1,
while P3 and P4 are not.

In the paper, we will interchangeably use the terms t-
realistic and realistic, as we assume that t will always be
close to 1. By restricting the decision space to realistic poly-
topes, the problem’s complexity decreases significantly. To
find the optimal realistic solution we now need to solve at
most Nr ≤ N subproblems, where Nr is the number of real-
istic polytopes. In the example, restricting the search space
to realistic polytopes requires solving only 2 subproblems.

In the following theorem, we utilize the concept of t-realistic
polytopes and the LOF score metric (with k = 1) to derive
a tractable optimization formulation that leads to certified
realistic prescriptions, while we also provide a tight upper
bound on its optimal objective value.
Theorem 4.3. Let fθ be a ReLU network, Pj be a polytope
of fθ that contains at least one data point with LOF1,D ≤ t,
zj be the values of Pj’s corresponding activation pattern,
fθ(·; zj) be the given ReLU network with fixed activation

zj and Dj := D ∩ Pj be the set of points of D that belong
to Pj . We denote as x′ the data point in Dj such that
LOF1,D(x

′) ≤ t and fθ(x
′) ≥ fθ(x), ∀x ∈ Dj . Then,

1. (A Tractable Formulation) The optimization problem

max
x∈P

fθ(x; z
j)

subject to δ(x,x′) ≤ t ·max{δ(x′,x′′), d1(x
′′))},

x′′ ∈ N1(x
′),

(6)
retrieves the realistic solution x∗ ∈ Pj with the highest
objective, fθ(x∗; zj) ≥ fθ(x

′; zj).

2. (A Tight Upper Bound on the Objective) The objec-
tive value of the optimal solution of problem (6) is
upper bounded as fθ(x∗; zj) ≤ (wj)T (x′+ r wj

||wj ||2 ),
where wj ∈ Rd is the vector of the weights that
define the hyperplane of fθ over Pj and r := t ·
max{δ(x′,x′′), d1(x

′′))}, x′′ ∈ N1(x
′). The bound

is tight when x∗ = x′ + r wj

||wj ||2 .

The proof can be found in section A of the Appendix. The
first part of the theorem shows that by searching over a re-
alistic polytope at a time, LOF can be reformulated into a
single tractable constraint (either linear or quadratic), and
thus, problem (6) becomes solvable in a tractable and scal-
able manner using commercial solvers. The second part
of the theorem provides a tight upper bound on the objec-
tive value of problem (6). This bound will be later used
to restrict further the decision space and carefully select a
small subset of realistic polytopes to search over. In sec-
tion C of the Appendix we demonstrate experimentally that
for t = 1 using the bound of Theorem 4.3.2 significantly
reduces the search space by 87.5% to 99.9% depending on
the underlying neural network.

Example 4: Consider the realistic polytope of Figure 3, with
z the vector of the values of its activation pattern and w the
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Figure 3. A realistic polytope of fθ with optimal objective achieved at x̃. (Left) The solution of problem (6), leads to an optimal solution
x∗ such that fθ(x∗) < fθ(x̃) and thus, the upper bound of Theorem 4.3 is tight. (Right) The solution of problem (6), leads to an optimal
solution x∗ = x̃. In this case, the upper bound of Theorem 4.3 is not tight.

vector of the weights that define the hyperplane of fθ over
this polytope. We denote as x̃ the stationary point where fθ
retrieves its highest value within the realistic polytope. For
the purpose of this example, we assume that t = 1. In Figure
3 (left), we observe that the solution of problem (6) leads
to an optimal realistic solution x∗ with a lower objective
than fθ(x̃). In this case, the upper bound is tight and x∗ =
x′ + r w

||w||2 , where given that d1(x′′) < δ(x′,x′′) and
t = 1, r is equal to t ·max{δ(x′,x′′), d1(x

′′)) = δ(x′,x′′).
On the other hand, in Figure 3 (right), we observe that
the solution x∗ of problem (6) coincides with x̃ and thus,
produces the highest possible objective. In this case, we
have that fθ(x∗; z) < wT (x′ + r w

||w||2 ).

Remark 4.4. The maximum allowed movement r =
t · max{δ(x′,x′′), d1(x

′′)}, x′′ ∈ N1(x
′), can be pre-

computed on D. Thus, if p ∈ {1,∞} problem (6) is an
LP, and if p = 2 it is a second-order cone program (SOCP).
Remark 4.5. The realistic constraint of Theorem 4.3.1 ap-
plies to any model that can be expressed by linear mixed-
integer constraints (e.g. linear regression, tree ensembles).
We present the corresponding reformulations in section E
of the Appendix.

As the size of fθ and D increases, Nr may also increase,
making the cost of searching over all realistic polytopes pro-
hibitive. In what follows, we propose an adaptive sampling
algorithm that carefully selects a small subset of realistic
polytopes using the upper bound of Theorem 4.3.2.

4.3. An Adaptive Sampling Algorithm

The proposed algorithm consists of the following steps.
First, the algorithm performs the feed-forward pass on every
realistic data point of D. By performing the feed-forward
pass, the algorithm (1) retrieves the activation patterns that
define each realistic polytope, (2) obtains the vector of the
weights that define the hyperplane of fθ over each polytope,
(3) retrieves the inlier within each polytope with the highest
objective and (4) calculates the upper bound of Theorem

4.3.2. By calculating the upper bound per realistic polytope,
the proposed algorithm further reduces the search space, by
eliminating realistic polytopes with upper bounds that are
lower than the value of the inlier with the highest objective.

Algorithm 1 Sampling Algorithm for Realistic Prescriptions
1: Input: Training set D, ReLU network fθ, threshold t,

number of samples n.
2: Initialize polytope dictionary F ← {}, distribution

dictionary p← {}, x∗ ← None.
3: For all x ∈ D:
4: if LOF1,D(x) ≤ t:
5: Perform the feed-forward pass on x and retrieve

activation pattern z.
6: Calculate weights w of hyperplane of fθ for

activation pattern z, value v = fθ(x) and upper
bound u.

7: if z not in F or v > F [z][2]:
8: F [z]← (x,w, v, u)
9: Remove from F all z’s that have an upper bound u

lower than an existing value v in F .
10: Define for each z ∈ F the sampling distribution

p[z]← softmax(u).
11: Draw n activation patterns from F according to p.
12: For all sampled z, set x′ ← F [z][0] and solve (6).
13: Return as x∗ the solution with the highest value of fθ.

After selecting the subset of realistic polytopes that have
high enough upper bounds, we define the probability of
optimizing over each remainingPj as pj := softmax(uj) =

euj∑
i e

ui
, where uj is the upper bound of Pj and the sum is

taken over the subset of the remaining realistic polytopes
R. Finally, the algorithm samples n ≤ |R| times without
replacement from the distribution and solves problem (6)
over each sampled realistic polytope. After n iterations, it
returns as the optimal solution the inlier x∗ that achieves the
highest objective. Since for each sample, we solve a single
LP or SOCP, this method takes advantage of the scalability
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of the existing solvers and scales for large ReLU networks.
The proposed method is presented in Algorithm 1.

We also present an upper bound on the number of samples
required for the algorithm to retrieve the optimal solution.

Proposition 4.6. The proposed sampling algorithm re-
trieves the optimal realistic solution using at most

n ≤ min

{
|D|,

∑
(j1,...,jL)∈J

L∏
l=1

(
nl

jl

)}
(7)

samples, where J = {(j1, . . . , jL) ∈ ZL : 0 ≤ jL ≤
min{n0, n1 − j1, . . . , nl−1 − jl−1},∀l = 1, . . . , L}}.

The proof can be found in section B of the Appendix. Intu-
itively, the proposition shows that for over-parameterized
networks (common in practice), the maximum number of
samples required to reach optimality is independent of the
characteristics of the network (number of layers and neu-
rons) and is equal to |D|. In what follows, we utilize the
previous results and extend our method to general differen-
tiable machine learning models.

5. Extension to General Differentiable Models
We denote the general differentiable machine learning
model as the function fθ : P → R, where θ is the set
of its parameters/weights. Let x′ be a realistic data point
in D. Given that fθ is differentiable we can perform pro-
jected gradient ascent starting from x′ until convergence to
retrieve a certified realistic solution with high objective. We
utilize Theorem 4.3.1 and at each iteration k, the projected
gradient ascent performs the step:

xk+1 = ProjX ′ (xk + αk∇fθ(xk)) , (8)

where αk is the step size, ∇fθ(xk) is the gradient of
fθ at xk and ProjX ′ is the projection operator onto
the feasible set X ′ := {x ∈ P : δ(x,x′) ≤ t ·
max{δ(x′,x′′), d1(x

′′))}, x′′ ∈ N1(x
′)}.

Given that the right-hand side of the constraint is pre-
computed, the realistic constraint depends solely on the
distance function δ. In our experiments, we use the ℓ2 norm
and thus, the realistic constraint is a single convex quadratic
constraint. By performing this procedure iteratively for
different sampled x′ from the distribution, as described in
Algorithm 1, the method converges to the realistic solution
with the highest objective. Given the efficacy and scalability
of existing frameworks (Pytorch optimizers), this method
can scale for complex deep learning models (Liu et al.,
2023), as we show in section F of the Appendix.

We can also extend the upper bound of Theorem 4.3.2 under
the assumption that fθ is L-Lipschitz continuous. This
is a valid assumption for deep learning models and there

have been various works that propose tight upper bounds on
L even for modern, transformer-based architectures (Kim
et al., 2021). Following the proof of Theorem 4.3.2, we
denote xub := x′ + r ∇fθ(x

′)
||∇fθ(x′)||2 . Since fθ is Lipschitz, we

have that ||fθ(x′)− fθ(xub)||2 ≤ L̂ · ||x′ − xub||2, where
L̂ ≥ L > 0 is an estimate of L. Therefore, the upper bound
is fθ(x′) + L̂ · r.

6. Computational Experiments
We conduct experiments on publicly available ReLU net-
works to validate the performance of our method in retriev-
ing realistic solutions with high objective values. Experi-
ments were performed using Gurobi 11.0 (Gurobi Optimiza-
tion, LLC (2023)) and PyTorch 2.0 (Paszke et al. (2019))
over Python 3.9.18 (Van Rossum & Drake (2009)) and were
executed on an internal cluster with a 2.20GHz Intel(R)
Xeon(R) Gold 5120 CPU and 32 GB memory.

6.1. Pretrained Neural Networks

We use publicly available feed-forward ReLU networks pre-
trained on MNIST (LeCun & Cortes (2010)) and CIFAR-
10 (Krizhevsky (2009)), sourced from ERAN (2020). For
MNIST, each network is a function f : [0, 1]28×28 → R10,
where each of the 10 outputs corresponds to the logits of
each digit from 0 to 9, while for CIFAR-10, each network
is a function f : [0, 1]3×32×32 → R10. In the experiments,
we use the 3× 50, 3× 100, 4× 1024, 5× 100, 6× 100, 6×
200, 9×100 and the 9×200 networks pre-trained on MNIST
and the 4×100, 6×100, 7×1024 and the 9×200 networks
pre-trained on CIFAR-10. In the network name, the first
number denotes the number of hidden layers, and the second
the number of neurons per hidden layer. The accuracy in
the test set and the number of total parameters per network
are provided in Figure 7 in section G of the Appendix.

6.2. Experimental Setup

For each pre-trained ReLU neural network, we solve the
optimization problems maxx∈P f(x)j s.t. x is realistic,
where f denotes the pre-trained ReLU network, f(x)j , j ∈
{0, . . . , 9} represents the j-th output of the network for
input x, and P is the domain over which we optimize (P =
[0, 1]784 for MNIST, P = [0, 1]3,072 for CIFAR-10). In
total, we solve 10 · (8 + 4) = 120 optimization problems.

6.3. Benchmarks

We compare our method against state-of-the-art MIP-based
approaches and stochastic optimization algorithms.

Specifically, we consider the original MIP formulation pro-
posed by Fischetti & Jo (2018), presented in equation (3),
the Big-M+cuts formulation introduced by Anderson et al.
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Table 1. Number of times per network each method finds the realistic solution with the highest objective. We report in bold the highest
number per network. NA means that the method did not find a solution during the time window. Top table is MNIST, bottom is CIFAR-10.

3× 50 3× 100 4× 1024 5× 100 6× 100 6× 200 9× 100 9× 200 Total

MIP 0 0 NA NA NA NA NA NA 0
PGA 5 3 2 2 3 2 1 2 20
Simulated Annealing 0 0 0 0 0 0 0 0 0
SPSA 0 0 0 0 0 0 0 0 0
Genetic 0 0 0 0 0 0 0 0 0
AdSampling (ours) 5 7 8 8 7 8 9 8 60

4× 100 6× 100 7× 1024 9× 200 Total

MIP NA NA NA NA 0
PGA 1 2 3 3 9
Simulated Annealing 0 0 0 0 0
SPSA 0 0 0 0 0
Genetic 0 0 0 0 0
AdSampling (ours) 9 8 7 7 31

(2020), and the N = {2, 4} equal-size partition method by
Tsay et al. (2021). We also use the following stochastic
optimization algorithms. Projected Gradient Ascent with
momentum (PGA; Kingma & Ba (2014)), Simulated An-
nealing (Kirkpatrick et al., 1983), Simultaneous Perturba-
tion Stochastic Approximation (SPSA; Spall (1992)) and
Genetic Algorithm (Gad, 2021; Katoch et al., 2021).

To incorporate the realistic constraint, we make the fol-
lowing adjustments. For MIP-based methods, we use
the sampling algorithm of Section 4.3, and for each sam-
ple xi we solve an MIP with the constraint δ(x,xi) ≤
t ·max{δ(xi, N1(xi), d1(N1(xi))}. In the end, we report
the realistic solution with the highest objective. Similarly,
for the stochastic algorithms, at each iteration, we perform
a projection to the realistic space, by applying the constraint
δ(x,xi) ≤ t ·max{δ(xi, N1(xi), d1(N1(xi))}. To ensure
a fair comparison across all methods, we apply a timeout of
60 seconds, a threshold t = 1.2 and we use the samples in
the same order as used in our algorithm across all methods
and experiments. In Section H of the Appendix, we provide
the exact hyperparameters used for each algorithm.

6.4. Metrics

Our evaluation is twofold. First, we report the number of
times per network each method finds the solution with the
highest objective. Second, to validate whether the resulting
solutions are indeed realistic, we use the Local Outlier Fac-
tor classifier by scikit-learn (Buitinck et al., 2013) using the
default parameters. In Table 1 we report the results.

6.5. Results

We observe that our method finds the realistic solution with
the highest objective in the majority of experiments. For
MNIST trained networks, our method finds the solution with
the highest objective in 60 out of 80 experiments, while for
the CIFAR-10 trained networks finds the realistic solution
with the highest objective in 31 out of 40 experiments. The
second best-performing method is the PGA. Due to the ad-
dition of realistic constraints, all solutions from all methods
were classified as realistic by the LOF classifier.

In terms of scalability, we observed that among all MIP-
based methods, only the original MIP method could find
realistic solutions for small neural networks within the given
time limit. This is the reason why in the tables we do not
report results for the Big-M+cuts and the N equal-size par-
tition methods. The average optimality gap for the MIP
method for the 3× 50 MNIST network is 307.78% and for
the 3 × 100 MNIST network is 1029.98%. On the other
hand, we observe that our method can scale for networks
with millions of parameters, similar to the stochastic algo-
rithm benchmarks, and still retrieve realistic solutions with
the highest possible objective. By exploring the carefully
selected realistic polytopes, our method efficiently identifies
the optimal realistic prescription, since over each polytope
it solves optimally a tractable optimization problem (SOCP
or LP). In section F of the Appendix, we extend our ex-
periments to modern and larger deep learning architectures
including the ResNet50 v1.5 model and the Vision Trans-
former model (ViT; 16b) trained on the ImageNet dataset
(Deng et al., 2009).
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Figure 4. (Left) The optimal solution for digit 3 on network 3× 50 using our method without the realistic constraint. (Right) The optimal
solution for digit 3 on network 3× 50 using our method with the realistic constraint.

6.6. An Example on the Effectiveness of Realistic
Constraint

To demonstrate the effectiveness of the proposed realistic
constraints, in Figure 4, we present the optimal solution
for digit 3 by our method for the MNIST 3 × 50 network,
with and without the realistic constraint. In Figure 4 (left)
we observe that the optimal solution for digit 3 without the
realistic constraint does not resemble an actual 3 and can
be characterized as an outlier or an adversarial example.
On the other hand, in Figure 4 (right), we observe that the
optimal solution for digit 3 resembles the actual digit and
thus, it can be seen that our method can indeed retrieve a
realistic solution that follows the actual data manifold. We
present similar visualizations on ImageNet, as well as an
empirical study regarding the trade-off between realism and
the user-defined threshold t in section F of the Appendix.

7. Conclusions
In this work, we focused on overcoming the Optimizer’s
Curse when optimizing neural networks for data-driven
decision-making. We achieve this by re-formulating the
highly non-linear LOF metric as a single tractable optimiza-
tion constraint, thereby modeling tractably the requirement
that the resulting decision should be realistic. To efficiently
solve the problem for large networks with millions of pa-
rameters, we introduced an adaptive sampling algorithm.
This algorithm reduces the initial hard-to-solve optimization
problem into a small number of easier-to-solve problems by
constraining the decision space to realistic regions and can
be applied to general machine learning models. Through
extensive experiments against various benchmarks over pub-
licly available neural networks and datasets, we demon-
strated the efficacy of our method in generating optimal and
realistic decisions.

Acknowledgements
This work has been supported in part through a grant from
the MIT-IBM Watson AI Lab.

Impact Statement
This paper presents work whose goal is to advance the field
of reliable deep learning for decision-making. In this work,
we propose a novel method for obtaining optimal and real-
istic decisions when using neural networks for data-driven
decision-making. Our proposed approach is efficient, and
scalable and can be extended to any differentiable machine
learning model or any machine learning model that can be
expressed by linear mixed-integer constraints. Since what
we propose is a fundamental optimization methodology, we
do not anticipate any negative societal impact by the direct
application of the proposed methodology.

References
Agarap, A. F. Deep learning using rectified linear units

(relu). arXiv preprint arXiv:1803.08375, 2018.

Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C.,
and Vielma, J. P. Strong mixed-integer programming
formulations for trained neural networks. Mathematical
Programming, 183(1):3–39, 2020.

Ban, G.-Y. and Rudin, C. The big data newsvendor: Practi-
cal insights from machine learning. Operations Research,
67(1):90–108, 2019.

Basri, R. and Jacobs, D. Efficient representation of low-
dimensional manifolds using deep networks. arXiv
preprint arXiv:1602.04723, 2016.

Bertsimas, D., O’Hair, A., Relyea, S., and Silberholz, J. An
analytics approach to designing combination chemother-

9



Overcoming the Optimizer’s Curse: Obtaining Realistic Prescriptions from Neural Networks

apy regimens for cancer. Management Science, 62(5):
1511–1531, 2016.

Bertsimas, D., Orfanoudaki, A., and Weiner, R. B. Person-
alized treatment for coronary artery disease patients: a
machine learning approach. Health care management
science, 23:482–506, 2020.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. Lof:
identifying density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD international conference on
Management of data, pp. 93–104, 2000.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,
Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., and Varoquaux, G. API design for ma-
chine learning software: experiences from the scikit-learn
project. In ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, pp. 108–122, 2013.

Carbonneau, R., Laframboise, K., and Vahidov, R. Appli-
cation of machine learning techniques for supply chain
demand forecasting. European Journal of Operational
Research, 184(3):1140–1154, 2008.

Chen, X., Owen, Z., Pixton, C., and Simchi-Levi, D. A
statistical learning approach to personalization in revenue
management. Management Science, 68(3):1923–1937,
2022.

Cohen, M. C., Lobel, I., and Paes Leme, R. Feature-based
dynamic pricing. Management Science, 66(11):4921–
4943, 2020.

De Palma, A., Behl, H. S., Bunel, R., Torr, P., and Kumar,
M. P. Scaling the convex barrier with active sets. In
Proceedings of the ICLR 2021 Conference. Open Review,
2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dutta, S., Long, J., Mishra, S., Tilli, C., and Magazzeni, D.
Robust counterfactual explanations for tree-based ensem-
bles. In International Conference on Machine Learning,
pp. 5742–5756. PMLR, 2022.

ERAN. ERAN: ETH Robustness Analyzer for Neural
Networks., 2020. URL https://github.com/
eth-sri/eran.

Ettl, M., Harsha, P., Papush, A., and Perakis, G. A data-
driven approach to personalized bundle pricing and rec-
ommendation. Manufacturing & Service Operations
Management, 22(3):461–480, 2020.

Fairley, M., Scheinker, D., and Brandeau, M. L. Improving
the efficiency of the operating room environment with an
optimization and machine learning model. Health care
management science, 22(4):756–767, 2019.

Ferreira, K. J., Lee, B. H. A., and Simchi-Levi, D. An-
alytics for an online retailer: Demand forecasting and
price optimization. Manufacturing & service operations
management, 18(1):69–88, 2016.

Fischetti, M. and Jo, J. Deep neural networks and mixed
integer linear optimization. Constraints, 23(3):296–309,
2018.

Gad, A. F. Pygad: An intuitive genetic algorithm python
library. CoRR, abs/2106.06158, 2021. URL https:
//arxiv.org/abs/2106.06158.

Glaeser, C. K., Fisher, M., and Su, X. Optimal retail loca-
tion: Empirical methodology and application to practice:
Finalist–2017 m&som practice-based research competi-
tion. Manufacturing & Service Operations Management,
21(1):86–102, 2019.

Guidotti, R. Counterfactual explanations and how to find
them: literature review and benchmarking. Data Mining
and Knowledge Discovery, pp. 1–55, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.
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A. Proof of Theorem 4.3
Theorem 4.3. Let fθ be a ReLU network, Pj be a polytope of fθ that contains at least one data point with LOF1,D ≤ t, zj

be the values of Pj’s corresponding activation pattern, fθ(·; zj) be the given ReLU network with fixed activation zj and
Dj := D ∩ Pj be the set of points of D that belong to Pj . We denote as x′ the data point in Dj such that LOF1,D(x

′) ≤ t
and fθ(x

′) ≥ fθ(x), ∀x ∈ Dj . Then,

1. (A Tractable Formulation) The optimization problem

max
x∈P

fθ(x; z
j)

subject to δ(x,x′) ≤ t ·max{δ(x′,x′′), d1(x
′′))},

x′′ ∈ N1(x
′),

(9)

retrieves the realistic solution x∗ ∈ Pj with the highest objective, fθ(x∗; zj) ≥ fθ(x
′; zj).

2. (A Tight Upper Bound on the Objective) The objective value of the optimal solution of problem (6) is upper bounded
as fθ(x∗; zj) ≤ (wj)T (x′ + r wj

||wj ||2 ), where wj ∈ Rd is the vector of the weights that define the hyperplane of fθ

over Pj and r := t ·max{δ(x′,x′′), d1(x
′′))}, x′′ ∈ N1(x

′). The bound is tight when x∗ = x′ + r wj

||wj ||2 .

Proof. 1. (A Tractable Formulation) Let a x ∈ Pj starting at x′ ∈ Dj . Due to the piecewise linear and, therefore, mono-
tonic structure of fθ over Pj , we can gradually start from the inlier x′ and move x towards the stationary point/maximizer
x̃j of fθ in Pj through the direction defined by x′ and x̃j until reaching the furthest position such that x is still an inlier. In
order for x to be an inlier, we require

LOF1,D(x) ≤ t =⇒ lrd1(x
′) ≤ t · lrd1(x) =⇒ max{δ(x,x′), d1(x

′)} ≤ t ·max{δ(x′,x′′), d1(x
′′)}, (10)

where x′′ ∈ N1(x
′). By observing that d1(x′) = δ(x′,x′′), we obtain that

LOF1,D(x) ≤ t =⇒ δ(x,x′) ≤ t ·max{δ(x′,x′′), d1(x
′′)}, x′′ ∈ N1(x

′). (11)

Therefore, by incorporating this constraint into the optimization subproblem with fixed activations zj , we allow x to move
towards all possible directions starting from x′ and still be a certified inlier. Furthermore, by observing that a feasible so-
lution to (6) is x = x′, we obtain that for the optimal solution x∗ we will have that fθ(x∗) ≥ fθ(x

′) ≥ fθ(x), ∀x ∈ Dj . □

2. (A Tight Upper Bound on the Objective) Starting from x′, by relaxing the constraint that x should belong in Pj ,
problem (6) reduces to

max
x

(wj)Tx

subject to ||x− x′||2 ≤ r,
(12)

which is equivalent to
max

ϵ
(wj)T (x′ + ϵ)

subject to ||ϵ||2 ≤ r.
(13)

We solve (13) using KKT conditions (Boyd & Vandenberghe, 2004). This is done by defining the
Lagrangian function L(ϵ, λ) := (wj)T (x′ + ϵ) + λ(r2 − ϵT ϵ), taking the necessary conditions, i.e,
∂e∗L(ϵ∗, λ) = 0 =⇒ wj − 2λϵ∗ = 0,

λ(r2 − (ϵ∗)T ϵ∗) = 0,

λ ≥ 0, ||ϵ∗||22 ≤ r2,

solving the system of equations and obtaining (assuming wj ̸= 0) that

ϵ∗ = wj/2λ, λ = ||wj ||2/2r and thus, ϵ∗ = r wj

||wj ||2 . As a result, the optimal objective value problem (6) is upper

bounded by(wj)T (x′ + r wj

||wj ||2 ). The equality holds when x∗ = x′ + r wj

||wj ||2 ∈ Pj and therefore, problem (6) produces
the same solution as problem (12). □
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B. Proof of Proposition 4.6
Proposition 4.6. The proposed sampling algorithm retrieves the optimal realistic solution using at most

n ≤ min

{
|D|,

∑
(j1,...,jL)∈J

L∏
l=1

(
nl

jl

)}
(14)

samples, where J = {(j1, . . . , jL) ∈ ZL : 0 ≤ jL ≤ min{n0, n1 − j1, . . . , nl−1 − jl−1},∀l = 1, . . . , L}}.

Proof. Given that there are |R| realistic polytopes to search over and that the algorithm samples without replacement, the
number of samples n is upper bounded by |R|. |R| is upper bounded by both the size of the dataset D, since in an extreme
case each sample may correspond to a different realistic polytope, and by the number of total polytopes of the network N .
The former usually occurs when the network is overparameterized and thus, the number of total polytopes is way larger than
the number of data points, and the latter occurs when the network is under-parameterized.

By invoking the result of Serra et al. (2018), N is upper bounded by
∑

(j1,...,jL)∈J

∏L
l=1

(
nl

jl

)
, where J = {(j1, . . . , jL) ∈

ZL : 0 ≤ jL ≤ min{n0, n1 − j1, . . . , nl−1 − jl−1},∀l = 1, . . . , L}}. Therefore, by considering both cases, we have

n ≤ min

{
|D|,

∑
(j1,...,jL)∈J

∏L
l=1

(
nl

jl

)}
. □

C. Reduction of the Search Space by the Upper Bound of Theorem 4.3.2
We conduct an experiment where we count, for each ReLU network considered in the paper, the number of realistic polytopes
both before and after using the upper bound outlined in Theorem 4.3.2. We obtain Table 2 presented below.

Table 2. Comparison of the number of realistic polytopes before and after applying the upper bound of Theorem 4.3.2. The number of
realistic polytopes after applying the upper bound varies since for each output of the network, the vector of weights that defines the
hyperplane of the network over a realistic polytope is different. In the experiments we used t = 1.

Model Nr before Nr after

MNIST 3× 50 22, 029 941− 2, 384
MNIST 3× 100 22, 158 926− 2, 772
MNIST 4× 1024 22, 160 800− 2, 137
MNIST 5× 100 22, 160 242− 1, 210
MNIST 6× 100 22, 160 979− 2, 329
MNIST 6× 200 22, 160 1, 089− 2, 075
MNIST 9× 100 22, 160 924− 1, 807
MNIST 9× 200 22, 160 592− 1, 911
CIFAR-10 4× 100 4, 282 56− 358
CIFAR-10 6× 100 4, 282 49− 156
CIFAR-10 7× 1, 024 4, 282 4− 292
CIFAR-10 9× 200 4, 282 31− 291

By employing the upper bound of Theorem 4.3.2, the search space is significantly restricted, by 87.5% to 97.3% for MNIST
and by 91.6% to 99.9% for CIFAR-10. We observe that for the larger dataset and networks of CIFAR-10, the number of
realistic polytopes is lower, and the percentage of search space reduction due to the use of the bound from Theorem 4.3.2 is
higher. This is one potential reason that explains why our method scales so well for the larger CIFAR-10 ReLU networks.

D. On the Selection of LOF as the Realistic Metric
In this paper, to model the constraint x is realistic, we use the LOF metric. We use LOF for the following reasons:

• First, compared to other distance metrics, LOF can be used to first filter out data points that are outliers, and thus, as
shown in the paper, help reduce significantly the search space by restricting the domain to realistic polytopes.
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• Second, due to its structure (LOF uses the max operator) LOF can be re-formulated as a single tractable constraint, as
shown in Theorem 4.3.1, that only depends on the distance metric that is used (typically ℓp norm).

• Finally, due to its wide use in the literature, it is a metric that many researchers and practitioners trust and use. This can
be seen by the total number of citations of the paper by (Breunig et al., 2000) which is almost 10,000.

In the manifold alignment literature, Wasserstein-p distance is often used because it measures the similarity between
probability distributions. We did not use the Wasserstein-p distance as it is used to measure the distance between distributions
and in this work, the output of the optimization problem is a single decision vector (and not a distribution). Moreover, there
does not exist an empirical threshold for the Wasserstein distance, whereas in LOF we know that if it is less or equal to t,
where t is a value close to 1, then the resulting decision is an inlier.

However, if we assume that the output x of the optimization problem is a degenerate distribution (Dirac delta on x, i.e. δx),
then the Wasserstein-p distance between the output and the empirical distribution of the dataset D, let Q, is equal to

Wp(δx, Q) =
( 1

|D|

|D|∑
i=1

||xi − x||p
)1/p

, (15)

i.e. reduces to the norm between the resulting decision and the empirical distribution. This distance is similar to LOF (after
the reformulation with the ℓp norm) with a main difference. Distance (15) takes into consideration all of the samples of D,
while LOF uses only the realistic sample of D per polytope that also achieves the high objective value. Thus, our proposed
LOF-based distance, other than the benefits described at the beginning of this section, avoids using outliers that may exist in
D and is also more efficient to compute.

E. Extension to other Machine Learning Models
E.1. Linear Regression

We denote the linear regression model as the function fθ : P → R, where θ = {w, b}, with w ∈ Rd to be the vector of
weights and b ∈ R to be the intercept. In the case of linear regression, there is only one realistic polytope that is equal to the
decision space P . Therefore, in this case, if we denote as x′ the realistic data point in D with the highest value of fθ, the
optimization problem

max
x∈P

wTx

subject to δ(x,x′) ≤ t ·max{δ(x′,x′′), d1(x
′′))}, x′′ ∈ N1(x

′).
(16)

retrieves the certified realistic solution x∗ ∈ P with the highest objective. Depending on the distance function used, problem
(16) is either an LP or a SOCP.

E.2. Tree Ensembles

Following the notation and the optimization formulation introduced by Mišić (2020), optimizing over a tree ensemble that is
used for regression can be expressed by the following MIP

max
x∈P,y

T∑
t=1

∑
ℓ∈leaves(t)

λt · pt,ℓ · yt,ℓ

subject to
∑

ℓ∈leaves(t)
yt,ℓ = 1, ∀t ∈ [T ],∑

ℓ∈left(s)
yt,ℓ ≤

∑
j∈C(s)

xV (s),j , ∀t ∈ [T ], s ∈ splits(t),∑
ℓ∈right(s)

yt,ℓ ≤ 1−
∑

j∈C(s)

xV (s),j , ∀t ∈ [T ], s ∈ splits(t),

Ki∑
j=1

xi,j = 1, ∀i ∈ C,

xi,j ≤ xi,j+1, ∀i ∈ N , j ∈ [Ki − 1],
xi,j ∈ {0, 1}, ∀i ∈ [n], j ∈ [Ki],
yt,ℓ ∈ {0, 1}, ∀t ∈ [T ], ℓ ∈ leaves(t),

(17)
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where T is the number of decision trees in the ensemble, leaves(t) is the set of the indices of the leaves of tree t, λt is the
weight given in the prediction of tree t, pt,ℓ is the prediction that tree t makes when an observation reaches leaf ℓ, yt,l is the
binary decision variable that is 1 if the observation encoded by x falls into leaf ℓ of tree t and 0 otherwise, splits(s) is the set
of splits of tree t (non-terminal nodes), left(s) is the set of leaves that are accessible from the left branch, right(s) is the set
of leaves that are accessible from the right branch, C(s) is the set of values of variable i that participate in the split query of
s, V (s) is the variable that participates in split s, C is the set of indices of categorical variables, Ki is the discrete number of
values the categorical variable i can take and N is the set of numerical variables.

In formulation (17), the binary variables that define each feasible polytope are the y variables. If we assume that Pk

is a polytope of the tree ensemble that contains at least one data point with LOF1,D ≤ t, yk are the values of Pk’s
corresponding activation pattern, Dk := D ∩ Pk is the set of points of D that belong to Pk and x′ the data point in Dk such
that LOF1,D(x

′) ≤ t with the highest predicted value by the tree ensemble in Pk then, problem (17) becomes

max
x∈P

T∑
t=1

∑
ℓ∈leaves(t)

λt · pt,ℓ · ykt,ℓ

subject to
∑

ℓ∈left(s)
ykt,ℓ ≤

∑
j∈C(s)

xV (s),j , ∀t ∈ [T ], s ∈ splits(t),∑
ℓ∈right(s)

ykt,ℓ ≤ 1−
∑

j∈C(s)

xV (s),j , ∀t ∈ [T ], s ∈ splits(t),

Ki∑
j=1

xi,j = 1, ∀i ∈ C,

δ(x,x′) ≤ t ·max{δ(x′,x′′), d1(x
′′))}, x′′ ∈ N1(x

′),
xi,j ≤ xi,j+1, ∀i ∈ N , j ∈ [Ki − 1],
xi,j ∈ {0, 1}, ∀i ∈ [n], j ∈ [Ki].

(18)

Given that yk are already fixed, problem (18) is either an LP or a SOCP, depending on the norm used as distance δ.
Remark E.1. For T = 1, the problem reduces to retrieving the realistic solution from a single decision tree.

F. Experiments on Modern Deep Learning Architectures
We extend our experiments to modern and larger deep learning architectures. We examine the ResNet50 v1.5 model and the
Vision Transformer model (ViT; 16b) which are both trained on ImageNet 2012-2017 image classification and localization
dataset (Deng et al., 2009). This dataset spans 1000 object classes and contains 1,281,167 training images, 50,000 validation
images, and 100,000 test images. ResNet50 v1.5 model has a top-1 accuracy of 76.13%, a top-5 accuracy of 92.862%,
and 25.5m trainable parameters. ViT has a top-1 accuracy of 85.304%, a top-5 accuracy of 97.65%, and 86.9m trainable
parameters. We use the proposed methodology using the animal/dog image subset of ImageNet. Our goal is to find realistic
images with the highest probability of being classified as a Labrador Retriever.

We perform 5 runs per model using the methodology that was described in section 5 with t ∈ {1, 1.1, 1.2}, a learning rate
equal of 0.01, and max number of iterations equal to 10,000. First, we report the average time to convergence per model
to verify the scalability of the proposed method. Second, to validate whether the resulting solutions are indeed realistic,
we use the Local Outlier Factor classifier by scikit-learn (Buitinck et al., 2013) using the default parameters. We run the
experiments using an NVIDIA GeForce RTX 3090 GPU. We observe that the average time for our method to convergence
for ResNet50 v1.5 is just ≈ 2 minutes and for ViT is ≈ 3 mins. The proposed methodology can scale for modern deep
learning architectures and produce realistic and optimal solutions in a couple of minutes, even when using commercial
GPUs. As in section 6, all solutions when we used the realistic constraint were classified as realistic by the LOF classifier.
In Figures 5 and 6 we present examples that demonstrate the effectiveness of our method for different values of t.

We observe that in both cases, the addition of the realistic constraint leads to solutions with high objective value that
resemble actual labrador retrievers. On the other hand, removing the realistic constraint leads to solutions that have a
very high objective value (high probability of being classified as labrador retriever) but do not resemble an actual labrador.
Interestingly, we observe a trade-off between realism and the user-defined threshold t. The larger the value of t is, the higher
the final objective value will be (since we allow the projected gradient ascent to search in a larger domain), but the final
solution will be less realistic. On the other hand, the lower the value of t is, the less the final objective value will be, but the
final solution will be more realistic. This is observed in Figures 5 and 6 where images with higher user-defined threshold
look more distorted.
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Figure 5. ResNet50: (a) Optimal not realistic solution (b) Realistic solution t = 1 (c) Realistic solution t = 1.1 (d) Realistic solution
t = 1.2

Figure 6. ViT: (a) Optimal not realistic solution (b) Realistic solution t = 1 (c) Realistic solution t = 1.1 (d) Realistic solution t = 1.2

G. Accuracy and Number of Parameters of the Pre-Trained ReLU Networks
In the experiments, we use ReLU networks from ERAN pre-trained on MNIST and CIFAR-10 datasets. The accuracy of
each network in the test set and the number of total trainable parameters per network are provided in Figure 7 below.

H. Hyperparameters
As mentioned in the experiments section, we report the combination of hyperparameters used for each method.

• MIP (Fischetti & Jo, 2018): MIPGap = 10−4, FeasibilityTol = 10−3, OptimalityTol = 10−3,
BarConvTol = 10−2.

• Big-M+cuts (Anderson et al., 2020): MIPGap = 10−4, Cuts = 0, PreCrush = 1, FeasibilityTol = 10−3,
OptimalityTol = 10−3, BarConvTol = 10−2.

• N equal-size partition (Tsay et al., 2021): MIPGap = 10−4, Cuts = 1, MIPFocus = 3, Method = 1,
FeasibilityTol = 10−3, OptimalityTol = 10−3, BarConvTol = 10−2.

• PGA (Kingma & Ba, 2014): optimizer = Adam, n iterations = 20000, lr = 10−3, tolerance = 10−4.

• Simulated Annealing (Kirkpatrick et al., 1983): n iterations = 20000, temperature = 20, step size =
2.5 · 10−3.

• SPSA (Spall, 1992): n iterations = 20000, lr = 10−3.

• Genetic Algorithm (Gad, 2021; Katoch et al., 2021): num generations = 800, num parents mating = 32,
sol per pop = 32, parent selection type = sss, keep parents = 8, crossover type = single
point, mutation type = random, mutation percent genes = 10.

• AdSampling (ours): MIPGap = 10−4, FeasibilityTol = 10−3, OptimalityTol = 10−3, BarConvTol =
10−2.

17



Overcoming the Optimizer’s Curse: Obtaining Realistic Prescriptions from Neural Networks

Figure 7. Test set accuracy and number of trainable parameters per network for the MNIST and CIFAR-10 datasets.

All methods were given a time window of 60 seconds.

For the MIP-based methods, instead of using big-M for the upper and lower bounds ul and ll, to speed up the compu-
tations we used the tighter bounds proposed by Liu et al. (2020). Liu et al. (2020) refined those vectors by calculating
tighter bounds using LP as a pre-processing step. Specifically, the authors suggested calculating tighter bounds as
ul = sup

ll−1≤xl−1≤ul−1

{Wlxl−1 + bl} and ll = inf
ll−1≤xl−1≤ul−1

{Wlxl−1 + bl}. For x0, the upper and lower bounds are

obtained from P .
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