
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TIMEAUTODIFF: GENERATION OF HETEROGENEOUS
TIME SERIES DATA VIA LATENT DIFFUSION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we leverage the power of latent diffusion models to generate synthetic
time series tabular data. Along with the temporal and feature correlations, the
heterogeneous nature of the feature in the table has been one of the main obstacles
in time series tabular data modeling. We tackle this problem by combining the
ideas of the variational auto-encoder (VAE) and the denoising diffusion proba-
bilistic model (DDPM). Our model named as TimeAutoDiff has several key
advantages including (1) Generality: the ability to handle the broad spectrum of
time series tabular data with heterogeneous, continuous only, or categorical only
features; (2) Fast sampling speed: entire time series data generation as opposed to
the sequential data sampling schemes implemented in the existing diffusion-based
models, eventually leading to significant improvements in sampling speed, (3)
Time varying metadata conditional generation: the implementation of time series
tabular data generation of heterogeneous outputs conditioned on heterogenous, time
varying features, enabling scenario exploration across multiple scientific and engi-
neering domains. (4) Good fidelity and utility guarantees: numerical experiments
on eight publicly available datasets demonstrating significant improvements over
state-of-the-art models in generating time series tabular data, across four metrics
measuring fidelity and utility; Codes for model implementations are available at
the supplementary materials.

1 INTRODUCTION

Synthesizing tabular data is crucial for data sharing and model training. In the healthcare domain,
synthetic data enables the safe sharing of realistic but non-sensitive datasets, preserving patient
confidentiality while supporting research and software testing (Yoon et al., 2023). In fields like
fraud detection (Padhi et al., 2021b; Hsieh et al., 2024; Cheng et al., 2024), where anomalous events
are rare, synthetic data can provide additional examples to train more effective detection models.
Synthetic datasets are also vital for scenario exploration, missing data imputation (Tashiro et al.,
2021; Ouyang et al., 2023), and practical data analysis experiences across various domains.

Given the importance of synthesizing tabular data, many researchers have put enormous efforts into
building tabular synthesizers with high fidelity and utility guarantees. For example, CTGAN (Xu
et al., 2019) and its variants (Zhao et al., 2021; 2022) (e.g., CTABGAN, CTABGAN+) have gained
popularity for generating tabular data using Generative Adversarial Networks (Goodfellow et al.,
2020) (GANs). Recently, diffusion-based tabular synthesizers, like Stasy (Kim et al., 2022), have
shown promise, outperforming GAN-based methods in various tasks. Yet, diffusion models (Ho et al.,
2020; Song et al., 2020b) were not initially designed for heterogeneous features. New approaches,
such as those using Doob’s h-transform (Liu et al., 2022), TabDDPM (Kotelnikov et al., 2022), and
CoDi (Lee et al., 2023), aim to address this challenge by combining different diffusion models (Song
et al., 2020b; Hoogeboom et al., 2022) or leveraging contrastive learning (Schroff et al., 2015) to
co-evolve models for improved performance on heterogeneous data. Most recently, researchers have
used the idea of a latent diffusion model, i.e., AutoDiff (Suh et al., 2023) and TabSyn (Zhang et al.,
2023a), to model the heterogeneous features in tables and prove its empirical effectiveness in various
tabular generation tasks.

However, the tabular synthesizers mentioned above focus solely on generating tables with independent
and identically distributed (i.i.d.) rows. They face difficulties in simulating time series tabular data

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑋𝑑𝑖𝑠𝑐

𝐸𝑛𝑐𝑜𝑑𝑒𝑟

𝐷𝑒𝑐𝑜𝑑𝑒𝑟

෨𝑋𝑐𝑜𝑛𝑡 ෨𝑋𝑑𝑖𝑠𝑐

𝑍0
𝐿𝑎𝑡

𝐷𝑎𝑡𝑎 𝑆𝑝𝑎𝑐𝑒 (𝑉𝐴𝐸)

𝑍1
𝐿𝑎𝑡 𝑍𝑁

𝐿𝑎𝑡

෨𝑍1
𝐿𝑎𝑡 ෨𝑍𝑁

𝐿𝑎𝑡
𝐷𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔
𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒

𝐿𝑎𝑡𝑒𝑛𝑡 𝑆𝑝𝑎𝑐𝑒 (𝐷𝐷𝑃𝑀)

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝐿𝑎𝑡𝑒𝑛𝑡
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑃𝑟𝑖𝑜𝑟
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑋𝑃𝑟𝑒

𝑋𝑐𝑜𝑛𝑡

𝑋𝑂𝑟𝑖𝑔

෨𝑋𝑅𝑒𝑐

𝑇

𝑇

𝑇

𝐹

𝐹

𝐹

෨𝑋𝑃𝑜𝑠𝑡

𝐹

𝐹
𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑚𝑝𝑠

Figure 1: The overview of TimeAutoDiff: the model has three components: (1) pre- and post-
processing steps for the original and synthesized data; (2) VAE for training encoder and decoder,
and for projecting the pre-processed data to the latent space; (3) Diffusion model for learning the
distribution of projected data in latent space and generating new latent data. Note that the dimension
of the latent matrix ZLat

0 ∈ RT×F is set to be the same as that of the original data.

due to the significant inter-dependences among features and the intricate temporal dependencies that
unfold over time. In this paper, motivated from (Suh et al., 2023; Zhang et al., 2023a), we propose
a new model named TimeAutoDiff, which combines Variational Auto-encoder (VAE) (Kingma
& Welling, 2013) and Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) to tackle
the above challenges in time series tabular modeling. In the remainder of this section, we define our
problem formulation, introduce motivations of TimeAutoDiff, outline the contributions of our work,
and review relevant literature to establish the context of our paper.

1.1 PROBLEM FORMULATION, MOTIVATION, AND CONTRIBUTIONS

Problem Formulation. Our goal is to learn the joint distribution of time series tabular data of a
T -sequence (x1, . . . ,xT). Each observation xj , where xj := [xCont,j ,xDisc,j] is an F -dimensional
feature vector that includes both continuous (xCont,j) and discrete variables (xDisc,j), reflecting the
heterogeneous nature of the dataset. Throughout this paper, we assume there are B i.i.d. observed
sequences sampled from P(x1, . . . ,xT). We additionally assume that each record in the time-series
tabular data includes a timestamp, formatted as ’YEAR-MONTH-DATE-HOURS’. This timestamp
serves as an auxiliary variable to aid an training / inference step in TimeAutoDiff, which will be
detailed shortly. The overview of TimeAutoDiff is provided in Figure 1.

Motivation of TimeAutoDiff. The main motivation for combining the two models, VAE and DDPM,
is to accurately capture the distribution of heterogeneous features in the data. Diffusion model
has recently gained a lot of attentions in a time series community, because of its ability generating
complex and high quality sequences. (See Lin et al. (2024); Yang et al. (2024b) and references therein
for more detailed reasons.) Nonetheless, current literatures only focus on modeling continuous time
series data. This is mainly attributed to the fact that the diffusion model is originally designed for
capturing distributions on continuous space. In our work, to deal with heterogeneous features, the
β-VAE (Higgins et al., 2017) is employed for projecting the time series data to continuous latent
space. The autoencoder framework has been widely employed in tabular data modeling to address
heterogeneity, leveraging the reconstruction error in its objective function (Desai et al., 2021; Suh
et al., 2023; Zhang et al., 2023a). Inspired from this observation, we combine these two models for
modeling a time-series data with heterogeneous features. Furthermore, dependencies along temporal
and feature dimensions can be captured through the sophisticated architectural designs of VAE and
DDPM denoiser. Specifically, in both models, we use the inductive bias of Recurrent Neural Network
(RNN) (Hochreiter & Schmidhuber, 1997) and Bi-directional RNN (Bi-RNN) (Schuster & Paliwal,
1997) to capture the temporal dependences of sequences. Our unique design of DDPM denoiser
captures the feature dependences. More details are provided in Section 2.

Contribution 1. Sampling time for new data sequence generation is significantly reduced compared
to other SOTA diffusion-based time series models like TSGM (Lim et al., 2023) and diffusion-
ts (Yuan & Qiao, 2023), which rely on sequential sampling. Existing synthesizers typically model
the conditional distribution P(xt|xt−1, . . . ,x1) and generate xt sequentially for t ∈ {2, . . . , T}.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In contrast, our model learns the entire distribution P(xT ,xT−1, . . . ,x1) and generates the whole
sequence at once. The difference in sampling times becomes more pronounced as T increases since
diffusion models require multiple denoising steps for each sample. For verifications, our model
generates long sequential data (i.e., T = 900 in Appendix L), while other diffusion baseline methods
suffer from generating much shorter sequential data (i.e., T = 24 in Table 1). Additionally, our
approach avoids the accumulating errors commonly associated with sequential sampling.

Contribution 2. TimeAutoDiff accommodates conditional generation. The model can be condi-
tioned on heterogeneous sequential metadata. 1 Given B i.i.d. pairs of multivariate time series xi

and time-varying metadata ci (i.e., Dx,c = {(xi, ci)}Bi=1), our model learns the conditional distribu-
tion p(x|c). Notably, both xi and ci can represent multivariate heterogeneous and sequential data.
Additionally, static variables (e.g., gender, ethnicity) can also be incorporated as conditions c in our
model. This capability unlocks significant potential for the model to be employed in counterfactual
scenario exploration across diverse scientific and engineering domains. We demonstrate this potential
through two specific examples under synthetic and real-world (Traffic dataset) settings in Section 4.3.

Contribution 3. Numerical comparisons of TimeAutoDiff with other models (with publicly avail-
able codes), namely, TimeGAN (Yoon et al., 2019), Diffusion-ts (Yuan & Qiao, 2023), TSGM (Lim
et al., 2023), CPAR (Zhang et al., 2022), and DoppelGANger (Lin et al., 2020) are conducted
comprehensively across eight real-world datasets under various metrics. (See Appendix C for de-
scriptions of the datasets.) Specifically, for measuring the fidelities of temporal correlations between
synthetic and real heterogeneous timeseries tabular data, we develop a new metric, named Temporal
Discriminative Score. Inspired from the paper (Yoon et al., 2019; Zhang et al., 2022), this metric
computes discriminative scores (Yoon et al., 2019) of distributions of inter-row differences (Zhang
et al., 2022) in generated and original sequential data.

1.2 RELEVANT LITERATURE

To our knowledge, not many models in literature can deal with time series tabular data with a
heterogeneous nature. We categorize the incomplete list of existing models into three parts: (1)
GAN-based models, (2) Diffusion-based models, and (3) GPT-based / Parametric models.

GAN-based models. TimeGAN (Yoon et al., 2019) is one of the most popular time series
data synthesizers based on the GAN framework. Notably, they used the idea of latent GAN
employing the auto-encoder for projecting the time series data to latent space and model the
distribution of the data in latent space through the GAN framework. Recently proposed Electric
Health Record (in short EHR)-Safe (Yoon et al., 2023) integrates a GAN with an encoder-decoder
module to generate realistic time series and static variables in EHRs. EHR-M-GAN (Li et al.,
2023) employs distinct encoders for each data type, enhancing the generation of mixed-type time
series in EHRs. Despite these advancements, GAN-based methods still encounter challenges
such as non-convergence, mode collapse, generator-discriminator imbalance, and sensitivity to
hyperparameter selection, underscoring the need for ongoing refinement in time series data synthesis.

Diffusion-based models. Most recently, TimeDiff (Tian et al., 2023) adopts the idea from
TabDDPM combining the multinomial and Gaussian diffusion models to generate a synthetic
EHR time series tabular dataset. DPM-EHR (Kuo et al., 2023) suggested another diffusion-based
mixed-typed EHR time series synthesizer, which mainly relies on Gaussian diffusion and U-net
architecture. TSGM (Lim et al., 2023) used the idea of the latent conditional score-based diffusion
model to generate continuous time series data. However, TSGM is highly overparameterized and
its training, inference, and sampling steps are quite slow. Diffusion-TS (Yuan & Qiao, 2023) takes
advantage of the latent diffusion model employing transformer-based auto-encoder to capture the
temporal dynamics of complicated time series data. Specifically, they decompose the seasonal-trend
components in time series data making the generated data highly interpretable. One important model
in the literature, CSDI (Tashiro et al., 2021), uses a 2D-attention-based conditional diffusion model
to impute the missing continuous time series data.

1During the preparation of this manuscript, TimeWeaver (Narasimhan et al., 2024) was introduced in the
literature. While it is also designed for time-varying metadata conditional generation, it focuses solely on the
conditional generation of continuous outputs, and its code is not publicly available yet.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑋𝐷𝑖𝑠𝑐 𝑋𝐶𝑜𝑛𝑡

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒

𝐿𝑒𝑎𝑟𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝐿
𝑒𝑎
𝑟𝑛

𝑡𝑒
𝑚
𝑝
𝑜
𝑟𝑎
𝑙
𝑑
𝑒
𝑝
𝑒𝑛
𝑑
𝑒𝑛
𝑐𝑒

𝑓1

𝜇1

𝐹𝐶

𝑅𝑁𝑁

𝑓2

𝜇2

𝐹𝐶

𝑅𝑁𝑁

𝑓𝑇

𝜇𝑇

𝐹𝐶

𝑅𝑁𝑁

𝑓1

log σ1
2

𝐹𝐶

𝑅𝑁𝑁

𝑓2

𝐹𝐶

𝑅𝑁𝑁

𝑓𝑇

𝐹𝐶

𝑅𝑁𝑁

log σ2
2

log σT
2

𝑒𝑚𝑒3𝑒2𝑒1 𝑛𝑐𝑛3𝑛2𝑛1

MLP Block

Figure 2: The schematic architecture of the encoder in VAE. The encoder has three main parts:
(1) encoding of heterogeneous features having both discrete and continuous data; (2) learning the
correlations of features through MLP block; (3) learning the temporal dependence through two RNNs.

GPT-based / Parametric models. TabGPT (Padhi et al., 2021b) is a GPT2-based tabular
data synthesizer, which can deal with both single and multi-sequence mixed-type time series datasets.
Data generation of TabGPT is performed by first inputting initial rows of data, then generating
synthetic rows based on the context of previous rows. CPAR (Zhang et al., 2022) is an autoregressive
model designed for synthesizing multi-sequence tabular data, i.e., sequences from multiple entities in
one table. They use different parametric models (i.e., Gaussian, Negative Binomial) for modeling
different datatypes (i.e., continuous, discrete). However, independent parametric design of each
feature ignores the correlations among features.

2 PROPOSED MODEL: TIMEAUTODIFF

In this section, the constructions on variational auto-encoder (VAE) and diffusion models are provided.
The pre- and post-processing steps of data are deferred in the Appendix D.

Encoder in VAE: The pre-processed input data xProc := [xProc
Disc;x

Proc
Cont] ∈ RB×T×F is fed into the

VAE. The architecture of the encoder is illustrated in Figure 2. Motivated by TabTransformer (Huang
et al., 2020), we encode the discrete feature xj ∈ xProc

Disc with j ∈ {1, . . . ,m} into a d-dimensional
(where d is consistently set at 128 in this paper) continuous representation. This is achieved using
a lookup table e(·) ∈ Rd with m representing the total number of discrete features. The goal of
introducing embedding for the discrete variables is to allow the model to differentiate the classes in one
column from those in the other columns. To embed the continuous features, we employ a frequency-
based representation. Let ν be a scalar value of the i-th continuous feature in xProc

Cont ∈ RB×T×c.
Similar to (Luetto et al., 2023), ν is projected to the embedding spaces as follows:

ni(ν) := Linear
(
SiLU

(
Linear

(
[sin(20πν), cos(20πν), · · · , sin(27πν), cos(27πν)]

)))
∈ Rd. (1)

The embedding dimensions of discrete and continuous features are set to be the same as d for
simplicity. The sinusoidal embedding in equation 1 plays a crucial role in reconstructing the
heterogeneous features. Our empirical observations indicate that omitting this embedding degrades
the reconstruction fidelity of continuous features compared to their discrete counterparts, which
will be verified in the ablation test in the following section. We conjecture this is attributed to
the fact that deep networks are biased towards learning the low-frequency functions (i.e., spectral
bias (Rahaman et al., 2019)), while the values in continuous time series features often have higher
frequency variations.

The embedded vectors e1, . . . , em, n1, . . . , nc of each row in the input data are concatenated into a
vector of dimension (m+ c)d and are inputted to the MLP block. The output tensor from the MLP
block, denoted as [f (i)

1 , f
(i)
2 , . . . , f

(i)
T]Bi=1 ∈ RB×T×F , is fed to two separate RNNs for modeling the

mean and covariance of the latent distribution. Each RNN is unfolded over T time horizons, and
the vectors {fj}Tj=1 are fed to each network to capture the temporal dependencies of the input data.
Henceforth, we omit the notation for the batch index when it is clear from context. The two RNNs’
outputs are µ := [µ1, µ2, . . . , µT]

T ∈ RT×F and log σ2 := [log σ2
1 , log σ

2
2 , . . . , log σ

2
T]

T ∈ RT×F ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝑍𝑛
𝐿𝑎𝑡

𝑛

𝑡𝑠

MLP

PE

PE

CE MLP

C
o
n
caten

ate

M
LP

𝑁2

𝑅𝑁𝑁

𝑁𝑇

𝑅𝑁𝑁𝑅𝑁𝑁

𝑅𝑁𝑁 𝑅𝑁𝑁𝑅𝑁𝑁

𝑁1

LN/FC LN/FC LN/FC

𝜖𝜃(𝑡1) 𝜖𝜃(𝑡2) 𝜖𝜃(𝑡𝑇)

𝑡

Figure 3: The schematic architecture of the ϵθ(Z
Lat
n , n, t, ts) in diffusion model. The inputs to the

architecture ϵθ include the noisy latent matrix ZLat
n at the nth diffusion step, the diffusion step n, the

normalized time points t, and the time stamps (ts). The embedded inputs are processed through a
Bi-directional RNN, which captures temporal dependencies in both forward and backward directions.

respectively. Then, we have a latent embedding tensor ZLat := µ+E⊙σ ∈ RT×F , where each entry
in E ∈ RT×F is from standard Gaussian distribution, and ⊙ denotes an element-wise multiplication.
The size of ZLat is set to be the same as that of the input tensor through fully-connected (FC) layers
topped on the outputs of two RNNs.

Dencoder in VAE: We found a simple MLP block and linear layers work well as a decoder of VAE.
First, we apply MLP to ZLat as in equation 2:

MLPBlock(x) := Linear(ReLU(Linear(x))), xPre-Out = MLPBlock(ZLat). (2)

Additional linear layers are applied to xPre-Out with separate layers, designed for each of the data types;
that is, xOut

Cont := Sigmoid(Linear(xPre-Out)), xOut
Bin := Linear(xPre-Out), and xOut

Cate := Linear(xPre-Out),
denoting continuous, binary, and categorical outputs of the decoder. Here, we divide the discrete
variables into two groups: [xBin,xCate], where xBin represents binary variables, and xCate represents
categorical variables with more than two labels. For numerical features, a sigmoid activation function
scales the outputs to [0, 1], matching the pre-processed input. The dimensions of xOut

Cont and xOut
Bin match

their respective inputs, while xOut
Disc has a dimension of

∑
i Ki, where Ki is the number of categories

in each categorical variable. Output dimensions are set to align with the requirements of MSE, BCE,
and CE losses in PyTorch. The decoder structure is provided in Appendix L.

Obj. function & Training of VAE: The reconstruction error in the VAE is defined as the sum of
mean-squared error (MSE), binary cross entropy (BCE), and cross-entropy (CE) between the input
tuple [xProc

Bin ,xProc
Cate,x

Proc
Cont] and the output tuple from decoder [xOut

Bin ,x
Out
Cate,x

Out
Cont]:

ℓrecons(x
Proc,xOut) = BCE(xProc

Bin ,xOut
Bin) + CE(xProc

Disc,x
Out
Disc) + MSE(xProc

Cont,x
Out
Cont). (3)

Following (Zhang et al., 2023a), we use β-VAE (Higgins et al., 2017) instead of ELBO loss, where a
coefficient β(≥ 0) balances between the reconstruction error and KL-divergence of N (0, ITF×TF)
(ITF×TF denotes an identity matrix of dimension RTF×TF) and ZLat ∼ N (vec(µ), diag(vec(σ2)).
The notations vec(·) and diag(·) are vectorization of input matrix and diagonalization of input vector,
respectively. Finally, we minimize the following objective function LAuto for training VAE:

LAuto := ℓrecons(x
Proc,xOut) + βDKL

(
N (vec(µ), diag(vec(σ2))) || N (0, ITF×TF)

)
. (4)

Similar to (Zhang et al., 2023a), our model does not require the distribution of embeddings ZLat

to follow a standard normal distribution strictly, as the diffusion model additionally handles the
distributional modeling in the latent space. Following Zhang et al. (2023a), we adopt the adaptive
schedules of β with its maximum value set as 0.1 and minimum as 10−5, decreasing the β by a
factor of 0.7 (i.e., βnew = 0.7βold) from maximum to minimum whenever ℓrecons fails to decrease for
a predefined number of epochs. The effects of β-scheduling will be more detailed in Section 4.

Diffusion for Time Series: TimeAutoDiff is designed to generate the entire time series at once,
taking the data of shape T × F as an input. This should be contrasted to generating rows in the
table sequentially (i.e., for instance, Lim et al. (2023)). We extend the idea of DDPM to make it
accommodate the time series data of shape T × F at one time. For readers’ convenience, we provide
the framework of DDPM in the Appendix F.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 20 40 60 80
Time

0

2

4

6

8

10

W
ea

th
er

 M
ai

n

Synthetic v.s. Ground truth
Generated Weather Main
Real Weather Main

0 20 40 60 80
Time

0.0

0.2

0.4

0.6

0.8

1.0

Tr
af

fic
 V

ol
um

e

Synthetic v.s. Ground truth
Generated Traffic Volume
Real Traffic Volume

Figure 4: In Traffic dataset, ‘Weather Main’ (categorical, textual weather description) and ‘Traffic
Volume’ (continuous, hourly traffic on westbound I-94, Minneapolis-St. Paul) are generated condi-
tionally on remaining variables over 96 hourly timestamps (i.e., T = 96). The generated data shows
great fidelity to the real data. (Both variables are pre-processed. See Appendix D for more details)

Let ZLat
0 ∈ RT×F denote the input latent matrix from VAE and let ZLat

n := [zLat
n,1, z

Lat
n,2, . . . , z

Lat
n,F] be

the noisy matrix after n ∈ {1, 2, . . . , N} diffusion steps, where zLat
n,j ∈ RT is the j-th column of ZLat

n .
The perturbation kernel q(zLat

n,j |zLat
0,j) = N (

√
ᾱnz

Lat
0,j , (1−ᾱn)IT×T) is applied independently to each

column zLat
0,j j ∈ [F], where ᾱn := Πn

i=1αi with {αi}ni=1 ∈ [0, 1]n being a decreasing sequence over
i. (We use the linear noise scheduling from DDPM. Refer to the Appendix K for details.) Here, we
treat each column of ZLat

0 as a discretized measurement of univariate time series function in the latent
space, adding noises independently. But this does not mean we do not model the correlations along
the feature dimension in ZLat

0 (Biloš et al., 2023). The reverse process for sampling takes an entire
latent matrix and captures these correlations. A similar idea has been used in TabDDPM (Kotelnikov
et al., 2022) for modeling categorical variables. Under this setting, ZLat

n can be succinctly written as√
ᾱnZ

Lat
0 +

√
1− ᾱnE

n, where En := [ϵn1 , ϵ
n
2 , . . . , ϵ

n
F] ∈ RT×F with ϵnj ∼ N (0, IT×T). Finally,

the ELBO loss we aim to minimize is:

Ldiff := En,En

[
∥ϵθ
(√

ᾱnZ
Lat
0 +

√
1− ᾱnE

n, n, t, ts
)
−En∥22

]
. (5)

The neural network ϵθ predicts the error matrix En added in every diffusion step n ∼
Unif({1, 2, . . . , N}). It takes noisy matrix ZLat

n , normalized time-stamps t := {t1, t2, . . . , tT } =
{ i
T }

T
i=1, diffusion step n, and the original time-stamps ts in the tabular dataset as inputs.

Design of ϵθ: The architecture of ϵθ is given in Fig. 3. Diffusion step n and a set of normalized
time points t are encoded through positional encoding (in short PE) introduced in Vaswani et al.
(2017). PE of n lets the diffusion model know at which diffusion step the noisy matrix is, and
PE of t encodes the sequential order of rows in the input matrix. But normalized time stamps
provide only limited information on the orders of rows, and we find incorporating the encodings
of timestamps in date-time format (i.e., YEAR-MONTH-DATE-HOURS), which can be commonly
found in time series tabular data, significantly helps the diffusion training process. (See Table 5
in subsection L.) Cyclic encodings with sine and cosine functions are used for converting the
date-time data to dense vectors: specifically, for x ∈ {YEAR,MONTH,DATE,HOURS} with
Period ∈ {total number of years in the dataset, 12, 365, 24}, the conversion we used is as :(

sin
(
x/(Period × 2π)

)
, cos

(
x/(Period × 2π)

))
. (6)

Through equation 6, cyclic encodings give 8-dimensional unique representations of timestamps of
the observed data in the table, and the encoded vector is fed to an MLP block equation 2 to match
the dimension with those of the other inputs’ encodings. The concatenated encodings of (ZLat

n , n,
t, ts) are fed into an MLP block, which gives a tensor N = [N1, N2, . . . , NT]

T ∈ RT×F . Inspired
from Tian et al. (2023), Bi-directional RNN (Bi-RNN) (Schuster & Paliwal, 1997) is employed and
N is fed to Bi-RNN as in Figure 3. After the applications of layer-normalization and FC layer, the
network ϵθ outputs [ϵθ(t1), . . . , ϵθ(tT)]T ∈ RT×F to estimate En. The sampling process of the new
latent matrix is deferred to Appendix H.

3 APPLICATION OF TIMEAUTODIFF : CONDITIONAL GENERATION ON
TIME-VARYING SEQUENTIAL METADATA

In this section, we introduce C-TimeAutoDiff (‘C’ for conditional), where the model can generate
heterogeneous outputs conditionally on time varying metatdata. Same with unconditional generation,
the model consists of two learning stages on VAE and diffusion model. But unlike TimeAutoDiff,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

VAE only needs to be trained on the output variables x, as we need the trained decoder for the
generation only. The metadata c can be conditioned on diffusion model directly without going
through encoder layers. With a slight abuse of notation, let ZLat

0 be the latent matrix of the x the
output of conditional generation, and we model p(ZLat

0 |c) through the diffusion model.

Metadata Conditioning: Instead of directly conditioning c = (cdisc, ccont) to the network architecture
ϵθ, a preprocessing module on the condition is devised. Discrete metadata, cdisc, is encoded through
look-up table, and ccont is processed trough an MLP block. Another MLP block is applied on the
combined encoded metadata to learn the correlations among the discrete and continuous metadata
features. For learning the temporal dependences, Bi-RNN and FC-layer are employed, where FC-layer
is used to match the dimension of the encodings of ZLat

n . Visualizations of the network architecture
ϵθ of C-TimeAutoDiff are provided in the Appendix H.

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: We select eight real-world time series tabular datasets consisting of both numerical and
categorical features: Traffic, Pollution, Hurricance, AirQuality, ETTh1, Energy (single-sequence),
and nasdaq100, card fraud (multi-sequence: sequences from multiple entities in one table). We
provide the overall statistics and descriptions of these datasets in the Appendix C.

Baselines: To assess the quality of unconditionally generated time series data, we use 5 baseline
models: (1) GAN based methods: TimeGAN (Yoon et al., 2019), DoppelGANger (Lin et al., 2020).
(2) Diffusion based methods: Diffusion-TS (Yuan & Qiao, 2023), TSGM (Lim et al., 2023), (3)
Parametric model: CPAR (Zhang et al., 2022).

Evaluation Methods: For the comprehensive quantitative evaluation of the synthesized data, we
mainly focus on four criteria: (1) Low-order statistic- pair-wise column correlations and row-wise
temporal dependences in the table are evaluated via feature correlation score (Kotelnikov et al.,
2022) and temporal discriminative score (devised by us), respectively. (2) High-order statistic- the
overall fidelities of the synthetic data in terms of joint distributional modeling are measured through
discriminative score (Yoon et al., 2019). (3) The effectiveness of the synthetic data for downstream
tasks is assessed through the predictive score (Yoon et al., 2019), where a predictive model (i.e.,
regressor or classifier) is trained using synthesized data and tested on real data (Mogren, 2016). (4)
Sampling times (in sec.) are compared with other base-line methods. Detailed explanations for
each metric are deferred in the Appendix G. Additionally, generalizability of the model is evaluated
under “Distance to the Closest Record” (DCR; Park et al. (2018)) metric to ensure it draws samples
from the distribution rather than memorizing the training data points (Appendix I). To evaluate the
conditionally generated samples xcon-syn ∼ P(x | c), we employ the above metrics on the two datasets:
Dreal

x,c := {(xreal, c)} and Dsynth
x,c := {(xcon-syn, c)} with c being fixed. As P(x, c) = P(c)P(x | c), in

this way, we measure conditional relations of xcon-syn and c as well as the fidelity of xcon-syn to xreal.

Parameter setting: In Appendix K, we present the parameter settings of VAE and DDPM in our
model. Unless otherwise specified, they are universally applied to the entire dataset in the experiments
conducted in this paper. Additionally, we study how the sizes of network architectures in DDPM and
VAE, training epochs for both models, and noise schedulers (linear vs quadratic) in DDPM affect the
performances of the model.

4.2 FIDELITY AND UTILITY GUARANTEES OF SYNTHETIC DATA

Unconditional Generation: Table 1 shows that our TimeAutoDiff consistently outperforms
other baseline models in terms of almost all metrics both for single- and multi-sequence generation
tasks. It significantly improves the (temporal) discriminative and feature correlation scores in all
datasets over the baseline models. TimeAutoDiff also dominates the predictive score metric. (We
train a classifier to predict a column in the dataset to measure the predictive score. The columns
predicted in each dataset are listed in Table 4 in Appendix C.) But for some datasets, the performance
gaps with the second-best model are negligible, for instance, TSGM for Hurricane and AirQuality
datasets. It is intriguing to note that the predictive scores can be good even when the data fidelity is
low. The GAN-based models are faster in terms of sampling time compared to the diffusion-based

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Metric Methods Single-Sequence Multi-Sequence
Traffic Pollution Hurricane AirQuality Card Transaction nasdaq100

Discriminative
Score

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

Real vs Real

0.026(0.014)
0.202(0.021)
0.500(0.000)
0.413(0.057)
0.258(0.215)
0.498(0.002)
0.053(0.009)

0.016(0.009)
0.133(0.015)
0.488(0.010)
0.351(0.053)
0.100(0.103)
0.500(0.000)
0.048(0.017)

0.047(0.016)
0.181(0.018)
0.482(0.020)
0.254(0.062)
0.176(0.099)
0.500(0.000)
0.034(0.011)

0.061(0.013)
0.134(0.016)
0.452(0.009)
0.460(0.020)
0.211(0.116)
0.499(0.001)
0.040(0.011)

0.215(0.058)
N.A.
N.A.

0.482(0.037)
0.485(0.025)
0.500(0.000)
0.225(0.094)

0.067(0.046)
N.A.
N.A.

0.267(0.115)
0.071(0.032)
0.143(0.120)
0.190(0.051)

Predictive
Score

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

Real vs Real

0.203(0.014)
0.231(0.007)
0.247(0.002)
0.297(0.008)
0.300(0.005)
0.263(0.003)
0.206(0.012)

0.008(0.000)
0.013(0.000)
0.009(0.000)
0.043(0.000)
0.282(0.028)
0.032(0.009)
0.010(0.000)

0.098(0.026)
0.306(0.076)
0.290(0.007)
0.180(0.027)
0.214(0.000)
0.420(0.055)
0.098(0.026)

0.005(0.001)
0.017(0.002)
0.006(0.000)
0.057(0.011)
0.060(0.009)
0.030(0.007)
0.005(0.001)

0.001(0.000)
N.A.
N.A.

0.130(0.022)
0.004(0.006)
0.132(0.035)
0.001(0.000)

10.863(0.716)
N.A.
N.A.

9.597(0.016)
11.556(1.093)
8.270(0.019)
9.281(0.009)

Temporal
Discriminative

Score

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

Real vs Real

0.047(0.018)
0.199(0.028)
0.499(0.001)
0.429(0.050)
0.400(0.039)
0.436(0.073)
0.061(0.011)

0.014(0.013)
0.165(0.084)
0.499(0.001)
0.397(0.060)
0.444(0.050)
0.492(0.021)
0.044(0.009)

0.026(0.024)
0.247(0.093)
0.497(0.002)
0.465(0.025)
0.464(0.028)
0.497(0.009)
0.039(0.012)

0.033(0.014)
0.183(0.064)
0.499(0.000)
0.457(0.014)
0.335(0.091)
0.493(0.010)
0.050(0.017)

0.290(0.040)
N.A.
N.A.

0.497(0.007)
0.362(0.097)
0.470(0.041)
0.360(0.051)

0.159(0.140)
N.A.
N.A.

0.419(0.140)
0.497(0.007)
0.404(0.099)
0.150(0.090)

Feature
Correlation

Score

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

Real vs Real

0.022(0.014)
2.148(1.439)
2.092(1.485)
1.243(0.535)
0.885(0.737)
0.538(0.336)
0.000(0.000)

1.244(0.844)
1.716(1.096)
1.710(0.705)
2.068(1.093)
2.371(0.875)
1.280(0.931)
0.000(0.000)

0.074(0.013)
1.881(1.208)
0.424(0.249)
2.151(1.113)
2.380(0.798)
0.965(0.287)
0.000(0.000)

0.463(0.080)
0.716(0.141)
0.543(0.077)
0.865(0.123)
1.628(0.231)
1.552(0.220)
0.000(0.000)

0.078(0.137)
N.A.
N.A.

2.301(0.723)
1.550(1.034)
0.295(0.294)
0.000(0.000)

0.243(0.012)
N.A.
N.A.

1.488(1.069)
1.035(0.818)
0.514(0.445)
0.000(0.000)

Sampling Time
(in Sec)

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

3.512 (0.065)
≫
≫

0.127(0.056)
0.011(0.002)
17.466(0.734)

3.947 (0.070)
≫
≫

0.113(0.058)
0.014(0.001)
18.597(0.558)

3.740 (0.132)
≫
≫

0.125(0.060)
0.010(0.003)
15.839(0.324)

3.945 (0.103)
≫
≫

0.131(0.060)
0.017(0.003)
29.816(0.846)

3.384(0.064)
N.A.
N.A.

0.051(0.051)
0.018(0.004)
141.425(2.435)

3.133(0.129)
N.A.
N.A.

0.047(0.039)
0.041(0.001)
112.506(2.152)

Table 1: The experimental results of single-sequence and multi-sequence time series tabular data
generations under the Discriminative, Predictive, Temporal Discriminative, and Feature Correlation
scores. Sampling times of each model over 6 datasets are recorded in seconds. The symbol ≫ denotes
that the sampling time exceeds 300 seconds, and ‘N.A.’ means ‘Not Applicable’. The bolded number
indicates the best-performed result. For each metric, the mean and standard deviation (in parenthesis)
of 10 scores from one generated synthetic data are recorded in the table. For recording the sampling
time, 10 synthetic data are generated from the trained diffusion model. The ‘Real Data’ serves as a
baseline, where each metric is computed under Real vs Real.

Metric Methods Single-Sequence
Traffic Pollution Hurricane AirQuality ETTh1 Energy

Discriminative
Score

C-TimeAutoDiff
Real vs Real

0.078(0.038)
0.091(0.021)

0.056(0.017)
0.067(0.020)

0.014(0.005)
0.081(0.009)

0.090(0.007)
0.085(0.027)

0.036(0.008)
0.051(0.011)

0.113(0.070)
0.270(0.028)

Predictive
Score

C-TimeAutoDiff
Real vs Real

0.113(0.007)
0.107(0.001)

0.008(0.000)
0.008(0.000)

0.060(0.009)
0.058(0.010)

0.004(0.000)
0.004(0.000)

0.048(0.002)
0.051(0.001)

0.228(0.005)
0.230(0.003)

Temporal
Discriminative

Score

C-TimeAutoDiff
Real vs Real

0.123(0.034)
0.134(0.015)

0.081(0.027)
0.083(0.019)

0.048(0.025)
0.072(0.019)

0.116(0.018)
0.138(0.014)

0.045(0.015)
0.074(0.014)

0.224(0.013)
0.300(0.031)

Feature
Correlation

Score

C-TimeAutoDiff
Real vs Real

0.012(0.003)
0.000(0.000)

0.026(0.008)
0.000(0.000)

0.175(0.032)
0.000(0.000)

0.011(0.002)
0.000(0.000)

0.014(0.002)
0.000(0.000)

0.029(0.007)
0.000(0.000)

Table 2: Time varying metadata conditional generations: the experiments conducted over 6 single-
sequence datasets with sequence length set as T = 96. See the caption of Figure 14 (Appendix N) for
output and condition pairs for each dataset used for the experiments. Overall, C-TimeAutoDiff
performs well, achieving results comparable to the Real vs Real baseline over the test dataset.

models. These results are expected, as diffusion-based models require multiple denoising steps for
sampling, whereas GAN-based models generate samples in a single step. Among diffusion-based
models, our model shows the best performance for sampling time. In the Appendix O and J, we
provide additional experiments on more metrics such as volatility, moving averages, Maximum Mean
Discrepancy (MMD) and entropy for diversity (Nikitin et al., 2023).

Conditional Generation: To test if C-TimeAutoDiff generalizes to unseen conditions, we
randomly split the dataset into train/test (80%/20%) sets. Synthetic data is generated with the same
size as the test dataset. The sequence length is set as 96. Qualities of the data are evaluated under the
introduced metrics in Table 5. To the best of our knowledge, there are no existing baseline methods
that perform similar tasks as C-TimeAutoDiff. Instead, metrics computed over Real vs Real are
used as the baseline. Our model performs on-par or even better than the Real vs Real baseline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Time Lag (hours)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Real AirQuality
CO(GT)
PT08.S1(CO)
NMHC(GT)
C6H6(GT)
PT08.S2(NMHC)
NOx(GT)
PT08.S3(NOx)
NO2(GT)
PT08.S4(NO2)
PT08.S5(O3)
T
RH
AH

0 50 100 150 200 250 300
Time Lag (hours)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Sythetic AirQuality (TimeAutoDiff)
CO(GT)
PT08.S1(CO)
NMHC(GT)
C6H6(GT)
PT08.S2(NMHC)
NOx(GT)
PT08.S3(NOx)
NO2(GT)
PT08.S4(NO2)
PT08.S5(O3)
T
RH
AH

0 50 100 150 200 250 300
Time Lag (hours)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Real ETT-small-h1
HUFL
HULL
MUFL
MULL
LUFL
LULL
OT

0 50 100 150 200 250 300
Time Lag (hours)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Sythetic ETT-small-h1 (TimeAutoDiff)
HUFL
HULL
MUFL
MULL
LUFL
LULL
OT

Figure 5: Real (left) vs. Synthetic (right): Autocorrelation plots with a time lag of 300 (hours) for the
AirQuality (Top) and the ETTh1 (Bottom) datasets. Sequence length is set as T = 500.

Temporal & Feature Dependences: Aside from quantitative evaluations under the mentioned
metrics, as illustrated in Fig. 5, autocorrelation plots for both real (AirQuality and ETTh1) and
synthetic data reveal that the TimeAutoDiff successfully captures the complex and long temporal
correlations of sequences, i.e., T = 500. Additionally, the similar patterns observed for each feature
in the real and synthetic data demonstrate the model’s ability to capture the correlations along the
feature dimension. We provide more visualizations across various datasets in the Appendix M.

Additional experiments on ablation, scalability and the adaptive choices on β in VAE are deferred in
the Appendix L.

4.3 TIME-VARYING METADATA CONDITIONAL GENERATION

We further provide numerical validations that C-TimeAutoDiff indeed learn the conditional
distribution P(x|c) of both P(‘Cont Var.’|‘Disc Var.’) and P(‘Disc Var.’|‘Cont Var.’) under synthetic
data setting. Additionally, we explore its application in counterfactual scenario analysis with real-
world Traffic data, investigating how weather sequences affect traffic volume.

Synthetic Setting: Real-world data often involves complex correlations and confounding factors,
making it difficult to establish strict causal relationships. To validate that C-TimeAutoDiff can
effectively learn conditional rules, we use a synthetic dataset with variables ‘Temperature’ and
‘Weather’. The ‘Temperature’ is generated over 10,000 time points as:

Temp(t) = 15 + 10 sin
(
2πt/365

)
+N (0, 22),

where Temp(t) follows a sinusoidal pattern with added Gaussian noise. Based on the generated
‘Temperature’, the categorical ‘Weather’ variable is derived as follows: ‘Sunny’ if Temp > 20,
‘Cloudy’ if 10 < Temp ≤ 20, and ‘Rainy’ if 0 < Temp ≤ 10. We set the time window as T = 48
(hours) and train the model to learn two conditional distributions: P(Temp|Weather), which predicts
temperature given weather, and P(Weather|Temp), which predicts weather given temperature.

Fig 6 (top 3) demonstrates the model’s ability to generate ‘Temperature’ sequences corresponding
to specific weather conditions under three scenarios: (1) constant weather conditions over three
consecutive 48-time periods (‘Sunny’, ‘Cloudy’, ‘Rainy’), (2) a repeating pattern of weather labels
(e.g., 16 ‘Rainy’, 16 ‘Cloudy’, 16 ‘Sunny’), and (3) random alternating patterns of ‘Cloudy’ and
‘Rainy’. The results show distinct separations in the temperature sequences generated for each weather
condition, validating the model’s ability to learn P(Cont Var.|Disc Var.). Similarly, Fig 6 (bottom 3)
demonstrates the reverse case. When conditioned on ‘Temperature’ values generated in the previous
scenarios, the model correctly predicts the corresponding ‘Weather’ labels at each time step, further
validating its ability to learn P(Disc Var.|Cont Var.).

Traffic Data: To evaluate C-TimeAutoDiff on real-world data, we use the Traffic dataset with
‘Traffic Volume’ (continuous) as the output and ‘Weather-main’ (categorical) as the conditional
variable. ‘Weather-main’ includes labels such as {‘Clear’, ‘Rain’, ‘Squall’, ‘Cloudy’}, among others.
Intuitively, we expect lower traffic volumes during adverse weather conditions (e.g., ‘Squall’, ‘Rain’)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 10 20 30 40
Time

0

5

10

15

20

25

30

Te
m

p

Sunny
Cloudy
Rainy

0 10 20 30 40 50
Time

0

5

10

15

20

25

Te
m

p

Rainy Cloudy Sunny

0 10 20 30 40
Time

0

2

4

6

8

10

12

Te
m

p

0 10 20 30 40
Time

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

W
ea

th
er

Sunny
Cloudy
Rainy

0 10 20 30 40 50
Time

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

W
ea

th
er

Rainy Cloudy Sunny

0 10 20 30 40
Time

2.0

2.2

2.4

2.6

2.8

3.0

W
ea

th
er

Figure 6: Empirical validations of the model’s ability to learn the conditional probability distributions
P
(
‘Temperature’|‘Weather’

)
(top 3 panels) and P

(
‘Weather’|‘Temperature’

)
(bottom 3 panels).

0 10 20 30 40
Time

0.0

0.2

0.4

0.6

0.8

tra
ffi

c_
vo

lu
m

e

Traffic Dataset-Time Stamp 1
Cloudy
Squall
Clear

0 10 20 30 40
Time

0.0

0.2

0.4

0.6

0.8

1.0

tra
ffi

c_
vo

lu
m

e

Traffic Dataset-Time Stamp 2
Cloudy
Squall
Clear

0 10 20 30 40
Time

0.0

0.2

0.4

0.6

0.8

tra
ffi

c_
vo

lu
m

e

Traffic Dataset-Time Stamp 3
Cloudy
Squall
Clear

0 10 20 30 40
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tra
ffi

c_
vo

lu
m

e

Traffic Dataset-Time Stamp 4
Cloudy
Squall
Clear

0 10 20 30 40
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tra
ffi

c_
vo

lu
m

e

Traffic Dataset-Time Stamp 5
Cloudy
Squall
Clear

0 10 20 30 40
Time

0.0

0.2

0.4

0.6

0.8

tra
ffi

c_
vo

lu
m

e

Traffic Dataset-Time Stamp 6
Cloudy
Squall
Clear

Figure 7: We choose arbitary 6 timestamp sequences in dataset, and give the models labels of
[‘Cloudy’, ‘Squall’, ‘Clear’] weather-conditions. The traffic-volume axis is normalized.

and higher traffic volumes during good weather (e.g., ‘Clear’, ‘Cloudy’). We test the model under
three weather scenarios: ‘Cloudy’, ‘Squall’, and ‘Clear’, using six different timestamp sequences
to observe patterns. As shown in the results, ‘Traffic Volume’ is consistently lower during ‘Squall’
compared to ‘Cloudy’ and ‘Clear’, while no significant differences are observed between ‘Clear’ and
‘Cloudy’. These findings confirm the model’s ability to reflect expected traffic patterns under different
weather conditions.

5 DISCUSSIONS

This paper introduces TimeAutoDiff, a novel time series tabular data synthesizer designed for
multi-dimensional, heterogeneous features. Leveraging a latent diffusion model with a specialized
VAE, it achieves high fidelity and utility guarantees. The model supports time-varying metadata
conditional generation, enabling applications across scientific and engineering domains. It also lays
the groundwork for tasks such as missing data imputation, privacy guarantees, interpretability, and
extension to foundational models, all of which rely on precise modeling of P(xT ,xT−1, . . . ,x1).
Further discussions are provided in Appendix A.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marin Biloš, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, and Stephan Günnemann.
Modeling temporal data as continuous functions with stochastic process diffusion. 2023.

Erik Bodin, Henry Moss, and Carl Henrik Ek. Linear combinations of latents in diffusion models:
interpolation and beyond. arXiv preprint arXiv:2408.08558, 2024.

Defu Cao, Wen Ye, Yizhou Zhang, and Yan Liu. Timedit: General-purpose diffusion transformers for
time series foundation model. arXiv preprint arXiv:2409.02322, 2024.

Yinan Cheng, Chi-Hua Wang, Vamsi K Potluru, Tucker Balch, and Guang Cheng. Downstream
task-oriented generative model selections on synthetic data training for fraud detection models.
arXiv preprint arXiv:2401.00974, 2024.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv preprint arXiv:2310.10688, 2023.

Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational auto-
encoder for multivariate time series generation. arXiv preprint arXiv:2111.08095, 2021.

Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. Differentially private diffusion models.
arXiv preprint arXiv:2210.09929, 2022.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Ashkan Farhangi, Jiang Bian, Arthur Huang, Haoyi Xiong, Jun Wang, and Zhishan Guo. Aa-
forecast: anomaly-aware forecast for extreme events. Data Mining and Knowledge Discovery,
37(3):1209–1229, March 2023. ISSN 1573-756X. doi: 10.1007/s10618-023-00919-7. URL
http://dx.doi.org/10.1007/s10618-023-00919-7.

Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes,
Soham De, Samuel L Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion models
generate useful synthetic images. arXiv preprint arXiv:2302.13861, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR (Poster), 3, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International Conference on Machine Learning, pp. 8867–8887.
PMLR, 2022.

Din-Yin Hsieh, Chi-Hua Wang, and Guang Cheng. Improve fidelity and utility of synthetic credit
card transaction time series from data-centric perspective. arXiv preprint arXiv:2401.00965, 2024.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data synthesis. arXiv
preprint arXiv:2210.04018, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

11

http://dx.doi.org/10.1007/s10618-023-00919-7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. arXiv preprint arXiv:2209.15421, 2022.

Nicholas I Kuo, Louisa Jorm, Sebastiano Barbieri, et al. Synthetic health-related longitudinal data
with mixed-type variables generated using diffusion models. arXiv preprint arXiv:2303.12281,
2023.

Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: Co-evolving contrastive diffusion models
for mixed-type tabular synthesis. arXiv preprint arXiv:2304.12654, 2023.

Jin Li, Benjamin J Cairns, Jingsong Li, and Tingting Zhu. Generating synthetic mixed-type longitudi-
nal electronic health records for artificial intelligent applications. NPJ Digital Medicine, 6(1):98,
2023.

Haksoo Lim, Minjung Kim, Sewon Park, Jaehoon Lee, and Noseong Park. Tsgm: Regular and
irregular time-series generation using score-based generative models. Openreview, 2023.

Lequan Lin, Zhengkun Li, Ruikun Li, Xuliang Li, and Junbin Gao. Diffusion models for time-series
applications: a survey. Frontiers of Information Technology & Electronic Engineering, 25(1):
19–41, 2024.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing networked
time series data: Challenges, initial promise, and open questions. In Proceedings of the ACM
Internet Measurement Conference, pp. 464–483, 2020.

Xingchao Liu, Lemeng Wu, Mao Ye, et al. Learning diffusion bridges on constrained domains. In
The Eleventh International Conference on Learning Representations, 2022.

Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
Unitime: A language-empowered unified model for cross-domain time series forecasting. In
Proceedings of the ACM on Web Conference 2024, pp. 4095–4106, 2024.

Simone Luetto, Fabrizio Garuti, Enver Sangineto, Lorenzo Forni, and Rita Cucchiara. One transformer
for all time series: Representing and training with time-dependent heterogeneous tabular data.
arXiv preprint arXiv:2302.06375, 2023.

Saiyue Lyu, Michael F Liu, Margarita Vinaroz, and Mijung Park. Differentially private latent diffusion
models. arXiv preprint arXiv:2305.15759, 2023.

Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training. arXiv
preprint arXiv:1611.09904, 2016.

Sai Shankar Narasimhan, Shubhankar Agarwal, Oguzhan Akcin, Sujay Sanghavi, and Sandeep Chin-
chali. Time weaver: A conditional time series generation model. arXiv preprint arXiv:2403.02682,
2024.

Alexander Nikitin, Letizia Iannucci, and Samuel Kaski. Tsgm: A flexible framework for generative
modeling of synthetic time series. arXiv preprint arXiv:2305.11567, 2023.

Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models
on tabular data with missing values. arXiv preprint arXiv:2307.00467, 2023.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross,
Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, June 2021a. doi: 10.1109/icassp39728.2021.9414142. URL http://dx.doi.org/10.
1109/ICASSP39728.2021.9414142.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross,
Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3565–3569. IEEE, 2021b.

12

http://dx.doi.org/10.1109/ICASSP39728.2021.9414142
http://dx.doi.org/10.1109/ICASSP39728.2021.9414142

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and Youngmin
Kim. Data synthesis based on generative adversarial networks. arXiv preprint arXiv:1806.03384,
2018.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions on
Signal Processing, 45(11):2673–2681, 1997.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Namjoon Suh, Xiaofeng Lin, Din-Yin Hsieh, Merhdad Honarkhah, and Guang Cheng. Autod-
iff: combining auto-encoder and diffusion model for tabular data synthesizing. arXiv preprint
arXiv:2310.15479, 2023.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. Advances in Neural Information Processing
Systems, 34:24804–24816, 2021.

Muhang Tian, Bernie Chen, Allan Guo, Shiyi Jiang, and Anru R Zhang. Fast and reliable generation
of ehr time series via diffusion models. arXiv preprint arXiv:2310.15290, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. Advances in Neural Information Processing Systems, 32, 2019.

Jiarui Yang, Tao Dai, Naiqi Li, Junxi Wu, Peiyuan Liu, Jinmin Li, Jigang Bao, Haigang Zhang, and
Shutao Xia. Generative pre-trained diffusion paradigm for zero-shot time series forecasting. arXiv
preprint arXiv:2406.02212, 2024a.

Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao
Liu, Bin Yang, Zenglin Xu, et al. A survey on diffusion models for time series and spatio-temporal
data. arXiv preprint arXiv:2404.18886, 2024b.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
networks. Advances in neural information processing systems, 32, 2019.

Jinsung Yoon, Lydia N Drumright, and Mihaela Van Der Schaar. Anonymization through data
synthesis using generative adversarial networks (ads-gan). IEEE journal of biomedical and health
informatics, 24(8):2378–2388, 2020.

Jinsung Yoon, Michel Mizrahi, Nahid Farhady Ghalaty, Thomas Jarvinen, Ashwin S Ravi, Peter
Brune, Fanyu Kong, Dave Anderson, George Lee, Arie Meir, et al. Ehr-safe: generating high-
fidelity and privacy-preserving synthetic electronic health records. NPJ Digital Medicine, 6(1):
141, 2023.

Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation. In
The Twelfth International Conference on Learning Representations, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
based diffusion in latent space. arXiv preprint arXiv:2310.09656, 2023a.

Hengrui Zhang, Liancheng Fang, and Philip S Yu. Unleashing the potential of diffusion models for
incomplete data imputation. arXiv preprint arXiv:2405.20690, 2024.

Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The
emergence of reproducibility and consistency in diffusion models. In Forty-first International
Conference on Machine Learning, 2023b.

Kevin Zhang, Neha Patki, and Kalyan Veeramachaneni. Sequential models in the synthetic data vault.
arXiv preprint arXiv:2207.14406, 2022.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data
synthesizing. In Asian Conference on Machine Learning, pp. 97–112. PMLR, 2021.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan+: Enhancing tabular data
synthesis. arXiv preprint arXiv:2204.00401, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pp.
11106–11115. AAAI Press, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DISCUSSIONS ON FUTURE TOPICS WITH RELEVANT LITERATURE

In this subsection, we further discuss about the four possible extensions of TimeAutoDiff in
sequel: (1) Missing data imputation; (2) Privacy guarantees; (3) Interpretability of generated time
series data; (4) Extension to foundational model.

(1) Missing data imputation is an important application of tabular data synthesis. In the literature,
CSDI (Tashiro et al., 2021) study the imputations of continuous time series tabular data through
diffusion-based framework. The main idea is to employ the specially designed masks; masking
the observed data, and to let the model predict the masked values in the observations, i.e.,
self-supervised learning. Then, the trained model can impute the real missing parts of the table by
thinking them as masked observations. We conjecture the similar idea can be easily adopted in
the framework of TimeAutoDiff. In i.i.d. row setting (each row from the same distribution),
several papers (Zhang et al., 2023a; 2024) study the imputation problem of tabular data with
heterogeneous features through diffusion-based synthesizers. Zhang et al. (2023a) directly used
the pre-trained unconditional latent diffusion model, analogous to inpainting tasks of images,
for the imputation. Zhang et al. (2024) employed the concept of EM-algorithm. Specifically,
the former work, Zhang et al. (2023a), utilized the fact that the transformer maps the input data
to latent space deterministically, where transformer is used for the main backbone architecture in VAE.

(2) Privacy Guarantees is one of the main motivations of synthetic data. Specifically, in
the time series domain, data from the healthcare and financial sectors is ubiquitous, but it often
comes with significant privacy concerns. We hope the synthetic data does not leak any private
information of the original data, while preserving good fidelities. TimeAutoDiff lays the
foundation for guaranteeing such privacy concerns with the generated synthetic data. In the vision
domain, differential privacy guarantees (Dwork, 2006) of synthetic images from diffusion-based
models have been investigated by several researchers (Dockhorn et al., 2022; Ghalebikesabi et al.,
2023; Lyu et al., 2023). Specifically, Lyu et al. (2023) studied DP-guarantees of latent diffusion
model by fine-tuning the attention module of noise predictor in their diffusion model, and claim their
synthetic images both have good fidelities and DP-guarantees.

Nonetheless, it is still not clear how the same idea can be applied to time series synthetic
data (or regular tabular data), as differentially private time series data is frequently challenging to
interpret (Yoon et al., 2020). In this regard, another privacy criterion, ε-identifiability (Yoon et al.,
2020) (with ε ∈ [0, 1]) can be considered as another alternative. The distance between synthetic and
original data is measured through Euclidean distance, and we want at least (1− ε)-proportion of the
synthetic data to be distinguishable (or different enough) from the original data. Under this criterion,
we conjecture TimeAutoDiff can be extended to the synthesizer with a (theoretically-provable)
privacy guarantees. The idea can be underpinned around several recent results on diffusion
model (Zhang et al., 2023b; Bodin et al., 2024). Zhang et al. (2023b) showed that there exist
closed-form solutions of noise predictors for every diffusion step of noisy training data points. This
means that we can trace back the latent vectors (or matrix) where the original training data points
are generated from. Recent findings (Bodin et al., 2024) suggest that a proper linear combination
of data in the latent space can produce a new semantically meaningful dataset in the original
space. Combining the fact that the mapping from the latent space to the original space is Lipschitz
continuous (Zhang et al., 2023b) through deterministic sampling (probability-flow), we might be
able to have controls over the generations of time series synthetic data, whose Euclidean distances
from training data points are away from the training data points. This idea is naturally related to the
diversity of generated data as well.

(3) Interpretability of the generated time series data is another crucial aspect that time se-
ries synthesizer should possess. In many practical applications, for instance, in financial sector,
stakeholders and domain experts may be hesitant to rely on synthesis models that are difficult to
interpret, as they need to understand and trust the model’s behavior, especially when dealing with
critical or high-risk scenarios. The current version of TimeAutoDiff does not have the luxury
of generating interpretable results, but this can be easily adopted by following the previous works.
Specifically, we want to point out readers TimeVAE (Desai et al., 2021) and Diffusion-TS (Yuan &
Qiao, 2023), which both focus on building a synthesizer with interpretability. Specifically, TimeVAE
adopted a sophisticatedly designed decoder in VAE, which has trend, seasonality, and residual

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

blocks for signal decompositions. Similarly, Diffusion-TS also design a sophisticated decoder for the
decomposition of signals into trend, seasonality, and residual, where they employ the latent diffusion
framework. Both of these ideas can be directly employed in TimeAutoDiff, where the current
decoder is set as an MLP block for simplicity.

(4) Extension to foundational model is another promising route the TimeAutoDiff can
take. Recently, we have been seeing a wave of foundational models research on time series
domain (Cao et al., 2024; Liu et al., 2024; Das et al., 2023; Yang et al., 2024a). These models can
accommodate multiple tables from cross domains, enabling multiple time series tasks in one model;
for instance, forecasting, anomaly detection, imputation, and synthetic data generation (See Cao
et al. (2024).) Among them, Cao et al. (2024) devised cleverly designed masks, which provide
the unifying framework to do the four abovementioned tasks under diffusion-based framework.
Nonetheless, their methods are confined to the continuous data modality, and not clear how
the model can be extended to heterogeneous features, leaving the great future opportunities for
TimeAutoDiff to be extended. We also conjecture the synthetic data from TimeAutoDiff can be
beneficial to improving quality of forecasting foundation model i.e., see Section 5 in (Das et al., 2023).

(5) Bias from conditional metadata generation: Generated data can indeed be biased
with respect to conditional metadata, arising from various factors. Bias in the training data, such as
inherent associations between metadata and outputs, may lead the model to replicate these biases, for
instance, generating disproportionately high traffic volumes for "Clear" weather even when the true
relationship is less deterministic. Imbalanced metadata distributions further exacerbate this issue, as
underrepresented conditions in the training set often result in less reliable outputs for those conditions,
such as biased outcomes for minority demographic groups in healthcare datasets. Simplified
assumptions in the model, such as assuming linear relationships between metadata and outputs, can
overlook complex dependencies, producing data that fails to reflect the true conditional distribution.
Noise injection, a feature of models like diffusion models and VAEs, can introduce additional
bias if the noise interacts with metadata in unexpected ways, particularly for rare metadata values.
Furthermore, limitations in conditional architectures, such as inadequate metadata encoding, can
prevent the model from capturing nuanced dependencies, leading to misaligned outputs. To mitigate
such biases, ensuring balanced training data, employing robust metadata encoding techniques,
applying regularization or fairness constraints, performing post-generation bias audits, and designing
disentangled latent spaces are crucial steps. While conditional generative models aim to align
generated data with metadata, addressing these biases is essential to ensure fairness and reliability.

B COMPUTING RESOURCES

We ran the main model on a computer equipped with an Intel(R) Core(TM) i9-14900KF 3.20 GHz,
an NVIDIA GeForce RTX 4090 with 24GB VRAM.

C DATASETS AND DATA PROCESSING STEPS

We used six single-sequence and two multi-sequence time-series datasets for our experiments. The
statistical information of datasets used in our experiments is in Table 3.

Single-sequence: We select the first 2000 rows from each single sequence dataset for our experiments.
We split our data into windows of size T , leading us to have the tensor of size (2000−T +1)×T ×F .
(We truncate the rows of the tables because of the memory issues we encounter for large T (e.g.,
T = 900).) Recall the F denote the number of features in the table.

• Traffic (UCI) is a single-sequence, mixed-type time-series dataset describing the
hourly Minneapolis-St Paul, MN traffic volume for Westbound I-94. The
dataset includes weather features and holidays for evaluating their impacts on traf-
fic volume. (URL: https://archive.ics.uci.edu/dataset/492/metro+
interstate+traffic+volume)

• Pollution (UCI) is a single-sequence, mixed-type time-series dataset containing the PM2.5
data in Beijing between Jan 1st, 2010 to Dec 31st, 2014. (URL: https://archive.
ics.uci.edu/dataset/381/beijing+pm2+5+data)

16

https://archive.ics.uci.edu/dataset/492/metro+interstate+traffic+volume
https://archive.ics.uci.edu/dataset/492/metro+interstate+traffic+volume
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Dataset # of Rows #-Cont. #-Disc. Seq. Type Pred Score Col.
Traffic 48205 3 5 Single traffic volume

Pollution 43825 5 3 Single lr
Hurricane 9937 4 4 Single seasonal
AirQuality 9358 1 12 Single AH

ETTh1 17431 7 0 Single OT
Energy 19736 27 1 Single rv2

Card Transaction 20000 2 6 Multi Is Fraud?
nasdaq100 18231 3 4 Multi Industry

Table 3: Datasets used for our experiments. The date time column is considered as neither continuous
nor categorical. The ‘Seq.Type’ denotes the time series data type: single- or multi-sequence data.
The ‘Pred Score Col’ denotes columns in each dataset used for measuring predictive scores.

• Hurricane (NHC) is a single sequence, mixed-type time-series dataset of the monthly
sales revenue (2003-2020) for the tourism industry for all 67 counties of Florida which are
prone to annual hurricanes. This dataset is used as a spatio-temporal benchmark dataset
for forecasting extreme events and anomalies (Farhangi et al., 2023). (URL: https:
//www.nhc.noaa.gov/data/)

• AirQuality (UCI) is a single sequence, mixed-type time-series dataset containing the hourly
averaged responses from a gas multisensor device deployed on the field in an Italian city.
(URL: https://archive.ics.uci.edu/dataset/360/air+quality)

• ETTh1 (Github: Zhou et al. (2021)) is a single sequence, continuous only time-series dataset,
recording hourly level ETT (i.e., Electricity Transformer Temperature), which is a crucial
indicator in the electric power long-term deployment. Specifically, the dataset combines
short-term and long-term periodical patterns, long-term trends, and many irregular patterns.
(URL: https://github.com/zhouhaoyi/ETDataset/tree/main)

• Energy (Kaggle) is a single sequence time-series dataset. The dataset, span-
ning 4.5 months, includes 10-minute interval data on house temperature and hu-
midity via a ZigBee sensor network, energy data from m-bus meters, and weather
data from Chievres Airport, Belgium, with two random variables added for regres-
sion model testing. (URL: https://www.kaggle.com/code/gaganmaahi224/
appliances-energy-time-series-analysis)

Multi-sequence: The sequences in the multi-sequence data vary in length from one entity to another,
so we selected entities with sequences longer than T = 200 and T = 177 and truncated them to a
uniform length of T for the "card transaction" and "nasdaq100" datasets.

• Card Transaction is a multi-sequence, synthetic mixed-type time-series dataset created
by Padhi et al. (2021a) using a rule-based generator to simulate real-world credit card
transactions. We selected 100 users (i.e., entities) for our experiment. In the dataset, we
choose {’Card’, ’Amount’, ’Use Chip’, ’Merchant’, ’MCC’, ’Errors?’, ’Is Fraud?’} as fea-
tures for the experiment. (URL: https://github.com/IBM/TabFormer/tree/
main)

• nasdaq100 is a multi-sequence, mixed-type time-series dataset consisting of stock prices
of 103 corporations (i.e., entities) under nasdaq 100 and the index value of nasdaq 100.
This data covers the period from July 26, 2016 to April 28, 2017, in total 191 days. (URL:
https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html)

D PRE- AND POST-PROCESSING STEPS IN TIMEAUTODIFF

It is essential to pre-process the real tabular data in a form that the machine learning model can
extract the desired information from the data properly. We divide the heterogeneous features into two
categories; (1) continuous, and (2) discrete. Following is how we categorize the variables and process
each feature type. Let x be the column of a table to be processed.

17

https://www.nhc.noaa.gov/data/
https://www.nhc.noaa.gov/data/
https://archive.ics.uci.edu/dataset/360/air+quality
https://github.com/zhouhaoyi/ETDataset/tree/main
https://www.kaggle.com/code/gaganmaahi224/appliances-energy-time-series-analysis
https://www.kaggle.com/code/gaganmaahi224/appliances-energy-time-series-analysis
https://github.com/IBM/TabFormer/tree/main
https://github.com/IBM/TabFormer/tree/main
https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1. Continuous feature: If x’s entries are real-valued continuous, we categorize x as a numerical
feature. Moreover, if the entries are integers with more than 25 distinct values (e.g., “Age”),
then x is categorized as a continuous variable. Here, 25 is a user-specified threshold. We
employ min-max scaler (Yoon et al., 2019) to ensure the pre-processed numerical features
are within the range of [0, 1]. Hereafter, we denote xProc

Num as the processed column.

2. Discrete / Categorical feature: If x’s entries have string datatype, we categorize x as a
discrete feature (e.g., “Gender”). Additionally, the x with less than 25 distinct integers is
categorized as a discrete feature. For pre-processing, we simply map the entries of x to the
integers greater than or equal to 0, and further divide the data type into two parts; binary and
categorical, denoting them as xProc

Bin and xProc
Cat . Here, xProc

Cat denotes the discrete variables with
more than 3 labels or categories.

3. Post-processing step: After the TimeAutoDiff model generates a synthetic dataset, it
must be restored to its original format. For continuous features, this is achieved through
inverse transformations, (i.e., reversing min-max scaling). Integer labels in discrete features
are mapped back to their original categorical or string values.

E COMPARISON TABLE OF TIMEAUTODIFF WITH CURRENT LITERATURE

Table E compares TimeAutoDiff with other time series synthesizers in the literature under seven
different aspects. Additionally, we provide further detailed comparisons between our model and
Diffusion-TS (Yuan & Qiao, 2023) / TimeDiff (Tian et al., 2023). Diffusion-TS’s main purpose is to
generate time series data with interpretability. They employ the Autoencoder + DDPM framework,
employing transformers as encoder and decoder for obtaining the disentangled representations of
time series. The main difference between Diffusion-TS and ours is on the problem setting that their
assumption on the signal is only restricted to continuous time series, whereas ours is focused on
the heterogeneous features. Diffusion-TS lies on the assumption that the signal is decomposable
into three main parts: trend, seasonality, and noise. However, the decomposition of heterogeneous
features, specifically discrete variables is not well defined in the literature, it is beyond the scope of
our work, requiring further research. TimeDiff integrates two types of diffusion models to handle
heterogeneous features in EHR datasets, employing DDPM for continuous variables and multinomial
diffusion (Hoogeboom et al., 2021) for discrete variables. In contrast, our approach leverages a VAE
to project time series data into a latent space and utilizes DDPM exclusively for modeling the time
series within this latent representation, which is continuous.

Models Hetero. Single-Seq. Multi-Seq. Cond. Gen. Applicability Code Sampling Time
TimeAutoDiff ✓ ✓ ✓ ✓ ✓ ✓ 3
TimeDiff (Tian et al., 2023) ✓ ✓ ✗ ✗ ✗ ✗ –
Diffusion-ts (Yuan & Qiao, 2023) ✗ ✓ ✗ ✗ ✓ ✓ 5
TSGM (Lim et al., 2023) ✗ ✓ ✗ ✗ ✓ ✓ 6
TimeGAN (Yoon et al., 2019) ✗ ✓ ✗ ✗ ✓ ✓ 2
DoppelGANger (Lin et al., 2020) ✗ ✓ ✗ ✗ ✓ ✓ 1
EHR-M-GAN (Li et al., 2023) ✓ ✓ ✗ ✗ ✗ ✓ –
CPAR (Zhang et al., 2022) ✓ ✗ ✓ ✗ ✓ ✓ 4
TabGPT (Padhi et al., 2021b) ✓ ✗ ✓ ✗ ✗ ✓ –

Table 4: A comparison table that summarizes TimeAutoDiff against baseline methods, evaluat-
ing metrics like heterogeneity, single- and multi-sequence data generation, conditional generation,
applicability (i.e., whether the model is not designed for specific domains), code availability, and
sampling time. Baseline models without domain specificity and with available code are used for
numerical comparisons. The sampling time column ranks models by their speed, with lower numbers
indicating faster sampling.

F DENOISING DIFFUSION PROBABILISTIC MODEL

Ho et al. (2020) proposes the denoising diffusion probabilistic model (DDPM) which gradually
adds fixed Gaussian noise to the observed data point x0 via known variance scales βn ∈ (0, 1),
n ∈ {1, . . . , N} at the diffusion step n. This process is referred as forward process in the diffusion

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

model, perturbing the data point and defining a sequence of noisy data x1,x2, . . . ,xN :

q(xn | xn−1) = N (xn;
√

1− βnxn−1, βnI), q(x1:N | x0) :=

N∏
n=1

q(xn | xn−1).

Since the transition kernel is Gaussian, the conditional probability of the xn given its original
observation x0 can be succinctly written as:

q(xn | x0) = N
(
xn |

√
ᾱnx0, (1− ᾱn)I

)
,

where αn = 1− βn and ᾱn = Πn
k=1αk. Setting βn to be an increasing sequence, for large enough

N , leads xN to the isotropic Gaussian.

Training objective of DDPM is to maximize the evidence lower bound (in short ELBO) of the
log-likelihood Ex0

[log pθ(x0)] as follows;

Eq

[
log pθ(x0 | x1)−DKL(q(xN | x0) || p(xN))−

N∑
n=1

DKL(q(xn−1 | xn,x0) || pθ(xn−1 | xn))

]
.

The first two terms in the expectation are constants, and the third KL-divergence term needs to
be controlled. Interestingly, the conditional probability q(xn−1 | xn,x0) can be driven in the
closed-form solution:

q(xn−1 | xn,x0) = N

(
xn−1 |

√
ᾱn−1βn

1− ᾱn
x0 +

√
αn(1− ᾱn−1)

1− ᾱn
xn,

1− ᾱn−1

1− ᾱn
βnI

)
.

Noticing the covariance is a constant matrix and KL-divergence between two Gaussians has closed-
form solution; DDPM models pθ(xn−1 | xn) := N (xn−1 | µθ(xn, n),

1−ᾱn−1

1−ᾱn
βnI). The mean

vector µθ(xn, n) is parameterized by a neural network.

The trick used in (Ho et al., 2020) is to reparameterize µθ(xn, n) in terms of ϵθ(xn, n) where it
predicts the noise ϵ added to xn from x0. (Note that xn =

√
ᾱnx0 +

√
1− ᾱnϵ with ϵ ∼ N (0, I).)

Given this, the final loss function DDPM wants to minimize is:

Ldiff := En,ϵ

[
∥ϵθ
(√

ᾱnx0 +
√
1− ᾱnϵ, n

)
− ϵ∥22

]
,

where the expectation is taken over ϵ ∼ N (0, I) and n ∼ Unif({0, . . . , N}).
The generative model learns the reverse process. To generate new data from the learned distribution,
the first step is to sample a point from the easy-to-sample distribution xN ∼ N (0, I) and then
iteratively denoise (xN → xN−1 → · · · → x0) it using the above model.

G EVALUATION METRIC

For the quantitative evaluation of synthesized data, we mainly focus on three criteria (1) the distribu-
tional similarities of the two tables; (2) the usefulness for predictive purposes; (3) the temporal and
feature dependencies; We employ the following evaluation metrics:

Discriminative Score (Yoon et al., 2019) measures the fidelity of synthetic time series data to original
data, by training a classification model (optimizing a 2-layer LSTM) to distinguish between sequences
from the original and generated datasets.

Predictive Score (Yoon et al., 2019) measures the utility of generated sequences by training a posthoc
sequence prediction model (optimizing a 2-layer LSTM) to predict next-step temporal vectors under
a Train-on-Synthetic-Test-on-Real (TSTR) framework.

Temporal Discriminative Score measures the similarity of distributions of inter-row differences
between generated and original sequential data. This metric is designed to see if the generated data
preserves the temporal dependencies of the original data. For any fixed integer t ∈ {1, . . . , T − 1},
the difference of the n-th row and (n+ t)-th row in the table over n ∈ {1, . . . , T − t} is computed

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

for both generated and original data and discriminative score (Yoon et al., 2019) is computed over
the differenced matrices from original and synthetic data. We average discriminative scores over 10
randomly selected t ∈ {1, . . . , T − 1}.

Feature Correlation Score measures the averaged L2-distance of correlation matrices computed on
real and synthetic data. Following (Kotelnikov et al., 2022), to compute the correlation matrices,
we use the Pearson correlation coefficient for numerical-numerical feature relationships, Theil’s U
statistics between categorical-categorical features, and the correlation ratio for categorical-numerical
features. We use the following metrics to calculate the feature correlation score:

• Pearson Correlation Coefficient: Used for Numerical to Numerical feature relationship.
Pearson’s Correlation Coefficient r is given by

r =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
√∑

(y − ȳ)2

where
– x and y are samples in features X and Y , respectively
– x̄ and ȳ are the sample means in features X and Y , respectively

• Theil’s U Coefficient: Used for Categorical to Categorical feature relationship. Theil’s U
Coefficient U is given by

U =
H(X)−H(X|Y)

H(X)

where
– entropy of feature X is defined as

H(X) = −
∑
x

PX(x) logPX(x)

– entropy of feature X conditioned on feature Y is defined as

H(X|Y) = −
∑
x,y

PX,Y (x, y) log
PX,Y (x, y)

PY (y)

– PX and PY are empirical PMF of X and Y , respectively
– PX,Y is the joint distribution of X and Y

• Correlation Ratio: Used for Categorical to Numerical feature relationship. The correlation
ratio η is given by

η =

√∑
x nx(ȳx − ȳ)2∑
x,i(yxi − ȳ)2

where
– nx is the number of observations of label x in the categorical feature
– yxi is the i-th observation of the numerical feature with label x
– ȳx is the mean of observed samples yi ∈ Y with label x
– ȳ is the sample mean of Y

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H SAMPLING OF THE LATENT MATRIX FROM (C)-TIMEAUTODIFF AND
NETWORK ARCHITECTURE OF C-TIMEAUTODIFF

Algorithm 1: Sampling (Unconditional generation of TimeAutoDiff)
1 Input: ts, t = {t1, . . . , tT }
2 ZLat

N ∼ N (0, ITF×TF).reshape(T, F)
3 while n = N, . . . , 1 do
4 z ∼ N (0, ITF×TF).reshape(T, F)

5 ZLat
n−1 = 1√

αn

(
ZLat

n − 1−αn√
1−ᾱn

ϵθ(Z
Lat
n , n, t, ts)

)
+ βnz.reshape(T, F),

6 end
7 return ZLat

0 .reshape(T, F)

Algorithm 2: Sampling (Conditional generation of TimeAutoDiff)
1 Input: ts, c, t = {t1, . . . , tT }
2 ZLat

N ∼ N (0, ITF×TF).reshape(T, F)
3 while n = N, . . . , 1 do
4 z ∼ N (0, ITF×TF).reshape(T, F)

5 ϵ̃θ := ϵθ
(
ZLat

n , n, t, ts, c
)
,

6 ZLat
n−1 = 1√

αn

(
ZLat

n − 1−αn√
1−ᾱn

· ϵ̃θ
)
+ βnz.reshape(T, F),

7 end
8 return ZLat

0 .reshape(T, F)

𝑐𝑐𝑜𝑛𝑡𝑐𝑑𝑖𝑠𝑐

MLPWE

Concatenate

MLP

Bi-RNN/FC

𝑍𝑛
𝐿𝑎𝑡

𝑛

𝑡𝑠

MLP

PE

PE

CE MLP

C
o
n
ca
te
n
a
te

M
LP

𝑁2

𝑅𝑁𝑁

𝑁𝑇

𝑅𝑁𝑁𝑅𝑁𝑁

𝑅𝑁𝑁 𝑅𝑁𝑁𝑅𝑁𝑁

𝑁1

LN/FC LN/FC LN/FC

𝜖𝜃(𝑡1) 𝜖𝜃(𝑡2) 𝜖𝜃(𝑡𝑇)

𝑡

Figure 8: Network architecture of ϵθ in C-TimeAutoDiff.

I GENERALIZABILITY OF TIMEAUTODIFF

In generative modeling, it is essential to check whether the learned model can generate the datasets
not seen in the training set. If model memorizes and reproduces data points from the training
dataset (Zhang et al., 2023b), this can undermine the primary motivation of data synthesizing:
increasing dataset diversity. To investigate further in this regard, we design an experiment using the
notion of Distance to the Closest Record (DCR) (Park et al., 2018), which computes the Euclidean
distance between a data point r ∈ RT×F in the synthesized dataset and the closest record to r in
the original table. We split the data into training (50%) / testing (50%) sets, where we only use the
training set for model training.

Interpretations of DCR scores: DCR scores for both training and testing datasets can be
used to evaluate the model’s performance. Significant overlap between the DCR distributions of
the training and testing datasets suggests that the model is drawing data from the data distribution,
i.e., P(x1,x2, . . . ,xT). However, even with substantial overlap between the distributions, if the
distances to the origin are small, this suggests that the patterns in the training and testing sets are
alike, implying the model may have memorized specific training data points. If the DCR distribution
of the training data is notably closer to zero compared to the testing data, it indicates that the model

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

1000 2000 3000 4000 5000 6000
DCR

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Traffic.TimeAutoDiff
Train
Test

0 10 20 30 40
Time

0

1

2

3

4

5

6

7

8

we
at

he
r_

m
ai

n

Traffic.Synthetic Data

0 10 20 30 40
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tra
ffi

c_
vo

lu
m

e

Traffic.Synthetic Data

0 10 20 30 40
Time

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

we
at

he
r_

m
ai

n

Traffic.Closest Training

0 10 20 30 40
Time

0.0

0.2

0.4

0.6

0.8

tra
ffi

c_
vo

lu
m

e

Traffic.Closest Training

0 20 40 60
DCR

0

5

10

15

20

25

Fr
eq

ue
nc

y

Pollution.TimeAutoDiff
Train
Test

0 10 20 30 40
Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Iw
s

Pollution.Synthetic Data

0 10 20 30 40
Time

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Ir

Pollution.Synthetic Data

0 10 20 30 40
Time

0.00

0.01

0.02

0.03

0.04

Iw
s

Pollution.Closest Training

0 10 20 30 40
Time

0.04

0.02

0.00

0.02

0.04

Ir

Pollution.Closest Training

0 2000 4000 6000 8000
DCR

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Hurricane.TimeAutoDiff
Train
Test

0 10 20 30 40
Time

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

tre
nd

Hurricane.Synthetic Data

0 10 20 30 40
Time

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ye
ar

Hurricane.Synthetic Data

0 10 20 30 40
Time

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

tre
nd

Hurricane.Closest Training

0 10 20 30 40
Time

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ye
ar

Hurricane.Closest Training

0.0 2.5 5.0 7.5 10.0 12.5 15.0
DCR

0

10

20

30

40

50

Fr
eq

ue
nc

y

AirQuality.TimeAutoDiff
Train
Test

0 10 20 30 40
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NO
x(

GT
)

AirQuality.Synthetic Data

0 10 20 30 40
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NO
2(

GT
)

AirQuality.Synthetic Data

0 10 20 30 40
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

NO
x(

GT
)

AirQuality.Closest Training

0 10 20 30 40
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NO
2(

GT
)

AirQuality.Closest Training

Figure 9: The leftmost column demonstrates that the DCR distributions for the training and testing
sets exhibit significant overlap across four datasets (from top): Traffic, Pollution, Hurricane, and
AirQuality. For each dataset, two variables are selected for visualizations. The second and third
columns illustrate these chosen features over timestamps (sequence length = 48) for an arbitrary
synthetic data point. The fourth and fifth columns present the same features for the closest data point
in the training dataset. The model trained on the Traffic and Pollution datasets clearly generates new
data points with distinct patterns, while the models trained on Hurricane and AirQuality datasets
replicate their training data points, as indicated by DCR distributions being close to zero.

has memorized the training dataset. Last but not least, it’s important to recognize that random noise
can also produce similar DCR distributions. Therefore, the DCR score should be evaluated in
conjunction with other measures of fidelity, such as the discriminative score, and utility measures,
such as the predictive score, to provide a comprehensive assessment of the model’s generalization
capabilities. We provide the interpretations of DCR distributions of TimeAutoDiff for Traffic,
Pollution, Hurricane, and AirQuality datasets in the caption of Fig. 9.

J VOLATILITY AND MOVING AVERAGE: COMPARISON BETWEEN REAL AND
SYNTHETIC UNDER STOCK DATA

We provide the performance of our model in terms of volatility and moving average. We first provide
the brief descriptions on Simple Moving Average, Exponential Moving Average, and Volatility.

Simple Moving Average (SMA): The Simple Moving Average (SMA) is computed as the arithmetic
mean of values over a sliding window of size w = 5. For a given time step t, the SMA is given by:

SMAt =
1

5

t∑
i=t−4

Valuei

where Valuei represents the value of the time series at time i. This metric smooths short-term
fluctuations and highlights the overall trend by averaging values in the specified window.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Exponential Moving Average (EMA) The Exponential Moving Average (EMA) is a weighted
average of values where recent data points have exponentially greater weight. For a window size of
w = 5, the smoothing factor α is computed as: α = 2

w+1 = 2
5+1 = 1

3 . The EMA at time t is then
computed recursively as:

EMAt = α · Valuet + (1− α) · EMAt−1

where Valuet is the current value of the time series, and EMAt−1 is the EMA from the previous time
step. This method emphasizes recent changes while retaining some information from the historical
trend.

Volatility Volatility measures the degree of variation in the time series over a sliding window of size
w = 5. It is calculated as the rolling standard deviation of the percentage changes (returns). First, the
percentage change (return) between consecutive values is computed as:

Returni =
Valuei − Valuei−1

Valuei−1

For a given time step t, the volatility over the window w = 5 is given by: Volatilityt =√
1
5

∑t
i=t−4 (Returni − ¯Return)2 where ¯Return is the mean of the returns within the window.

Results: We work on the stock data. The figure 12 provide a clear side-by-side comparison between
the synthetic and real data, with the left column displaying the synthetic data and the right column
showcasing the corresponding real data for two selected features (Open & Close prices) over 200
timestamps (i.e.,T=200). Each row focuses on one feature, allowing for a detailed examination of the
behavior across key metrics: Simple Moving Average (SMA), Exponential Moving Average (EMA),
and Volatility. The SMA and EMA curves, plotted alongside the raw time series data, highlight the
ability of the synthetic data to replicate the long-term trends (SMA) and short-term responsiveness
(EMA) observed in the real data. Volatility, overlaid as a secondary y-axis in each plot, demonstrates
the synthetic data’s capacity to reproduce the temporal variability, including periods of high and low
uncertainty, as reflected in the real data. The remarkable alignment across all metrics suggests that
the synthetic data closely mirrors the real data’s dynamics, effectively capturing both the overall
patterns and nuanced fluctuations. This visual comparison underscores the robustness and reliability
of the synthetic data generation process.

Figure 10: Comparison of synthetic (left) and real (right) data across two features, illustrating
alignment in trends (SMA, EMA) and variability (Volatility: secondary y-axis).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

K MODEL PARAMETER SETTINGS, TRAINING & HYPER-PARAMETER CHOICES

Our model consists of two components: VAE and DDPM. We present the sizes of networks in both
components that are applied entirely across the experiments in the paper.

VAE-Encoder =
{

Dimension of first FC-layer in MLP-block for encoded features:

(Num of disc var.×128+Num of cont var.×16)× 128,

Dimension of second FC-layer in MLP-block for encoded features:128× F,

Dimension of hidden layer for the 2-RNNs for µ and σ: 200,
Number of layers for the 2-RNNs for µ and σ: 2,

Dimension of fully-connected layer topped on 2-RNNs: 200× F
}

VAE-Decoder =
{

Dimension of first FC-layer in MLP-block for latent matrix Z0: F× 128,

Dimension of second FC-layer in MLP-block for latent matrix Z0: 128× 128
}

DDPM =
{

Output dimensions of encodings of (ZLat
n , n, t, ts): 200,

Dimension of hidden layer for the Bi-RNNs: 200,
Number of layers for the Bi-RNNs: 2,
Dimension of FC-layer of the output of Bi-RNNs: 400× F,

Diffusion Steps: 100
}

Training for both the VAE and DDPM models is set to 25,000 epochs. The batch size for VAE
training is 100, while the batch size for DDPM training matches the number of diffusion steps. We
use the Adam optimizer, with a learning rate of 2 × 10−4 decaying to 10−6 for the VAE, and a
learning rate of 10−3 for the DDPM. For stabilization of diffusion training, we employ Exponential
Moving Average (EMA) with decay rate 0.995. We employ linear noise scheduling for βn := 1−αn,
n ∈ {1, 2, . . . , N} with β1 = 10−4 and βN = 0.2:

βn =

(
1− n

N

)
β1 +

n

N
βN .

In the following, we investigate the robustness of our models to the various hyper-parameter choices in
VAE and DDPM. Specifically, we studied the effects of (1) feature dimension of ZLat

0 (F/2, F/4), (2)
number of diffusion steps (75, 50, 25), (3) training epochs of VAE and DDPM (20000, 15000, 10000),
(4) dimension of hidden layers of two RNNs (for µ and σ) in VAE (150, 100, 50), (5) dimension of
hidden layers of Bi-RNNs in DDPM (150, 100, 50), (6) the number of layers of two RNNs (for µ and
σ) in VAE (1), (7) the number of layers of Bi-RNNs in DDPM (1). (8) the quadratic noise scheduler
used in Song et al. (2020a); Tashiro et al. (2021):

βn =

((
1− n

N

)√
β1 +

n

N

√
βN

)2

.

with the minimum noise level β1 = 0.0001, and the maximum noise level βN = 0.5.

The experiments are conducted over the varying parameters (in the paranthesis), while the remaining
parameters in the model are being fixed as in the above settings. The first 2000 rows of Traffic data
are used for the experiments with sequence length 24. (i.e., the dimensions of tensors used in the
experiments are [B, T, F] = [1977, 24, 8])

Results Interpretations: Table 5 presents the performance of the models across four metrics, with
variations in hyperparameter settings. Overall, larger models yield better results. Reducing the
diffusion steps, dimensions, and the number of hidden layers in RNNs within the VAE and Bi-RNN
components of DDPM significantly degrades model performance. Longer training of both VAE
and DDPM consistently enhances results. The linear noise scheduler outperforms the quadratic
noise scheduler. While reducing the feature dimension to F/2 slightly improves discriminative and
temporal discriminative scores, further compression to F/4 leads to information loss during signal
reconstruction, resulting in poorer performance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Method Disc. Score Pred. Score Temp. Disc Score Feat. Correl.
TimeAutoDiff

Latent Feature Dimension = F/2
Latent Feature Dimension = F/4

Diffusion Steps = 75
Diffusion Steps = 50
Diffusion Steps = 25

VAE Training = 15000
VAE Training = 10000
VAE Training = 5000

DDPM Training = 15000
DDPM Training = 10000
DDPM Training = 5000

Hidden Dimension of RNNs (VAE) = 150
Hidden Dimension of RNNs (VAE) = 100
Hidden Dimension of RNNs (VAE) = 50

Hidden Dimension of Bi-RNNs (DDPM) = 150
Hidden Dimension of Bi-RNNs (DDPM) = 100
Hidden Dimension of Bi-RNNs (DDPM) = 50

Number of layers in RNNs (VAE) = 1
Number of layers in Bi-RNNs (DDPM) = 1

Quadratic Noise Scheduler

0.015(0.012)
0.009(0.004)
0.038(0.021)
0.016(0.009)
0.118(0.019)
0.150(0.027)
0.075(0.009)
0.068(0.018)
0.195(0.025)
0.098(0.014)
0.220(0.025)
0.267(0.021)
0.013(0.008)
0.030(0.009)
0.082(0.023)
0.031(0.010)
0.167(0.012)
0.174(0.014)
0.024(0.013)
0.097(0.009)
0.109(0.017)

0.229(0.010)
0.227(0.009)
0.233(0.007)
0.224(0.015)
0.241(0.003)
0.248(0.006)
0.243(0.005)
0.242(0.007)
0.245(0.002)
0.237(0.015)
0.246(0.004)
0.255(0.001)
0.240(0.007)
0.236(0.017)
0.238(0.004)
0.243(0.011)
0.248(0.003)
0.251(0.005)
0.245(0.009)
0.250(0.002)
0.234(0.013)

0.034(0.020)
0.096(0.061)
0.099(0.171)
0.014(0.009)
0.092(0.046)
0.111(0.065)
0.035(0.007)
0.038(0.038)
0.039(0.019)
0.062(0.038)
0.165(0.045)
0.216(0.031)
0.031(0.009)
0.017(0.011)
0.051(0.038)
0.028(0.013)
0.094(0.054)
0.157(0.072)
0.042(0.018)
0.245(0.009)
0.072(0.025)

0.043(0.000)
0.055(0.000)
0.048(0.000)
0.039(0.000)
0.109(0.000)
0.100(0.000)
0.091(0.000)
0.050(0.000)
0.077(0.000)
0.086(0.000)
0.195(0.000)
0.190(0.000)
0.015(0.000)
0.039(0.000)
0.064(0.000)
0.035(0.000)
0.119(0.000)
0.132(0.000)
0.028(0.000)
0.086(0.000)
0.106(0.000)

Table 5: Performances measured with various choices of hyper-parameters in TimeAutoDiff. The
experiments are conducted on Traffic dataset with T = 24.

L RESULTS ON ABLATION TEST, β-SCHEDULING & SCALABILITY

Ablation: The ablation test results are summarized in Table 7. A single model alone (i.e., only VAE
or DDPM) cannot accurately capture the statistical properties of the distributions of tables, which
strongly supports the motivation of our model. The components related to the diffusion model, such
as timestamp encoding and Bi-RNN, impact the generative performance across most cases as models
lacking these components do not exhibit optimal performance. The encodings for continuous features
in the VAE notably enhance the fidelity and temporal dependences of the generated data.

Additionally, we consider the following scenarios:

1. Replacing the MLP with an RNN in the decoder of the VAE.
2. Replacing the two RNNs with an MLP in the encoder of the VAE.
3. Inspired by Biloš et al. (2023), we explore injecting continuous noise from a stochastic

process (Gaussian process) into the DDPM. Specifically, the perturbation kernel

q(zLat
n,j |zLat

0,j) = N (
√
ᾱnz

Lat
0,j , (1− ᾱn)Σ)

is applied independently to each column of ZLat
0 ∈ RT×F , where Σij = exp(−γ|ti − tj |)

with γ = 0.2.

The experimental results show that none of the ablated models outperformed the original configuration
significantly. Specifically, the second configuration demonstrates the benefits of modeling temporal
relations twice in the VAE and DDPM due to the following reasons:

Hierarchical Temporal Dependency Modeling: The VAE encoder captures compact latent repre-
sentations with temporal dependencies, providing a structured input for the diffusion model. This
allows the diffusion process to refine finer-grained patterns without redundantly encoding high-level
temporal structures, resulting in more realistic outputs.

Noise-Tolerant Latent Representation: Encoding temporal dependencies early in the VAE encoder
ensures that the latent variable z is robust to noise. This noise resilience helps maintain critical
temporal structures during the diffusion process, enhancing the fidelity of the generated data.

The effect of adaptive β-VAE: Motivated from (Zhang et al., 2023a), we evaluate the effects of
scheduling on β coefficients in VAE in terms of tradeoffs between reconstruction error and KL-
divergence. In Fig 11, we observe that while large β can ensure the close distance between the
embedding and standard normal distributions, its reconstruction loss is relatively larger than that of
smaller ones, and vice versa. The adaptive β-scheduling ensures both the lowest reconstruction error

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000
Training Epoch

0

10

20

30

40

50

Lo
ss

KL Divergence Loss
Scheduled

=0.1
=0.01
=0.001
=0.0001
=1e-5

0 5000 10000 15000 20000
Training Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Reconstruction Loss
Scheduled

=0.1
=0.01
=0.001
=0.0001
=1e-5

0 5000 10000 15000 20000
Training Epoch

0.000

0.001

0.002

0.003

0.004

0.005

Lo
ss

Reconstruction Loss (Zoom-In)
Scheduled

=0.1
=0.01
=0.001
=0.0001
=1e-5

Figure 11: KL-Divergence (left) and Reconstruction (middle)
losses over 20000 training iterations of VAE on Traffic dataset.
The zoomed-in panel (right) displays the scheduled-β reaches
the lowest reconstruction error stably without any spikes.

β Disc. Score
10−1 0.369(0.101)
10−2 0.041(0.011)
10−3 0.043(0.019)
10−4 0.079(0.012)
10−5 0.043(0.009)

Scheduled β 0.023(0.015)

Table 6: The results of discrimina-
tive scores with varying β values
on the Traffic dataset.

and relatively lower KL-divergence, preserving the shape of embedding distribution. The adaptive
β-scheduling achieves the fastest and the most stable signal reconstructions among other β-choices.
Table 6 shows the effectiveness of β-scheduling for quality of synthetic data in discriminative score.

Scalability: We investigate the scalability of TimeAutoDiff by varying the sequence length (i.e.,
T) and the number of features (i.e., F). For the experiment, we follow the sine wave synthetic setting
in TimeGAN paper (Yoon et al., 2019).

Sine Waves. We simulate multivariate sinusoidal sequences of different frequencies η and
phases θ, providing continuous-valued, periodic, multivariate data where each feature is independent
of others. For each dimension i ∈ {1, ..., F}, xi(t) = sin(2πηt + θ), where η ∼ Unif[0, 1] and
θ ∼ Unif[−π, π].

We train the model with data of size [Batch Size × Seq Len × Feature Dim] and draw the
samples with same sizes. In the following Tables, training time for VAE, Diffusion models, and
sampling time for data are recorded in seconds. Allocated GPU memory for sampling (in MB),
discriminative score and temporal discriminative score are also recorded.

Under the model configurations stated in the Appendix K, TimeAutoDiff can generate the se-
quence of length 900 with 5 features with good fidelities. (See Table 8.) In contrast, we observe a
performance drop when the feature sizes increase (30 to 50 features) with a sequence length of 200.
To address this, we reduce the dimension of the feature axis in the latent space to F/2, resulting in a
significant performance increase in the high-dimensional feature setting.

Time Series Tabular data generation via Diffusion Model

FC for Cont FC for Cont FC for Cont FC for Cont

Sigmoid Sigmoid Sigmoid Sigmoid

𝒙𝑪𝒐𝒏𝒕,𝟏
𝑶𝒖𝒕

FC for Bin FC for Bin FC for Bin FC for Bin

𝒙𝑪𝒐𝒏𝒕,𝒋
𝑶𝒖𝒕 ∈ 𝑹𝒅𝑪𝒐𝒏𝒕

𝒙𝑪𝒐𝒏𝒕,𝟐
𝑶𝒖𝒕 𝒙𝑪𝒐𝒏𝒕,𝟑

𝑶𝒖𝒕 𝒙𝑪𝒐𝒏𝒕,𝑻
𝑶𝒖𝒕

𝒙𝑩𝒊𝒏,𝟐
𝑶𝒖𝒕 𝒙𝑩𝒊𝒏,𝟑

𝑶𝒖𝒕 𝒙𝑩𝒊𝒏,𝑻
𝑶𝒖𝒕𝒙𝑩𝒊𝒏,𝟏

𝑶𝒖𝒕

FC for Cat FC for Cat FC for Cat FC for Cat

𝒙𝑪𝒂𝒕𝒆,𝟐
𝑶𝒖𝒕 𝒙𝑪𝒂𝒕𝒆,𝟑

𝑶𝒖𝒕 𝒙𝑪𝒂𝒕𝒆,𝑻
𝑶𝒖𝒕𝒙𝑪𝒂𝒕𝒆,𝟏

𝑶𝒖𝒕

𝒙𝑩𝒊𝒏,𝒋
𝑶𝒖𝒕 ∈ 𝑹𝒅𝑩𝒊𝒏

𝒙𝑪𝒂𝒕𝒆,𝒋
𝑶𝒖𝒕 ∈ 𝑹σ𝒊𝑲𝒊

ℎ1
ℎ2

ℎ𝑇

𝒁𝟎
𝑳𝒂𝒕

MLP

Figure 12: Decoder has a simple design: the latent matrix ZLat
0 is fed to a shared MLP blcock, and the

output of the MLP block is fed to the different linear layers based on the data type. Sigmoid function
is used to match the scale of continuous input data.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Metric Method Traffic Pollution Hurricane AirQuality

Discriminative
Score

(The lower, the better)

TimeAutoDiff
only VAE

only DDPM
w/o Encoding equation 1

w/o Timestamps
w/o Bi-directional RNN
RNN in decoder (VAE)
MLP in encoder (VAE)
Smooth Noise (DDPM)

0.027(0.014)
0.476(0.010)
0.283(0.131)
0.029(0.017)
0.095(0.016)
0.049(0.015)
0.186(0.019)
0.017(0.011)
0.015(0.009)

0.014(0.011)
0.491(0.010)
0.313(0.163)
0.062(0.015)
0.105(0.012)
0.021(0.020)
0.185(0.020)
0.072(0.020)
0.078(0.013)

0.035(0.010)
0.490(0.010)
0.252(0.034)
0.063(0.018)
0.171(0.085)
0.300(0.036)
0.198(0.031)
0.117(0.019)
0.140(0.016)

0.035(0.016)
0.494(0.007)
0.266(0.048)
0.072(0.020)
0.074(0.013)
0.019(0.015)
0.124(0.018)
0.067(0.025)
0.140(0.016)

Predictive
Score

(The lower, the better)

TimeAutoDiff
only VAE

only DDPM
w/o Encoding equation 1

w/o Timestamps
w/o Bi-directional RNN
RNN in decoder (VAE)
MLP in encoder (VAE)
Smooth Noise (DDPM)

0.229(0.010)
0.241(0.001)
0.241(0.012)
0.219(0.011)
0.241(0.003)
0.231(0.008)
0.232(0.008)
0.220(0.011)
0.221(0.011)

0.008(0.000)
0.008(0.000)
0.016(0.000)
0.008(0.000)
0.008(0.000)
0.008(0.000)
0.008(0.000)
0.008(0.000)
0.008(0.000)

3.490(0.097)
4.566(0.041)
0.034(0.007)
3.611(0.216)
4.228(0.248)
3.549(0.047)
3.598(0.095)
3.365(0.072)
0.091(0.027)

0.004(0.000)
0.019(0.002)
0.009(0.002)
0.005(0.000)
0.004(0.000)
0.004(0.000)
0.012(0.004)
0.061(0.002)
0.059(0.001)

Temporal
Discriminative

Score

(The lower, the better)

TimeAutoDiff
only VAE

only DDPM
w/o Encoding equation 1

w/o Timestamps
w/o Bi-directional RNN
RNN in decoder (VAE)
MLP in encoder (VAE)
Smooth Noise (DDPM)

0.047(0.017)
0.368(0.107)
0.197(0.127)
0.036(0.016)
0.084(0.047)
0.031(0.021)
0.130(0.025)
0.037(0.017)
0.020(0.007)

0.008(0.005)
0.484(0.043)
0.135(0.131)
0.052(0.019)
0.053(0.018)
0.047(0.057)
0.133(0.019)
0.060(0.018)
0.059(0.029)

0.020(0.010)
0.490(0.014)
0.213(0.096)
0.049(0.022)
0.117(0.065)
0.404(0.013)
0.324(0.072)
0.094(0.019)
0.090(0.027)

0.035(0.024)
0.493(0.006)
0.242(0.122)
0.008(0.005)
0.064(0.019)
0.023(0.015)
0.331(0.130)
0.045(0.032)
0.091(0.027)

Feature
Correlation

Score

(The lower, the better)

TimeAutoDiff
only VAE

only DDPM
w/o Encoding equation 1

w/o Timestamps
w/o Bi-directional RNN
RNN in decoder (VAE)
MLP in encoder (VAE)
Smooth Noise (DDPM)

0.022(0.014)
0.404(0.339)
2.238(1.530)
0.029(0.021)
0.247(0.521)
0.048(0.024)
0.413(0.544)
0.025(0.015)
0.059(0.037)

1.104(0.900)
1.329(0.757)
2.020(1.460)
1.148(0.850)
1.303(0.793)
1.227(0.863)
1.187(0.820)
1.240(0.853)
1.246(0.843)

0.069(0.027)
0.427(0.371)
2.380(1.513)
0.077(0.034)
0.097(0.044)
0.090(0.043)
0.247(0.123)
0.122(0.058)
0.882(1.271)

0.147(0.230)
0.702(1.001)
0.198(0.298)
0.266(0.405)
0.231(0.349)
0.155(0.256)
0.913(1.302)
1.217(1.745)
1.215(1.345)

Table 7: The experimental results of ablation test in TimeAutoDiff. The bolded number indicates
the best-performing model.

Batch Size Seq Len VAE Diff Sampling GPU Mem Disc Scr Temp Disc Scr
500 100 187.23 94.32 1.294 910.47 0.067 (0.034) 0.143 (0.114)
400 300 420.23 201.47 3.585 1991.75 0.040 (0.023) 0.064 (0.059)
300 500 665.69 315.92 5.511 2572.63 0.032 (0.016) 0.078 (0.078)
200 700 928.83 415.36 7.303 2466.91 0.048 (0.016) 0.193 (0.122)
100 900 1209.34 530.36 8.499 1670.75 0.16 (0.094) 0.13 (0.143)

Table 8: The number of feature is fixed as 5. The sequence length increases up to 900.

Batch Size Feat Dim VAE Diff Sampling GPU Mem Disc Scr Temp Disc Scr
800 10 128.11 355.03 5.36 4696.21 0.24 (0.08) 0.26 (0.09)
800 20 132.48 359.32 4.12 5080.84 0.26 (0.05) 0.38 (0.08)
800 30 134.02 371.38 3.99 5540.96 0.31 (0.08) 0.33 (0.17)
800 40 134.72 364.85 3.97 6003.00 0.39 (0.14) 0.41 (0.14)
800 50 135.95 374.61 5.35 6464.41 0.48 (0.02) 0.49 (0.00)

Table 9: The sequence length is fixed as 200. The feature dimension increases up to 50.

Batch Size Feat Dim VAE Diff Sampling GPU Mem Disc Scr Temp Disc Scr
800 10 131.65 365.81 4.63 3288.57 0.20 (0.12) 0.23 (0.14)
800 20 128.34 344.86 4.53 3947.75 0.25 (0.13) 0.29 (0.09)
800 30 130.92 363.41 4.61 4358.76 0.17 (0.11) 0.34 (0.14)
800 40 132.03 359.15 4.58 4771.51 0.24 (0.19) 0.38 (0.09)
800 50 134.96 367.05 4.70 5185.07 0.32 (0.18) 0.41 (0.10)

Table 10: Same setting with Table 9, but the dimension of latent matrix is set as 200× 7.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

M ADDITIONAL PLOTS: AUTO-CORRELATION / PERIODIC, CYCLIC PATTERNS

0 50 100 150 200 250 300
Time Lag (hours)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n
Autocorrelation Plot of Partitioned Traffic

rain_1h
snow_1h
holiday
weather_main
weather_description
temp
clouds_all
traffic_volume

0 50 100 150 200 250 300
Time Lag (hours)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Sythetic Traffic (TimeAutoDiff)
rain_1h
snow_1h
holiday
weather_main
weather_description
temp
clouds_all
traffic_volume

0 50 100 150 200 250 300
Time Lag (hours)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Traffic
type
hurricane
region
year
observed
residual
seasonal
trend

0 50 100 150 200 250 300
Time Lag (hours)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Sythetic Traffic (TimeAutoDiff)
type
hurricane
region
year
observed
residual
seasonal
trend

0 50 100 150 200 250 300
Time Lag (hours)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Pollution
cbwd
Ir
pm2.5
DEWP
TEMP
PRES
Iws
Is

0 50 100 150 200 250 300
Time Lag (hours)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Sythetic Pollution (TimeAutoDiff)
cbwd
Ir
pm2.5
DEWP
TEMP
PRES
Iws
Is

0 50 100 150 200 250 300
Time Lag (hours)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Real Energy

0 50 100 150 200 250 300
Time Lag (hours)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n

Autocorrelation Plot of Partitioned Sythetic Energy (TimeAutoDiff)

0 25 50 75 100 125 150 175 200
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ob
se

rv
ed

Hurricane
Synthetic
Closest Real

0 25 50 75 100 125 150 175 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

se
as

on
al

Hurricane
Synthetic
Closest Real

0 25 50 75 100 125 150 175 200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tre
nd

Hurricane
Synthetic
Closest Real

Figure 13: The first four plots from the top are auto-correlation plots of lag 300 for real (left)
and synthetic (right) of ‘Traffic’,‘Hurricane’,‘Pollution’, and ‘Energy’. The last three plots are
[‘Observed’, ‘Seasonal’, ‘Trend’] variables of Hurricane dataset The sequence length of generated
synthetic data for AC (first four) and cyclic / trend pattern (last three) are 500 and 200, respectively.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

N METADATA CONDITIONAL GENERATION FROM C-TIMEAUTODIFF

C-TimeAutoDiff can conditionally generate heterogeneous outputs that include both categorical
and continuous variables.

0 20 40 60 80
Time

0

2

4

6

8

10

we
at

he
r_

m
ai

n

Real weather_main
Conditionally Generated weather_main

0 20 40 60 80
Time

0.90

0.91

0.92

0.93

0.94

0.95

0.96

te
m

p

Real temp
Conditionally Generated temp

0 20 40 60 80
Time

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

cb
wd

Real cbwd
Conditionally Generated cbwd

0 20 40 60 80
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Iw
s

Real Iws
Conditionally Generated Iws

0 20 40 60 80
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ye
ar

Real year
Conditionally Generated year

0 20 40 60 80
Time

0.0

0.1

0.2

0.3

0.4

0.5
tre

nd
Real trend
Conditionally Generated trend

0 20 40 60 80
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NO
x(

GT
)

Real NOx(GT)
Conditionally Generated NOx(GT)

0 20 40 60 80
Time

0.0

0.2

0.4

0.6

0.8

NO
2(

GT
)

Real NO2(GT)
Conditionally Generated NO2(GT)

0 20 40 60 80
Time

0.45

0.50

0.55

0.60

0.65

0.70

LU
LL

Real LULL
Conditionally Generated LULL

0 20 40 60 80
Time

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

OT

Real OT
Conditionally Generated OT

0 20 40 60 80
Time

0

1

2

3

4

5

6

7

lig
ht

s

Real lights
Conditionally Generated lights

0 20 40 60 80
Time

0.0

0.2

0.4

0.6

0.8

1.0

rv
1

Real rv1
Conditionally Generated rv1

Figure 14: Datasets: (output variables) from top to bottom: Traffic: (‘Weather main’, ‘temp’),
Pollution: (‘cbwd’, ‘Iws’), Hurricane: (‘year’, ‘trend’), AirQuality: (‘NOx(GT)’, ‘NO2(GT)’),
ETTh1: (‘LULL’, ‘OT’), Energy: (‘lights’, ‘rv1’). The output is chosen to be heterogeneous (except
AirQuality & ETTh1) both having discrete and continuous variables. Conditional variables c are set
as remaining variables from the entire features. See the list of entire features of each dataset through
the link in Appendix C.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

O MAXIMUM MEAN DISCREPANCY & ENTROPY

We used two metrics proposed by TSGM (Nikitin et al., 2023): Maximum Mean Discrepancy (MMD)
and Entropy. MMD measures the similarity (or fidelity) between synthetic and real time series data,
while Entropy assesses the diversity of the synthetic data. The results are summarized in Table 11
and are consistent with those in Table 1.

TimeAutoDiff achieves the lowest MMD scores across all four datasets, aligning with the discrimina-
tive scores reported in Table 1. This indicates that TimeAutoDiff effectively generates synthetic data
that closely resembles real data. For diversity, higher Entropy values indicate a dataset with more
diverse samples. However, as noted in (Nikitin et al., 2023), Entropy should be considered alongside
other metrics, as random noise can also result in high Entropy values. TimeAutoDiff produces
synthetic data with higher Entropy values than the real data, though not as excessively as other
baseline models. This suggests that our model generates synthetic data that preserves the statistical
properties of the original data, maintaining diversity without introducing excessive deviation.

Metric Method Traffic Pollution Hurricane AirQuality

MMD Score

(The lower, the better)

TimeAutoDiff
TimeGAN

DoppelGANer
Diffusion-TS

TSGM
real vs. real

0.000629
0.001738
0.000644
0.005099
0.001484
0.000000

0.000895
0.009791
0.000960
0.037102
0.006322
0.000000

0.000891
0.002775
0.005489
0.078387
0.031971
0.000000

0.001531
0.042986
0.017038
0.004144
0.013777
0.000000

Entropy Score

(Needs to be considered
with other metrics)

TimeAutoDiff
TimeGAN

DoppelGANer
Diffusion-TS

TSGM
Real

6419.404
6714.156
3941.083
9763.042
11899.225
5983.576

8472.642
11021.597
8656.403
7372.591
11854.764
6976.253

7129.152
7804.343
6946.678
9861.151
6535.306
6613.284

16570.016
15343.967
8708.616
15934.365
15766.673
14952.996

Table 11: Maximum Mean Discrepancy (MMD) and Entropy of TimeAutoDiff, TimeGAN, Dop-
pelGANer, Diffusion-TS, TSGM and Real data. The experimental setting is same with that of
Table ??.

30

	Introduction
	Problem Formulation, Motivation, and Contributions
	Relevant Literature

	Proposed Model: TimeAutoDiff
	Application of TimeAutoDiff: Conditional Generation on Time-varying Sequential Metadata
	Numerical Experiments
	Experimental Setup
	Fidelity and utility guarantees of synthetic data
	Time-Varying Metadata Conditional Generation

	Discussions
	Discussions on future topics with relevant literature
	Computing resources
	Datasets and Data Processing Steps
	Pre- and post-processing steps in TimeAutoDiff
	Comparison Table of TimeAutoDiff with current literature
	Denoising Diffusion Probabilistic Model
	Evaluation Metric
	Sampling of the latent matrix from (C)-TimeAutoDiff and network architecture of C-TimeAutoDiff
	Generalizability of TimeAutoDiff
	Volatility and Moving Average: comparison between real and synthetic under stock data
	Model parameter settings, Training & Hyper-parameter choices
	Results on Ablation test, -scheduling & Scalability
	Additional Plots: Auto-Correlation / periodic, cyclic patterns
	Metadata conditional generation from C-TimeAutoDiff
	Maximum Mean Discrepancy & Entropy

