
Are All Prompt Components Value-Neutral? Understanding the Heterogeneous
Adversarial Robustness of Dissected Prompt in Large Language Models

Yujia Zheng1*, Tianhao Li1*,
Haotian Huang2, Tianyu Zeng3, Jingyu Lu4, Chuangxin Chu5,

Yuekai Huang6,7, Ziyou Jiang6,7, Qian Xiong8, Yuyao Ge7,9, Mingyang Li6,7†

1Duke University, 2North China University of Technology 3Hong Kong Polytechnic University 4Australian National
University 5Nanyang Technological University 6Institute of Software, Chinese Academy of Sciences 7University of Chinese

Academy of Sciences 8Beijing Forestry University 9Institute of Computing Technology, Chinese Academy of Sciences
{yujia.zheng, tianhao.li}@duke.edu, mingyang2017@iscas.ac.cn

Abstract
Prompt-based adversarial attacks have become an effective
means to assess the robustness of large language models
(LLMs). However, existing approaches often treat prompts
as monolithic text, overlooking their structural heterogene-
ity—different prompt components contribute unequally to ad-
versarial robustness. Prior works like PromptRobust assume
prompts are value-neutral, but our analysis reveals that com-
plex, domain-specific prompts with rich structures have com-
ponents with differing vulnerabilities. To address this gap, we
introduce PROMPTANATOMY, an automated framework that
dissects prompts into functional components and generates
diverse, interpretable adversarial examples by selectively per-
turbing each component using our proposed method, COM-
PERTURB. To ensure linguistic plausibility and mitigate dis-
tribution shifts, we further incorporate a perplexity (PPL)-
based filtering mechanism. As a complementary resource,
we annotate four public instruction-tuning datasets using the
PROMPTANATOMY framework, verified through human re-
view. Extensive experiments across these datasets and five
advanced LLMs demonstrate that COMPERTURB achieves
state-of-the-art attack success rates. Ablation studies validate
the complementary benefits of prompt dissection and PPL fil-
tering. Our results underscore the importance of prompt struc-
ture awareness and controlled perturbation for reliable ad-
versarial robustness evaluation in LLMs. Code and data are
available at https://github.com/Yujiaaaaa/PACP.

1 Introduction
Large language models (LLMs) (Naveed et al. 2023; Zhao
et al. 2023) such as DeepSeek, ChatGPT, and LLaMA-3
have demonstrated remarkable capabilities in a wide range
of tasks (Thirunavukarasu et al. 2023; Zhang et al. 2025;
Demszky et al. 2023; Hou et al. 2024), largely driven by in-
context learning via carefully crafted prompts (Dong et al.
2022; Li 2023; Long et al. 2024; Mei et al. 2025). As these
models become increasingly integrated into real-world ap-
plications, the robustness of their behavior under perturbed
prompts is becoming a concern for both reliability and safety
(Zhu et al. 2023b,a; Hu et al. 2024; Ghosh et al. 2025).

Recent studies have demonstrated that even subtle varia-
tions in prompt phrasing—such as typos, synonym substitu-
tions, or formatting changes—can lead to significant drops

*Equal contribution, co-first author.
†Corresponding author.

You are a senti!ment classificat@ion agent. You will iden-
tify the sentiment given an ut#terance or text. D$o not
explain your de%cision. Respond with only o^ne word: ei-

ther "POSITIVE" or "NEGAT&IVE", in upperc*ase.

7.30%
30.10%
10.40%
9.30%

Hello! I'm your AI assistant. How may I assist you today?

Ro
le

Dir
ect

ive

Ad
dit

ion
al I

nfo

Ou
tpu

t F
orm

at

!@#$%^&*()
Adversarial Perturbation Insertion

ASR

Figure 1: Inserting adversarial perturbations into different
prompt components leads to distinct attack success rates
(ASR).

in LLM performance, a phenomenon known as prompt sen-
sitivity (Zhu et al. 2023b,a; Wang et al. 2023b). To evaluate
this vulnerability, Zhu et al. (2023a) introduced PromptRo-
bust, a benchmark targeting adversarial prompt perturba-
tions, while Wang et al. (2023b) proposed MTTM, a meta-
morphic testing framework that applies structured perturba-
tions to toxic inputs for testing content moderation systems.
Although these efforts highlight the fragility of LLMs under
adversarial prompting, they treat prompts as flat, undifferen-
tiated text—overlooking the functional structure within
prompts that may contribute unequally to model behav-
ior.

We argue that prompts are fundamentally com-
positional, consisting of multiple functional compo-
nents—such as task directives, role assignments, input-
output delimiters, exemplars, and answer formatting instruc-
tions—each guiding LLMs to interpret and execute tasks
more effectively. In practical scenarios, users often construct
complex prompts by layering basic instructions with supple-
mentary cues, such as specifying the task domain, assign-
ing a role to the model (e.g., “You are a medical expert”),
providing concrete examples, or defining output styles. Rec-
ognizing the diversity and importance of these components,
Schulhoff et al. (2024) provide a comprehensive taxonomy
that categorizes prompt elements into six types: Directive,
Examples, Output Formatting, Style Instructions, Role, and
Additional Information. To further streamline the taxonomy
for our analysis, we merge Style Instructions into Output
Formatting, as both primarily define the expected form or
tone of the model’s output. These components exhibit het-

ar
X

iv
:2

50
8.

01
55

4v
1

 [
cs

.C
L

]
 3

 A
ug

 2
02

5

https://github.com/Yujiaaaaa/PACP
https://arxiv.org/abs/2508.01554v1

erogeneous adversarial robustness, meaning that some are
more vulnerable to perturbations than others. To investigate
this, we pose the following research questions: RQ1: How
does prompt structure and component richness affect the
effectiveness of adversarial perturbations? RQ2: How does
the sensitivity of adversarial robustness vary across differ-
ent prompt component types? RQ3: How do semantic and
syntactic perturbations differ in effectiveness across prompt
components?

To address these questions, we introduce PROMP-
TANATOMY, the first framework for structurally de-
composing prompts into canonical components. Our
framework achieves superior accuracy compared to GPT-
4o (Hurst et al. 2024) in dissecting long, complex
prompt structures. This dissection enables fine-grained
analysis of how each component contributes to model
robustness. We first complete missing components and
then apply PROMPTANATOMY to four complex, domain-
specific prompt datasets, resulting in structurally anno-
tated variants (PubMedQA-PA, EMEA-PA, Leetcode-PA,
CodeGeneration-PA). Each dataset undergoes manual re-
view by human experts, achieving 100% inter-annotator
agreement to ensure annotation quality.

Building on this foundation, we propose COMPERTURB,
a component-wise adversarial perturbation method that
targets each prompt component with customized perturba-
tion strategies. This enables controlled robustness evalua-
tion by isolating the effects of specific prompt modifica-
tions. We conduct extensive experiments across multiple
LLMs and tasks, revealing that certain components are sig-
nificantly more vulnerable to perturbation than others in spe-
cific circumstances. Our findings provide actionable insights
for prompt engineers and model developers to craft safer,
more reliable prompts in high-stakes applications.

Contributions. This paper makes the following key
contributions: (i) We introduce PROMPTANATOMY, the
first framework for structurally decomposing prompts for
LLMs into multiple canonical components, enabling fine-
grained analysis and systematic prompt design. (ii) We ap-
ply PROMPTANATOMY to four complex domain-specific
prompt datasets, producing variants annotated with struc-
tural components (denoted with the suffix ’-PA’). Each
dataset is manually reviewed to ensure annotation quality,
achieving 100% agreement among human annotators. (iii)
We introduce COMPERTURB, a component-wise perturba-
tion method that applies targeted adversarial strategies to in-
dividual prompt components, enabling fine-grained analysis
of their impact on model behavior and adversarial robust-
ness. (iv) We conduct comprehensive experiments across di-
verse LLMs and datasets based on COMPERTURB, demon-
strating which components most significantly influence ro-
bustness. Our findings offer actionable insights for prompt
engineers and model developers to design safer and more
reliable prompting strategies.

Findings. We summarize three key findings from our
comprehensive evaluation: (i) Component and Structure-
Guided Perturbations Amplify Adversarial Effectiveness
in Complex Prompts. COMPERTURB performs best on

structurally rich prompts, showing that component-aware at-
tacks are especially powerful in complex settings. (RQ1) (ii)
Prompt Components Exhibit Heterogeneous Robustness
to Adversarial Perturbations. Components like DIR and
ADI are more susceptible to perturbations, while ROL and
OFT remain relatively robust. (RQ2) (iii) Semantic Pertur-
bations Are More Effective Than Syntactic Ones Across
Prompt Components. Meaning-level changes outperform
syntactic ones across components, highlighting the role of
perturbation type. (RQ3) Base on these findings, We provide
guidelines and takeaways for four potential target audience:
offensive/defensive security researchers, prompt engineers,
developers, and general users.

2 Related Works
Prompt Dissection Prompt dissection breaks prompts into
functional components—such as directives, roles, and for-
matting—that shape LLM behavior (Schulhoff et al. 2024).
This modular approach improves control, interpretability,
and task-solving by leveraging reusable substructures (Khot
et al. 2022), and reveals latent multilingual capabilities in
LLMs (Nie et al. 2024). In adversarial contexts, it enhances
attack effectiveness through targeted reconstruction (Li et al.
2024c), underscoring the value of component-aware prompt
analysis.

Adversarial Robustness Prompt robustness addresses the
resilience of LLMs to adversarial manipulations and varia-
tions in prompt wording and structure (Wang et al. 2023a).
Due to the sensitivity of LLM outputs to minor perturba-
tions in prompts, ensuring robustness has become a criti-
cal area of research, particularly in safety-sensitive domains
such as healthcare, finance, and science. Additionally, recent
advancements extend robustness considerations to LLM-
based agents, reflecting the increasing complexity and in-
teractive contexts of deployed systems (Xiong et al. 2025;
Hu et al. 2025). everal works propose black-box adver-
sarial attacks that exploit prompt-level vulnerabilities (Zhu
et al. 2023b; Zou et al. 2023; Xue et al. 2023; Das, Raff,
and Gaur 2024), while others investigate certified robustness
or ensemble-based defenses (Aguilera-Martı́nez and Berzal
2025). These studies underscore the importance of evaluat-
ing LLMs under structurally-aware perturbation paradigms
beyond token-level noise.

LLM Safety Benchmark A range of safety benchmarks
has been developed to evaluate LLM alignment across ad-
versarial, ethical, and domain-specific risks (Lu et al. 2025).
General benchmarks like AdvBench (Wang et al. 2021),
SafetyBench (Zhang et al. 2023), and SALAD-Bench (Li
et al. 2024a) assess refusal behaviors and robustness to jail-
breaks. Domain-specific benchmarks—ChemSafetyBench
(Zhao et al. 2024), MedSafetyBench (Han et al. 2024), and
SciSafeEval (Li et al. 2024b)—test models on scientific mis-
use, ethical compliance, and jailbreak resistance. Agent-
based evaluations like Agent-SafetyBench (Zhang et al.
2024) and SafeAgentBench (Yin et al. 2024) measure risks
in dynamic tool-use environments. While these benchmarks
standardize vulnerability assessment, they generally over-
look the compositional structure of prompts.

3 Methodology
3.1 PROMPTANATOMY: Identifying and

Dissecting LLM Prompt Components
Formulation Let P denote the space of free-form natu-
ral language prompts. Each prompt p ∈ P is typically an
unstructured token sequence designed to elicit LLM behav-
ior. Existing methods treat p as a monolithic input, lacking
a formal structure for semantic analysis. We define prompt
dissection as mapping p into a structured sequence of func-
tional components:

A : P → Cn,

where C is the set of canonical components and n is the
number of identified components. The output A(p) =
(c1, c2, . . . , cn) represents the decomposed prompt un-
der our framework, PROMPTANATOMY, which enables
component-aware analysis and robustness evaluation.

Challenges Prompt dissection introduces several practical
and technical challenges. First, existing human-in-the-loop
methods (Shivagunde et al. 2024) rely heavily on manual
annotation, which is time-consuming and infeasible at scale.
Second, LLMs often exhibit limited robustness when pars-
ing long or complex prompts. For instance, they may omit
content, oversimplify components, or focus disproportion-
ately on the beginning and end of the prompt, neglecting
critical middle sections (see examples in the Appendix 8.1).
Third, current LLMs struggle with disentangling overlap-
ping or implicitly expressed components, leading to incor-
rect or incomplete dissection. This issue is amplified when
the interpretation of a sentence depends on adjacent content
(e.g., “Use the following format”), highlighting the need for
context-aware classification. Finally, the absence of publicly
available benchmark datasets tailored for prompt dissection
impedes both method development and standardized evalu-
ation.

Limited Context-Aware Prompt Dissection To address
these challenges, we develop a two-stage dissection pipeline
(Algorithm 1) that combines rule-based segmentation
with LLM-based classification under contextual guidance.
First, each raw prompt is segmented into individual sen-
tences using punctuation delimiters (e.g., periods, question
marks) to enable fine-grained analysis. For each sentence,
we construct a local context window by collecting up
to two preceding and two following sentences, which
helps disambiguate meaning in context-dependent cases.
Each target sentence and its context are then passed
to a language model (e.g., GPT-4o) using a structured
prompt that instructs the model to classify the sentence
into one or more of five canonical components: <Role>,
<Directive>, <Additional Information>,
<Output Formatting>, and <Examples>. The
model’s responses are aggregated and post-processed to
ensure consistency, with an additional verification step to
identify and reclassify any missing sentences. The final
output is a structured representation of the prompt, where
each sentence is wrapped in XML-style tags corresponding
to its identified component(s).

Algorithm 1: Prompt Dissection Pipeline

Require: Prompt p from dataset D
Ensure: Component tags A(p)

1: S ← Split(p,[".", "?"])
2: A(p)← ∅
3: for i = 1 to |S| do
4: Ci ← ContextWindow(S, i, k = 2)
5: ri ← LLMClassify(si, Ci)
6: A(p)← A(p) ∪ {ri}
7: end for
8: Smiss ← FindUnlabeled(S,A(p))
9: for sj ∈ Smiss do

10: Cj ← ContextWindow(S, j, k = 2)
11: rj ← LLMClassify(sj , Cj)
12: A(p)← A(p) ∪ {rj}
13: end for
14: return A(p)

As shown in Table 7 in the Appendix 8.5, PROMP-
TANATOMY shows strong reliability, achieving 100% ac-
curacy on GPT-4o and over 90% on other open-weight
models across diverse domains. We applied it to a di-
verse set of existing prompt-based datasets across multiple
domains, including biomedical question answering (Pub-
MedQA (Wang et al. 2022)), translation (EMEA (Wang
et al. 2022)), calculating password strength (Leetcode (Wang
et al. 2022)), and code generation (CodeGeneration (nceyda
2025)). For each dataset, we automatically dissect the raw
prompts into structured components, which result in en-
hanced datasets PubMedQA-PA, EMEA-PA, Leetcode-PA,
and CodeGeneration-PA (see Appendix 8.2 for details).

3.2 COMPERTURB: Component-wise
Perturbation Method on LLM Prompt

Grounded in our PROMPTANATOMY dissection framework,
we propose a novel component-wise perturbation method
COMPERTURB. Formally, given a prompt p dissected into
a set of k labeled components {c1, c2, . . . , ck}, COMPPER-
TURB defines an adversarial transformation function Ti for
each component ci, resulting in a perturbed prompt p(i) =
{c1, . . . , Ti(ci), . . . , ck}. Each Ti is instantiated with a per-
turbation strategy tailored to the semantics of component ci.
We then evaluate the robustness of an LLM f under each
component-wise perturbation by measuring the change in
output ∆f(p, p(i)) using task-specific metrics.

To instantiate Ti for each component ci, we design a
suite of multi-level perturbation operations that introduce
varying degrees of semantic distortion: (i) special charac-
ter insertion, which injects noise symbols (e.g., ‘@’, ‘#’,
‘!’) into words to simulate typos or obfuscation; (ii) syn-
onym replacement, which substitutes words with semanti-
cally similar alternatives using nltk; (iii) word deletion,
which removes selected tokens to mimic underspecified or
incomplete prompts; (iv) sentence rewriting, which replaces
a full sentence with a paraphrased variant to simulate natu-
ral reformulations; and (v) component deletion, which re-
moves an entire functional segment of the prompt (e.g.,

A sen!timent c#lassifi@cation agent.

A sentiment classification
analysis agent.

A sentiment classification agent.

A system designed for sentiment
categorization.

<Role>...</Role> <Directive>...</Directive>
... ...<Examples>...</Examples>

...

Role Role Directive

Complex Prompt

PubMedQA

EMEA

Leetcode

CodeGen

PubMedQA-PA

EMEA-PA

Leetcode-PA

CodeGen-PA

Segmentation

Classification

Decomposion

Sliding Windows

Human Review

100% Accuracy

<Role>

(a) PromptAnatomy

(b) Prompt Anatomy-Enhanced Dataset

 > Special Character Insertion

 > Synonym Replacement

 > Word Deletion

 > Sentence Rewriting

 > Component Deletion

<Directive>

<Additional
Information>

<Output
Formatting>

<Examples>

(c) ComPerturb: Multi-Perturbation on Multi-Components (d) Evaluation

Perturbed Prompt

High-quality
Adversarial Samples

Perplexity
Filter

Rule BLEU LLM
Response ASR

(e) Findings

As a relevance tester, you
must determine if the

answer is connected to the
question. Check if the answer
to a question is accurate and
classify the result as 'yes' or

'no'. Output 'yes' if the
answer answers the question
and output 'no' if the answer

does not answer the
question. Ensure that the
answer is not only relevant

but

<Role>As a relevance tester,
you must...</Role>

<Directive>Check if the answer to a
question is accurate and ...</Directive>

<Additional Information>Ensure that the
answer ...</Additional Information>

<Output Formatting>Output 'yes' if the
answer ...</Output Formatting>

<Examples>Here are some examples:
Positive ...</Examples>

<Role>A!s a relev@an!ce tester, you
must...</Role>

<Directive>Check if the an#swer to a
question is acc!urate and ...</Directive>

<Additional Information>Ensure that
t$he answer ...</Additional Information>

<Output Formatting>Outp%ut 'yes' if
the an^swer ...</Output Formatting>

<Examples>Here are so^me exam$ples:
Positive ...</Examples>

no

Input: Question: Does
growth Output: yes

no

yes

no

(f) Illustration

(a) (b) (c) (d)

Component- and structure-aware perturbations
are more effective on complex prompts.

Prompt components vary in robustness
sensitivity to adversarial perturbations.

Semantic perturbations outperform syntactic
ones across prompt components.

User LLM

1️⃣

2️⃣

3️⃣

Figure 2: Overview of PROMPTANATOMY and COMPERTURB. (a) Origin prompts are dissected into components using a
sliding window LLM classifier. (b) Dissection is applied to benchmarks to create annotated datasets. (c) COMPERTURB applies
perturbations to components. (d) Perturbed prompts are enhanced and use to evaluate LLMs. (e) Analysis reveals component-
wise vulnerabilities. (f) A working example shows dissection, perturbation, and output shifts.

<Directive> or <Examples>) based on our structural
decomposition.

To ensure the effectiveness and representativeness of ad-
versarial examples, we apply a perplexity-guided filtering
strategy. Specifically, for each perturbed prompt p(i), we
compute its perplexity PPL(p(i)) using a reference language
model. To quantify the relative semantic disturbance, we cal-
culate the perplexity ratio between the perturbed prompt and
its corresponding clean version p(0) as:

Ratio(i) =
PPL

(
p(i)

)
PPL

(
p(0)

) (1)

where Ratio(i) denotes the perplexity ratio of the i-th per-
turbed prompt, p(i) is the perturbed version of the prompt,
and p(0) is the original unperturbed prompt.

We then rank all perturbed samples in descending order of
Ratio(i) and retain the top 20% as our final high-quality ad-
versarial set, effectively filtering out low-impact or semanti-
cally trivial perturbations.

4 Experiment
Setup. We evaluate the effectiveness of COMPPERTURB
across a diverse suite of language models and task do-

mains. For target models, we select five widely-used LLMs
with varying capacities and architectures: GPT-4o (M1),
Claude3.7 (M2), Qwen2.5-14B (M3), LLaMA3.3-70B (M4),
and Gemma3-12B (M5). For adversarial prompt genera-
tion, we employ both commercial and open-weight mod-
els, including GPT-4o, GPT-3.5, Qwen3-8B, Qwen2.5-
14B, LLaMA3.3-70B, and Gemma3-12B. Our evaluation
uses datasets from distinct domains: PubMedQA-PA (PM-
PA), EMEA-PA (EM-PA), Leetcode-PA (LC-PA), and
CodeGeneration-PA (CG-PA). Inference was performed us-
ing 4 NVIDIA RTX™ A6000 GPUs for open-weight mod-
els, and through official APIs for commercial models. We
compare our method against baselines MTTM (Wang et al.
2023b) and PromptRobust (Zhu et al. 2023a).

Metrics. We adopt task-specific metrics. For
classification-style tasks such as PubMedQA and Leetcode,
we define an attack as successful if the LLM’s output no
longer contains the correct answer. For generation tasks
such as translation, we calculate Bilingual Evaluation Un-
derstudy (BLEU) scores (Papineni et al. 2002) to measure
the semantic preservation or degradation after perturbation,
an attack is considered a success if BLEU is less than 20,
which indicate poor translation quality (Koehn and Knowles
2017). For code generation tasks (evaluated on the Code
dataset), we employ GPT-4o as an automatic reference

Method GPT-4o Claude3.7 Qwen2.5-14B LLaMA3.3-70B Gemma3-12B Average

PubMedQA-PA (PCM = 34.883; AVG ↑=17.76%)

MTTM 42.50 (40.70±0.02) 46.88 (44.23±0.02) 44.67 (39.33±0.03) 45.74 (41.74±0.02) 47.32 (39.08±0.01) 45.42 (41.02±0.02)
PromptRobust 44.37 (41.56±0.03) 47.34 (45.34±0.07) 46.75 (41.71±0.02) 49.03 (47.03±0.05) 49.75 (46.25±0.03) 47.45 (44.38±0.04)
ComPerturb (Ours) 64.98 (53.63±0.07) 67.01 (60.02±0.04) 60.94 (50.76±0.06) 65.04 (52.38±0.07) 63.00 (51.73±0.07) 64.19 (53.70±0.06)

EMEA-PA (PCM = 32.100; AVG ↑=10.24%)

MTTM 62.30 (60.01±0.02) 62.24 (60.26±0.01) 74.20 (69.97±0.02) 73.52 (72.00±0.01) 76.30 (72.89±0.02) 69.72 (67.03±0.02)
PromptRobust 69.30 (58.74±0.04) 67.50 (61.56±0.03) 72.30 (70.34±0.05) 75.70 (72.87±0.06) 74.60 (73.81±0.03) 71.88 (67.46±0.04)
ComPerturb (Ours) 75.90 (67.10±0.05) 78.00 (69.11±0.05) 84.90 (78.09±0.04) 82.12 (75.93±0.04) 84.30 (78.66±0.03) 81.04 (73.78±0.04)

Leetcode-PA (PCM = 41.495; AVG ↑=20.16%)

MTTM 57.20 (53.45±0.02) 52.30 (49.10±0.01) 47.90 (47.96±0.03) 54.70 (51.89±0.03) 54.40 (50.88±0.02) 53.30 (50.66±0.02)
PromptRobust 56.30 (54.98±0.05) 55.20 (54.32±0.02) 56.70 (55.12±0.05) 51.20 (50.32±0.03) 56.90 (54.30±0.02) 55.26 (53.81±0.03)
ComPerturb (Ours) 81.50 (75.40±0.04) 72.08 (65.74±0.04) 65.30 (62.57±0.02) 78.80 (76.10±0.03) 74.50 (67.42±0.04) 74.44 (69.45±0.03)

CodeGeneration-PA (PCM = 44.524; AVG ↑=29.6%)

MTTM 31.20 (27.98±0.02) 29.30 (27.77±0.01) 40.20 (38.40±0.03) 40.30 (38.17±0.03) 41.70 (38.78±0.02) 36.54 (34.22±0.02)
PromptRobust 29.08 (23.46±0.05) 29.30 (27.32±0.02) 40.20 (35.78±0.05) 41.20 (36.21±0.03) 38.40 (33.21±0.02) 35.78 (31.20±0.03)
ComPerturb (Ours) 66.96 (61.48±0.04) 64.00 (57.09±0.04) 66.36 (59.35±0.05) 65.40 (60.72±0.03) 66.08 (60.19±0.03) 65.76 (59.77±0.04)

Table 1: Comparison of ASR (%) of COMPERTURB and baselines across five LLMs and four datasets. Each cell reports the
best ASR, followed by the mean ASR and standard deviation from different perturbation strategies of each method.

model to assess the correctness of the generated code.
Based on various successful metrics for different tasks,

we compute Attack Success Rate (ASR) as:

ASR =
Nsuccess

Ntotal
× 100% (2)

where Nsuccess is the number of samples attacked suc-
cessfully, Ntotal is the total number of samples.

We introduce the Prompt Complexity Metric (PCM), a
quantitative measure designed to evaluate the inherent com-
plexity of LLM prompts. PCM integrates five core dimen-
sions: lexical rarity, syntactic depth, semantic dispersion,
structural richness, and task difficulty. Each component cap-
tures a distinct aspect of prompt formulation. The PCM
score is computed as a weighted sum of these dimensions:

PCM(p) = αClexical + βCsyntactic + γCsemantic

+ δCstructural + ϵCtask, (3)

where Clexical denotes the average inverse document fre-
quency of tokens, Csyntactic reflects syntactic tree depth,
Csemantic measures pairwise embedding-based semantic dis-
tance, Cstructural captures the organization of prompt compo-
nents, and Ctask encodes the inherent difficulty of the task.
Detail could be found at Appendix 8.4.

5 Results and Analysis
Table 1 provides a comparison of proposed COMPERTURB
with baselines. For each method, we report both the high-
est ASR and the mean ASR with standard deviation, ag-
gregated over multiple perturbation strategies. The results
demonstrate that COMPERTURB achieves the highest ASRs
across all settings. It achieves significant gains in complex
scenarios by leveraging a component-aware design that tar-
gets semantically critical prompt segments, highlighting the

advantage of structurally and semantically informed pertur-
bations.

Finding #1: Component and Structure-Guided Perturba-
tions Result in a Better Effect in Complex Prompts.

Based on this finding, we derive a practical guideline to
improve LLM robustness for developers.

Guideline #1: Enhancing robustness requires clear task
specification by users and component-aware adversarial
data augmentation by developers.

Table 2 reports the ASRs of five LLMs across four
domain-specific datasets, categorized by prompt compo-
nents and perturbation types, revealing critical patterns
in adversarial robustness. The DIR and ADI consistently
yield higher ASRs, highlighting their centrality in con-
veying task-critical semantics. In contrast, the ROL shows
greater resilience, likely due to its auxiliary function. Se-
mantic perturbations, including SYR and SER, are gener-
ally more effective than syntactic ones like SCI, underscor-
ing how meaning-level disruptions more severely compro-
mise model behavior. Furthermore, model-specific vulnera-
bilities emerge, with LLaMA3-70B and Gemma3-12B being
particularly susceptible to component-wise attacks, possibly
due to architectural or training differences. Heatmaps in Fig-
ures 4 to 8 (See in the Appendix 8.6) visualize these pat-
terns, showing that datasets such as EMEA-PA and Leetcode-
PA exhibit higher ASRs. These prompts depend heavily
on semantically dense instructions and multi-step reason-
ing—especially within DIR and ADI components—making
them more fragile under perturbation. By contrast, prompts
from PubMedQA-PA and CodeGeneration-PA, which are
more syntax-oriented or retrieval-based, display greater ro-
bustness, as superficial semantic alterations have less impact

Model COM PPL PubMedQA-PA EMEA-PA Leetcode-PA CodeGeneration-PA

SCI SYR WOD SER COD SCI SYR WOD SER COD SCI SYR WOD SER COD SCI SYR WOD SER COD

GPT-4o

ROL w/o 46.0 40.0 42.5 46.0 42.5 58.5 58.5 57.5 57.5 61.0 57.4 60.0 60.5 65.4 65.0 43.5 43.5 42.5 40.5 41.5
w/ 47.0 45.5 52.5 50.0 47.4 65.0 59.0 60.0 57.5 67.5 70.5 70.5 75.0 69.0 75.0 60.0 52.5 57.4 60.0 62.5

DIR w/o 56.0 52.0 59.5 50.0 77.5 62.5 62.0 72.0 64.5 99.5 72.5 70.0 72.0 72.5 95.0 50.5 47.0 49.5 47.5 64.0
w/ 60.0 57.4 64.0 65.0 78.5 67.5 67.5 73.0 72.5 99.5 75.0 77.5 80.0 77.5 97.5 67.0 62.5 67.0 65.0 72.5

ADI w/o 46.0 43.0 47.5 45.0 52.5 59.0 61.0 59.5 62.5 59.5 62.5 67.5 71.0 70.0 77.5 44.0 43.5 45.0 45.0 45.5
w/ 55.0 45.0 57.4 43.5 75.0 62.5 63.5 68.5 67.5 68.0 70.5 68.5 80.0 72.5 87.0 67.5 60.0 62.5 65.0 62.5

OFT w/o 45.0 46.0 45.5 48.0 47.0 59.0 61.0 58.5 58.0 58.0 57.4 66.0 65.5 66.0 66.5 41.5 45.5 43.0 44.0 43.5
w/ 47.5 50.0 46.0 50.0 52.5 62.5 75.0 65.0 62.0 65.0 71.0 75.0 77.5 69.0 85.0 65.0 57.5 57.4 62.5 55.0

EXA w/o 45.5 43.5 42.0 47.5 46.0 57.5 59.5 58.0 57.5 61.5 50.0 55.0 69.0 65.0 69.5 45.5 43.5 44.0 44.0 42.0
w/ 47.5 44.0 55.0 55.0 47.0 62.5 62.5 65.0 62.0 77.5 68.0 64.0 69.0 67.0 97.5 62.5 57.4 62.5 57.4 55.0

CRT w/o 44.0 43.5 43.0 48.5 52.5 60.5 59.5 59.5 59.5 69.5 60.0 69.0 70.5 69.5 76.0 45.0 43.5 44.0 43.0 54.0
w/ 55.0 45.0 60.0 50.0 55.0 62.5 62.5 60.0 70.0 70.5 71.0 70.0 72.5 70.0 87.0 62.0 60.0 65.0 55.0 62.0

Claude3.7

ROL w/o 50.0 48.0 48.0 52.0 52.5 57.5 58.0 50.0 58.5 59.0 50.4 53.0 50.0 50.5 50.5 39.0 40.0 42.0 39.0 39.5
w/ 55.0 52.5 53.5 65.5 57.5 67.5 62.5 59.0 70.0 65.0 57.4 53.5 72.5 55.0 75.0 60.0 57.4 55.0 60.0 50.0

DIR w/o 58.5 56.0 57.0 59.5 77.5 67.0 61.0 68.5 64.5 99.0 60.5 59.0 61.0 60.0 90.0 46.0 49.0 49.0 46.0 67.0
w/ 65.0 60.0 60.0 62.5 87.5 77.5 65.0 75.0 72.5 100 65.0 62.5 74.0 67.4 92.0 60.0 62.5 62.5 60.0 72.5

ADI w/o 56.5 54.0 52.0 55.0 64.0 61.5 59.0 60.0 59.5 59.5 53.0 60.5 57.4 53.5 76.5 43.0 44.0 42.0 43.0 49.0
w/ 58.0 57.5 55.0 65.0 65.0 67.5 72.0 69.5 70.0 70.0 53.5 60.0 65.0 56.0 96.5 55.0 57.0 55.5 55.0 60.0

OFT w/o 52.0 50.5 54.0 58.5 66.5 58.5 57.0 60.0 59.5 58.5 50.0 50.5 51.5 55.0 51.5 42.0 40.0 42.0 42.0 40.0
w/ 55.0 57.5 54.5 60.0 66.0 70.0 67.0 60.0 68.5 60.0 54.5 60.0 67.5 60.0 80.0 57.5 50.0 57.4 57.5 57.5

EXA w/o 52.0 52.0 56.0 52.5 57.4 60.0 59.5 59.0 58.0 59.0 53.0 54.5 55.5 56.4 52.5 40.0 45.0 43.0 40.0 39.0
w/ 55.0 60.0 57.5 57.5 58.0 65.0 65.0 67.5 68.5 72.5 57.5 55.7 56.5 57.0 90.0 55.0 57.4 55.0 55.0 47.5

CRT w/o 55.5 52.5 52.0 52.5 59.0 59.0 60.0 60.0 59.0 70.5 57.4 57.4 56.9 55.0 60.5 40.0 41.0 42.0 40.0 49.0
w/ 57.0 55.0 52.5 55.0 70.0 67.0 70.0 67.5 67.0 70.5 62.5 61.0 59.0 61.0 87.5 50.0 57.5 55.5 50.0 55.0

Qwen2.5-14B

ROL w/o 39.2 44.2 42.0 46.0 38.7 71.1 74.5 72.5 75.7 73.2 51.6 50.3 50.2 50.5 51.7 44.0 43.0 42.5 39.5 43.0
w/ 43.7 43.7 45.0 48.5 47.5 74.5 76.5 76.2 77.5 75.0 49.5 53.5 62.5 64.0 70.5 60.5 57.4 57.0 57.4 60.5

DIR w/o 41.5 50.0 47.0 47.5 96.5 74.8 77.3 87.0 81.2 99.5 56.8 54.2 55.7 53.5 93.0 59.5 49.5 49.5 49.5 67.0
w/ 50.0 51.2 55.0 51.2 97.5 75.0 80.0 88.7 81.3 99.5 60.5 54.5 64.0 54.5 93.0 70.0 57.4 68.0 59.5 77.4

ADI w/o 41.4 47.5 45.2 46.0 40.7 74.7 75.2 75.0 75.5 74.7 51.9 54.2 54.6 54.3 92.1 49.5 45.0 45.0 41.0 45.5
w/ 50.0 52.0 51.5 51.2 47.5 74.8 73.8 80.0 72.5 89.0 52.0 56.4 57.9 55.6 98.0 62.5 50.0 62.8 56.0 62.5

OFT w/o 42.0 45.0 43.7 44.5 45.0 74.2 74.7 75.2 74.5 75.0 50.4 50.2 51.6 50.6 52.0 40.5 43.0 44.5 40.8 44.0
w/ 52.5 52.5 50.0 47.5 48.7 72.5 76.3 80.0 75.0 80.0 45.5 51.5 74.5 52.0 85.0 72.5 52.5 57.4 58.0 53.0

EXA w/o 41.0 45.7 45.0 45.5 37.2 71.2 76.2 75.0 73.0 74.2 50.7 50.1 52.3 51.5 54.6 43.5 42.0 44.0 40.5 43.0
w/ 38.7 47.5 50.0 48.5 47.5 75.0 80.0 75.2 74.0 70.5 50.9 51.5 62.5 56.0 88.5 57.4 55.0 60.0 50.0 50.0

CRT w/o 39.5 47.0 43.0 45.4 47.0 73.8 75.7 75.7 74.7 79.0 51.7 53.7 51.5 52.5 59.6 45.5 42.5 44.5 40.5 49.5
w/ 41.2 43.7 43.5 47.0 50.0 75.0 76.0 75.7 76.3 78.8 56.0 53.7 62.0 54.0 90.0 60.5 62.5 60.0 52.7 60.0

LLaMA3-70B

ROL w/o 45.0 40.0 43.5 44.0 45.0 70.5 70.0 70.7 72.5 71.2 70.0 60.0 66.0 66.5 78.5 40.0 42.0 45.0 41.0 43.0
w/ 48.0 48.5 46.5 47.5 52.5 70.0 70.0 71.7 73.7 78.7 70.0 69.5 75.0 66.0 80.0 57.4 55.0 58.0 60.0 60.0

DIR w/o 49.0 49.5 50.0 49.5 100 76.0 74.0 83.2 75.5 99.7 70.0 73.0 72.5 68.5 93.5 51.5 51.0 50.0 52.5 68.5
w/ 57.5 52.5 58.0 57.5 100 78.7 76.0 83.5 73.7 99.7 75.0 72.0 75.0 78.5 93.5 62.5 62.5 65.0 62.0 75.0

ADI w/o 47.0 45.5 46.5 47.0 47.0 72.0 71.0 72.2 71.2 70.0 72.5 71.5 72.0 72.5 80.0 42.2 46.0 43.0 47.0 53.0
w/ 50.0 47.5 55.0 50.0 50.0 75.0 71.3 73.2 75.0 82.5 75.0 77.5 72.5 72.5 90.0 70.0 62.5 62.5 52.5 60.5

OFT w/o 48.5 45.0 43.0 46.5 46.5 72.0 71.5 71.2 70.2 71.5 68.5 71.0 71.0 64.5 71.0 42.0 42.0 45.0 41.0 44.0
w/ 48.5 47.0 49.5 50.0 50.0 71.4 77.8 72.5 75.0 75.0 72.5 75.0 87.5 65.0 80.5 65.0 57.4 60.0 62.0 57.4

EXA w/o 46.5 44.0 46.5 45.5 38.0 70.5 70.2 72.0 69.2 73.2 71.5 70.0 67.0 66.5 66.5 40.5 43.5 44.5 46.0 40.0
w/ 47.0 45.0 57.4 52.0 42.5 71.5 76.5 70.0 73.7 85.0 72.5 70.0 80.0 65.0 92.5 57.4 62.5 62.5 56.0 52.5

CRT w/o 47.5 47.5 43.4 46.0 54.0 73.7 71.0 72.0 70.7 77.8 69.5 66.5 66.5 68.0 84.0 41.0 42.5 45.0 41.5 50.0
w/ 50.0 51.5 55.0 50.0 67.5 77.5 71.0 72.5 71.3 78.8 72.5 70.0 69.0 87.5 90.0 59.0 67.5 65.0 52.5 55.0

Gemma3-12B

ROL w/o 39.5 39.5 41.5 40.0 41.0 71.0 70.0 72.5 72.0 73.5 60.0 57.5 59.5 59.5 55.0 40.0 44.0 42.5 43.5 43.0
w/ 40.0 45.0 55.0 40.0 57.4 75.0 73.5 75.0 80.5 75.0 60.0 65.0 75.0 60.0 60.0 55.0 55.0 62.5 55.0 60.0

DIR w/o 60.5 63.0 48.5 60.0 56.5 74.0 77.5 83.5 79.5 100 70.5 67.0 64.5 67.0 82.2 51.0 51.0 47.0 50.0 67.5
w/ 73.0 60.0 53.0 67.5 62.5 75.0 81.5 85.0 82.5 100 72.5 72.0 75.0 70.0 83.0 65.0 65.0 62.5 60.4 77.5

ADI w/o 41.0 40.0 44.0 42.0 44.0 74.5 73.5 73.0 73.0 73.0 59.5 57.4 62.0 71.5 88.5 43.5 44.0 42.5 44.5 44.0
w/ 60.0 47.5 47.5 57.5 51.0 75.0 80.0 85.0 75.0 73.5 59.0 57.5 60.0 75.0 94.0 65.0 52.5 59.5 57.4 67.5

OFT w/o 40.5 43.0 38.5 39.5 40.0 72.0 72.0 72.0 73.0 72.0 57.5 56.0 55.5 59.5 54.5 42.0 42.5 43.5 43.5 44.0
w/ 47.5 47.5 45.0 57.4 40.0 77.5 75.0 82.5 73.0 75.0 62.5 52.5 75.0 55.0 77.5 67.5 52.5 62.5 55.0 52.5

EXA w/o 40.5 40.5 42.0 41.5 44.5 72.0 73.0 72.0 71.5 71.5 60.0 53.5 56.5 59.5 81.5 42.0 43.5 45.0 43.5 44.5
w/ 40.0 40.0 50.0 55.0 47.5 72.5 80.0 82.5 72.5 85.0 60.0 60.0 52.5 59.5 97.5 55.0 62.5 65.0 60.0 52.5

CRT w/o 40.5 40.5 41.5 43.5 45.0 73.5 73.5 76.0 72.0 77.5 59.5 62.5 61.0 68.5 64.0 46.0 44.0 45.0 44.0 49.5
w/ 42.5 42.5 52.5 60.0 47.5 77.0 77.5 80.0 75.0 80.0 67.4 65.0 62.5 75.0 80.0 57.4 62.5 62.5 52.5 60.0

Table 2: ASR (%) on five LLMs across four datasets, grouped by prompt components and perturbation types. Note: Prompt
Components (COM): ROL = Role, DIR = Directive, ADI = Additional Information, OFT = Output Formatting, EXA = Exam-
ples. Perturbation Types: SCI = Special Character Insertion, SYR = Synonym Replacement, WOD = Word Deletion, SER =
Sentence Rewriting, COD = Component Deletion. CRT = Control Group, AVG = Average Result.

Figure 3: Heatmap of ASR across different prompt compo-
nents and perturbation types. (left: w/o PPL, right: w/ PPL)

on task execution. These patterns underscore another obser-
vation:

Finding #2: Prompt Components Exhibit Heterogeneous
Robustness to Adversarial Perturbations.

This leads to the following actionable insight for further
improving robustness for prompt engineers and developers.

Guideline #2: Prompt engineers should prioritize pro-
tecting high-impact components, while developers should
focus defenses on semantically critical elements.

Figure 3, extracted from Table 2, shows that attack suc-
cess rates (ASRs) vary significantly depending on which
prompt component is targeted and by which perturbation
type. The DIR component consistently exhibits the highest
ASRs—particularly under COD—reaching up to 87.9%, un-
derscoring its critical role in guiding model behavior. This
heightened vulnerability stems from the semantic function
of DIR, which conveys task-defining instructions; altering
or removing it (e.g., via COD or SYR) disrupts task un-
derstanding. Similarly, ADI, which provides essential con-
text or constraints, shows moderate susceptibility, especially
to COD. In contrast, ROL and OFT serve more auxiliary
purposes, such as setting tone or format, and thus dis-
play lower ASRs across perturbations. The EXA component
yields moderate effects, suggesting limited impact in zero-
shot settings. The Control group (CRT), where no semanti-
cally meaningful component is perturbed, yields the lowest
ASRs, reinforcing that perturbation effectiveness is tightly
coupled with a component’s functional importance. These
results highlight the component-sensitive nature of LLMs,
where disrupting core semantic components leads to dispro-
portionately degraded performance, and also suggest that the
type of perturbation—not just the target component—plays
a key role in adversarial effectiveness:

Finding #3: Semantic Perturbations Are More Effective
Than Syntactic Ones Across Prompt Components.

PA CP Attack Success Rate (%) AVG ↑

M1 M2 M3 M4 M5

✗ ✗ 55.9±0.12 54.1±0.08 54.6±0.15 58.9±0.15 56.4±0.15 –
✓ ✗ 64.8±0.11 62.8±0.09 64.5±0.13 67.8±0.13 66.0±0.13 +9.2
✗ ✓ 64.0±0.09 61.8±0.06 60.8±0.13 66.7±0.11 65.0±0.11 +7.7
✓ ✓ 72.3±0.08 70.3±0.06 69.4±0.11 72.8±0.09 72.0±0.10 +15.4

Table 3: Ablation study showing the effect of PROMP-
TANATOMY (PA) and COMPERTURB (CP) on ASR.

Building on this finding, we recommend the following
best practice for both users and developers.

Guideline #3: Users should avoid vague rephrasing, and
developers should train models to withstand meaning-
level changes for improved robustness.

We conduct an ablation study to evaluate the impact of
PROMPTANATOMY (PA) and COMPERTURB (CP) across
five LLMs, testing four configurations with and without each
component. As shown in Table 3, using PA or CP indi-
vidually boosts ASR by +9.2% and +7.7%, respectively,
demonstrating their independent effectiveness. Combining
both yields the highest gain, with a +15.4% average ASR
improvement, confirming their complementary strengths in
enhancing attack performance.

6 Discussion and Takeaways
Our findings show that prompt components vary in adver-
sarial robustness, challenging the notion that prompts are
structurally uniform. (i) For security researchers, focusing
on semantically critical components like Directive and Ad-
ditional Information enables more effective red and blue
teaming. (ii) For prompt engineers and developers, adopting
a component-aware design enhances robustness and control
in high-stakes scenarios. (iii) For general users, clearly spec-
ifying the Directive and relevant context improves model un-
derstanding and response quality.

7 Conclusion
We reveal that different prompt components exhibit hetero-
geneous adversarial vulnerabilities in large language mod-
els, challenging the prevalent assumption that prompts are
uniformly robust. To facilitate fine-grained robustness anal-
ysis, we introduced PROMPTANATOMY, a novel frame-
work that structurally dissects prompts into canonical com-
ponents, and COMPERTURB, a component-wise perturba-
tion method. Extensive experiments show that vulnerabili-
ties vary by component, with perturbation effectiveness tied
to semantics and increasing with prompt complexity. These
findings highlight the importance of structure-aware adver-
sarial evaluation and the effectiveness of component-guided
design in improving prompt robustness. We advocate for
structure-aware prompt engineering and training-time de-
fenses to build safer, more robust language models.

References
Aguilera-Martı́nez, F.; and Berzal, F. 2025. LLM Secu-
rity: Vulnerabilities, Attacks, Defenses, and Countermea-
sures. arXiv preprint arXiv:2505.01177.
Das, N.; Raff, E.; and Gaur, M. 2024. Human-Interpretable
Adversarial Prompt Attack on Large Language Models with
Situational Context. arXiv preprint arXiv:2407.14644.
Demszky, D.; Yang, D.; Yeager, D. S.; Bryan, C. J.; Clapper,
M.; Chandhok, S.; Eichstaedt, J. C.; Hecht, C.; Jamieson, J.;
Johnson, M.; et al. 2023. Using large language models in
psychology. Nature Reviews Psychology, 2(11): 688–701.
Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Ma, J.; Li, R.; Xia, H.;
Xu, J.; Wu, Z.; Liu, T.; et al. 2022. A survey on in-context
learning. arXiv preprint arXiv:2301.00234.
Ghosh, S.; Frase, H.; Williams, A.; Luger, S.; Röttger, P.;
Barez, F.; McGregor, S.; Fricklas, K.; Kumar, M.; Bollacker,
K.; et al. 2025. Ailuminate: Introducing v1. 0 of the ai risk
and reliability benchmark from mlcommons. arXiv preprint
arXiv:2503.05731.
Han, T.; Kumar, A.; Agarwal, C.; and Lakkaraju, H. 2024.
Medsafetybench: Evaluating and improving the medical
safety of large language models. Advances in Neural In-
formation Processing Systems, 37: 33423–33454.
Hou, X.; Zhao, Y.; Liu, Y.; Yang, Z.; Wang, K.; Li, L.; Luo,
X.; Lo, D.; Grundy, J.; and Wang, H. 2024. Large lan-
guage models for software engineering: A systematic liter-
ature review. ACM Transactions on Software Engineering
and Methodology, 33(8): 1–79.
Hu, J.; Dong, Y.; Ding, Z.; and Huang, X. 2025. Enhancing
Robustness of LLM-Driven Multi-Agent Systems through
Randomized Smoothing. arXiv preprint arXiv:2507.04105.
Hu, Z.; Wang, C.; Shu, Y.; Paik, H.-Y.; and Zhu, L.
2024. Prompt perturbation in retrieval-augmented genera-
tion based large language models. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 1119–1130.
Hurst, A.; Lerer, A.; Goucher, A. P.; Perelman, A.; Ramesh,
A.; Clark, A.; Ostrow, A.; Welihinda, A.; Hayes, A.; Rad-
ford, A.; et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.
Khot, T.; Trivedi, H.; Finlayson, M.; Fu, Y.; Richardson, K.;
Clark, P.; and Sabharwal, A. 2022. Decomposed prompt-
ing: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406.
Koehn, P.; and Knowles, R. 2017. Six challenges for neural
machine translation. arXiv preprint arXiv:1706.03872.
Li, L.; Dong, B.; Wang, R.; Hu, X.; Zuo, W.; Lin, D.; Qiao,
Y.; and Shao, J. 2024a. Salad-bench: A hierarchical and
comprehensive safety benchmark for large language mod-
els. arXiv preprint arXiv:2402.05044.
Li, T.; Lu, J.; Chu, C.; Zeng, T.; Zheng, Y.; Li, M.; Huang,
H.; Wu, B.; Liu, Z.; Ma, K.; et al. 2024b. Scisafee-
val: a comprehensive benchmark for safety alignment of
large language models in scientific tasks. arXiv preprint
arXiv:2410.03769.

Li, X.; Wang, R.; Cheng, M.; Zhou, T.; and Hsieh, C.-
J. 2024c. Drattack: Prompt decomposition and recon-
struction makes powerful llm jailbreakers. arXiv preprint
arXiv:2402.16914.
Li, Y. 2023. A practical survey on zero-shot prompt design
for in-context learning. arXiv preprint arXiv:2309.13205.
Long, D.; Zhao, Y.; Brown, H.; Xie, Y.; Zhao, J.; Chen, N.;
Kawaguchi, K.; Shieh, M.; and He, J. 2024. Prompt opti-
mization via adversarial in-context learning. In Proceedings
of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), 7308–7327.
Lu, H.; Fang, L.; Zhang, R.; Li, X.; Cai, J.; Cheng, H.;
Tang, L.; Liu, Z.; Sun, Z.; Wang, T.; et al. 2025. Align-
ment and Safety in Large Language Models: Safety Mecha-
nisms, Training Paradigms, and Emerging Challenges. arXiv
preprint arXiv:2507.19672.
Mei, L.; Yao, J.; Ge, Y.; Wang, Y.; Bi, B.; Cai, Y.; Liu, J.;
Li, M.; Li, Z.-Z.; Zhang, D.; et al. 2025. A Survey of Con-
text Engineering for Large Language Models. arXiv preprint
arXiv:2507.13334.
Naveed, H.; Khan, A. U.; Qiu, S.; Saqib, M.; Anwar, S.;
Usman, M.; Akhtar, N.; Barnes, N.; and Mian, A. 2023. A
comprehensive overview of large language models. ACM
Transactions on Intelligent Systems and Technology.
nceyda. 2025. YAP470 Code Generation Dataset.
https://huggingface.co/datasets/nceyda/YAP470 Code
Generation Dataset. Accessed: 2025-07-05.
Nie, E.; Yuan, S.; Ma, B.; Schmid, H.; Färber, M.;
Kreuter, F.; and Schütze, H. 2024. Decomposed prompt-
ing: Unveiling multilingual linguistic structure knowledge
in english-centric large language models. arXiv preprint
arXiv:2402.18397.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 311–318.
Schulhoff, S.; Ilie, M.; Balepur, N.; Kahadze, K.; Liu, A.; Si,
C.; Li, Y.; Gupta, A.; Han, H.; Schulhoff, S.; et al. 2024. The
prompt report: a systematic survey of prompt engineering
techniques. arXiv preprint arXiv:2406.06608.
Shivagunde, N.; Lialin, V.; Muckatira, S.; and Rumshisky,
A. 2024. Deconstructing in-context learning: Understanding
prompts via corruption. arXiv preprint arXiv:2404.02054.
Thirunavukarasu, A. J.; Ting, D. S. J.; Elangovan, K.;
Gutierrez, L.; Tan, T. F.; and Ting, D. S. W. 2023. Large lan-
guage models in medicine. Nature medicine, 29(8): 1930–
1940.
Wang, B.; Xu, C.; Wang, S.; Gan, Z.; Cheng, Y.; Gao, J.;
Awadallah, A. H.; and Li, B. 2021. Adversarial glue: A
multi-task benchmark for robustness evaluation of language
models. arXiv preprint arXiv:2111.02840.
Wang, J.; Hu, X.; Hou, W.; Chen, H.; Zheng, R.; Wang, Y.;
Yang, L.; Huang, H.; Ye, W.; Geng, X.; et al. 2023a. On the
robustness of chatgpt: An adversarial and out-of-distribution
perspective. arXiv preprint arXiv:2302.12095.

https://huggingface.co/datasets/nceyda/YAP470_Code_Generation_Dataset
https://huggingface.co/datasets/nceyda/YAP470_Code_Generation_Dataset

Wang, W.; Huang, J.-t.; Wu, W.; Zhang, J.; Huang, Y.; Li,
S.; He, P.; and Lyu, M. R. 2023b. Mttm: Metamorphic
testing for textual content moderation software. In 2023
IEEE/ACM 45th International Conference on Software En-
gineering (ICSE), 2387–2399. IEEE.
Wang, Y.; Mishra, S.; Alipoormolabashi, P.; Kordi,
Y.; Mirzaei, A.; Naik, A.; Ashok, A.; Dhanasekaran,
A. S.; Arunkumar, A.; Stap, D.; et al. 2022. Super-
NaturalInstructions: Generalization via Declarative Instruc-
tions on 1600+ NLP Tasks. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, 5085–5109.
Xiong, Q.; Huang, Y.; Jiang, Z.; Chang, Z.; Zheng, Y.; Li, T.;
and Li, M. 2025. Butterfly Effects in Toolchains: A Compre-
hensive Analysis of Failed Parameter Filling in LLM Tool-
Agent Systems. arXiv preprint arXiv:2507.15296.
Xue, J.; Zheng, M.; Hua, T.; Shen, Y.; Liu, Y.; Bölöni, L.;
and Lou, Q. 2023. Trojllm: A black-box trojan prompt attack
on large language models. Advances in Neural Information
Processing Systems, 36: 65665–65677.
Yin, S.; Pang, X.; Ding, Y.; Chen, M.; Bi, Y.; Xiong,
Y.; Huang, W.; Xiang, Z.; Shao, J.; and Chen, S. 2024.
Safeagentbench: A benchmark for safe task planning of em-
bodied llm agents. arXiv preprint arXiv:2412.13178.
Zhang, Q.; Ding, K.; Lv, T.; Wang, X.; Yin, Q.; Zhang, Y.;
Yu, J.; Wang, Y.; Li, X.; Xiang, Z.; et al. 2025. Scientific
large language models: A survey on biological & chemical
domains. ACM Computing Surveys, 57(6): 1–38.
Zhang, Z.; Cui, S.; Lu, Y.; Zhou, J.; Yang, J.; Wang, H.; and
Huang, M. 2024. Agent-safetybench: Evaluating the safety
of llm agents. arXiv preprint arXiv:2412.14470.
Zhang, Z.; Lei, L.; Wu, L.; Sun, R.; Huang, Y.; Long, C.;
Liu, X.; Lei, X.; Tang, J.; and Huang, M. 2023. Safetybench:
Evaluating the safety of large language models with multiple
choice questions. CoRR.
Zhao, H.; Tang, X.; Yang, Z.; Han, X.; Feng, X.; Fan, Y.;
Cheng, S.; Jin, D.; Zhao, Y.; Cohan, A.; et al. 2024. Chem-
safetybench: benchmarking llm safety on chemistry domain.
arXiv preprint arXiv:2411.16736.
Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.;
Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al.
2023. A survey of large language models. arXiv preprint
arXiv:2303.18223, 1(2).
Zhu, K.; Wang, J.; Zhou, J.; Wang, Z.; Chen, H.; Wang,
Y.; Yang, L.; Ye, W.; Zhang, Y.; Gong, N.; et al. 2023a.
Promptrobust: Towards evaluating the robustness of large
language models on adversarial prompts. In Proceedings
of the 1st ACM workshop on large AI systems and models
with privacy and safety analysis, 57–68.
Zhu, K.; Wang, J.; Zhou, J.; Wang, Z.; Chen, H.; Wang, Y.;
Yang, L.; Ye, W.; Zhang, Y.; Zhenqiang Gong, N.; et al.
2023b. Promptbench: Towards evaluating the robustness
of large language models on adversarial prompts. arXiv e-
prints, arXiv–2306.
Zou, A.; Wang, Z.; Carlini, N.; Nasr, M.; Kolter, J. Z.; and
Fredrikson, M. 2023. Universal and transferable adver-

sarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043.

8 Appendix
8.1 Examples of LLM Fails to Dissect Prompt

Misdissection of Semantic Components by GPT-4o

Prompt to GPT-4o
You are now an expert in prompt engineering for large language models. Please classify the following prompt
into the five components: Role, Directive, Additional Information, Output Formatting and Examples. Please
classify the following prompt into its respective components using implicit tags such as <Role></Role>,
<Directive></Directive>, <Additional Information></Additional Information>,
<Output Formatting></Output Formatting> and <Examples></Examples>. Do not provide
any explanations or additional content. Each sentence should remain unmodified. The classified sentences should
remain the same as the original sentences. Below are the definitions of each component: Role: Also known as a
persona, this component helps improve the writing style and tone of the text. Examples: As a helpful assistant, answer
the following question concisely. Directive: The main instruction or question in the prompt. i.e. What are the benefits
of renewable energy? Or Tell me five books. Additional Information: Provides additional background information
or situational details to help the model better understand the task. Example: You are writing an email to a colleague
about a meeting next week. Output Formatting: Defines how the response should be structured or presented. Example:
Answer the question in ’yes’ or ’no’. Examples: Provides sample inputs and outputs to guide the model’s response.
Example: Input: ’Night’ Output: ’Noche’ (Spanish). The prompt to classify is:
A seasoned Python developer like you has extensive experience in writing and refining Python code, and your
expertise includes key domains such as software engineering, data processing, and algorithm optimization. Your task
is to either create new Python scripts that fulfill specific functional requirements or modify existing Python code to
enhance its performance, readability, or functionality. These tasks involve implementing basic functions, optimizing
existing code, and ensuring that the code adheres to best practices in software development. The output should be a
well-structured Python script. It should include clear comments explaining the purpose of each section of the code. The
script should be formatted according to PEP 8 guidelines, ensuring readability and consistency. Below is an instruction
that describes a task, Write a response that appropriately completes the request. Inspect the following Python file
from murano/tests/unit/api/middleware/test version negotiation.py. Update the given code considering this change:
”Change assertTrue(isinstance()) by optimal assert” “‘python # Copyright 2016 AT&T Corp # All Rights Reserved.# #
Licensed under the Apache License, Version 2.0 (the ”License”); you may # not use this file except in compliance with
the License.You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless
required by applicable law or agreed to in writing, software # distributed under the License is distributed on an ”AS IS”
BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License
for the specific language governing permissions and limitations # under the License.import webob from murano.api
import versions from murano.api.middleware import version negotiation from murano.tests.unit import base class
MiddlewareVersionNegotiationTest(base.MuranoTestCase): def test middleware version negotiation default(self):
middleware vn = version negotiation.VersionNegotiationFilter(None) request = webob.Request.blank(’/environments’)
result = middleware vn.process request(request) self.assertTrue(isinstance(result, versions.Controller)) “‘. Example :
Input: Generate a program in Python that takes in a string and returns the reverse of the string.”Hello World” Output:
def reverse string(str): ””” Reverses a given string ””” rev str = ”” for c in str: rev str = c + rev str return rev str str =
”Hello World” rev str = reverse string(str) print(rev str).

Ground Truth
<Role> A seasoned Python developer like you has extensive experience in writing and refining Python code, and your
expertise includes key domains such as software engineering, data processing, and algorithm optimization.</Role>
<Directive> Your task is to either create new Python scripts that fulfill specific functional requirements or
modify existing Python code to enhance its performance, readability, or functionality. Below is an instruction that
describes a task, Write a response that appropriately completes the request. Inspect the following Python file from
murano/tests/unit/api/middleware/test version negotiation.py. Update the given code considering this change: ”Change
assertTrue(isinstance()) by optimal assert” “‘python # Copyright 2016 AT&T Corp # All Rights Reserved.# # Licensed
under the Apache License, Version 2.0 (the ”License”); you may # not use this file except in compliance with the Li-
cense. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required
by applicable law or agreed to in writing, software # distributed under the License is distributed on an ”AS IS” BASIS,
WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the
specific language governing permissions and limitations # under the License. import webob from murano.api import
versions from murano.api.middleware import version negotiation from murano.tests.unit import base class Middleware-
VersionNegotiationTest(base.MuranoTestCase): def test middleware version negotiation default(self): middleware vn

= version negotiation.VersionNegotiationFilter(None) request = webob.Request.blank(’/environments’) result =
middleware vn.process request(request) self.assertTrue(isinstance(result, versions.Controller)) “‘. </Directive>
<Additional Information> These tasks involve implementing basic functions, optimizing existing code, and
ensuring that the code adheres to best practices in software development.</Additional Information>
<Output Formatting> The output should be a well-structured Python script. It should include clear comments
explaining the purpose of each section of the code. The script should be formatted according to PEP 8 guidelines,
ensuring readability and consistency.</Output Formatting>
<Examples>Example : Input: Generate a program in Python that takes in a string and returns the reverse of the
string.”Hello World” Output: def reverse string(str): ””” Reverses a given string ””” rev str = ”” for c in str: rev str = c
+ rev str return rev str str = ”Hello World” rev str = reverse string(str) print(rev str).</Examples>

Response From GPT-4o
<Role> A seasoned Python developer like you has extensive experience in writing and refining Python code, and your
expertise includes key domains such as software engineering, data processing, and algorithm optimization. </Role>
<Directive>Your task is to either create new Python scripts that fulfill specific functional requirements or modify
existing Python code to enhance its performance, readability, or functionality. </Directive>
<Additional Information>These tasks involve implementing basic functions, optimizing existing code, and
ensuring that the code adheres to best practices in software development. </Additional Information>
<Output Formatting>The output should be a well-structured Python script. It should include clear comments
explaining the purpose of each section of the code. The script should be formatted according to PEP 8 guidelines,
ensuring readability and consistency. </Output Formatting>
<Additional Information> Below is an instruction that describes a task, Write a response that appropriately
completes the request. </Additional Information>
<Examples> Inspect the following Python file from murano/tests/unit/api/middleware/test version negotiation.py.
Update the given code considering this change: ”Change assertTrue(isinstance()) by optimal assert” “‘python #
Copyright 2016 AT&T Corp # All Rights Reserved.# # Licensed under the Apache License, Version 2.0 (the
”License”); you may # not use this file except in compliance with the License.You may obtain # a copy of the
License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to
in writing, software # distributed under the License is distributed on an ”AS IS” BASIS, WITHOUT # WAR-
RANTIES OR CONDITIONS OF ANY KIND, either express or implied.See the # License for the specific lan-
guage governing permissions and limitations # under the License.import webob from murano.api import versions
from murano.api.middleware import version negotiation from murano.tests.unit import base class MiddlewareVer-
sionNegotiationTest(base.MuranoTestCase): def test middleware version negotiation default(self): middleware vn =
version negotiation.VersionNegotiationFilter(None) request = webob.Request.blank(’/environments’) result = middle-
ware vn.process request(request) self.assertTrue(isinstance(result, versions.Controller)) “‘. Example : Input: Gener-
ate a program in Python that takes in a string and returns the reverse of the string.”Hello World” Output: def re-
verse string(str): ””” Reverses a given string ””” rev str = ”” for c in str: rev str = c + rev str return rev str str = ”Hello
World” rev str = reverse string(str) print(rev str) </Examples>

Omission of Middle Sentences in Prompt Dissection by GPT-4o

Prompt to GPT-4o
You are now an expert in prompt engineering for large language models. Please classify the following prompt
into the five components: Role, Directive, Additional Information, Output Formatting and Examples. Please
classify the following prompt into its respective components using implicit tags such as <Role></Role>,
<Directive></Directive>, <Additional Information></Additional Information>,
<Output Formatting></Output Formatting> and <Examples></Examples>. Do not provide
any explanations or additional content. Each sentence should remain unmodified. The classified sentences should
remain the same as the original sentences. Below are the definitions of each component: Role: Also known as a
persona, this component helps improve the writing style and tone of the text. Examples: As a helpful assistant, answer
the following question concisely. Directive: The main instruction or question in the prompt. i.e. What are the benefits
of renewable energy? Or Tell me five books. Additional Information: Provides additional background information
or situational details to help the model better understand the task. Example: You are writing an email to a colleague
about a meeting next week. Output Formatting: Defines how the response should be structured or presented. Example:
Answer the question in ’yes’ or ’no’. Examples: Provides sample inputs and outputs to guide the model’s response.
Example: Input: ’Night’ Output: ’Noche’ (Spanish). The prompt to classify is:
As a cybersecurity expert dedicated to password strength analysis and improvement, you are responsible for assessing

and adjusting passwords to meet stringent security criteria. You are given a password and you need to generate the
number of steps required to convert the given password to a strong password. A password is considered strong if (a) it
has at least 6 characters and at most 20 characters; (b) it contains at least one lowercase letter and one uppercase letter,
and at least one digit; (c) it does not contain three repeating characters in a row. In one step you can: (1) Insert one
character to password, (2) delete one character from password, or (3) replace one character of password with another
character. Calculate the minimum number of operations needed to transform the provided password into a strong one.
Make sure your approach is efficient and explores all potential scenarios for optimal results. Answer only returns the
number of steps required. Now complete the question: password = KMxgCvxC4A1SxLS2r9OEQGx3MqRaqXX. Here
are some examples: Positive Example 1 - Input: password = a Output: 5.Positive Example 2 - Input: password = aA1
Output: 3.Negative Example 1 - Input: password = 1337C0d3 Output: 1.

Ground Truth
<Role>As a cybersecurity expert dedicated to password strength analysis and improvement, you are responsible for
assessing and adjusting passwords to meet stringent security criteria.</Role>
<Directive>You are given a password and you need to generate the number of steps required
to convert the given password to a strong password. Calculate the minimum number of operations
needed to transform the provided password into a strong one. Now complete the question: password =
KMxgCvxC4A1SxLS2r9OEQGx3MqRaqXX.</Directive>
<Additional Information>A password is considered strong if (a) it has at least 6 characters and at most 20
characters; (b) it contains at least one lowercase letter and one uppercase letter, and at least one digit; (c) it does not
contain three repeating characters in a row. In one step you can: (1) Insert one character to password, (2) delete one
character from password, or (3) replace one character of password with another character. Make sure your approach is
efficient and explores all potential scenarios for optimal results.</Additional Information>
<Output Formatting>Answer only returns the number of steps required.</Output Formatting>
<Examples>Here are some examples: Positive Example 1 - Input: password = a Output: 5.Positive Example 2 -
Input: password = aA1 Output: 3.Negative Example 1 - Input: password = 1337C0d3 Output: 1.</Examples>

Response From GPT-4o
<Role> As a cybersecurity expert dedicated to password strength analysis and improvement, you are responsible for
assessing and adjusting passwords to meet stringent security criteria. </Role>
<Directive> You are given a password and you need to generate the number of steps required to convert the given
password to a strong password. </Directive>
<Additional Information> A password is considered strong if (a) it has at least 6 characters and at most 20
characters; (b) it contains at least one lowercase letter and one uppercase letter, and at least one digit; (c) it does not
contain three repeating characters in a row. In one step you can: (1) Insert one character to password, (2) delete one
character from password, or (3) replace one character of password with another character. Make sure your approach is
efficient and explores all potential scenarios for optimal results. </Additional Information>
<Output Formatting> Answer only returns the number of steps required. </Output Formatting>
<Examples> Positive Example 1 - Input: password = a Output: 5. Positive Example 2 - Input: password = aA1 Output:
3. Negative Example 1 - Input: password = 1337C0d3 Output: 1. </Examples>
Missing Sentence:
Calculate the minimum number of operations needed to transform the provided password into a strong one.
Now complete the question: password = KMxgCvxC4A1SxLS2r9OEQGx3MqRaqXX.

8.2 Examples of Origin and Enhanced Datasets

Table 4: Dataset Examples from PubMedQA, EMEA, Leetcode, and CodeGeneration

Dataset Example
PubMedQA You are a response inspector, ensuring that the answer is a valid reply to the question. Check

if the answer to a question is correct and classify the result as ’yes’ or ’no’. Output ’yes’ if
the answer answers the question and output ’no’ if the answer does not answer the question.
Focus on determining if the answer is both relevant and complete in addressing the question.
Now complete the question: Question: Is chk1 required for the metaphase-anaphase transi-
tion via regulating the expression and localization of Cdc20 and Mad2? Answer: These results
strongly suggest that Chk1 is required for the metaphase-anaphase transition via regulating
the subcellular localization and the expression of Cdc20 and Mad2. Here are some examples:
Positive Example 1 - Input: Question: Are group 2 innate lymphoid cells (ILC2s) increased
in chronic rhinosinusitis with nasal polyps or eosinophilia? Answer: As ILC2s are elevated in
patients with CRSwNP, they may drive nasal polyp formation in CRS. ILC2s are also linked
with high tissue and blood eosinophilia and have a potential role in the activation and sur-
vival of eosinophils during the Th2 immune response. The association of innate lymphoid
cells in CRS provides insights into its pathogenesis. Output: yes Positive Example 2 - In-
put: Question: Does vagus nerve contribute to the development of steatohepatitis and obesity
in phosphatidylethanolamine N-methyltransferase deficient mice? Answer: Neuronal signals
via the hepatic vagus nerve contribute to the development of steatohepatitis and protection
against obesity in HFD fed Pemt(-/-) mice. Output: yes Negative Example 1 - Input: Ques-
tion: Is methylation of the FGFR2 gene associated with high birth weight centile in humans?
Answer: We identified a novel biologically plausible candidate (FGFR2) for with BWC that
merits further study. Output: no Negative Example 2 - Input: Question: Do tumor-infiltrating
immune cell profiles and their change after neoadjuvant chemotherapy predict response and
prognosis of breast cancer? Answer: Breast cancer immune cell subpopulation profiles, de-
termined by immunohistochemistry-based computerized analysis, identify groups of patients
characterized by high response (in the pre-treatment setting) and poor prognosis (in the post-
treatment setting). Further understanding of the mechanisms underlying the distribution of
immune cells and their changes after chemotherapy may contribute to the development of
new immune-targeted therapies for breast cancer. Output: no.

EMEA As an experienced Latin translation specialist, you have a deep knowledge of historical and
religious contexts, which enables you to translate Latin texts into English with precision.
Your skill lies in grasping the subtleties of classical languages and their cultural importance.
Translate the provided Latin text into English, ensuring that the historical and religious nu-
ances are preserved and accurately conveyed. The content you’ve provided is extensive, with
a wide range of texts and references from various fields like religion, history, philosophy,
and literature. The translation should be presented in a clear and readable English format,
with any necessary annotations or explanations provided to clarify the context or meaning of
specific terms or phrases. Now complete the question: ceterum cum et magni pretii et varii
generis a legatis eius tam virorum quam feminarum apta usui munera circa domos ferrentur,
nulla cuiquam dono ianua patuit, Tarentinaeque petulantiae animosus magis quam efficax de-
fensor haud scio maiore cum gloria huius urbis moribus ¡an moenibus¿ repulsus sit. Here are
some examples: Latin Text: Omnia mutantur, nihil interit. Translation: Everything changes,
nothing perishes. Latin Text: Qui cum statuisset, nisi me per vos recuperasset, eamdem subire
fortunam atque idem sibi domicilium et vitae et mortis deposcere, tamen numquam nec mag-
nitudinem negotii nec solitudinem suam nec vim inimicorum ac tela pertimuit. Translation:
He had made up his mind that, should he fail, through you, to win me back to himself, he
would ask permission to meet the same fate and to share the same dwelling with me in life
and in death; and yet, in spite of this, no toil however formidable, no loneliness, no threat nor
weapons of foes, could daunt him.

Dataset Example
Leetcode As a cybersecurity expert dedicated to password strength analysis and improvement, you are

responsible for assessing and adjusting passwords to meet stringent security criteria. You
are given a password and you need to generate the number of steps required to convert the
given password to a strong password. A password is considered strong if (a) it has at least
6 characters and at most 20 characters; (b) it contains at least one lowercase letter and one
uppercase letter, and at least one digit; (c) it does not contain three repeating characters in
a row. In one step you can: (1) Insert one character to password, (2) delete one character
from password, or (3) replace one character of password with another character. Calculate the
minimum number of operations needed to transform the provided password into a strong one.
Make sure your approach is efficient and explores all potential scenarios for optimal results.
Answer only returns the number of steps required. Now complete the question: password
= KMxgCvxC4A1SxLS2r9OEQGx3MqRaqXX. Here are some examples: Positive Example
1 - Input: password = a Output: 5. Positive Example 2 - Input: password = aA1 Output: 3.
Negative Example 1 - Input: password = 1337C0d3 Output: 1.

CodeGeneration A seasoned Python developer like you has extensive experience in writing and refining
Python code, and your expertise includes key domains such as software engineering,
data processing, and algorithm optimization. Your task is to either create new Python
scripts that fulfill specific functional requirements or modify existing Python code to
enhance its performance, readability, or functionality. These tasks involve implement-
ing basic functions, optimizing existing code, and ensuring that the code adheres to
best practices in software development. The output should be a well-structured Python
script. It should include clear comments explaining the purpose of each section of the
code. The script should be formatted according to PEP 8 guidelines, ensuring readability
and consistency. Below is an instruction that describes a task, Write a response that
appropriately completes the request. Inspect the following Python file from murano/test-
s/unit/api/middleware/test version negotiation.py. Update the given code considering this
change: ”Change assertTrue(isinstance()) by optimal assert” “‘python # Copyright 2016
AT&T Corp # All Rights Reserved.# # Licensed under the Apache License, Version 2.0
(the ”License”); you may # not use this file except in compliance with the License.You
may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software # distributed
under the License is distributed on an ”AS IS” BASIS, WITHOUT # WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the
specific language governing permissions and limitations # under the License.import
webob from murano.api import versions from murano.api.middleware import ver-
sion negotiation from murano.tests.unit import base class MiddlewareVersionNegotia-
tionTest(base.MuranoTestCase): def test middleware version negotiation default(self):
middleware vn = version negotiation.VersionNegotiationFilter(None) request = we-
bob.Request.blank(’/environments’) result = middleware vn.process request(request)
self.assertTrue(isinstance(result, versions.Controller)) “‘. Example : Input: Generate a
program in Python that takes in a string and returns the reverse of the string.”Hello World”
Output: def reverse string(str): ””” Reverses a given string ””” rev str = ”” for c in str: rev str
= c + rev str return rev str str = ”Hello World” rev str = reverse string(str) print(rev str).

Table 5: Dataset Examples from PubMedQA-PA, EMEA-PA, Leetcode-PA, and CodeGeneration-PA

Dataset Example
PubMedQA-PA <Role>You are a response inspector, ensuring that the answer is a valid reply to the ques-

tion.</Role> <Directive>Check if the answer to a question is correct and classify
the result as ’yes’ or ’no’. Now complete the question: Question: Is chk1 required for the
metaphase-anaphase transition via regulating the expression and localization of Cdc20 and
Mad2? Answer: These results strongly suggest that Chk1 is required for the metaphase-
anaphase transition via regulating the subcellular localization and the expression of Cdc20
and Mad2. </Directive> <Additional Information>Focus on determining if
the answer is both relevant and complete in addressing the question.</Additional
Information> <Output Formatting>Output ’yes’ if the answer answers the ques-
tion and output ’no’ if the answer does not answer the question. </Output Formatting>
<Examples>Here are some examples: Positive Example 1 - Input: Question: Are group
2 innate lymphoid cells (ILC2s) increased in chronic rhinosinusitis with nasal polyps or
eosinophilia? Answer: As ILC2s are elevated in patients with CRSwNP, they may drive nasal
polyp formation in CRS. ILC2s are also linked with high tissue and blood eosinophilia and
have a potential role in the activation and survival of eosinophils during the Th2 immune
response. The association of innate lymphoid cells in CRS provides insights into its patho-
genesis. Output: yes Positive Example 2 - Input: Question: Does vagus nerve contribute to the
development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase
deficient mice? Answer: Neuronal signals via the hepatic vagus nerve contribute to the devel-
opment of steatohepatitis and protection against obesity in HFD fed Pemt(-/-) mice. Output:
yes Negative Example 1 - Input: Question: Is methylation of the FGFR2 gene associated with
high birth weight centile in humans? Answer: We identified a novel biologically plausible
candidate (FGFR2) for with BWC that merits further study. Output: no Negative Example 2
- Input: Question: Do tumor-infiltrating immune cell profiles and their change after neoadju-
vant chemotherapy predict response and prognosis of breast cancer? Answer: Breast cancer
immune cell subpopulation profiles, determined by immunohistochemistry-based computer-
ized analysis, identify groups of patients characterized by high response (in the pre-treatment
setting) and poor prognosis (in the post-treatment setting). Further understanding of the mech-
anisms underlying the distribution of immune cells and their changes after chemotherapy may
contribute to the development of new immune-targeted therapies for breast cancer. Output:
no.</Examples>

EMEA-PA <Role>As an experienced Latin translation specialist, you have a deep knowledge of his-
torical and religious contexts, which enables you to translate Latin texts into English with
precision.</Role> <Directive>Translate the provided Latin text into English, ensur-
ing that the historical and religious nuances are preserved and accurately conveyed. Now
complete the question: ceterum cum et magni pretii et varii generis a legatis eius tam viro-
rum quam feminarum apta usui munera circa domos ferrentur, nulla cuiquam dono ianua pa-
tuit, Tarentinaeque petulantiae animosus magis quam efficax defensor haud scio maiore cum
gloria huius urbis moribus ¡an moenibus¿ repulsus sit.</Directive> <Additional
Information>Your skill lies in grasping the subtleties of classical languages and their cul-
tural importance. The content you’ve provided is extensive, with a wide range of texts and ref-
erences from various fields like religion, history, philosophy, and literature.</Additional
Information> <Output Formatting>The translation should be presented in a clear
and readable English format, with any necessary annotations or explanations provided to
clarify the context or meaning of specific terms or phrases.</Output Formatting>
<Examples>Here are some examples: Latin Text: Omnia mutantur, nihil interit. Transla-
tion: Everything changes, nothing perishes. Latin Text: Qui cum statuisset, nisi me per vos re-
cuperasset, eamdem subire fortunam atque idem sibi domicilium et vitae et mortis deposcere,
tamen numquam nec magnitudinem negotii nec solitudinem suam nec vim inimicorum ac
tela pertimuit. Translation: He had made up his mind that, should he fail, through you, to win
me back to himself, he would ask permission to meet the same fate and to share the same
dwelling with me in life and in death; and yet, in spite of this, no toil however formidable, no
loneliness, no threat nor weapons of foes, could daunt him.</Examples>

Dataset Example
Leetcode-PA <Role>As a cybersecurity expert dedicated to password strength analysis and improvement,

you are responsible for assessing and adjusting passwords to meet stringent security criteria.
</Role> <Directive>You are given a password and you need to generate the num-
ber of steps required to convert the given password to a strong password.Now complete
the question: password = KMxgCvxC4A1SxLS2r9OEQGx3MqRaqXX.</Directive>
<Additional Information>A password is considered strong if (a) it has at least 6
characters and at most 20 characters; (b) it contains at least one lowercase letter and one
uppercase letter, and at least one digit; (c) it does not contain three repeating characters in
a row. In one step you can: (1) Insert one character to password, (2) delete one character
from password, or (3) replace one character of password with another character.Calculate
the minimum number of operations needed to transform the provided password into a strong
one. Make sure your approach is efficient and explores all potential scenarios for optimal re-
sults.</Additional Information> <Output Formatting>Answer only returns
the number of steps required.</Output Formatting> <Examples>Here are some ex-
amples: Positive Example 1 - Input: password = a Output: 5. Positive Example 2 - Input:
password = aA1 Output: 3. Negative Example 1 - Input: password = 1337C0d3 Output:
1.</Examples>

CodeGeneration-
PA

<Role>A seasoned Python developer like you has extensive experience in writing and
refining Python code, and your expertise includes key domains such as software engi-
neering, data processing, and algorithm optimization.</Role> <Directive>Your
task is to either create new Python scripts that fulfill specific functional requirements
or modify existing Python code to enhance its performance, readability, or functional-
ity. Below is an instruction that describes a task, Write a response that appropriately
completes the request. Inspect the following Python file from murano/tests/unit/api/mid-
dleware/test version negotiation.py. Update the given code considering this change:
”Change assertTrue(isinstance()) by optimal assert” “‘python # Copyright 2016 AT&T
Corp # All Rights Reserved.# # Licensed under the Apache License, Version 2.0 (the
”License”); you may # not use this file except in compliance with the License.You may
obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #
Unless required by applicable law or agreed to in writing, software # distributed under
the License is distributed on an ”AS IS” BASIS, WITHOUT # WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the # License for the
specific language governing permissions and limitations # under the License.import
webob from murano.api import versions from murano.api.middleware import ver-
sion negotiation from murano.tests.unit import base class MiddlewareVersionNegotia-
tionTest(base.MuranoTestCase): def test middleware version negotiation default(self):
middleware vn = version negotiation.VersionNegotiationFilter(None) request = we-
bob.Request.blank(’/environments’) result = middleware vn.process request(request)
self.assertTrue(isinstance(result, versions.Controller)) “‘.</Directive> <Additional
Information>These tasks involve implementing basic functions, optimizing exist-
ing code, and ensuring that the code adheres to best practices in software develop-
ment.</Additional Information> <Output Formatting>The output should
be a well-structured Python script. It should include clear comments explaining the purpose
of each section of the code. The script should be formatted according to PEP 8 guidelines,
ensuring readability and consistency. </Output Formatting> <Examples>Example
: Input: Generate a program in Python that takes in a string and returns the reverse of
the string.”Hello World” Output: def reverse string(str): ””” Reverses a given string ”””
rev str = ”” for c in str: rev str = c + rev str return rev str str = ”Hello World” rev str =
reverse string(str) print(rev str).</Examples>

8.3 Details of Prompt Perturbation Strategies
To evaluate the robustness of LLMs under structurally and semantically aligned adversarial prompts, we design perturbations at
four linguistic granularity levels. Each strategy is applied to individual semantic components in prompts. Table 6 is an example
of five perturbation types applied to the Role component in prompts.

1) Character-Level Perturbation. Simulates typos or symbol noise. For each semantic component, we randomly insert
special characters (e.g., #, $, %, &, @) at 10% of token positions, evenly distributed across the span.
Original: a sentiment classification agent.
Perturbed: a senti!ment c#lass@ification agent.

2) Word-Level Perturbation (Deletion). To mimic incomplete or informal text, 10% of words in each component are ran-
domly deleted.
Original: a sentiment classification agent.
Perturbed: a classification agent.

3) Word-Level Perturbation (Synonym Substitution). We substitute 10% of words with synonyms from WordNet to sim-
ulate paraphrasing.
Original: a sentiment classification agent.
Perturbed: a sentiment analysis agent.

4) Sentence-Level Perturbation. One sentence per component is randomly replaced with a semantically equivalent sentence
from a paraphrase corpus.
Original: a sentiment analysis agent.
Perturbed: a system designed for sentiment categorization.

5) Component-Level Perturbation. An entire semantic component (e.g., <Role>, <Directive>, <Examples>) is re-
moved to assess its marginal contribution.
Example (original): <Role>...</Role> <Directive>...</Directive> <Examples>...</Examples>

Example (perturbed): <Directive>...</Directive> <Examples>...</Examples> (Role component re-
moved)

Table 6: Examples of five perturbation types applied to the Role component in prompts. Each example shows how a clean
prompt is modified using one specific perturbation strategy: Special Character Insertion (SCI), Synonym Replacement (SYR),
Word Deletion (WOD), Sentence Rewriting (SER), and Component Deletion (COD).

Scenario Prompt

Clean You are Assistant, a sentiment classification agent. You will identify the sentiment
given an utterance or text.

Special Character Insertion (SCI) You are Ass!istant, a sentiment c@lassification agent. You will identify the sentiment
given an utterance or text.

Synonym Replacement (SYR) You are Assistant, a sentiment analysis agent. You will identify the sentiment
given an utterance or text.

Word Deletion (WOD) You are Assistant, a sentiment classification. You will identify the sentiment
given an utterance or text.

Sentence Rewriting (SER) You are Assistant, a system designed for sentiment categorization. You will identify the
sentiment given an utterance or text.

Component Deletion (COD) You will identify the sentiment given an utterance or text.

8.4 Prompt Complexity Metric
This appendix details the Prompt Complexity Metric (PCM), which systematically quantifies the complexity of prompts used
with Large Language Models (LLMs). The metric integrates lexical, syntactic, semantic, structural, and task-oriented dimen-
sions into a unified measure.

Formulation The PCM for a prompt p is defined as:

PCM(p) = αClexical + βCsyntactic + γCsemantic + δCstructural + ϵCtask (4)

where coefficients α, β, γ, δ, ϵ are tunable parameters.

Components

Lexical Complexity (Clexical) Measures vocabulary complexity based on token rarity:

Clexical(p) =
1

|p|
∑
w∈p

IDF(w) (5)

where IDF(w) is the inverse document frequency of token w.

Syntactic Complexity (Csyntactic) Represents sentence structure intricacy:

Csyntactic(p) =
1

|S|
∑
s∈S

depth(ParseTree(s)) (6)

where S is the set of sentences in p.

Semantic Complexity (Csemantic) Measures semantic dispersion using embeddings:

Csemantic(p) =
2

|S|(|S| − 1)

∑
si,sj∈S;i<j

1− cos(E(si), E(sj)) (7)

where E(s) denotes the embedding of sentence s.

Structural Complexity (Cstructural) Quantifies prompt decomposition into structural elements:

Cstructural(p) = k · log
(
|p|
k

+ 1

)
(8)

where k is the number of distinct structural components in the prompt.

Task Complexity (Ctask) Evaluates the intrinsic complexity of the requested task, rated on a scale from 1 to 5:
• 1: Simple factual queries
• 3: Moderate reasoning or summarization tasks
• 5: Complex multi-step reasoning tasks

Interpretation Lower PCM scores correspond to simpler prompts, characterized by common vocabulary and straightforward
structures, while higher PCM scores indicate more intricate, challenging prompts requiring deeper comprehension or complex
reasoning abilities.

Customization The weighting coefficients α, β, γ, δ, ϵ can be adapted according to specific research contexts or task require-
ments, enhancing PCM’s applicability and flexibility.

8.5 Evaluation of PROMPTANATOMY’S Component Classification Accuracy
In this appendix, we present a comprehensive evaluation to assess the effectiveness and reliability of the proposed Promp-
tAnatomy (PA) framework in accurately identifying and classifying semantic components within free-form prompts. This anal-
ysis serves to validate whether the PA framework can correctly dissect prompts into meaningful substructures under our defined
taxonomy.

Experimental Setup To rigorously evaluate the classification accuracy of PA, we curated a human-annotated dataset across
four task domains—PubMedQA, EMEA, Leetcode, and CodeGeneration—spanning both knowledge-intensive and procedural
prompts. Each prompt was manually segmented and labeled on a per-sentence basis by expert annotators according to the
canonical component schema:<Role>, <Directive>, <Additional Information>, <Output Formatting>,
and <Examples>. The annotated data served as ground truth for benchmarking model predictions.

We employed the PA dissection pipeline (Algorithm 1) using six representative LLMs: (1) ChatGPT-4o, (2) ChatGPT-3.5,
(3) Qwen2.5-14B, (4) Qwen3-8B, (5) LLaMA3.3-70B, and (6) Gemma3-12B.

Metric: Classification Accuracy We define the classification accuracy as:

Accuracy =
Cp

Np
(9)

where Cp denotes the number of prompts in which all sentences are correctly classified (i.e., the predicted label set exactly
matches the annotated labels for every sentence in the prompt), and Np is the total number of prompts in the evaluation set.

A prompt is considered correct only if the model’s prediction for each sentence in the prompt exactly matches the human-
annotated label set. Partial or sentence-level mismatches result in the entire prompt being marked as incorrect.

Results and Analysis The results, summarized in Table 7 , demonstrate strong classification performance across all models.
ChatGPT-4o achieves perfect accuracy (100%) on all four datasets, underscoring its exceptional semantic parsing capabilities.
ChatGPT-3.5, Qwen2.5-14B, and LLaMA3.3-70B follow closely with average accuracies of approximately 93%, while Qwen3-
8B and Gemma3-12B achieve slightly lower scores of 92% and 88%, respectively.

Table 7: Classification Accuracy (%) across different datasets and models

Model PubMedQA EMEA Leetcode CodeGeneration AVG

ChatGPT-4o 100.00 100.00 100.00 100.00 100.00
ChatGPT-3.5 89.00 95.00 96.00 93.00 93.00
Qwen3-8B 91.00 94.00 93.00 89.00 92.00
Qwen2.5-14B 88.00 94.00 95.00 93.00 93.00
LLaMA3.3-70B 91.00 97.00 95.50 90.30 93.45
Gemma3-12B 86.00 89.00 94.50 82.50 88.00

These results confirm that the PA framework generalizes well across model scales and architectures, achieving consistent
accuracy above 85% even in smaller models. The use of local contextual windows appears to significantly improve the model’s
ability to disambiguate component roles, especially for structurally ambiguous prompts.

Notably, all models perform robustly across datasets with differing domain styles, indicating that prompt structure is learnable
and recognizable irrespective of topical content.

8.6 Visualization of Table 2
To facilitate a more intuitive understanding of the heterogeneous adversarial robustness across prompt components and pertur-
bation types, we present heatmap visualizations of Table 2 for each evaluated LLMs. Each heatmap illustrates the attack success
rate (ASR) under different component-wise perturbations, grouped by model and dataset.

Figure 4: GPT-4o

Figure 5: Claude3.7

Figure 6: Qwen2.5

Figure 7: LLaMA3-70B

Figure 8: Gemma3-12B

	Introduction
	Related Works
	Methodology
	PromptAnatomy: Identifying and Dissecting LLM Prompt Components
	ComPerturb: Component-wise Perturbation Method on LLM Prompt

	Experiment
	Results and Analysis
	Discussion and Takeaways
	Conclusion
	Appendix
	Examples of LLM Fails to Dissect Prompt
	Examples of Origin and Enhanced Datasets
	Details of Prompt Perturbation Strategies
	Prompt Complexity Metric
	Evaluation of PromptAnatomy's Component Classification Accuracy
	Visualization of Table 2

