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Figure 1: D2-Sparse system overview: For every state of pruning, two parallel sparse masks are
co-learned before merging and subsequent final pruning to achieve state’s target sparsity.

ABSTRACT

Research within the realm of deep learning has extensively delved into learning
under diverse constraints, with the incorporation of sparsity as a pragmatic con-
straint playing a pivotal role in enhancing the efficiency of deep learning. This
paper introduces a novel approach, termed D2-Sparse, presenting a dual dynamic
sparse learning system tailored for scenarios involving limited data. In contrast to
conventional studies that independently investigate sparsity and low-data learning,
our research amalgamates these constraints, paving the way for new avenues in
sparsity-related investigations. D2-Sparse outperforms typical iterative pruning
methods when applied to standard deep networks, particularly excelling in tasks like
image classification within the domain of computer vision. In particular, it achieves
a notable 5% improvement in top-1 accuracy for ResNet-34 in the CIFAR-10
classification task, with only 5000 samples compared to iterative pruning methods.

1 INTRODUCTION

The investigation into sparsity as a research domain can be traced back to early contributions in
signal processing and compressed sensing Gorodnitsky & Rao (1997); Rao (1998); Zibulevsky &
Pearlmutter (2001). However, in the wake of the recent surge in deep learning, sparsity has emerged
as a frontrunner in the discourse on efficient learning Liu et al. (2015); Srinivas et al. (2016); Zhang
et al. (2016); Frankle & Carbin (2018). The increasing importance of sparsity in deep learning is tied
to the continuous growth and overparameterization of deep neural networks, driven by improvements
in optimization efficiency, scaling laws exploration, and computational cost reduction.
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Practically, sparsity in neural networks serves different purposes: it enhances implicit parametric
capacity, as seen in the Sparse Mixture of Experts (S-MoE) Shazeer et al. (2017); Riquelme et al.
(2021); acts as regularization Louizos et al. (2017); Scardapane et al. (2016); and is utilized for
efficiency gains Hoefler et al. (2021); Dao et al. (2022). In terms of efficiency, sparsity involves
weight pruning, using structured and unstructured methods to reduce parametric complexity while
maintaining performance with minimal impact compared to the full dense model.

From an intuitive perspective, sparsity can be perceived as a constraint that is applied either ad-hoc
or post-hoc within the training protocol of a neural network. Within the spectrum of constraints,
another fundamental one revolves around the scarcity of data volume. Research on low-data learning
(Mustafa et al., 2020; Gutierrez et al., 2021; Camilleri et al., 2023; Pappu & Paige, 2020; Sanderson
& Kalgonova, 2022) has occupied a significant space in the realm of learning under constraints.
However, the majority of literature in this domain tends to examine constraints in isolation, thereby
fundamentally constraining our comprehension in two key aspects: (i) the transferability of methods
proposed to address a specific constraint when another constraint is introduced, and (ii) the impact of
one constraint on another constraint within a learning problem.

Recognizing this limitation, our objective is to explore the interplay between low-data learning and
sparse models. In pursuit of this goal, we introduce a pioneering dual-dynamic coupled sparse
network learning framework, denoted as D2-Sparse. This framework is designed to make sparse
networks feasible when subjected to the constraints of a low-data learning regime.

In brief, we succinctly summarize our contributions below.

1. Introduce a novel dual-dynamic coupled sparse network learning framework, denoted as
D2-Sparse, specifically crafted for training sparse models in low-data learning scenarios.

2. Offer inaugural insights and evidence on complementary sparse learning systems.
3. Conduct comprehensive experiments to show the efficacy of D2-Sparse across diverse data

budgets and varying levels of sparsity.
4. Provide a detailed analysis of the robustness and calibration of the trained models within the

D2-Sparse framework.

2 RELATED WORK

2.1 SPARSE TRAINING

Sparse neural network training aims to train initial sparse networks from scratch, achieving competi-
tive performance with dense counterparts using fewer resources. It is commonly categorized into
static sparse training (SST) and dynamic sparse training (DST), depending on whether the sparse
connectivity remains static or changes dynamically during training.

Static sparse training involves methods that train initial sparse neural networks with a fixed sparse
connectivity pattern throughout the training. Although the sparse connectivity remains static, the
choices for layer-wise sparsity vary. Approaches range from uniform sparsity (Gale et al., 2019) to
non-uniform methods like those of Mocanu et al. (2016), showing improved performance in Restricted
Boltzmann Machines (RBMs). Other strategies, such as the use of expander graphs, demonstrate
comparable performance to dense CNNs (Prabhu et al., 2018; Kepner & Robinett, 2019).Inspired by
the graph theory, Erdős-Rényi (ER) (Mocanu et al., 2018) and its CNNs variant Erdős-Rényi-Kernel
(ERK) (Evci et al., 2020) allocates lower sparsity to smaller layers, avoiding the layer collapse
problem (Tanaka et al., 2020) and achieving stronger results than uniform sparsity in general.

Dynamic sparse training (DST) dynamically adjusts sparse neural network connectivity during
training. Originating from Sparse Evolutionary Training (SET) (Mocanu et al., 2018), DST includes
weight redistribution to optimize layer-wise sparsity ratios (Mostafa & Wang, 2019; Dettmers &
Zettlemoyer, 2019). Commonly using magnitude pruning, DST varies in weight regrowth criteria.
Gradient-based regrowth, such as momentum (Dettmers & Zettlemoyer, 2019), excels in image
classification, while random regrowth outperforms in language modeling (Dietrich et al., 2021).
Recent advances aim to improve accuracy by relaxing memory constraints (Jayakumar et al., 2020;
Yuan et al., 2021; Liu et al., 2021; Huang et al., 2022). Yin et al. (2022b) introduced Suptickets, an
ensemble framework that surpasses the generalization of dense models by averaging weights and
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sparse connections. Building on this, Yin et al. (2022a) extend the method to interpretation, further
boosting performance.

Weight Averaging. Explored in convex optimization and neural networks (Polyak & Juditsky, 1992;
Zhang et al., 2019), methods such as stochastic weight averaging (SWA)(Izmailov et al., 2018) and
Exponential Moving Average (EMA)(Polyak & Juditsky, 1992) average model checkpoints within
an optimization trajectory, achieving ensemble-level performance. (Yin et al., 2022b) introduced
SWA in sparse training without pre-training, and Greedy soup (Wortsman et al., 2022) improved
performance by averaging independent dense models. Weight interpolation, beyond simple averaging,
gained attention. Empirical evidence from (Nagarajan & Kolter, 2019) revealed a linear path
between solutions for the MNIST dataset starting from identical initializations. Subsequently, the
linear interconnection of models fine-tuned from the same pre-trained model yielded equivalent
performance (Neyshabur et al., 2020). Linear mode connectivity, introduced by (Frankle et al., 2020)
and applied in (Yin et al., 2023), showed that interpolating between linearly connected subnetworks
results in a more accurate network without extra costs.

3 D2-SPARSE

k states

Figure 2: D2-Sparse learning framework

We illustrate the architecture of the D2-Sparse training framework in Fig. 2.

Preliminaries: Commencing with a randomly initialized dense model fθinit
and a dataset D with

limited data volume, our goal is to iteratively train fθinit
using sparse training on D across k states,

each corresponding to a specific target sparsity.

Warm-up: Initially, we create two transformed copies of D, each transformed using different spatial
augmentation strategies denoted as T1 and T2. The resulting low-data volumes are referred to as D1

and D2. Subsequently, we warm-up train fθinit
on D for a limited number of iterations. This ensures

that the model utilized for sparse training initiates from a non-random state. The resulting model
from warm-up fine-tuning is denoted as fθi , where i represents the state index (i ∈ k).

Dual Branch: Next, fθi is duplicated into two branches, each trained on D1 and D2. The initial
copied models are denoted as f t=0

θ1
and f t=0

θ2
. Two random sparse binary matrices, Mt=0

1 and Mt=0
2 ,

are initialized for each model at the predefined state sparsity δ. Independently, f t=0
θ1

and f t=0
θ2

are
trained on D1 and D2 for n iterations, evolving masks Mt=0

1 and Mt=0
2 using the ERK algorithm

(Evci et al., 2020).The resulting trained models and updated masks are denoted as (f t=n
θ1

, Mt=n
1 ) and

(f t=n
θ2

, Mt=n
2 ), respectively.

Merging: To merge the two independently trained sparse models and masks, (f t=n
θ1

, M1t=n) and
(fθ2t=n, M2t=n), we use a weight merging function denoted P(·). The resulting model and mask
after merging are denoted as fθP(·) and MP , respectively.
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Dynamic Finetuning: Following the merging with P(·), the resulting sparse model fθP(·) may
deviate from the target state sparsity δ. To address this, a one-shot sparsification step S(·) is applied
using the SNIP pruning algorithm (Lee et al., 2019). The resulting sparse model and mask, denoted
as fθS(·) and MS , undergo further minimal fine-tuning on D1 using the ERK algorithm (Evci et al.,
2020). This process yields the final sparse model and mask for the state i, denoted as fθi+1

and Mi,
with fθi+1

serving as the initialization for the next state i+ 1.

What is the reasoning for having two independent dynamic sparse training systems?

Our goal is to obtain two complementary sparse models through the process, ensuring that, upon
merging, the resulting model is stronger than the two individual sparse models. We provide more
insight into complementary sparse learning systems in Appendix A.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

We evaluated the proposed D2-Sparse training framework on the ResNet (Krizhevsky & Hinton,
2009) family models (R-18, 34) using the CIFAR-10 (Krizhevsky, 2009) dataset. Both iterative
and 1-shot sparse training variants are evaluated across different data fractions (0.5%, 1%, 2%, 5%
and 10% of the total dataset size). The performance of the models obtained through the D2 -Sparse
training is compared to Baseline and Baseline LB.

To ensure uniformity throughout the paper, our objective is to establish clear definitions of specific
terminologies that are frequently used in reference to the proposed method and its corresponding
evaluation.

• Baseline LB. This denotes the lower bound, where the model fθ is trained using the ERK
algorithm barring a dual branch, avoiding any merging or subsequent sparsification step.

• Baseline: This signifies training fθ using the same process as Baseline LB. However, instead
of training solely on D, we train it on the joint dataset D1 ∪ D2. This ensures that each
backward pass is computed after two consecutive forward propagations on batches from
each of the two datasets. This is done to maintain a consistent data volume with D2-Sparse
for a fair comparison.

• Dense: This refers to the model fθ being trained in a non-iterative manner in full dense
capacity on D for total iterations of e which is the same for each sparsity state k’ training
iteration budget. Thus, the dense model is trained with ≈ 1

k iterations budget compared to
the iterative sparse variants.

4.2 HYPERPARAMETERS

Consistent hyperparameters are maintained across all discussed settings. In the warm-up phase, the
total number of epochs is fixed at 25. At each sparsity state i, the sparse models undergo 50 epochs of
training. For D2-Sparse, the subsequent sparsification and fine-tuning post-merging involve 5 epochs.
Weight merging P(·) uses a simple weight interpolation method, with the interpolation coefficients
determined through a grid search over the values [0.1, 0.25, 0.5, 0.75, 0.95]. The final target sparsity
for the k-th state is set to 5%, with a total of 10 states. Additionally, each configuration is run for 3
seeds for statistical significance. Different dataset fractions are constructed by uniformly subsetting
across classes, ensuring the same partition for every training configuration with that specific data
budget. For the 1-shot variants, we do only one state-based sparse training at 5% sparsity.

Ablation results on varying hyperparameters are provided in the Appendices B.1 and B.2.

4.3 RESULTS

As illustrated in the detailed performance analysis presented in Figs. 3 and 4, both the 1-shot and
iterative variants of the D2-Sparse training framework exhibit consistently superior performance
compared to the Baseline and Baseline LB methods. The performance is particularly notable at
a mere 0.5% data fraction on ResNet-34 (5% sparsity), where the iterative variant of D2-Sparse
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showcases a remarkable top-1 accuracy improvement of over 7%, outperforming both Baseline and
Baseline LB.

This superior performance extends to various experimental settings, providing a robust and consistent
profile. In the 1-shot variant, specifically at a 2% data capacity for ResNet-50, D2-Sparse demonstrates
a significant performance enhancement of approximately 5% over Baseline and an impressive 8%
improvement over Baseline LB. These compelling results offer strong evidence supporting the efficacy
and effectiveness of the proposed D2-Sparse training approach.
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Figure 3: Results on ResNet-18 with CIFAR-10 dataset
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Figure 4: Results on ResNet-34 with CIFAR-10 dataset

Additonal ablation experiments on robustness and calibration are provided in the appendix B.2.

5 CONCLUSION

Exploring the interplay between different constraints in machine learning remains a crucial but often
overlooked avenue of research. Recognizing this, our objective is to delve into the intricate dynamics
between sparsity and the challenges posed by a low-data learning regime. To accomplish this, we
introduce a novel approach, the D2-Sparse, a dual dynamic coupled sparse training framework.

This novel framework was conceived with the aim of unraveling the complex relationships between
sparsity and the constraints imposed by limited data availability. Through a meticulous and extensive
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set of experiments, we aim to demonstrate not only the efficacy but also the superiority of our
proposed D2-Sparse framework compared to baseline methods, especially when dealing with varying
data budgets.

Although our current findings are rooted in small-scale settings, we view them as the foundation for
a more comprehensive and rigorous exploration. Our future endeavors will involve expanding this
work to conduct in-depth studies, benchmarking D2-Sparse across a diverse array of model families
and datasets. This ambitious trajectory aims to elevate the depth and applicability of our research,
providing valuable insights into the interplay of constraints in machine learning scenarios.
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A COMPLEMENTARY SPARSE LEARNING

The exploration of Complementary Learning Systems stands as a pivotal paradigm, offering essential
insights into how humans acquire knowledge from limited experiences and data. This area has
garnered significant attention, with extensive contributions emerging from both the neuroscience and
machine learning perspectives (Blakeman & Mareschal, 2019; Arani et al., 2022; Nguyen & Chang,
2021; Lee, 2019; Pham et al., 2023; Wu et al., 2023; Pham et al., 2021).

At its core, the Complementary Learning Systems framework can be intuitively understood through
the lens of information maximization. The overarching objective within this paradigm is to extract
the maximum information from a given context or sample. An illustrative example is found in the
work of Zhang et al. (2022), where a contrastive time-series model was proposed. In this model, two
complementary views of the same time-series sample, namely, the frequency domain obtained through
a Fourier transform and the original temporal domain, were utilized. Although the total information
content of the time-series sample remains constant, incorporating the extra frequency domain provides
an additional perspective for the model to learn more features about the sample, thereby accelerating
the learning process. This conceptualization underscores the essence of information maximization
within the framework of Complementary Learning Systems.

prune

duplicate

//
k=1

Figure 5: Schematic of the proposedl CSL framework.

Motivated by this concept, prior to crafting the D2-Sparse framework, we developed the Complemen-
tary Sparse Learning (CSL) framework, as illustrated in Fig. 5. Although most components remain
consistent with D2-Sparse, the key modification lies in the incorporation of the complementary loss,
denoted as LCL. Unlike D2-Sparse, where the two branches undergo independent training, our
objective in CSL is to train two sparse models with individual cross-entropy losses (LCE) alongside
a shared complementary loss.

The complementary loss serves the purpose of promoting diversity by encouraging the feature
representations or weights of the two models to diverge. Various loss candidates can fulfill this
role, with the simplest being an L2 penalty applied to the distance computed between the pre-final
layer outputs (feature vectors) of each sparse model. Consequently, the overall training process
can be conceptualized as a Minmax game, where each model aims to minimize its individual LCE

while simultaneously maximizing the joint LCL - effectively maximizing the distance between their
respective feature representations.
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Alternative candidates for the complementary loss include minimizing the diagonal of neural rep-
resentation similarity metrics such as Canonical Correlation Analysis (CCA) and Centered Kernel
Alignment (CKA) (Kornblith et al., 2019). These approaches offer diverse avenues for promoting
complementarity during the training process.
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Figure 6: From left to right: (a) Hamming distance between the sparse masks of the two models. (b)
L2-complementary loss profile. (c) Test accuracy on 50% fraction of CIFAR-10 using ResNet-34.

Using the L2 penalty as the complementary loss function, we conducted experiments using a ResNet-
34 on a 50% data fraction of CIFAR-10. Diverging from the D2-Sparse approach, we initiated
our exploration with static masks. In this context, static masks are set during initialization through
pruning using SNIP (Lee et al., 2019) for each state. Only the unpruned parameters are allowed
to be trained. The static mask is duplicated for both branches, eliminating the need for subsequent
sparsification and fine-tuning after merging, as the merged model consistently maintains the same
sparsity as the two individual models.

In contrast, the dynamic variant introduces ERK (Evci et al., 2020)-based mask learning, mirroring
the approach in D2-Sparse. As depicted in Fig. 6, the dynamic variant achieves the highest test
accuracy, and the complementary loss exhibits a desirable positive increasing profile, indicating
optimal behavior where we aim for an increasing distance between their feature representations.
However, two primary concerns arose during this exploration, prompting the decision to abandon the
framework based on the complementary loss function.

First, as illustrated in Fig. 6 (a), the Hamming distance between the masks of the two models
decreases with increasing sparsity. This suggests a higher overlap in the sparse patterns identified
by each model, undermining the intended diversity. Second, the training process proved to be quite
unstable, and tuning the loss coefficients posed significant challenges. These concerns collectively
contributed to the decision to forego the use of the complementary loss function-based framework.

Hence, given the optimal and stable performance demonstrated by D2-Sparse, coupled with the
observed positive trend in the Hamming distance profile between the learned masks of the two models,
as shown in Fig. 8, we made the strategic decision to deviate from incorporating a complementary
loss function into our framework.

B ADDITIONAL RESULTS

B.1 ABLATION EXPERIMENTS

In addition to test accuracy, we assess the calibration metric for the sparse models generated by our
proposed framework, D2-Sparse, in comparison to the baseline method. Expected calibration error
(ECE) serves as the primary metric for computing the calibration scores of the sparse models on the
held-out test set.
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The formulation Guo et al. (2017) for ECE we use for our computations is given by,

ECE =

B∑
b=1

|Mb|
N

|acc(b)− conf(b)|

where B is the total number of bins, |Mb| is the number of predictions in bin b, N is the total number
of samples, and acc(b) and conf(b) are the accuracy and the confidence of bin b respectively.
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Figure 7: Calibration reported via ECE for ResNet-18 sparse models trained on CIFAR-10 dataset.

As shown in Fig. 7, D2-Sparse models obtain superior (lower) ECE at every sparse state across every
data budget when compared to Baseline LB sparse models, suggesting their superior reliability.

B.2 HYPERPARAMETER EXPERIMENTS

B.2.1 AUGMENTATION
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Figure 8: From left to right: (a) Test Accuracy on CIFAR-10 (2% data budget) with ResNet-34, (b)
Grid-searched weight merging co-efficient (α), (c) Hamming distance between the sparse model
masks.

As detailed in the main manuscript (paragraph 3), we create two transformed copies of the original
data D by employing two unique spatial augmentation strategies, denoted as T1 and T2. In our
experimentation, we explore two widely recognized augmentation techniques, namely CutMix (Yun
et al., 2019) and AugMix (Hendrycks et al., 2020). We investigate three different configurations:
utilizing CutMix for both T1 and T2 with varying strengths, using AugMix for both T1 and T2 with
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Figure 9: Robustness and Calibration results on varying T1 and T2 for ResNet-34 sparse training on
2% data budget of CIFAR-10.

varying strengths, and employing CutMix for T1 and AugMix for T2. As evident in both Figures 8
and 9, the second variant, involving AugMix with varying strengths for both T1 and T2, yields the
highest test accuracy and the highest robust accuracy1. Thus, we fix the second variant as the default
strategy for D2-Sparse.

B.2.2 MERGING STRATEGY
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Figure 10: Git Rebasin results.

As described in the main manuscript (paragraph 3), the standard merging strategy involves a straight-
forward grid-search-based point-wise weight interpolation between the two sparse models. The
merging function P(·) can be mathematically expressed as:

P(·) = α× fθ1 + (1− α)× fθ2 (1)

where α is the optimal coefficient for the interpolation found using the grid search.

Nevertheless, we also explored GitRebasin (Ainsworth et al., 2023), a more recent and widely
adopted model merging technique. Our results, presented in Figure 10, showcase our experiments
with GitRebasin on ResNet-18 and ResNet-34 with a 50% data budget on CIFAR-100. Although

1Robust accuracy is computed on the CIFAR-10 C dataset (Hendrycks & Dietterich, 2019).
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the initial findings seemed promising, we observed significant training instability, particularly when
increasing the frequency of merging via GitRebasin, especially at high-sparsity states. Consequently,
due to the heightened instability and the simplicity of grid search-based interpolation, we opt to retain
the default approach of grid search interpolation.
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