
Under review as submission to TMLR

What Matters in Hierarchical Search for Solving
Combinatorial Problems?

Anonymous authors
Paper under double-blind review

Abstract

Combinatorial problems, particularly the notorious NP-hard tasks, remain a significant chal-
lenge for AI research. A common, successful approach to addressing them combines search
with heuristics learned from demonstrations with Imitation Learning (IL). Recently, hier-
archical planning has emerged as a powerful framework in this context, enabling agents
to decompose complex problems into manageable subgoals. However, the foundations of
this approach, particularly the behavior and limitations of learned heuristics, remain un-
derexplored. Our goal is to advance research in this area and establish a solid conceptual
and empirical foundation. Specifically, we identify the following key characteristics, whose
presence favors the choice of hierarchical search methods: hard-to-learn value functions,
complex action spaces, presence of dead ends in the environment, or training data collected
from diverse sources. Through in-depth empirical analysis, we establish that hierarchical
search methods consistently outperform standard search methods across these dimensions,
and we formulate insights for future research. On the practical side, we also propose a set of
evaluation guidelines to enable meaningful comparisons between methods and reassess the
state-of-the-art algorithms.

1 Introduction

O
ut

-O
f-

D
is

tr
ib

ut
io

n -MCTS

-A*

AdaSubS

kSubS

-BestFS
Complex

 Actio
n Space

Diverse Data
Sources

Value Noise

Unimodal D
ata

D
ead E

nds

0% 100%50%

Figure 1: Schematic performance comparison of hi-
erarchical methods (AdaSubS, kSubS) and low-level
methods (ρ-BestFS, ρ-A*, ρ-MCTS) across six dimen-
sions studied in our analysis: handling data collected
from diverse sources, learning from clean unimodal
demonstrations, avoiding dead ends, performance un-
der high-value approximation errors, handling complex
action space, and generalizing to out-of-distribution
instances.

The ability to solve discrete tasks that require sophis-
ticated reasoning, particularly those involving NP-hard
problems, is essential for advancing AI (Bengio et al.,
2021). These include complex problems like theorem
proving (Wu et al., 2021; Trinh et al., 2024), constraint
satisfaction problem (Achiam et al., 2017), molecule
alignment (Needleman & Wunsch, 1970; Smith & Wa-
terman, 1981), social network analysis (Kipf & Welling,
2017), or navigation (LaValle, 2006; Choset et al., 2005).
Even driving a car, which typically involves continuous
control of steering and speed, requires high-level discrete
decision-making, e.g., when to overtake, when to change
lanes, or how to navigate through traffic (Kiran et al.,
2022).

Addressing such tasks, known as combinatorial prob-
lems, requires efficient planning strategies due to the
vast and complex search spaces involved (Bruck & Good-
man, 1987). A widely adopted solution is to learn heuris-
tics from demonstrations, even suboptimal, via imitation
learning – a flexible approach that combined with effec-
tive planning methods has become a standard paradigm.

1

Under review as submission to TMLR

Recently, hierarchical search emerged as a powerful framework in this context, inspired by how humans plan
their actions (Hull, 1932; Fishbach & Dhar, 2005; Kool & Botvinick, 2014). This general-purpose method
breaks down a problem into manageable subproblems, or subgoals, making the overall task more tractable.
Hierarchical search has been successfully applied to a variety of combinatorial tasks, as evidenced by methods
like Subgoal Search (kSubS) (Czechowski et al., 2021), and further advanced by Adaptive Subgoal Search
(AdaSubS) (Zawalski et al., 2023), Hierarchical Imitation Planning with Search (HIPS) (Kujanpää et al.,
2023a), or HIPS-ε (Kujanpää et al., 2023b).

Our goal is to advance research in hierarchical planning and establish a solid conceptual and empirical
foundation. We choose kSubS and AdaSubS as representative examples of simple yet effective hierarchical
methods. These approaches introduce a single layer of subgoals over low-level search algorithms, enabling us
to isolate and measure the benefits of hierarchical decomposition in a controlled manner. Through extensive
empirical analysis, we identify four key properties of environments and training data whose presence favors
the use of hierarchical search methods: hard-to-learn value functions, complex action spaces, presence of
dead ends in the environment, or data collected from diverse sources. We further analyze these findings from
a general perspective and prove theorems that explain the most unexpected results. Our findings offer a
clearer understanding of when hierarchical approaches should be preferred over low-level methods.

In summary, our contributions are as follows:

• We conduct a detailed empirical comparison of hierarchical and low-level search methods, both
guided by learned heuristics, across a range of combinatorial tasks, revealing consistent trends in
performance and robustness.

• We provide a theoretical analysis that explains key empirical findings and extends to a broader class
of hierarchical methods, offering insights that generalize beyond the specific algorithms evaluated.

• We identify key tasks and data characteristics that favor hierarchical approaches and propose eval-
uation guidelines to support more consistent and transparent benchmarking in future research.

2 Related Work

Solving Decision-Making Problems Decision-making problems are often framed as Markov Decision
Processes (MDPs) (Sutton et al., 1999), which can be solved using Reinforcement Learning (RL) algorithms
like PPO (Schulman et al., 2017) or DQN (Mnih et al., 2015). These methods learn policies through
interaction with the environment. An alternative to learning from trial and error is Imitation Learning
(IL), training models directly from offline demonstrations. The availability of large-scale datasets (Walke
et al., 2023; Collaboration et al., 2023; Grauman et al., 2022; Dosovitskiy et al., 2017), make it applicable
to the most complex domains like robotics (Mandlekar et al., 2018; Edmonds et al., 2017; Kim et al., 2024),
autonomous driving (Kelly et al., 2019; Li et al., 2022; Zhang & Cho, 2017), and physics-based control (Kim
et al., 2020; Fickinger et al., 2022). Key foundational methods such as Behavioral Cloning (BC) (Sutton
& Barto, 1998), Inverse Reinforcement Learning (IRL) (Baker et al., 2009), or DAgger (Ross et al., 2011)
have been instrumental in advancing IL for complex environments where direct exploration is less practical.
In this work, we use IL to train components for the search methods, such as the policy and value function,
which is a widely adopted approach (Czechowski et al., 2021; Zawalski et al., 2023; Takano, 2023).

Subgoal Methods Hierarchical Reinforcement Learning methods tackle complex decision-making tasks
by breaking them into subgoals. HIRO (Nachum et al., 2018) reuses past data by goal relabeling. HAC
(Levy et al., 2019) builds a multi-layer hierarchy of policies trained with hindsight. Hierarchical Diffuser
(Chen et al., 2024) learns to predict future states with diffusion models. Graph-based methods, such as
SoRB (Eysenbach et al., 2019) or DHRL (Lee et al., 2022) build a high-level graph of states, which then
allow for efficient shortest path finding. GCP (Pertsch et al., 2020) learns to predict middle states between
two given observations. Algorithms such as HPG (Ghavamzadeh & Mahadevan, 2003) or H-DDPG (Yang
et al., 2018) extend the classical RL algorithms to the hierarchical setting.

2

Under review as submission to TMLR

In the area of combinatorial problems, there has been growing interest in applying HRL techniques. kSubS
(Czechowski et al., 2021) introduces a hierarchical search algorithm that iteratively generates subgoals to
construct a search tree. Building on this, AdaSubS (Zawalski et al., 2023) incorporates multiple subgoal
generators, each trained to predict subgoals at different distances from the target, allowing for dynamic
adaptation of the planning horizon based on problem complexity. HIPS (Kujanpää et al., 2023a) and HIPS-
ε (Kujanpää et al., 2023b) perform search using subgoals generated by VQ-VAE models (van den Oord et al.,
2017).

Low-level Search Algorithms Traditional search algorithms like Best-First Search (BestFS), A* (Cor-
men et al., 2009; Russell & Norvig, 2009), and Monte Carlo Tree Search (MCTS) (Veness et al., 2009;
James et al., 2017) have long been the foundation for solving complex decision-making problems. Recent
advancements have improved these methods by integrating neural network-based heuristics, improving their
efficiency in large search spaces (Silver et al., 2018; Yonetani et al., 2021). A variant of ρ-BestFS used in
(Czechowski et al., 2021; Zawalski et al., 2023), leverage heuristics learned through behavioral cloning to
guide search. More recent algorithms, like PHS (Orseau & Lelis, 2021) or LevinTS (Orseau et al., 2023),
combine policy-driven and value-based approaches, offering both theoretical guarantees and strong empirical
performance. Additionally, PDDL planners (Haslum et al., 2019) solve decision-making problems by using
predefined action models and goals, with domain-independent planners offering broad applicability, while
domain-specific ones achieve higher performance in specialized tasks.

Empirical Studies on Algorithmic Performance Our work aligns with recent empirical studies that
investigate the conditions under which various algorithmic approaches excel. For instance, Andrychowicz
et al. (2020) investigate how specific design choices influence the performance of PPO, while other research
compares offline reinforcement learning with behavioral cloning (Kumar et al., 2022) or explores design
choices for language-conditioned robotic imitation learning (Mees et al., 2022). In this paper, we focus
on hierarchical search in combinatorial problems, specifically studying the conditions where hierarchical
methods outperform low-level planners. To the best of our knowledge, this is the first systematic study of
the relationship between hierarchical and low-level search in this context.

3 Combinatorial Environments

Our study targets solving combinatorial environments – domains with discrete, compact state representations
corresponding to exponentially large configuration spaces, which makes them highly challenging to solve.
This class includes several NP-hard problems, such as the Traveling Salesman Problem (Applegate et al.,
2006), the Rubik’s Cube (Singmaster, 1981), Sokoban (Culberson, 1997), or solving non-linear inequalities
(Sahni, 1974). In our study, we specifically focus on goal-reaching tasks. To efficiently solve combinatorial
problems an algorithm should have the following desirable properties:

In combinatorial environments, each problem instance is typically entirely distinct from others, making it
unrealistic to assume that offline data provides comprehensive state space coverage. This is especially critical
in problems like the Rubik’s Cube, where even with a vast training dataset, any new state will be entirely
different from those previously encountered. Some approaches rely on sufficient state space coverage, but in
many combinatorial problems, this assumption is impractical.

1. Learning from offline data. Since combinatorial environments are characterized by a large space
of possible configurations, learning without priors or handcrafted dense rewards is infeasible due to
the challenge of exploration1. To address this, a canonical solution is to leverage offline data, even
suboptimal. Other possible approaches, such as clever reward shaping, usually require significant
domain knowledge.

2. Combinatorial space abstraction. In combinatorial environments, each problem instance is
typically entirely distinct from others. Hence, it is unrealistic to assume a comprehensive state space

1For instance, we tested PPO (Schulman et al., 2017) on the Rubik’s Cube, but, unsurprisingly, it failed to make any progress
due to never reaching the goal in the haystack of 4.3× 1019 states, hence never observing a positive reward.

3

Under review as submission to TMLR

coverage by training data or repeated visits to nearby states, an assumption that some approaches
implicitly rely on.

3. Search. Methods that don’t use search and follow a single action trajectory are inherently limited
by computational complexity, since they can perform only a constant number of operations before
choosing an action. Solving NP-hard problems within a fixed computation budget is computationally
infeasible (Bruck & Goodman, 1987).

3.1 Problem Formulation

We model each combinatorial environment as a deterministic fully observable planning problem Π =
(S, A, f, c, s0, G): S is a state set, A primitive actions, f : S × A → S a deterministic transition func-
tion, c : A → R≥0 a step cost (we take c = 1), s0 the start state, and G ⊆ S the goal set. A plan is an
action sequence that drives s0 into G with minimum cost C⋆(Π). The same data induce a deterministic,
episodic MDP with binary reward R(s, a) = 1{f(s, a) ∈ G}. During training, the agent receives a fixed
offline dataset D = {τ (i)}N

i=1 of (possibly sub-optimal) trajectories collected on different instances. At test
time, given (Π, D) and a budget B nodes to visit, the algorithm must return a successful plan or declare
failure.

4 Subgoal Methods

Subgoal methods, or hierarchical methods, are a family of algorithms designed to solve complex decision-
making tasks by breaking down the overall objective into smaller, more manageable subgoals (Sutton et al.,
1999). Instead of searching for a sequence of low-level actions that directly lead from the initial state to the
goal, the agent first identifies high-level intermediate targets – subgoals – that guide the trajectory toward
the final goal. The use of subgoals is widely considered as a method that scales better to longer horizons
(Chen et al., 2024; Lee et al., 2022), mitigates errors in value approximations (Czechowski et al., 2021),
and reduces overall complexity by decomposing the problem into smaller subproblems (Sutton et al., 1999;
Zawalski et al., 2023). The process of searching involves the following components:

• Subgoal generator that, given a state within the search tree, outputs a set of subgoals. For
instance, a subgoal may be a future state (Czechowski et al., 2021; Zawalski et al., 2023) or a
class of desired outcomes (Jiang et al., 2019; Panov & Skrynnik, 2018). See Figure 16 for example
subgoals. The subgoal generator can be implemented using models such as transformers with beam
search (Czechowski et al., 2021; Zawalski et al., 2023), VQ-VAE (Kujanpää et al., 2023a), or other
generative architectures. The generator is used by the planner to construct a search tree of subgoals.

• Low-level policy that determines a path of low-level actions between subgoals. For instance, it
may be a trained goal-reaching policy (Czechowski et al., 2021; Zawalski et al., 2023), a local search
(Czechowski et al., 2021; Kujanpää et al., 2023a), or a stored path from previous episodes (Eysenbach
et al., 2019; Lee et al., 2022).

• Planner that determines the order in which subgoals are generated. Standard planning algorithms
like BestFS (Czechowski et al., 2021), PHS (Kujanpää et al., 2023a), or their modified forms (Za-
walski et al., 2023), are typically used.

• Value function that estimates the distance between the given state and the goal state. The planner
uses this information to select the next node to expand with the subgoal generator. In some works it
is also called heuristic value. In our study, we focus on value functions learned from demonstrations,
but in general, values learned through RL or even scripted heuristics can be used in search.

In our experiments, we use kSubS (Czechowski et al., 2021) and AdaSubS (Zawalski et al., 2023) as subgoal
methods well-suited for combinatorial problems, as they satisfy the conditions formulated in Section 3. We

4

Under review as submission to TMLR

also experimented with HIPS and HIPS-ε (Kujanpää et al., 2023a;b), but these methods generally fail to
solve the problems within a reasonable computational budget. Therefore, their results are omitted from the
main text and discussed in Appendix I.

We compare the performance of the selected subgoal approaches against three popular low-level methods:
BestFS, A*, and MCTS. To ensure a fair comparison and improve efficiency, we augment these algorithms
by using a trained policy to select the top actions before each node expansion. We refer to them as ρ-BestFS,
ρ-A*, and ρ-MCTS. A detailed description, analysis, and pseudocode for each of these algorithms can be
found in Appendix F. See also Appendix H for diagrams explaining different search methods.

4.1 Training Components

In our experiments, the models for both subgoal methods and low-level searches were trained using imitation
learning, following standard practice (Nair et al., 2018; Czechowski et al., 2021). Specifically, we collected a
dataset of approximately 500 000 trajectories for each environment. Trajectories are sequences of consecutive
states and actions leading to the goal state. We used various methods of dataset collection, like hand-crafted
algorithms, trained policies, reversed random shuffles, and others, which let us to study the influence of
training data characteristics on the performance of search methods. Each component was trained and
evaluated in over 30 independent runs with different random seeds, all in a behavioral-cloning setup, a
training paradigm known to be very stable.

All components are implemented using HuggingFace Transformers. The subgoal generators and INT policies
(including both CLLP and baseline approaches) are built on the BART architecture (Lewis et al., 2020),
while the remaining policies and value functions utilize BERT (Devlin et al., 2019).

For the INT task, the learning rates were set to 1 × 10−4 for the generator, 1 × 10−4 for the CLLP, 3 × 10−4

for the policy, and 1 × 10−4 for the value network. For the Rubik’s Cube task, the respective learning rates
were 1 × 10−4 for the generator, 5 × 10−4 for the CLLP, 3 × 10−7 for the policy, and 1 × 10−4 for the value
network. For both the Sokoban and n-Puzzle tasks, the generator’s learning rate was 1 × 10−5, while the
learning rates for the CLLP, the policy, and the value network were all set to 1 × 10−4.

To ensure a fair comparison, all methods shared common components whenever applicable (e.g., each method
uses the same value function). This allows us to focus on the differences between the search algorithms, rather
than heuristic biases. No additional heuristics were used, ensuring that performance differences arise solely
from the algorithmic approaches. Training runs were conducted on a single NVIDIA A100 (40 GB) GPU
for up to 48 hours per component, with data loading utilizing one CPU core. Evaluation was performed on
a 24-core Xeon Platinum 8268 node with 192 GB of RAM.

More details on training the components, including specific objectives, are provided in Appendices C and D.

4.2 Performance Metrics

Our primary performance metric is the success rate, defined as the percentage of problem instances solved
within a given complete search budget. The complete search budget is the total number of visited states in
the search tree. In particular, for subgoal methods, the budget includes both the generated subgoals and
the states visited by the low-level policy used to connect these subgoals.

By accounting for the total number of visited states, this metric provides a unified and fair comparison of
search efficiency across different methods. We argue that reporting only the number of visited subgoal nodes
would unfairly favor subgoal methods (see Appendix I for details).

While wall-clock time could serve as an alternative budget metric, it suffers from high variance and is sensitive
to hardware, making it difficult to reproduce results. Nevertheless, we report wall-clock measurements to
validate their correlation with the complete search budget. Detailed discussion of that metric is provided in
Appendix G.

5

Under review as submission to TMLR

5 Analysis

We investigate how environmental properties and training data influence the performance of hierarchical
methods compared to low-level search approaches in combinatorial tasks. While previous works (Czechowski
et al., 2021; Zawalski et al., 2023; Kujanpää et al., 2023a;b) show a considerable advantage of hierarchical
methods, our experiments reveal that this advantage is not consistent across all scenarios (see Figures 4 or
5 for specific examples). Specifically, we answer the following research questions:

Q1. Is hierarchical search more effective than low-level search for solving combinatorial problems?

Q2. What environmental properties and characteristics of the training data amplify performance differ-
ences? When hierarchical search should be preferred over low-level search?

Q3. What pitfalls should be avoided when interpreting experimental results?

To address these questions, we conducted a wide range of experiments comparing subgoal and low-level
search algorithms across a variety of combinatorial tasks. Below, in each subsection we summarize the key
findings that reveal the most significant factors affecting performance, followed by a brief discussion. For
each finding, we link it to the relevant research questions. The extended analysis of these factors can be
found in Appendix B.

We present our findings using the Rubik’s Cube, Sokoban, N-Puzzle, and Inequality Theorem Proving (INT)
(Wu et al., 2021) environments2. Each of these four combinatorial problems exhibits distinct properties
that help us test complementary aspects of hierarchical search: (i) dead-end frequency—Sokoban contains
many irreversible pushes that can render the goal unreachable, letting us observe whether subgoal discovery
avoids such traps; (ii) action-space complexity—every INT move selects an axiom and its arguments from
millions of possibilities, introducing an extremely large branching factor that stresses reasoning over complex
actions; and (iii) state-space size and horizon length—Rubik’s Cube and N-Puzzle both provide vast state
graphs with uniform, low-level moves, making them suitable for studying long-horizon planning and learning
from diverse, sub-optimal traces. These benchmarks are widely used in planning research (McAleer et al.,
2019; Czechowski et al., 2021) and are known to be NP-hard (Demaine et al., 2018; Culberson, 1997; Ratner
& Warmuth, 1986). Since different algorithms exhibit significant performance variations depending on the
problem structure, we evaluate them in a range of environments to ensure the robustness of our findings.
Detailed descriptions of these environments can be found in Appendix A.

All methods in our study were trained using imitation learning. In particular, all algorithms share the same
value function, as stated in Section 4.1. To ensure fair comparisons, we measured complete search budgets, in
contrast to counting only high-level search nodes, to avoid giving any unfair advantage to subgoal methods,
as discussed in Section 4.2 (which contributes to the research question Q3). We tuned hyperparameters of
each method separately for each experiment to ensure optimal performance.

5.1 Subgoal Methods are Robust to Diverse Sources of Data

Achieving superhuman performance in complex tasks often involves large-scale datasets of demonstrations
obtained from agents with varying skill levels and strategies (Silver et al., 2016). By training models on data
collected from a variety of solvers and testing them in the Rubik’s Cube and N-Puzzle environments, we
show that the variability in training data has a significant impact on the performance of search algorithms.
Our training data included algorithmic solvers, computational solvers, and random shuffles, as detailed in
Appendix B.1.

As shown in Figures 2-3, subgoal methods consistently outperform low-level methods by a wide margin
(Q1). However, when the training dataset is limited to a single source of demonstrations – whether the
demonstrations are long and structured or short and direct – this performance gap disappears (see Figures

2We note that classical environments have domain-specific solvers that achieve high performance by relying on expert
knowledge. However, our goal is to compare general-purpose search methods that require no domain knowledge.

6

Under review as submission to TMLR

Figure 2: Solving the Rubik’s Cube. Components
are trained on data from 4 different solvers.

Figure 3: Solving the N-Puzzle. Components are
trained on data from 2 different solvers.

Figure 4: Solving the Rubik’s
Cube. Components are trained on
reversed random shuffles.

Figure 5: Solving the Rubik’s
Cube. Components are trained on
the Beginner algorithmic solver.

Figure 6: Solving N-Puzzle. Com-
ponents are trained on an algorith-
mic solver.

4-6). Notably, subgoal methods, particularly AdaSubS, maintain stable performance across all training
setups, while low-level methods are highly sensitive to the characteristics of the training data.

To explain those results, we found that value functions trained on diverse data often fail to assign consistently
low values to the initial states of tasks. When demonstrations differ significantly in their length or execution
style, the value function learns this variation, leading to inconsistent value predictions. Hierarchical methods
can overcome this issue by relying on subgoals. Subgoals enable the agent to make long steps toward the
solution, effectively bypassing regions of the state space where the value function is inconsistent or noisy,
as it does not need to assess every small step along the way (this property is further studied in Section
5.2). In contrast, low-level methods operate on a finer, step-by-step level, executing small, atomic actions.
This makes them more sensitive to the variability in the value function because they must evaluate each
intermediate state on the way.

More detailed analysis of the experiments involving diverse data sources is provided in Appendix B.1.

Takeaway Subgoal methods successfully leverage diverse demonstrations (Q2), while low-level
search performs better when trained on homogeneous trajectories (Q2).

7

Under review as submission to TMLR

5.2 Subgoal Methods are Value Noise Filters

We found that the classical search algorithms are highly sensitive to the quality of the value function. To
show this in a controlled setting, we added Gaussian noise to the value estimates and observed how different
noise levels impacted the success rate of solving tasks.

Figure 7: Success rate of low-level and subgoal methods as the approximation errors of the value function
increase. σ = 100 results in completely random value estimates.

While ρ-BestFS is able to solve nearly all instances under ideal conditions, its performance significantly
declines as value function errors increase, even to 0% (see Figure 7). ρ-A* and ρ-MCTS behave similarly.
In contrast, the subgoal methods show remarkable resilience. Particularly AdaSubS, which maintains nearly
unchanged success rate, despite high value errors (Q2).

These results align with our findings in Section 5.1, where using diverse training data naturally introduced
value estimation errors. As observed by Zawalski et al. (2023), the search process of subgoal methods is
guided by subgoal generators, which reduces reliance on the value function. Subgoal generators and the
conditional policies connecting subgoals are not directly influenced by the value approximation errors. The
value function is used only in high-level nodes, which represent only a fraction of the search tree.

In hierarchical methods, the distance between high-level nodes spans multiple steps, increasing the likelihood
that value estimates for subsequent high-level nodes along the solution path will be monotonic (see Figure
8 for an illustrative example), which makes planning more efficient. This supports the claim by Czechowski
et al. (2021) that subgoals effectively mitigate the impact of value noise. To further ground that result, we
prove the following theorem:
Theorem 1 (Search advancement formula). Let gk : S → P(S) be a stochastic k-subgoal generator that,
given a state s ∈ S samples a set of b subgoals {si} such that the distances d(si, s) are independent, uniformly
distributed in the interval [−k; k]. Let V : S → R be a value function with approximation error uniformly
distributed in the interval [−σ; σ].

Then, after n iterations of search, the expected total progress toward the goal is:

EAdv = nb

4σk

∫ k

−k

x

(∫ σ

−σ

ũ(x + h)b−1dh

)
dx, (1)

where ũ(x) is CDF of the sum of two uniform variables U(−k, k)+U(−σ, σ). Additionally, if we approximate
that sum as U(−k − σ, k + σ), we get

EAdv ≈
n

(
(k + σ)b(bk2 + bkσ − 2kσ − 2σ2) + σb(2kσ + bkσ + 2σ2) − kb(bk2)

)
(b + 1)(b + 2)kσ(k + σ)b−1 (2)

Proof. See Appendix K for the proof.

Theorem 1 quantifies the expected progress of the search at each step, with Equation 1 giving an exact
formula and Equation 2 providing a useful approximation. To compare subgoal methods with low-level

8

Under review as submission to TMLR

Figure 8: Value estimates along a solving trajectory
generated by ρ-BestFS. Even small approximation er-
rors cause non-decreasing values, slowing down the
search. In contrast, the subgoal path mitigates these
errors, leading to mostly monotonic values along the
trajectory.

Figure 9: Normalized advancement EAdv/k for a sin-
gle search iteration, according to Theorem 1. The
value for each subgoal is divided by its length to rep-
resent the advancement per atomic action for easier
comparison.

methods in theory, under different levels of value approximation error, we model low-level search by setting
k = 1, which represents a single action. Figure 9 shows the expected search progress with a branching factor
of b = 3, normalized by the number of actions leading to a subgoal.

When value estimates are perfect (i.e., σ = 0), both subgoal and low-level searches perform similarly.
However, as value approximation errors increase, subgoal methods become significantly more resilient. At
high noise levels (σ = 20), single-step searches make very little progress, advancing only 0.025 per action.
In contrast, subgoals of length 8 achieve much greater progress – 1.4 for the entire subgoal, which is 0.175
per action. This 7-fold increase in theoretical efficiency explains why subgoal methods outperform low-level
methods in our experiments.

Further analysis of these experiments can be found in Appendix B.2.

Takeaway Subgoal methods successfully handle value approximation errors. Thus, they should
be used when estimating the value is hard, for instance, when learning from diverse and suboptimal
demonstrations (Q2).

5.3 Subgoal Methods Handle Complex Action Spaces

In environments with large action spaces, search methods often struggle due to the exponential increase
in the number of choices (Sutton & Barto, 1998). As shown in Figure 10, subgoal methods demonstrate
a clear advantage over low-level search methods in the INT environment (Wu et al., 2021), a benchmark
on proving mathematical inequalities (Q1). The INT environment is particularly challenging because of its
highly complex observation and action spaces, making it the most difficult benchmark among those used in
(Czechowski et al., 2021; Zawalski et al., 2023; Kujanpää et al., 2023a;b).

Given a complex action space, each node expansion in low-level methods involves executing many similar
actions, limiting their ability to efficiently search through the space. In contrast, subgoal methods compute
actions only to connect subgoals, which is a much simpler task. This targeted approach reduces the negative
impact of a large action space, allowing subgoal methods to maintain their efficiency even as the action space
grows (Q2).

To confirm this explanation, we conducted experiments on a modified version of the Rubik’s Cube, where
the action space was artificially inflated by giving the agent access to 100 copies of each action. As shown in
Figure 11, this simple modification drastically reduces the success rates of all low-level methods, even below
35%. In contrast, subgoal methods remain largely unaffected, performing similarly to the standard setup.
We can explain that result with the following theorem:

9

Under review as submission to TMLR

Figure 10: Solving INT. Components are trained
on randomly generated proofs.

Figure 11: Solving the Rubik’s cube with ex-
panded action space, compared with the stan-
dard setup. Components are trained on reverse
random shuffles.

Theorem 2 (Densification of the action space). Fix any state s from the state space S. Let f : A → [0, 1]
be the action distribution induced by the data-collecting policy for the state s. Assume that f is continuous
and has a unique maximum.

For clarity, assume A = [0, 1]. Consider a sequence of increasingly dense discrete action spaces An :=
{i/n}n

i=0 ⊂ A. Let ρn : S × An → [0, 1] be a family of policies that learn the distribution f |An
over actions,

with uniform approximation error U(−E, E), where E ∈ R+. Let rn be the range of the top K actions
according to the probabilities estimated by ρn. Then

lim
n→∞

E[rn] = 0.

Proof. See Appendix L

Intuitively, this theorem states that as the action space become more dense and complex, the actions sampled
for search become increasingly less diverse, which strongly impedes successful planning. Note that this
analysis is strictly more general than the last experiment, where we simply copied the available actions.
Further analysis of the experiments involving large action spaces is provided in Appendix B.3.

Takeaway When facing a problem with a complex action space, subgoal methods should outperform
low-level search (Q2).

5.4 Subgoal Methods Avoid Dead Ends

Search algorithm Dead ends rate
ρ-MCTS 22.0%
ρ-BestFS 18.5%

ρ-A* 13.7%
kSubS (4 steps) 12.7%
kSubS (8 steps) 10.0%

AdaSubS 8.86%

Figure 12: Fraction of dead ends encountered during
search between hierarchical and low-level methods in
Sokoban.

Once an agent encounters a dead end, reaching the
goal becomes impossible, leading to wasted compu-
tational effort. Our results, presented in Figure 5.4,
show that subgoal methods tend to enter dead ends
less often than low-level methods. Using longer sub-
goals improves the ability to bypass those areas.

Among low-level methods, ρ-A* performs the best at
minimizing dead ends rate, as its node selection regu-
larizes values by depth in the search tree, preventing
it from over-committing to dead ends. However, even
ρ-A* is outperformed by subgoal methods, which rely
on greedy value estimates and subgoals.

10

Under review as submission to TMLR

Deciding whether a state is a dead end can be NP-
hard. Hence, it is much harder for the value function to penalize dead ends compared to the policy, which
only ranks the available actions and does not have to identify dead ends (Feng et al., 2022). Furthermore,
demonstrations used for imitation learning lead to the goal state, hence they contain no dead ends. Therefore
the value function trained this way is never directly instructed to penalize dead ends. At the same time,
during training of the policy the actions leading to dead ends are never reinforced. Our experiments show
that hierarchical search relies much less on the value guidance compared to low-level search (Section 5.2),
which further supports our conclusions. For a more detailed analysis, see Appendix B.4.

Takeaway Subgoal Methods Are More Effective at Avoiding Dead Ends Compared to Low-Level
Search (Q2).

5.5 Subgoal Methods Generalize Out-Of-Distribution

Planners that can generalize to out-of-distribution (OOD) instances are essential for robust decision-making
(Kirk et al., 2023; Shen et al., 2021). We tested two types of generalization in the Sokoban environment: by
significantly changing the layout of the board and by using extremely difficult boards from the DeepMind
dataset (Guez et al., 2018) (see Figure 13 for examples).

Figure 13: Examples of Sokoban boards used in OOD experiments

Figure 14: Averaged OOD results on Sokoban
boards with OOD layouts. These instances were
generated by systematically varying all parame-
ters of the instance generator.

Figure 15: Performance on DeepMind extra hard
boards.

In both cases, subgoal methods show better performance than low-level methods, with the gap increasing as
the distribution shift become more visible (see Figures 14-15). However, we found that kSubS, when using
twice longer subgoals, collapses in OOD evaluations, despite outperforming ρ-BestFS and other low-level

11

Under review as submission to TMLR

methods on in-distribution tasks. As the subgoal distance increases, predicting the distant future becomes
more challenging, making it less likely for the generated subgoals to be valid and reachable, especially in
OOD tasks. In contrast, low-level methods avoid this issue, as selecting an action from a limited set always
results in a valid move. Thus, while subgoal methods can be effective in OOD scenarios, excessively long
subgoals can degrade performance (Q2).

When evaluated on extremely challenging instances (see Figure 1) introduced by (Guez et al., 2018), all
methods required a significantly higher search budget but maintained the same performance order as in the
previous experiment (Q1). Solving these instances requires more advanced strategies than those learned
during training. Subgoal methods are better equipped to handle this increased complexity because selecting
subgoals is closely related to choosing a broader strategy because of their longer horizon. In contrast, low-level
methods must assess each individual action, which limits their ability to foresee the long-term consequences
of their choices.

Takeaway Subgoal methods can scale better than low-level methods on OOD instances, provided
the subgoals are not too long (Q2).

6 Discussion of the Results and Future Directions

We identified several features that facilitate the performance of subgoal methods; however, this list is not ex-
haustive. Since our study is primarily empirical, it is difficult to make truly universal claims. This highlights
the need for further research, including the analysis of additional subgoal-based and low-level algorithms,
as well as a broader range of environments, such as the Traveling Salesman Problem and Maximum In-
dependent Set. Although most of our conclusions were confirmed across multiple settings, extending the
evaluation to more domains would further strengthen their validity. Furthermore, extending the analysis to
include classical planning methods without learned components is also an interesting direction to explore.

Empirical results suggest general trends, but Theorems 1-2 offer theoretical support for key findings. These
theorems, which apply to the general class of hierarchical methods described in Section 4, reinforce the
broader relevance of our results. Additional findings from our study may also inspire further theoretical
investigation.

We advocate for the use of a complete search budget as a more meaningful metric than alternatives such
as the number of high-level nodes or wall-clock time. Nevertheless, for completeness, we report runtime
comparisons in Appendix G. Developing a flexible, low-variance, and reproducible evaluation framework
based on wall-clock time remains an important direction for future work.

Our study has broader implications for other complex domains. For example, advancements in robotics
often face significant challenges due to limited data, leading many methods to rely on collective datasets
like Open X-Embodiment (Collaboration et al., 2023). As shown in our experiments, hierarchical search
methods benefit substantially from training on diverse expert data (Section 5.1). Furthermore, the data
bottleneck increases the need for the models to generalize to out-of-distribution scenes and tasks, which is
also an advantage of hierarchical methods (Section 5.5). Finally, an essential aspect of robotics involves
preventing the robot from becoming stuck or losing the manipulated object, events that can be seen as
dead-end scenarios (Section 5.4). Successful applications of hierarchical methods in robotics include models
such as SuSIE (Black et al., 2024) and HIQL (Park et al., 2023).

Additionally, our experiments indicate that hierarchical methods scale well in long-horizon tasks, as evidenced
by their performance in the N-Puzzle and the Rubik’s Cube (using Beginner demonstrations), where the
average sequence of steps often exceeds 200. Interestingly, while low-level methods can still perform well in
these scenarios, we observed that they tend to be much more sensitive to hyperparameter tuning.

It is important to note that we do not claim hierarchical methods are universally superior to low-level
approaches in all complex domains. Instead, the properties highlighted in our analysis suggest cases where
they should be considered.

12

Under review as submission to TMLR

7 Conclusions

We conducted a thorough comparison of hierarchical and low-level search methods for combinatorial tasks.
Our experiments provides empirical and some theoretical evidence that hierarchical approaches should be
preferred in environments where value estimation is challenging and learned estimates face significant uncer-
tainty, particularly when learning from diverse suboptimal data. Furthermore, subgoal methods demonstrate
better scalability in complex action spaces and are more effective at avoiding dead ends than low-level meth-
ods. Thus, in environments characterized by those properties, it is advisable to consider subgoal methods
as an alternative to low-level search.

While we use Subgoal Search as a representative hierarchical method in our experiments, our analysis is
framed from the broader perspective of hierarchical methods, as introduced in Section 4. Notably, Theorems 1
and 2, as well as the general properties illustrated in Figures 8 and 11, apply to a wide class of subgoal
methods, not just to the specific implementations used for our experiments.

Based on our results, we propose guidelines for future research in this area. According to our experiments,
the best-performing low-level search was usually ρ-BestFS with a confidence threshold (see Appendix F).
Although it is rather sensitive to the threshold value, which has to be optimized for each domain separately,
we advocate using this simple method as a standard baseline for further research in hierarchical search. Our
guidelines are comprehensively discussed in Appendix J.

Additionally, we identified easy-to-overlook mistakes in reporting the results that may lead to misleading
conclusions. Most importantly, the reported complete search budget of hierarchical methods must include all
the visited states and not only the high-level nodes as used in some prior works.

8 Reproducibility Statement

The code used to run all our experiments is available at https://github.com/subgoalsearchmatters/
what-matters-in-hierarchical-search. We also link there datasets used for training our models. Hence,
all our results are fully reproducible.

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In Doina

Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning
Research, pp. 22–31. PMLR, 2017. URL http://proceedings.mlr.press/v70/achiam17a.html.

Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier Bachem.
What matters in on-policy reinforcement learning? A large-scale empirical study. CoRR, abs/2006.05990,
2020. URL https://arxiv.org/abs/2006.05990.

David L Applegate, Robert E Bixby, Václav Chvátal, and William J Cook. The Traveling Salesman Problem:
A Computational Study. Princeton University Press, 2006.

Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse planning. Cogni-
tion, 113(3):329–349, 2009.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing Systems, 2021.

Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Rich Walke, Chelsea Finn, Aviral Kumar, and
Sergey Levine. Zero-shot robotic manipulation with pre-trained image-editing diffusion models. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=c0chJTSbci.

13

https://github.com/subgoalsearchmatters/what-matters-in-hierarchical-search
https://github.com/subgoalsearchmatters/what-matters-in-hierarchical-search
http://proceedings.mlr.press/v70/achiam17a.html
https://arxiv.org/abs/2006.05990
https://openreview.net/forum?id=c0chJTSbci

Under review as submission to TMLR

Jehoshua Bruck and Joseph W. Goodman. On the power of neural networks for solving hard prob-
lems. In Dana Z. Anderson (ed.), Neural Information Processing Systems, Denver, Colorado, USA,
1987, pp. 137–143. American Institue of Physics, 1987. URL http://papers.nips.cc/paper/
70-on-the-power-of-neural-networks-for-solving-hard-problems.

Robert Brunetto and Otakar Trunda. Deep heuristic-learning in the rubik’s cube domain: An experimental
evaluation. In Jaroslava Hlavácová (ed.), Proceedings of the 17th Conference on Information Technologies
- Applications and Theory (ITAT 2017), Martinské hole, Slovakia, September 22-26, 2017, volume 1885 of
CEUR Workshop Proceedings, pp. 57–64. CEUR-WS.org, 2017. URL https://ceur-ws.org/Vol-1885/
57.pdf.

Murray Campbell, A. Joseph Hoane Jr., and Feng-Hsiung Hsu. Deep blue. Artif. Intell., 134(1-2):57–83,
2002. doi: 10.1016/S0004-3702(01)00129-1. URL https://doi.org/10.1016/S0004-3702(01)00129-1.

Chang Chen, Fei Deng, Kenji Kawaguchi, Çaglar Gülçehre, and Sungjin Ahn. Simple hierarchical planning
with diffusion. CoRR, abs/2401.02644, 2024. doi: 10.48550/ARXIV.2401.02644. URL https://doi.org/
10.48550/arXiv.2401.02644.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pp. 15084–15097, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
7f489f642a0ddb10272b5c31057f0663-Abstract.html.

Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki, and
Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press,
Cambridge, MA, 2005. ISBN 978-0-262-03327-5.

Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta,
Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, Albert
Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky, Anant Rai, Anchit Gupta, Andrew
Wang, Anikait Singh, Animesh Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin,
Archit Sharma, Arefeh Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick,
Beomjoon Kim, Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le,
Chelsea Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne Chen,
Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa Sadigh,
Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Freek Stulp, Gaoyue
Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng, Giulio Schiavi, Glen Berseth, Gre-
gory Kahn, Guanzhi Wang, Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I
Christensen, Hiroki Furuta, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic, Isabel
Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine
Hsu, Jeannette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai
Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Ma-
lik, João Silvério, Joey Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador,
Joseph J. Lim, Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan
Go, Keerthana Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka,
Kevin Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krish-
nan Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti,
Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi "Jim" Fan, Lionel Ott, Lisa Lee, Luca
Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina, Mateo Gua-
man Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu Ding,
Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki Kanazawa, Nicklas Hansen,
Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur Muhammad Mahi

14

http://papers.nips.cc/paper/70-on-the-power-of-neural-networks-for-solving-hard-problems
http://papers.nips.cc/paper/70-on-the-power-of-neural-networks-for-solving-hard-problems
https://ceur-ws.org/Vol-1885/57.pdf
https://ceur-ws.org/Vol-1885/57.pdf
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.48550/arXiv.2401.02644
https://doi.org/10.48550/arXiv.2401.02644
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html

Under review as submission to TMLR

Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi, Patrick "Tree" Miller, Patrick
Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya
Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in,
Rohan Baijal, Rosario Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca,
Rutav Shah, Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin,
Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shuran Song, Sichun Xu, Siddhant Haldar,
Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker,
Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj Nair, Su-
vir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas
Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity
Chung, Vidhi Jain, Vincent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yao Lu, Yecheng Jason Ma,
Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu, Yixuan Wang, Yonatan Bisk,
Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu
Zhang, Yunfan Jiang, Yunshuang Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu,
Zichen Jeff Cui, Zichen Zhang, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and
RT-X models. https://arxiv.org/abs/2310.08864, 2023.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844.

Joseph C. Culberson. Sokoban is pspace-complete. 1997. URL https://api.semanticscholar.org/
CorpusID:61114368.

Konrad Czechowski, Tomasz Odrzygózdz, Marek Zbysinski, Michal Zawalski, Krzysztof Olejnik, Yuhuai Wu,
Lukasz Kucinski, and Piotr Milos. Subgoal search for complex reasoning tasks. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 624–638, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/05d8cccb5f47e5072f0a05b5f514941a-Abstract.html.

Erik D. Demaine, Sarah Eisenstat, and Mikhail Rudoy. Solving the rubik’s cube optimally is np-complete.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi: 10.4230/LIPICS.STACS.2018.24. URL
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.24.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.),
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An open
urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16, 2017.

Gabriel Dulac-Arnold, Richard Evans, Peter Sunehag, and Ben Coppin. Reinforcement learning in large
discrete action spaces. CoRR, abs/1512.07679, 2015. URL http://arxiv.org/abs/1512.07679.

Mark Edmonds, Feng Gao, Xu Xie, Hangxin Liu, Siyuan Qi, Yixin Zhu, Brandon Rothrock, and Song-Chun
Zhu. Feeling the force: Integrating force and pose for fluent discovery through imitation learning to open
medicine bottles. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3530–3537, 2017. doi: 10.1109/IROS.2017.8206196.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf.

15

https://arxiv.org/abs/2310.08864
https://api.semanticscholar.org/CorpusID:61114368
https://api.semanticscholar.org/CorpusID:61114368
https://proceedings.neurips.cc/paper/2021/hash/05d8cccb5f47e5072f0a05b5f514941a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05d8cccb5f47e5072f0a05b5f514941a-Abstract.html
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.24
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1512.07679
https://proceedings.neurips.cc/paper_files/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf

Under review as submission to TMLR

Mehdi Fatemi, Taylor W. Killian, Jayakumar Subramanian, and Marzyeh Ghassemi. Medical dead-ends and
learning to identify high-risk states and treatments. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 4856–4870, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
26405399c51ad7b13b504e74eb7c696c-Abstract.html.

Dieqiao Feng, Carla P Gomes, and Bart Selman. Left heavy tails and the effectiveness of the policy and value
networks in DNN-based best-first search for sokoban planning. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=b6to5kfFhQh.

Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos. Cross-domain imitation learning
via optimal transport. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=xP3cPq2hQC.

Ayelet Fishbach and Ravi Dhar. Goals as excuses or guides: The liberating effect of perceived goal progress
on choice. Journal of Consumer Research, 32(3):370–377, 2005.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep data-
driven reinforcement learning. CoRR, abs/2004.07219, 2020. URL https://arxiv.org/abs/2004.07219.

Mohammad Ghavamzadeh and Sridhar Mahadevan. Hierarchical policy gradient algorithms. In Tom Fawcett
and Nina Mishra (eds.), Machine Learning, Proceedings of the Twentieth International Conference (ICML
2003), August 21-24, 2003, Washington, DC, USA, pp. 226–233. AAAI Press, 2003. URL http://www.
aaai.org/Library/ICML/2003/icml03-032.php.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Ra-
dosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu,
Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do,
Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Abrham Ge-
breselasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo, Jachym
Kolar, Satwik Kottur, Anurag Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya
Mangalam, Raghava Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz
Puentes, Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Rui-
jie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David
Crandall, Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Krishna
Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva, Hyun Soo
Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani,
Mingfei Yan, and Jitendra Malik. Ego4d: Around the world in 3,000 hours of egocentric video, 2022.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane We-
ber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,
Timothy Lillicrap, and Victor Valdes. An investigation of model-free planning: boxoban levels.
https://github.com/deepmind/boxoban-levels/, 2018.

Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An Introduction to the Planning
Domain Definition Language. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2019. ISBN 978-3-031-00456-8. doi: 10.2200/S00900ED2V01Y201902AIM042.
URL https://doi.org/10.2200/S00900ED2V01Y201902AIM042.

Clark L. Hull. The goal gradient hypothesis and maze learning. Psychological Review, 39(1):25–43, 1932.

Steven James, George Konidaris, and Benjamin Rosman. An analysis of monte carlo tree search. Proceedings
of the AAAI Conference on Artificial Intelligence, 31(1), Feb. 2017. doi: 10.1609/aaai.v31i1.11028. URL
https://ojs.aaai.org/index.php/AAAI/article/view/11028.

16

https://proceedings.neurips.cc/paper/2021/hash/26405399c51ad7b13b504e74eb7c696c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/26405399c51ad7b13b504e74eb7c696c-Abstract.html
https://openreview.net/forum?id=b6to5kfFhQh
https://openreview.net/forum?id=xP3cPq2hQC
https://openreview.net/forum?id=xP3cPq2hQC
https://arxiv.org/abs/2004.07219
http://www.aaai.org/Library/ICML/2003/icml03-032.php
http://www.aaai.org/Library/ICML/2003/icml03-032.php
https://doi.org/10.2200/S00900ED2V01Y201902AIM042
https://ojs.aaai.org/index.php/AAAI/article/view/11028

Under review as submission to TMLR

Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as an abstraction for hierarchical
deep reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pp. 9414–9426, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/0af787945872196b42c9f73ead2565c8-Abstract.html.

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. Hg-dagger: Interac-
tive imitation learning with human experts. In 2019 International Conference on Robotics and Automation
(ICRA), pp. 8077–8083, 2019. doi: 10.1109/ICRA.2019.8793698.

Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon. Domain adaptive imitation
learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5286–5295. PMLR, 13–18
Jul 2020. URL https://proceedings.mlr.press/v119/kim20c.html.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burchfiel,
Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
SJU4ayYgl.

B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Kumar
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Trans. Intell. Transp. Syst., 23(6):4909–4926, 2022. doi: 10.1109/TITS.2021.3054625. URL https://
doi.org/10.1109/TITS.2021.3054625.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot generalisation
in deep reinforcement learning. J. Artif. Intell. Res., 76:201–264, 2023. doi: 10.1613/JAIR.1.14174. URL
https://doi.org/10.1613/jair.1.14174.

Wouter Kool and Matthew Botvinick. A labor/leisure tradeoff in cognitive control. Journal of Experimental
Psychology: General, 143(1):131–141, 2014.

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hierarchical imitation learning with vector quantized
models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 17896–17919.
PMLR, 2023a. URL https://proceedings.mlr.press/v202/kujanpaa23a.html.

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hybrid search for efficient planning with completeness
guarantees. CoRR, abs/2310.12819, 2023b. doi: 10.48550/ARXIV.2310.12819. URL https://doi.org/
10.48550/arXiv.2310.12819.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline reinforcement
learning over behavioral cloning? CoRR, abs/2204.05618, 2022. doi: 10.48550/ARXIV.2204.05618. URL
https://doi.org/10.48550/arXiv.2204.05618.

Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

Seungjae Lee, Jigang Kim, Inkyu Jang, and H. Jin Kim. DHRL: A graph-based approach for long-horizon
and sparse hierarchical reinforcement learning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,

17

https://proceedings.neurips.cc/paper/2019/hash/0af787945872196b42c9f73ead2565c8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0af787945872196b42c9f73ead2565c8-Abstract.html
https://proceedings.mlr.press/v119/kim20c.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1613/jair.1.14174
https://proceedings.mlr.press/v202/kujanpaa23a.html
https://doi.org/10.48550/arXiv.2310.12819
https://doi.org/10.48550/arXiv.2310.12819
https://doi.org/10.48550/arXiv.2204.05618

Under review as submission to TMLR

November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. CoRR, abs/2005.01643, 2020. URL https://arxiv.org/abs/2005.
01643.

Andrew Levy, George Dimitri Konidaris, Robert Platt Jr., and Kate Saenko. Learning multi-level hier-
archies with hindsight. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
ryzECoAcY7.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin
Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 7871–7880, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.703. URL https://aclanthology.org/2020.acl-main.703.

Quanyi Li, Zhenghao Peng, and Bolei Zhou. Efficient learning of safe driving policy via human-ai copilot
optimization. In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=0cgU-BZp2ky.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian Gao, John
Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and Li Fei-Fei. ROBOTURK: A crowdsourcing
platform for robotic skill learning through imitation. In 2nd Annual Conference on Robot Learning, CoRL
2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, volume 87 of Proceedings of Machine Learning
Research, pp. 879–893. PMLR, 2018. URL http://proceedings.mlr.press/v87/mandlekar18a.html.

Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s cube with
approximate policy iteration. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=Hyfn2jCcKm.

Oier Mees, Lukás Hermann, and Wolfram Burgard. What matters in language conditioned robotic imitation
learning over unstructured data. IEEE Robotics Autom. Lett., 7(4):11205–11212, 2022. doi: 10.1109/LRA.
2022.3196123. URL https://doi.org/10.1109/LRA.2022.3196123.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 3307–3317, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
e6384711491713d29bc63fc5eeb5ba4f-Abstract.html.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming
exploration in reinforcement learning with demonstrations. In 2018 IEEE International Conference on
Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pp. 6292–6299. IEEE, 2018.
doi: 10.1109/ICRA.2018.8463162. URL https://doi.org/10.1109/ICRA.2018.8463162.

Saul B Needleman and Christian D Wunsch. A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of molecular biology, 48(3):443–453, 1970.

18

http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/58b286aea34a91a3d33e58af0586fa40-Abstract-Conference.html
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7
https://aclanthology.org/2020.acl-main.703
https://openreview.net/forum?id=0cgU-BZp2ky
https://openreview.net/forum?id=0cgU-BZp2ky
http://proceedings.mlr.press/v87/mandlekar18a.html
https://openreview.net/forum?id=Hyfn2jCcKm
https://openreview.net/forum?id=Hyfn2jCcKm
https://doi.org/10.1109/LRA.2022.3196123
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://doi.org/10.1109/ICRA.2018.8463162

Under review as submission to TMLR

Laurent Orseau and Levi H. S. Lelis. Policy-guided heuristic search with guarantees. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 12382–12390. AAAI Press, 2021. doi:
10.1609/AAAI.V35I14.17469. URL https://doi.org/10.1609/aaai.v35i14.17469.

Laurent Orseau, Marcus Hutter, and Levi H. S. Lelis. Levin tree search with context models. In Edith
Elkind (ed.), Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI-23, pp. 5622–5630. International Joint Conferences on Artificial Intelligence Organization, 8 2023.
doi: 10.24963/ijcai.2023/624. URL https://doi.org/10.24963/ijcai.2023/624. Main Track.

Aleksandr I. Panov and Aleksey Skrynnik. Automatic formation of the structure of abstract machines
in hierarchical reinforcement learning with state clustering. CoRR, abs/1806.05292, 2018. URL http:
//arxiv.org/abs/1806.05292.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: offline goal-conditioned
RL with latent states as actions. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6d7c4a0727e089ed6cdd3151cbe8d8ba-Abstract-Conference.html.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn, and Sergey
Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html.

Daniel Ratner and Manfred K. Warmuth. Finding a shortest solution for the N × N extension of the 15-puzzle
is intractable. In Tom Kehler (ed.), Proceedings of the 5th National Conference on Artificial Intelligence.
Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science, pp. 168–172. Morgan Kaufmann, 1986.
URL http://www.aaai.org/Library/AAAI/1986/aaai86-027.php.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudík
(eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, volume 15 of JMLR Proceedings, pp. 627–635.
JMLR.org, 2011. URL http://proceedings.mlr.press/v15/ross11a/ross11a.pdf.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press, USA, 3rd
edition, 2009. ISBN 0136042597.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edition). Pearson, 2020.
ISBN 9780134610993. URL http://aima.cs.berkeley.edu/.

Sartaj Sahni. Computationally related problems. SIAM J. Comput., 3(4):262–279, 1974. doi: 10.1137/
0203021. URL https://doi.org/10.1137/0203021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms, 2017.

Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards out-
of-distribution generalization: A survey. CoRR, abs/2108.13624, 2021. URL https://arxiv.org/abs/
2108.13624.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik

19

https://doi.org/10.1609/aaai.v35i14.17469
https://doi.org/10.24963/ijcai.2023/624
http://arxiv.org/abs/1806.05292
http://arxiv.org/abs/1806.05292
http://papers.nips.cc/paper_files/paper/2023/hash/6d7c4a0727e089ed6cdd3151cbe8d8ba-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6d7c4a0727e089ed6cdd3151cbe8d8ba-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8d3a760ebab631565f8509d84b3b3f1-Abstract.html
http://www.aaai.org/Library/AAAI/1986/aaai86-027.php
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://aima.cs.berkeley.edu/
https://doi.org/10.1137/0203021
https://arxiv.org/abs/2108.13624
https://arxiv.org/abs/2108.13624

Under review as submission to TMLR

Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks
and tree search. Nat., 529(7587):484–489, 2016. doi: 10.1038/NATURE16961. URL https://doi.org/
10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. A general reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/science.aar6404. URL https://www.science.
org/doi/abs/10.1126/science.aar6404.

David Singmaster. Notes on Rubik’s Magic Cube. Enslow Publishers, 1981.

Temple F Smith and Michael S Waterman. Identification of common molecular subsequences. Journal of
molecular biology, 147(1):195–197, 1981.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan
Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi,
Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in percep-
tion for autonomous driving: Waymo open dataset. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp.
2443–2451. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00252.
URL https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_
for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive computation
and machine learning. MIT Press, 1998. ISBN 978-0-262-19398-6. URL https://www.worldcat.org/
oclc/37293240.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999. doi: 10.1016/
S0004-3702(99)00052-1. URL https://doi.org/10.1016/S0004-3702(99)00052-1.

Kyo Takano. Self-supervision is all you need for solving rubik’s cube. Trans. Mach. Learn. Res., 2023, 2023.
URL https://openreview.net/forum?id=bnBeNFB27b.

Trieu Trinh, Yuhuai Wu, Quoc Le, He He, and Thang Luong. Solving olympiad geometry without human
demonstrations. Nature, 2024. doi: 10.1038/s41586-023-06747-5.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 6306–6315, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html.

Joel Veness, David Silver, Alan Blair, and William Uther. Bootstrapping from game tree search. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (eds.), Advances in Neural Information Processing
Systems, volume 22. Curran Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper_
files/paper/2009/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario
Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis

20

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Dataset_CVPR_2020_paper.html
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1016/S0004-3702(99)00052-1
https://openreview.net/forum?id=bnBeNFB27b
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2009/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf

Under review as submission to TMLR

Hassabis, Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent reinforcement
learning. Nat., 575(7782):350–354, 2019. doi: 10.1038/S41586-019-1724-Z. URL https://doi.org/10.
1038/s41586-019-1724-z.

Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao, Philippe
Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and Sergey Levine.
Bridgedata v2: A dataset for robot learning at scale. In Conference on Robot Learning (CoRL), 2023.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Baker Grosse. {INT}: An inequality benchmark for
evaluating generalization in theorem proving. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=O6LPudowNQm.

Zhaoyang Yang, Kathryn E. Merrick, Lianwen Jin, and Hussein A. Abbass. Hierarchical deep reinforcement
learning for continuous action control. IEEE Trans. Neural Networks Learn. Syst., 29(11):5174–5184, 2018.
doi: 10.1109/TNNLS.2018.2805379. URL https://doi.org/10.1109/TNNLS.2018.2805379.

Ryo Yonetani, Tatsunori Taniai, Mohammadamin Barekatain, Mai Nishimura, and Asako Kanezaki. Path
planning using neural a* search. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 12029–12039. PMLR, 2021. URL http://proceedings.
mlr.press/v139/yonetani21a.html.

Michal Zawalski, Michal Tyrolski, Konrad Czechowski, Tomasz Odrzygózdz, Damian Stachura, Piotr Piekos,
Yuhuai Wu, Lukasz Kucinski, and Piotr Milos. Fast and precise: Adjusting planning horizon with adaptive
subgoal search. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=7JsGYvjE88d.

Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end simulated driving.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp. 2891–2897.
AAAI Press, 2017.

21

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://openreview.net/forum?id=O6LPudowNQm
https://doi.org/10.1109/TNNLS.2018.2805379
http://proceedings.mlr.press/v139/yonetani21a.html
http://proceedings.mlr.press/v139/yonetani21a.html
https://openreview.net/pdf?id=7JsGYvjE88d

Under review as submission to TMLR

Appendix

Table of Contents
A Environments 23

B Key Factors For Hierarchical Search 25
B.1 Learning from diverse data sources . 25
B.2 Value Approximation Errors . 26
B.3 Complex Action Spaces . 29
B.4 Dead Ends . 30

C Network Architectures & Training Details 32

D Offline Pretraining 34
D.1 Components . 34
D.2 Supervised Objectives . 34

E Offline Pretraining: Trajectories 35
E.1 Rubik’s Cube . 35
E.2 INT . 35
E.3 N-Puzzle . 35
E.4 Sokoban . 35

F Algorithms 36
F.1 Best-First Search . 36
F.2 Monte Carlo Tree Search . 38
F.3 A∗ Search . 40
F.4 kSubS And AdaSubS . 42
F.5 HIPS And HIPS-ε . 43

G Wall Times 44

H Hierarchical Search 45

I Further Discussion On HIPS Results 46

J Common Pitfalls In Hierarchical Search evaluations 47
J.1 Complete Search Budget . 47
J.2 Baselines . 47
J.3 Code Quality . 48

K Proof Of The Search Advancement formula 50

L Proof Of The Densification Of The Action Space Theorem 51

M Comparison with DeepCubeA 54

N Solution quality 55

22

Under review as submission to TMLR

A Environments

Sokoban Sokoban is a classic puzzle game where the objective is to push boxes onto target locations within
a confined space. It is a popular testing ground for classical planning methods and deep-learning approaches
due to its combinatorial complexity and difficulty in finding solutions. Recognized as a PSPACE-hard
problem, Sokoban is used to evaluate different computational strategies. Our experiments use 12 × 12
Sokoban boards with four boxes to assess the performance of our proposed models. An illustrative example
of a simple Sokoban search tree with a solving path is shown in Figure 16.

Figure 16: Hierarchical Search applied to solving Sokoban. This tree, depicted in figures, employs bolded
green arrows to highlight selected subgoals within a hierarchical search framework earmarked for subsequent
exploration. The illustration demonstrates that these intermediate goals exhibit variability in terms of both
their spatial distance and the methodology by which a planning algorithm may leverage them.

Rubik’s Cube The Rubik’s Cube, a renowned 3D puzzle, has over 4.3 × 1019 possible configurations,
highlighting the huge search space and the computational challenge it poses. Recent advancements in solving
the Rubik’s Cube with neural networks underscore the potential of deep learning methods in navigating
complex, high-dimensional puzzles. For the exact representation of the Rubik’s Cube state, see Figure 17.

N-Puzzle The N-Puzzle, a classic sliding puzzle game, comes in various sizes, including the 3x3 (8-puzzle),
4x4 (15-puzzle), and 5x5 (24-puzzle). The goal is to rearrange a frame of numbered square tiles into a specific
pattern, a task that tests the algorithm’s ability to plan and execute a sequence of moves efficiently. Figure
18 shows a visualization of a trajectory in 24-puzzle.

INT INT (INequality Theorem proving) is an automated theorem-proving benchmark for high school al-
gebraic inequality proofs. (Wu et al., 2021) provides a generator of mathematical inequalities and a proof
verification tool. Each action in INT maps to a proof step, which specifies a chosen axiom and its input

23

Under review as submission to TMLR

wbrwyggwwoboybygbryrorroboygrbggbggbwybrooogrywrowywwy s0 Initial State
wbrwyggggobwybwgbgooyrroyrbrrbwgbygbwybrooogroyrowywwy s1 One Action (= single rotation)
wbywyoggbobwybwgbgoorrryyryywrggrbbbgybgoorgroyoowrwww s2

gyowyoggbwbwwbwwbgoorrryyryywwggbbbyboryogggroyoowrbrr s3

. . .

yyyyyyyyybbbbbbrrrrrrrrrgggggggggooooooooobbbwwwwwwwww sn−1

yyyyyyyyybbbbbbbbbrrrrrrrrrgggggggggooooooooowwwwwwwww sn Solving State

Figure 17: Example trajectory of Rubik starting from initial state s0 leading to the final solution sn.

Figure 18: Example trajectory of n-puzzle starting from initial state s0 leading to the final solution sn. Red
arrows indicate low-level actions.

entities - which makes action space very high-dimensional, enabling up to a million valid actions at a step.
This large action space makes INT a desirable but challenging environment for expanding HRL paradigms
to vast action spaces.

We used 25-step proofs for this paper, representing an uplift from 15 considered in (Czechowski et al., 2021;
Zawalski et al., 2023) (the latter used longer proofs, but only for evaluating 15-trained models). Each step
is an application of an axiom to an axiom-specific number of entities (entities are bracketed or bracketable
parts of the theorem’s goal).

Example Theorems for INT environment

Theorem 1 Premises: ((c + c) + d) ≥ a;
(d + e) ≥ 0;
((c + c) + f) ≥ (0 + a);
(b + g) ≥ 0;

Goal: (((((((c + c) + (c + c)) · 4c) + ((c + c) + d)) + (d + e)) + ((c + c) + f)) + (b + g))
≥ ((((0 + a) + 0) + (0 + a)) + 0)

Theorem 2 Goal: (((0 + b) + c) + a) ≥ (0 + (0 + (b + (c + a))))
Theorem 3 Premises: (a + d) ≥ 0;

(a + e) ≥ (c · c);
(e + f) ≥ 0;
(c + g) ≥ 0;
(c + h) ≥ (c + g);
(c + i) ≥ 0;

Goal: (((((((c · c) · (a + d)) + (a + e)) · (e + f)) · (c + g)) + (c + h)) · (c + i))
≥ ((((((0 · (a + d)) + (c · c)) · (e + f)) · (c + g)) + (c + g)) · (c + i))

Figure 19: A comprehensive representation of theorems pertaining to goal achievement in mathematical
expressions, showcasing the logical structure and underlying premises leading to the formulated goals.

24

Under review as submission to TMLR

B Key Factors For Hierarchical Search

According to our experiments, the attributes pivotal for leveraging the advantages of high-level search include:

• learning from diverse data sources,

• hard-to-learn value function,

• complex action space,

• presence of dead ends

In Section 5, we show our main experiments that support our findings. In this appendix, we present an
extended analysis of each property.

B.1 Learning from diverse data sources

Achieving superhuman performance in complex tasks, as demonstrated by AlphaGo Silver et al. (2016), often
involves large-scale datasets of demonstrations obtained from agents with varying skill levels and strategies.
However, this diversity introduces challenges such as inconsistencies in demonstrations and variations in
quality (Fu et al., 2020; Chen et al., 2021; Levine et al., 2020). Widely used datasets like D4RL (Fu et al.,
2020), Open X-Embodiment (Collaboration et al., 2023), or Waymo Open Dataset (Sun et al., 2020) reflect
this diversity, highlighting the need to address these challenges effectively. We want to answer the question
whether such setting is handled better by high-level or low-level search algorithms.

Experiment setup For this analysis, we focus on the Rubik’s cube environment. We collected a dataset of
500 000 trajectories, computed with four different solvers for the Rubik’s cube:

• Beginner – the simplest human-oriented solving algorithm. It aims to order the cube layer by
layer with a few primitive tactics. Because of that the solutions are structured, but also very long
(typically between 150 and 200 moves).

• CFOP – an algorithm designed for speedcubers. It is based on the same principle as Beginner, but
employs many advanced tactics that make the solutions faster (typically about 100 moves).

• Kociemba – a computational solver that finds near-optimal solutions (usually between 20 and 40
moves) in short time. It is heavily optimized based on the algebraic properties of the Rubik’s cube.

• Random – solutions obtained by scrambling an ordered cube with random moves and reversing the
trajectory.

Figure 30 shows example solutions generated with each solver. Clearly, the algorithmic solvers (Beginner
and CFOP) generate much longer solutions that the other methods. They are also more structured, as they
are based on building patterns. The computational solver Kociemba on the other hand go directly towards
the solution because its moves are carefully optimized to ensure maximal advantage. Because of that, this
dataset represent a truly diverse set of demonstrations.

Results As shown in Figure 2, the subgoal methods outperform the low-level methods by a wide margin.
While ρ-BestFS is comparable on small budgets, it struggles with solving most of the instances. Also, it
should be noted that the performance of the subgoal methods changes only slightly compared to training on
a single Random solver (Figure 4) while the low-level searches are heavily affected.

Learned values To find the sources of that outcome, we checked the values learned by the heuristic function.
Because of the diversity introduced by combining the experts, we should expect that the estimates are subject
to high uncertainty and possibly high variance.

Figure 20 shows the distribution of the learned heuristic for random fully shuffled cubes. Although most
instances can be solved optimally within 20-26 moves, the estimates range from 14 to 90 steps. Furthermore,

25

Under review as submission to TMLR

Figure 20: Value distribution for fully scrambled cubes, learned on data coming from diverse experts. The
values are rescaled so that the x-axis represent the estimated number of steps to the solution. The values
represent the mean of each interval.

the distribution is clearly bimodal – one mode correspond to a typical length of Kociemba solution, the other
to CFOP.

Furthermore, Figure 25 shows the distribution of value estimates throughout the solutions for each solver. We
observe that for the algorithmic solvers the initial distance is considerably underestimated. After about 20%
moves the value network recognizes the pattern of layers built by the solvers and expect a long solution by
assigning values close to 100. On the other hand, the values learned for the states visited by the computational
solvers start as overestimated, but steadily decrease towards 0.

While it is a reasonable strategy for the value to fit to the provided dataset, it creates a challenge for
the search. If a search algorithm aims to imitate Beginner or CFOP, it has to reach the layer pattern,
characteristic of those solvers. However, the random states tend to have very low distance estimate, compared
to the initial layer patterns. Because of that, for tens of steps the heuristic estimates would be actually
increasing, making the reached states less and less probable to expand.

In practice, the low-level searches usually fail to cross this gap. On the other hand, the high-level methods
are partially guided by the subgoal generators that ignore the values. The value gap that spans across about
30 steps can be crossed with as few as 5 subgoals of length 6. Because of that both kSubS and AdaSubS can
successfully leverage the schematic algorithmic solutions.

To finally confirm that conclusion, we must answer the question whether the performance of low-level searches
would increase if they could leverage the algorithmic solutions as well. For that purpose, we trained the
components for each method using data only from the Beginner solver. This way we remove the challenge of
noisy initial values. As shown in Figure 5, the low-level searches indeed perform much better. BestFS even
matches the performance of AdaSubS. That confirms our observation that low-level searchas fail to utilize
multimodal data because they rely too much on the value function and seek monotonic slopes.

At the same time we observe that since BestFS and AdaSubS show nearly identical performance on Beginner
solutions, it is questionable that hierarchical methods handle long-horizon tasks better, which is a common
belief (Nachum et al., 2018; Eysenbach et al., 2019; Chen et al., 2024).

B.2 Value Approximation Errors

In many practical scenarios, value function estimates are based on either limited data samples or hand-
crafted heuristics (Campbell et al., 2002; Mnih et al., 2015; Walke et al., 2023). This often leads to high

26

Under review as submission to TMLR

Figure 21: Beginner solver

Figure 22: CFOP solver

Figure 23: Kociemba solver

Figure 24: Reversed random 20-move trajectories

Figure 25: The learned value estimates distribution for various solvers. For each plot 100 episodes were solved
using the respective solver. The boxes represent the distribution of value estimates for the consecutive points
of the solution. The x-axis denotes the relative part of the trajectory (i.e., 0.5 denotes the middle point in
each trajectory, regardless of its length). The blue line indicates the true number of steps to the solution.

approximation errors. If search algorithms rely too heavily on these imperfect estimates, they can make poor
decisions, especially in large and complex environments where accurate value estimates are even harder to
obtain (Collaboration et al., 2023; Vinyals et al., 2019).

27

Under review as submission to TMLR

bwooyryoorgrgbgyyygbyrrwryggygbgwwbbwrwooywgobbrowrbwo
yoboyworogbygbgyyygygrrwrygwrwbgwwbbrgrooywgobbrowrbwo
ooyryoowbgyggbgyyywrwrrwrygrgrbgwwbbgbyooywgobbrowrbwo
ooyryoygggybgbbyyrrrwyrrgwwogrwgwbbbgbyooywgowbrowrbwo
ooyryorbbgywgbbyyrgyrwrrwrwygrggwgbbgbyooywgobwoowrbwo
rwbryorbbyywobboyrgyrwrrwrwygoggwgbbwoggoboyybwoowrggy
owbryorbbbywwbbryrgyrwrrwrwygyggggbgogwyooybgbwoowryoo
rrobywbobgyrwbbryrygywrrwrwogwggggbgbywyooybgbwoowryoo
rrybyrbowgyrwbbryrygowrrwroggobggggwbywwooobgbwyowyyob
rrobyrboogyrwbbryrygywrywrbgbggggwgowywrooybgbwoowwyob
rwgbyrbooyyrobbbyrygywrywrbgbrggrwgowogyobwrybwoowwogg
bbroyworgygyobbbyrgbrwrywrbwogggrwgoyyryobwrybwoowwogg
grooyworgrgybbbbyrgbrwrywrbwoggggwgowyyroyybrbwoowwyob
oogryrgwogbrbbbbyrwogwrywrbwyygggwgorgyroyybrbwoowwyob
growyoorgwogbbbbyrwyywrywrbrgygggwgogbrroyybrbwoowwyob
owgryrgoowyybbbbyrrgywrywrbgbrgggwgowogroyybrbwoowwyob
rgoryrgoogyywbboyrrgywrywrbgbbggowgyyrwboorygbwoowwwbb
boyryrgoooyygbbryrrgywrywrbgbbggbwgwrbyyorgowbwoowwgwo
roywyrwooybrybyogrbgyorygrbgbbggbwgwrbgyorgobwworwwywo
wwroyoorybgyybyogrgbborygrbrbgggbwgwybryorgobwworwwywo
bwrryorryoybgbgryywbboryorbrbgggbwgwybyyorgowgwoowwgwo
rrbrywyorwbbgbgryyrbgoryorbybyggbwgwoybyorgowgwoowwgwo
yrroyrrwbrbggbgryyybyoryorboybggbwgwwbbyorgowgwoowwgwo
roywyrbrrybygbgryyoyboryorbwbbggbwgwrbgyorgowgwoowwgwo
woyryrgrrrgyybbygyrybwrybrbwbbggbwgwrbgyoogogowoowwowo
goyoyrgrryyrgbgybywybrrygrbwbbggbwgwrboyoogoorwowwwbwo
yrroyrgogrbogbgybyyyrrrygrbwybggbwgwwbbyoogoorwowwwbwo
yrroyygobrbogbgybyyyorrwgrowgwggywbbgbbrooroorwgwwybww
goyoyrbyryyogbgybywgwrrwgrogbbggywbbrborooroorwgwwybww
goroyrbyryyogbgybywgyrrrgrrbybbgbggwwboyoogoorwwwwwbwo
bbwoyrbyrryoobggbywgyrrrgrrbyobgwggbgywoobooorwwwwwygy
wrrbyybobgywobggbyryorrrgrrwgybgwggbbyooobooorwwwwwygy
gogbyybobyywgbgybyryorrrgrrwgwbgrggroboyooboorwwwwwbwy
gobbyybooyywgbgybyrygrrygrbwrrgggwbgybowoowoorwowwrbwr
byooyogbbybogbgybyyywrrygrbryggggwbgwrrwoowoorwowwrbwr
bywoyygbbybogbgybyyyorrrgrrwgrbgygggbrroooooorwwwwwbww
gobbyybywyyogbgybywgrrrrgrrbrrbgygggybooooooorwwwwwbww
bbgyyowybwgrgbgybybrrrrrgrrybobgygggyyooooooorwwwwwbww
obgoyooybygwbbgygrbrryrrwrrybobgygggyyboowoorbwwrwwgww
oooyybbogbrrbbgygryboyrrwrryybbgygggygwoowoorbwwrwwgww
yooyybwogrgrrbgbbybborrrgrryybbgygggygbooyooorwwwwwwww
yooyybygrrgrrbwbbwgrbrrbrrowybogygggygbooyooogbywwwwww
yyygyorbogrbrbwbbwwybrrbrroygbogygggrgrooyooogbywwwwww
rgybyyooywybrbwbbwygbrrbrrorgrogyggggrbooyooogbywwwwww
rgybyyrogwyyrbobbobbogrryrrygrbgyggggrbooyooobwwwwwwww
yyggyorbrgrbrbobbowyygrryrrbbobgygggygrooyooobwwwwwwww
yyggyooobgrbrbwbbwygwrryrryrbobgyrggygrooyooogbbwwwwww
ogyoyybogygwrbwbbwrborryrryygrbgyrgggrbooyooogbbwwwwww
ogyoyyybryggrbobbboyybrrrrrbgrbgyggggrbooyooowwwwwwwww
yoobygryyoyyrbobbbbgrbrrrrrgrbbgygggyggooyooowwwwwwwww
yorbyrryroyyrbobbbbgwbrwrrwgbgggrgybygggoyooowwowwowwy
rrroyyybryggrbobbboyybrwrrwbgwggrgybgbggoyooowwowwowwy
rrooygybgyggrbobbboyrbryrrrwrbggybggybgooyooowwywwwwww
oggrybroyybgrbobbbyggbryrrroyrggybggwrbooyooowwywwwwww
oggrybogbybyrbobbrgyrgrrybryyrwgywggwrbooyooogobwwwwww
orogygbbggyrrbobbryyrgrrybrwrbwgywggybyooyooogobwwwwww
orogygrorgygrbobbbygybryrrrbrbbgygggybyooyooowwwwwwwww
rgooyrrgoygyrbobbbbrbbryrrrybybgyggggygooyooowwwwwwwww
rorgygorobrbrbobbbybybryrrrgygbgygggygyooyooowwwwwwwww
roygyyorrbrbrbobbbybwbrwrrwgbgggygygogygoyroowwowwowwy
yyroyrrgoogyrbobbbbrbbrwrrwybwggygyggbggoyroowwowwowwy
yyroygrggogyrbobbbbrrbrrrrowygbgyyggybgooyooowwbwwwwww
rggyygyorybgrbobbbogybrrrrobrrbgyyggwygooyooowwbwwwwww
rggyygbbyybrrbobbyyrogrrobrbrrwgywggwygooyooogobwwwwww
byrbygyggyrorbobbybrrgrrobrwygwgywggybrooyooogobwwwwww
byrbygyooyrgrbobbbogbbrrrrryygggygggybrooyooowwwwwwwww
rgoyyobbyybrrbobbbyrgbrrrrrogbggygggyygooyooowwwwwwwww
ooygybrybyygrbobbbybrbrrrrryrgggygggogbooyooowwwwwwwww
yoybybrybgobybbyrbwbrwrrwrryrgggygggogroogoooowwywwbww
rbyyyobbywbrybbyrbyrgwrrwrrogrggyggggoboogoooowwywwbww
obygyobbyyywrbbbbrrrgyrrbrrogrggyggggobooyoooywwwwwwww
bgobybyoyrrgrbbbbrogryrrbrrgobggygggyywooyoooywwwwwwww
bgobybrbgrryrbwbbwbyorrgrrryobogyyggyywooyooogggwwwwww
obggybbbryywrbwbbwrryrrgrrrbyoogyyggyobooyooogggwwwwww
obggybboyyyrrbbbbbygrrrrrrrgyoggygggyobooyooowwwwwwwww
bgooybybgygrrbbbbbgyorrrrrryobggygggyyrooyooowwwwwwwww
ogoyybrbgbrybbgbbrbyoorryrryobggygggyywoowoowgwwrwwrww
obggyboyryywbbgbbrbryorryrrbyoggygggyoboowoowgwwrwwrww
bbgoybyyrwgrybbybbgryrrrrrrbyoggygggyoooogooowwwwwwbww
gbrbyyboyyooybbybbwgrrrrrrrgryggygggbyooogooowwwwwwbww
yyybyyboyboowbbwbbwgrrrrrrrgrgggbggrogoyooboowwwwwwgyy
bbyoyyyyywgrwbbwbbgrgrrrrrrogoggbggrbooyooboowwwwwwgyy
obroyyyyyygrbbbbbbgrgrrrrrrogyggygggbyboooooowwwwwwwww
yooyybyyrgrgbbbbbbogyrrrrrrbybggygggygroooooowwwwwwwww
yyyyyorboogybbbbbbbybrrrrrrygrggyggggrgoooooowwwwwwwww
ryybyyooybybbbbbbbygrrrrrrrgrgggygggogyoooooowwwwwwwww
gygbyyooyyybybbrbbygrrrrrrrgrwggwggwooooogooywwwwwwbbb
gyyyyogbooooybbrbbyybrrrrrrygrggwggwgrwoogooywwwwwwbbb
ryoyyogboboobbbbbbyybrrrrrryggggyggywgyroogoowwwwwwwwr
oooyybrygwgybbbbbbboorrrrrryybggyggyyggroogoowwwwwwwwr
oogyyrryywgybbbbbbboorrbrrgbyyyggyggrggwoowoowwowwrwwr
ryoyyoyrgboobbbbbbbyyrrbrrgrggyggyggwgywoowoowwowwrwwr
ryyyybyrgboobbbbbbbyorrrrrryyrggggggggyoooooowwwwwwwww
yyrryygbybyobbbbbbyyrrrrrrrggyggggggboooooooowwwwwwwww
grybyyyyryyrbbbbbbggyrrrrrrbooggggggbyooooooowwwwwwwww
oggbyyyyryyrrbbgbbggyrrrrrrbowggwggwoobooyooowwwwwwybb
oggyyybyrgrybbybbrogybrryrrbowggwggwooyoowoowgwwrwwrbb
byoyygrygogybbybbrbowbrryrrooyggwggwgryoowoowgwwrwwrbb
byobygyygyyrgbbobbgowrrrrrrooyggwggwgrrooyoobwwwwwwybb
oggyyybbygrrgbbobbyyrrrrrrrgowggwggwooyooyoobwwwwwwybb
oggyyybbyyrrbbbbbbyyrrrrrrrgooggggggyyboooooowwwwwwwww
oggyyybbygrrgbbobbyyrrrrrrrgowggwggwooyooyoobwwwwwwybb
bggyyyybyoggbbrbbroyryrrbrrgowggwggwooyoowoowywwrwwrbb
yybbygyygoyrbbrbbrgowyrrbrrooyggwggwoggoowoowywwrwwrbb
gybyygbygrrrybbobbyowrrrrrrooyggwggwogyoobooywwwwwwgbb
bggyyygybogyybbobbrrrrrrrrryowggwggwooyoobooywwwwwwgbb
oyoyyygybggybbbbbbrrrrrrrrryobggggggybyoooooowwwwwwwww
oyooyyyybbbgbbgbbyorryrrgrryobggggggybwoowoowrwwrwwrww
yooyyybyoorrbbgbbyyobyrrgrrybwggggggbbgoowoowrwwrwwrww
yooyyygyorgyrbbobbrobrrrrrrybwggggggbbbooyooywwwwwwgww
gyyyyooyorobrbbobbybwrrrrrrbbbggggggrgyooyooywwwwwwgww
yyyyyoyyoorrbbobbbgbwyrrorrbbbggggggrggoowoowywwrwwrww
yyyyyyooygbwbbobbbbbbyrrorrrggggggggorroowoowywwrwwrww
oyyoyyyyybbbbbobbbrggyrrorrorrgggggggbwoowoowywwrwwrww
ryyyyyoyybobbbbbbbyggrrrrrrorrgggggggbyoooooowwwwwwwww
rggyyyoyyyobybbrbbyggrrrrrrorwggwggwoogoobooywwwwwwbbb
oyryygyygyggybbrbborwrrrrrroogggwggwyoboobooywwwwwwbbb
ryyyygyygbggbbbbbborwrrrrrroooggyggrbbyoooyoowwwwwwwwg
yyryyyggyorwbbbbbbooorrrrrrbbyggyggrbggoooyoowwwwwwwwg
yyryyyggyrrwybbybbooorrrrrrbbgggwggwyoboogoogwwwwwwobb
gyygyyyyroooybbybbbbgrrrrrryobggwggwrrwoogoogwwwwwwobb
yggyyyryybbgybbybbyobrrrrrrrrwggwggwooooogoogwwwwwwobb
yybyyyryyobgbbbbbbyobrrrrrrrryggggggoggoooooowwwwwwwww
yybyyrryrobgbbbbbbyowrrwrrwggrggrggyyggyooboowwowwowwo
ryyyyyrrbyowbbbbbbggrrrwrrwyggggrggyobgyooboowwowwowwo
rybyyyrroyowbbbbbbggyrryrrbgrygggyggobgoooooowwrwwwwww
ryrryyoybggybbbbbbgryrryrrbobggggyggyowoooooowwrwwwwww
ryyryyoybggybbbbbbgrrrrwrrwygoggbgggbowyooroowwowwowwy
orryyybyygrrbbbbbbygorrwrrwbowggbgggggyyooroowwowwowwy
byoyyryyrygobbbbbbbowrrwrrwggyggbggggrryooroowwowwowwy
byryyyyygygobbbbbbboorrrrrrybgggggggyrroooooowwwwwwwww
yybyyygyrboobbbbbbybgrrrrrryrrggggggygooooooowwwwwwwww
yybyyybbobowbbwbbwrryrrbrrggrryggrggygoooooooggywwwwww
byoyybyybygobbwbbwbowrrbrrgrryyggrgggrrooooooggywwwwww
bbyyybyybwgowbwwbwbowrrbrrgrrbygyrgorooroogooggywwwggy
yybyybbbybowwbwwbwrrbrrbrrgrooygyrgowgoroogooggywwwggy
yybyybryrboywbbwbbbbgrrrrrryooggyggowgoroogoowwwwwwggy
bbryyyyyrwgowbbwbbboyrrrrrrbbgggyggoyooroogoowwwwwwggy
gyoyyyyyrrgobbbbbbboyrrrrrrbbygggggggryoooooowwwwwwwww
yygyyyryoboybbbbbbbbyrrrrrrgryggggggrgooooooowwwwwwwww
ryyyyyoygbbybbbbbbgryrrrrrrrgoggggggboyoooooowwwwwwwww
oyryyygyygrybbbbbbrgorrrrrrboyggggggbbyoooooowwwwwwwww
gyoyyyyyrrgobbbbbbboyrrrrrrbbygggggggryoooooowwwwwwwww
gyoyyybborgwbbwbbwrrbrrorryybyyggrgggryooooooggbwwwwww
oyoyybgybgrybbwbbwrgwrrorryrrbyggrggybyooooooggbwwwwww
bbgyybgybwrywbwwbwrgwrrorryrroygyrgoyoobooyooggbwwwggb
gybyybbbgrgwwbwwbwrrorrorryyooygyrgowrybooyooggbwwwggb
gybyybyyrrggwbbwbbooyrrrrrrbooggyggowrybooyoowwwwwwggb
bbryyygyywrywbbwbbrggrrrrrrooyggyggoboobooyoowwwwwwggb
yyoyyygyyrrybbbbbbrggrrrrrroobggggggybboooooowwwwwwwww
yyoyyyoggrrybbybbggrrgrrrrrwobwggwggybbooooooybbwwwwww
yyoyyyoggrrybbyrrrgrrgrrwggwobwggoooybbooobbgbwwbwwyww
yyoyyyryyrrbbbwrrwwgggrrgrroobggggooybbooobbgowwbwwyww
yyoyyyryyrrbbbwbbgwgggrrrrwoobggggrrybbooogooybowwwwww
yyoyyyoggrrybbybbrgrwgrrwgroobbggyrrybbooogoobwgwwwwww
yyoyyyoggrrybbywgrgrwgrryrroobbgggooybbooobbrgwwwwwbww
yyoyyyryyrrgbbwwgwyggrrrrrwoobggggooybbooobbrgbowwwbww
yyoyyyryyrrgbbwbbryggrrrwgwoobgggrrwybbooogoobwgwwbwwo
yyoyyyogrrrybbybbrgrwgrgyrwgobwggbrwybbooogoogwrwwbwwo
yyoyyyogrrrybbyyrwgrwgrgbrwgobwgggooybbooobbrrbowwwgww
yyoyyywyyrrrbbbyrobggrrrwgwoobgggrooybbooobbrgwgwwwgww
yyoyyywyyrrrbbbbbrbggrrryrooobgggwgwybboooroogwgwwwwwg
yyoyyyogwrrybbybbwgrogrrbrygobwggggwybboooroorbrwwwwwg
yyoyyyogwrrybbybrygrogrrggwgobwggrooybbooobbwrwgbwwrww
yyoyyyyyyrrrbbwbrgggggrrwrooobgggwooybbooobbwrwgbwwrww
yyoyyyyyyrrrbbwbbwggggrrbrgoobgggwroybbooowoorbrwwwwwg
yyyyyyyyogggbbwbbwoobgrrbrgybbgggwrorrrooowoorbrwwwwwg
yyyyyyoyyoobbbwbbwybbgrrbrgrrrgggwrogggooowoorbrwwwwwg
yyyyyyrgwooybbybbobrgbrrygbrrrbggrrogggooowoobwwwwwwwg
yyyyyyrgwooybbyygbbrgbrrrrorrrbggwoogggooobbowwgwwwbww
yyyyyybyyoowbbwyggrbbrrrorgrrrgggwoogggooobbowbrwwwbww
yyyyyybyyoowbbwbborbbrrryggrrrgggorggggooowoobwwwwbwwr
yyyyyyrgoooybbybbbbrgbrgrrywrrwggbrggggooowoowwowwbwwr
yyyyyyrgoooybbyrrybrgbrgbrgwrrwggwoogggooobbbobrwwwwww
yyyyyyyyyooobbbrrrbbbrrrgggrrrgggooogggooobbbwwwwwwwww
yyyyyyyyyooobbbbbbbbbrrrrrrrrrgggggggggoooooowwwwwwwww
yyyyyyyyybbbbbbbbbrrrrrrrrrgggggggggooooooooowwwwwwwww
yyyyyyyyyrrrbbbbbbgggrrrrrroooggggggbbboooooowwwwwwwww
yyyyyyyyygggbbbbbbooorrrrrrbbbggggggrrroooooowwwwwwwww
yyyyyyyyyooobbbbbbbbbrrrrrrrrrgggggggggoooooowwwwwwwww

yyyyyyyyybbbbbbbbbrrrrrrrrrgggggggggooooooooowwwwwwwww

Figure 26: Beginner

bryoyrorryyygboywogybbrgbgrwwoogwgygbbrooyobrwrwgwbgww
brooyoorbyyygboywogyybrrbgrowgwgywogwbrboywbrwrbgwggwr
brooyoowwyybgbrywoyrryrggbbbwgrgywogwbrboywbryoogwggwr
oobwyrwooyrrgbrywobwgyrggbbwbrrgywogyybboywbryoogwggwr
oobwyrorryrygboywogybbrwbggwbrogyoogyybboywbrwrwgwggwr
oobwyworgyrygboywogywbrgbgroowogbgyrrybroybbrwrwgwbgwy
oworyogwbgywgboywooowbrgbgrrybogbgyryryroybbrwrwgwbgwy
growywboooowgboyworybbrgbgryryogbgyrgywroybbrwrwgwbgwy
bwgoyroworybgboywoyrybrgbgrgywogbgyroowroybbrwrwgwbgwy
bwgoyroobrywgbrywwbbygrrrgyoywwgboyroowroybbrgoggwbgwy
bwgoyrwrwryggboywgrgbgrbyryoywogbbyroowroybbrowogwbgwy
rwgyyrwrwygrwbygogbgborbwryoywogbbyroogrogbborwogwbywy
gwyyyrwrwygrwbyyogbgborbwryoyrogwbygggoooborbrwogwbrbw
wygrywwrybgbwbyyogoyrorbwryggoogwbygygrooborbrwogwbrbw
owgrywwryggbybywogoyrorbwryggwogbbyrooyrogbbrrwogwbbwy
owrrybwryggbybywogoyoorbwrybogyggrbwyoywoggbrrwbgwrbwo
oworybwryggbybywogoyborrwrorybbgowggyoybogrbrrwggwwbwy
bogrybwryogbwbyoogoyborrwroryybgwwgbrbyboorgyrwggwwgyw
ywbrybwryggbobybogoyborrwrorywbgywggrbrgobyoyrwggwwowo
wryrywybboybobybogryworrwrorbrbgywggggbgobyoyrwggwwowo
yrwbyrbwyrywobybogrbrorrwroggbbgywggoybgobyoyrwggwwowo
bbywyryrwrbrobybogggborrwrooybbgywggrywgobyoyrwggwwowo
ybybyrwrwborobbgyrbgbwrryrooybbgywggryogogyorgwgowwwwo
rbygyrorwgobyborbrygbbrrwrooybbgywggrywgooyogbwgwwwywo
ogrrybwryygbyborbroybbrrwrorywbgywgggobgooyogbwgwwwywo
wrorygybroybyborbrrywbrrwrogobbgywggygbgooyogbwgwwwywo
ogrrybwryygbyborbroybbrrwrorywbgywgggobgooyogbwgwwwywo
ogbryrwroygbyborbroygbrwwrowbrggygywyobboorogbwywwgywg
wrorygorboygyborbrwbrbrwwroyobggygywygbboorogbwywwgywg
wrrryboryoygyborbrwbobrgwrbbywogyyggggbgooyogbwrwwwywo
rbyryrwroggbyborbroygbrgwrbwboogyyggbywgooyogbwrwwwywo
rbgrygwrbggbyborbroyrbrwwroyowggbgyooywrooyogbwywwgywb
wrrrybbggoyryborbryowbrwwrooywggbgyoggbrooyogbwywwgywb
brwgyrgbryowyborbroywbrwwroggbggbgyooyrrooyogbwywwgywb
brygyrgboyowyborbroywbrrwrrbboggygggbyrgooyogbwwwwwywo
ggbbyroryoywyborbrbbobrrwrrbyrggygggyowgooyogbwwwwwywo
obgrygyrbbboyborbrbyrbrrwrryowggygggoywgooyogbwwwwwywo
obyrygyrobboyborbrbygbrgwrbwygoggyggoywwoowogbwrwwrywr
yrorybogybygyborbrwygbrgwrboywoggyggbbowoowogbwrwwrywr
yrgrygogbbygyborbrwyrbrrwrryooggyggwyboboooogbwwwwwywb
ggbrygyroyboyborbrbygbrrwrrwyrggyggwyooboooogbwwwwwywb
bgogyrgryyooyborbrybobrrwrrbygggyggwwyrboooogbwwwwwywb
gywgyrgryooogbobbrybobrrwrrbybggwggyobwooygorbwwwwwyyr
gggryyyrwybogbobbrbybbrrwrrobwggwggyoooooygorbwwwwwyyr
bgyryyyrwyboyborbrbybbrrwrrobgggggggoyrooooogbwwwwwyww
yrbrygwyybybyborbrobgbrrwrroyrggggggyboooooogbwwwwwyww
wryyyrygbobgyborbroyrbrrwrryboggggggbybooooogbwwwwwyww
wryyyrrogobbybwrbwwborryrrrybogggbggbybooooogggywwwyww
rywoyrgrywboybwrbwyborryrrrbybgggbggobbooooogggywwwyww
rywoyrbgbwbyybrrbgoyrbrryrryybggggggobbooooogowwwwwyww
borgyybrwoyrybrrbgyybbrryrrobbggggggwbyooooogowwwwwyww
bgbryowyryybybrrbgobbbrryrrwbyggggggoyrooooogowwwwwyww
wrbyygrobobbybrrbgwbybrryrroyrggggggyybooooogowwwwwyww
rywoyrbgbwbyybrrbgoyrbrryrryybggggggobbooooogowwwwwyww
gywoyrbgbrywbbbgryryrorrbrryybggggggobyoowoooowwbwwyww
boggyybrwryrbbbgryyyborrbrrobyggggggrywoowoooowwbwwyww
bgbryowygyybbbbgryobyorrbrrrywggggggryroowoooowwbwwyww
ogboyobygbbyybrybgobybrryrrrywggggggrywooroobowwwwwrww
booyyggobobyybrybgrywbrryrrrywggggggbbyooroobowwwwwrww
boorygyobyyobbbgrybywyrrgrrrywggggggbbroowooorwwbwwyww
ogboyobrybbrbbbgryyyoyrrgrrbywggggggrywoowooorwwbwwyww
ygbyyogryrbybbrbbgryobrryrrbywggggggrybooooooowwwwwwww
gyyrygyobryobbrbbgbywbrryrrrybggggggrbyooooooowwwwwwww
yrgoyybgybywbbrbbgrybbrryrrrbyggggggryoooooooowwwwwwww
gyyrygyobryobbrbbgbywbrryrrrybggggggrbyooooooowwwwwwww
gyyryggroryobbwbbwybbrryrrwyyboggbggrbyooooooggrwwwwww
grgryyogyybbbbwbbwyybrryrrwrbyoggbggryoooooooggrwwwwww
grgryyrobybybbgbbobywyrryrrrbyggggggryooooooobwwwwwwww
rrgoyrbygbywbbgbborbyyrryrrryoggggggybyoooooobwwwwwwww
rrgyyryygwgoybbbbbbbywrrwrrryoggggggybbooooorowwowwyww
grgryyryyybbybbbbbwgowrrwrrbbyggggggryoooooorowwowwyww
rrgoyyoyybyybbbbbbggorrrrrrbbyggggggryyoooooowwwwwwwww
grgryyryyybbybbbbbwgowrrwrrbbyggggggryoooooorowwowwyww
yggryyryygbbrbbgbbwgowrrwrrbbwggwggyoorooyrooowwowwyyb
wwyryyryygbbgbbybbwgowrrwrrbbbggyggyrooooooyrowwowwgrg
wworyrryrgbbgbbybbwgwwrwwrgggbggbyybyooyooyyrowoowogrr
bbbryrryrobbwbbwbbwgwwrwwrgggrggryygyyyyoorooowoowoggy
bbrryyryyobbwbbwbbwgbwrrwrrrrgggyggyyyyooooooowwowwggg
gyyryyryyrbbbbbbbbwgbwrrwrrrrgggggggooyooyooyowwowwoww
yyyyyyyyybbrbbbbbbggbrrrrrrrrgggggggooooooooowwwwwwwww
yyyyyyyyyggbbbbbbbrrgrrrrrroooggggggbbroooooowwwwwwwww
yyyyyyyyyrrgbbbbbbooorrrrrrbbrggggggggboooooowwwwwwwww
yyyyyyyyyooobbbbbbbbrrrrrrrggbggggggrrgoooooowwwwwwwww
yyyyyyyyybbrbbbbbbggbrrrrrrrrgggggggooooooooowwwwwwwww
gyyryyryyrbbbbbbbbwgbwrrwrrrrgggggggooyooyooyowwowwoww
rrgyyyyyywgbbbbbbbrrgwrrwrrooyggggggrbbooyooyowwowwoww
rroyyoyyrwgbbbbbbbrrgwrywryyggoggoggwbbwoywoyowgowrowr
yyryyrroorrgbbbbbbyggwrywrywbboggoggwgbwoywoyowgowrowr
ryyoyyorryggbbbbbbwbbwrywrywgboggoggrrgwoywoyowgowrowr
yyyyyygrrbbybbgbbgrbboryorywgboggoggrrowoowoowwgwwrwwr
yyryyryygrrobbgbbgbbyoryoryrbboggoggwgbwoowoowwgwwrwwr
byroyroygoggrbbrbbwbywrywryrbboggoggwgywoywoyowgowrbwr
oobyyygrrwbyrbbrbbrbbwrywrywgyoggoggoggwoywoyowgowrbwr
gyoryorybrbbrbbrbbwgywrywryoggoggoggwbywoywoyowgowrbwr
yyoyyoyybrrrbbbbbbggyrryrryoggoggoggwbbwoowoowwgwwrwwr
yyyyyyyyyrrrbbbbbbgggrrrrrroooggggggbbboooooowwwwwwwww

yyyyyyyyybbbbbbbbbrrrrrrrrrgggggggggooooooooowwwwwwwww

Figure 27: CFOP

wwwgyggoybrywbborrrwoorygyybyorgorbbgrrgogwyywbbbwwgoo
wwwgyggogbrywbborrrwworggyyoobygbbrrorrwogbyywbobwygoy
ggwoywggwrwwwbborrooborggyyorrygbbrrbrywogbyywbobwygoy
goggygwwwoobwbborrorrorggyybryygbbrrrwwwogbyywbobwygoy
goggygbyboowwbworwrgyrryoogorybgbwrrrwwwogbyybbrbwygoy
goggygbyboowwbwoogrgyrrywrrorybgbbyyrwwwogorwryybwobbg
woggygwybowoobogwwggygrybrrorybgbbyyrwbwoborrryyrwowbg
rogbygbybgoowbwwoowgygrywrrorybgbbyyrwwwororrgyygwobbg
bbryyobggwgywbwwooorygrywrrrwwbgbbyygoowororrgyygwobbg
bboyywbggwgywbwwooorrgrowrgwbywgyrbbgooooryrrgyygwybbr
wwwyywbggbgybbwrooorrgrowrgwbbwgbrboorroorgoygyygwybyy
wwwyywbggbgybbwgoyorrgroroowbbwgbwrgorroorrbobggywyyyy
wwwyywywybgbbbggogrgoorroorbbbggbgrgorroorrbowwwywyyyy
bbgyywywywgbwbgwogrgoorroorbbyggygryroobororrwwwywybbg
yyyyywywyggbbbgbogrgoorroorbbgggbgrbobrroorrowwwywywww
yyywyyywyrgobbgbogbbgorroorobrggbgrbggbroorrowwwywywww
ywywyyyyybbgbbgbogobrorroorggbggbgrbrgoroorrowwwywywww
ywywyyyyybbgbbgoorobrorrgrbggbggbrrorgoroobogwywwwwwyw
ywrwyryybbbgbbgoorobworwgrwrggrggobbygoyooyogwybwwrwyr
ywwwywyywbbgbbgoorobborrgrrorrbggbggbgoroorogwyywwywyy
gwwoywoywobbobbrggybbwrryrrorrbggbggbgwrowrowoyyowygyy
wwwwywwywroogbbgbbgbborrorrorrbggbggbggroorooyyywwyyyy
wwwyywwwwgbbgbbgbborrorrorrbggbggbggrooroorooyyywwyyyy
wwwyywbbbgbygbygbyooorrrrrrwggwggwggroorooroobbbwwyyyy
wwwyywyyygbbgbbgbbrrorrorrobggbggbggroorooroowwwwwyyyy
wwoyyoyyogbbgbbgbbrrwrryrrybbbggggggyoowoowoowwrwwryyr
wwwyyyyyygbbgbbgbbrrrrrrrrrggbggbggbooooooooowwwwwwyyy
bbbyyyyyywbbwbbwbbrrrrrrrrrggyggyggyooooooooowwwwwwggg

yyyyyyyyybbbbbbbbbrrrrrrrrrgggggggggooooooooowwwwwwwww

Figure 28: Kociemba

ybrbyygyybywwboybyoggwrrgoroobwgogrowwobogbgbrgwrwyrrw
ybbbybgywbywwboybyogrwrygoybooogrowgwwoyogwgbrggrwrrrr
ybrbyygyybywwboybyoggwrrgoroobwgogrowwobogbgbrgwrwyrrw
boobyygyyrywbboybyoggwrrgoroowwgrgrrbbwgowbgorgwrwybwy
oyyoyybbgbbwbboybyrywwrrgoroggwgrgrroowgowbgorgwrwybwy
oyyoyyowgbbgbbbybbwrryrorwgwggggrrrroowgowbgowoyrwybwy
yygyywooooowbbbybbbbgyrorwgwrrggrrrrwgggowbgowoyrwybwy
oygwywgooybobbobbwybgyroowgwrrggrrrrwgbgorbgwboyywyrwy
yygyywooooowbbbybbbbgyrorwgwrrggrrrrwgggowbgowoyrwybwy
yygyyooogoowbbbybbbbyyryrwyrgwrgrrrroggwowggowobrwgbww
yygyyooogoowbbbggobbyyryybbrgwrgrrwyoggwowrrrbrwwwowgb
yyyyyyooboowbbbggobbwyroybbrrrwggyrwgggoowgrrbrrwwwwgo
yyyyyyooboowbbbgrrbbwyroggorrrwggybbgggoowyrwwwbgwrowr
yyyyyyrbwoowbbwgrbgybgrbooworroggbbbgggoowyrwywrgwrowr
yyyyyyrbwoowbbwyrwgybgrbgrborroggoowgggoowbbbogywwwrrr
yyyyyyooooowbbbyrrbbbyrrgggyrrgggoowgggoowbbbwwwwwwrrr
yyyyyyooooowbbbbbbbbbyrryrryrrgggggggggoowoowrwwrwwrww
oyyoyyoyybbbbbbbbbyrryrryrrgggggggggoowoowoowrwwrwwrww
yyyyyyyyybbbbbbbbbrrrrrrrrrgggggggggooooooooowwwwwwwww
yyoyyoyyobbbbbbbbbrryrryrrygggggggggwoowoowoowwrwwrwwr

yyyyyyyyybbbbbbbbbrrrrrrrrrgggggggggooooooooowwwwwwwww

Figure 29: Random

Figure 30: Example solutions computed by each solver. Because the algorithmic solvers typically require
over 100 steps, we use a tiny font to display it.

Section B.1 hints that when value estimates are subject to high uncertainty, subgoal methods should outper-
form low-level searches. To confirm that intuition, we run an experiment in a Rubik’s cube, N-Puzzle, and
Sokoban environments (Section 5.2). During inference, we add additional noise to the value estimates. That
is, whenever a node is added to the search tree and its value estimate equals v̂, we add it with the value of
v̂ + N (0, σ) instead.

Figure 7 shows that as the amount of noise increases, each low-level method gets less and less efficient. On
the extreme, when using fully random values (σ = 100), they struggle to solve any instance.

28

Under review as submission to TMLR

On the other hand, subgoal methods are much more resilient to noise in the value. Adaptive Subgoal Search
is nearly not affected by the presence of noise. kSubS is able to retain as much as 40% − 90% success rate,
even with completely random values.

Observe that the search performed by low-level methods is guided mainly by the value function. Hence, if
the computed estimates are subject to high variance, low-level search struggles to make any progress. On
the other hand, the subgoal search is guided both by the value function and the subgoal generator. Both the
subgoal generator and the conditional policy that connects subgoals do not depend on the values. Hence,
the value function is used only in the high-level nodes, which is only a fraction of the search tree.

An extreme case of that behavior is demonstrated by Adaptive Subgoal Search. Because in our configuration
each generator outputs a single subgoal, the value is nearly not used at all for search. Only when the search
is stuck, the secondary generators select the highest-ranked node to expand, which in this case is simply a
random node of the tree. To summarize, given random value estimates, AdaSubS reduces to the following
strategy:

1. Start from the root node,

2. Move from the current node to the subgoal until possible,

3. If the search is stuck, expand a random node in the search tree with a secondary generator and
return to (2).

The experiments show that this simple strategy is surprisingly competitive to the greedy best-first approach,
even without noise. Interestingly, it could be implemented in low-level search as well. We leave that promising
experiment for future work.

B.3 Complex Action Spaces

In environments with large action spaces, search methods often struggle due to the exponential increase in
the number of choices at each decision point (Sutton & Barto, 1998). This complexity makes it difficult
to efficiently identify optimal actions, slowing down decision-making and exploration (Dulac-Arnold et al.,
2015; Silver et al., 2016).

The primary difference between low-level methods and subgoal methods is that the former predicts the
next action, and the latter – the next state. In many environments, the action space is as simple as a few
bits, allowing for iterating over all possible actions, and sampling them. At the same time, states may be
considerably larger, up to the extreme of image observations. However, in some environments, the action
space is comparable to the state space, or even more complex. A classic example is the AntMaze environment,
in which actions are 8-dimensional, while the goal space is only 2-dimensional (Fu et al., 2020).

Among the combinatorial reasoning environments we consider, INT has the most complex action space.
In INT, actions correspond to proof steps and are represented as the chosen axiom, specification of its
input entities, and the required premises (Wu et al., 2021). Thus, the complexity of the action is at least
comparable to the states. Moreover, solving the INT inequalities is based on constant simplification of the
given expression, so the state is getting even smaller with each step.

Our experiments, shown in Figure 10, clearly confirm the advantage of using subgoal methods in the INT
environment. To further verify the source of that advantage, we conducted another experiment, in a modified
Rubik’s cube environment. Recall that the experiment presented in Section 5.1 shows that subgoals offer no
significant advantage in the original Rubik’s cube (with a single data source). Now, we want to check whether
the outcome would be different if the action space were more complex. For that purpose, we extended the
action space 100 times. That is, the new action space consists of 1200 possible moves to choose from – 100
copies of each original action.

As shown in Figure 11, the subgoal methods are barely affected by the change, while the low-level searches
are unable to exceed 20% success rate. That result confirms our proposition that when facing a complex
action space, hierarchical methods offer considerably better performance.

29

Under review as submission to TMLR

According to our analysis, the primary issue with low-level searches in the augmented Rubik’s cube is the
lack of diversity of visited states. When for each state there are hundreds of actions that lead to a similar
outcome, they are rated similarly by the policy. Hence, all the top actions essentially lead to the same
outcome, which strongly limits the branching factor and trivializes the search trees. On the other hand,
subgoal methods are not affected because subgoal generation does not depend on the action space. The
conditional policy that connects the generated subgoals does not build a search tree, but always follows the
single best action. Because of that, subgoal methods maintain their performance, even though the action
space is much more complex.

It is also important to note that even though some state spaces may seem complex, the underlying manifold
of possible configurations is in fact low-dimensional. For instance, we use 12x12 Sokoban boards, where each
square is encoded as one-hot of 7 possible items, so technically the state space is 1008-dimensional, while
there are only 4 actions. However, in practice the subgoal is defined by the positions of agent and boxes,
which is at most 10-dimensional, hence rather simple to generate.

B.4 Dead Ends

Figure 31: An example dead-end in Sokoban –
a box that is pushed to the corner cannot be
moved anymore, so the objective is not possible
to achieve.

Dead-end states present a major challenge in decision-
making and planning tasks. Once an agent encounters a
dead end, reaching the goal becomes impossible, leading
to wasted computational effort as the algorithm may con-
tinue exploring parts of the search space that do not con-
tribute to solving the problem (Russell & Norvig, 2020).
Failing to identify dead-ends may even lead to unsafe be-
havior (Fatemi et al., 2021; Sutton & Barto, 1998). At
the same time, identifying dead-ends is NP-complete in
many environments.

Specifically, a dead-end state s is one from which there
exists no feasible sequence of actions that leads to the
goal state. Figure 31 shows an illustrative example of a
dead-end state.

B.4.1 Examples Of Dead-Ends In kSubS vs. BestFS

Figure 32: We illustrate a scenario where the kSubS algorithm encounters dead-ends, hindering the search
process. The figure shows a case where the algorithm generates two subgoals at an expected distance (k=8),
but both lead to dead-ends, wasting a portion of the search budget (18 nodes). As a result, the kSubS
algorithm backtracks from this subtree and continues searching elsewhere within the tree.

30

Under review as submission to TMLR

Figure 33: The figure shows BestFS expanding two nodes from a dead-end. This resulted in the exploration
of over 300 additional nodes from that state, ultimately failing to find a solution within the given search
budget.

In this subsection, we present examples of how each method handles dead-end situations during the search
process.

For this presentation, we analyzed 128 search trees initiated from identical starting boards for both algo-
rithms. The kSubS algorithm encountered dead-ends in 3 instances. To resolve these, it navigated through
13 high-level nodes and 105 low-level nodes within the corresponding subtrees. In contrast, the BestFS
algorithm encountered dead-ends in 18 instances, requiring the traversal of 4431 nodes. Note that BestFS
does not distinguish between high-level and low-level nodes in its search.

Examples of dead-end handling are shown in Figure 32 for kSubS and Figure 33 for BestFS. Observe that in
the case showed in Figure 32 expanding the parent node resulted in adding two more dead-ends to the search
tree. Because they have higher values, they were immediately expanded. However, the subgoal generator
understood that the only way to reach solution is to make an invalid transition of releasing the blocked
box. Such subgoals cannot be achieved by the conditional policy, hence no more subgoal was created in that
branch. On the other hand, low-level search is unable to propose invalid transitions, so it stays in dead-end
until the value estimates are higher than for other branches.

31

Under review as submission to TMLR

C Network Architectures & Training Details

Environment Hyperparameter Generator CLLP Value Policy

INT

learning rate 0.0001 0.0001 0.0003 0.0001
learning rate scheduling linear linear linear linear
warmup steps 4000 4000 2000 4000
batch size 32 32 128 32
weight decay 1e-05 1e-05 1e-05 1e-05
dropout 0.1 0.1 0 0.1

Rubik’s Cube

learning rate 0.0001 0.0005 3e-7 0.0001
learning rate scheduling linear linear linear linear
warmup steps 5000 50000 50000 1000
batch size 512 5000 5000 2048
weight decay 0.0001 0.001 0.00001 0.0001
dropout 0.1 0 0 0

Sokoban

learning rate 0.00001 0.0001 0.0001 0.0001
learning rate scheduling linear linear linear linear
warmup steps 2500 1000 1000 1000
batch size 512 2048 2048 2048
weight decay 0.0001 0.0001 0.0001 0.000001
dropout 0 0.1 0 0

N-Puzzle

learning rate 0.0001 0.0001 0.0001 0.0001
learning rate scheduling linear linear linear linear
warmup steps 5000 2000 2000 2000
batch size 4096 4096 512 4096
weight decay 0.00001 0.00001 0.00001 0.0001
dropout 0.1 0 0 0

Table 1: Training-related hyperparameter values

We used BART (Lewis et al., 2020) and BERT (Devlin et al., 2019) architectures from HuggingFace Trans-
formers for all components. Subgoal generators and INT’s policies (CLLP and baseline policy) use BART.
The remaining policies and value functions use BERT. Following the practice in (Zawalski et al., 2023), we’ve
reduced model size parameters, as detailed in Table 2.

INT As states in INT are complex objects, we prefer to use their string representations and avoid mapping
arbitrarily generated strings into complex states. Requisite modifications to the component definition are
best illustrated analogously to D.1. A generator is redefined as follows:

Gint : S︸︷︷︸
state to expand

→ P (T)︸ ︷︷ ︸
set of proposed subgoals (in string format)

and conditional level policy:

Pint : S︸︷︷︸
current state

× T︸︷︷︸
subgoal representation

→ A︸︷︷︸
action

Sokoban Unlike prior work (Zawalski et al., 2023; Czechowski et al., 2021), which used convolutional
networks for all components, we work on tokenized representations of Sokoban boards and use BERT/BART
architectures instead. This modification did not adversely impact our ability to replicate AdaSubS and kSubS
results.

Training pipeline We trained our models from scratch using the HuggingFace Transformer pipeline.
Detailed training parameters, which varied across environments, can be found in 1.

Infrastructure For training, we used a single NVIDIA A100 40GB GPU node, and each component’s
training took up to 48 hours. Because we used pre-trained trajectories, we did not need to use more than

32

Under review as submission to TMLR

one core during training. We ran an evaluation using 24-core CPU jobs on Xeon Platinum 8268 nodes with
192GB of memory.

Environment Hyperparameter Generator CLLP Value Policy

INT

d model 512 512 - 512
decoder layers 6 6 - 6
intermediate size - - 256 -
encoder attention heads 8 8 - 8
hidden size - - 128 -
num hidden layers - - 2 -
decoder ffn dim 2048 2048 - 2048
encoder ffn dim 2048 2048 - 2048
encoder layers 6 6 - 6
decoder attention heads 8 8 - 8

Sokoban

d model 256 - - -
decoder layers 3 - - -
intermediate size - 512 128 512
encoder attention heads 4 - - -
hidden size - 512 128 512
num hidden layers - 6 1 6
encoder ffn dim 2048 - - -
decoder ffn dim 1024 - - -
encoder layers 3 - - -
decoder attention heads 4 - - -

N-Puzzle

d model 64 - - -
decoder layers 3 - - -
intermediate size - 128 128 256
encoder attention heads 4 - - -
hidden size - 128 128 256
num hidden layers - 2 1 3
encoder ffn dim 64 - - -
decoder ffn dim 64 - - -
encoder layers 3 - - -
decoder attention heads 4 - - -

Rubik’s Cube

d model 256 - - -
decoder layers 3 - - -
intermediate size - 512 128 512
encoder attention heads 4 - - -
hidden size - 512 128 512
num hidden layers - 2 1 6
encoder ffn dim 2048 - - -
decoder ffn dim 1024 - - -
encoder layers 3 - - -
decoder attention heads 4 - - -

Table 2: Model-related hyperparameter values

33

Under review as submission to TMLR

D Offline Pretraining

Models are pretrained using an offline imitation learning approach. Specifically, given a set of solution
trajectories {(s0, s1, . . . , sni

)}N
i=1 produced by an expert M, or multiple experts {Mj}M

j=1 in cases where
offline trajectories are collected from multiple experts, the objective is to learn from these trajectories. It
is important to note that these trajectories are not required to be optimal; they may include loops or
numerous redundant actions. Description of all components can be found in section D.1 and supervised
training objectives in section D.2.

D.1 Components

During the pretraining phase, models undergo an offline imitation learning process. Specifically, they are
trained on a set of solution trajectories {(s0, s1, . . . , sni

)}N
i=1, which are collected to facilitate the learning of

decision-making strategies.

Generator The generator component is responsible for generating subgoal propositions upon receiving a
state. These propositions are designed to facilitate progress toward the solution by suggesting intermediate
steps that direct the search process more efficiently.

G : S︸︷︷︸
state to expand

→ P (S)︸ ︷︷ ︸
set of subgoal propositions

Conditional Low-Level Policy The Conditional Low-Level Policy (CLLP) plays a crucial role in node
expansion by evaluating each subgoal proposition. For a given current state and a subgoal, the CLLP
recommends actions that lead toward achieving the subgoal. A path from the current node to the subgoal is
constructed through the iterative execution of these actions. Subgoals reached within a predefined number
of steps, k, are incorporated into the graph, while those that are not are discarded.

P : S︸︷︷︸
current state

× S︸︷︷︸
subgoal state

→ A︸︷︷︸
action

Value The value function estimates the distance from a current state to the final solution. This estimation
is used to guide the selection and expansion of nodes, influencing the overall search strategy.

V : S︸︷︷︸
state to evaluate

→ R︸︷︷︸
value of the state

Behavioral Cloning Policy The policy ΠBC is a decision-making function that maps the current state to
an action. It encapsulates the strategy derived from the learning process, guiding the agent’s actions towards
achieving the final goal.

ΠBC : S︸︷︷︸
current state

→ A︸︷︷︸
action

D.2 Supervised Objectives

Each expert trajectory is defined as a sequence of states and corresponding actions
(s0, a0), . . . , (sn−1, an−1), sn that delineate a path to a solution. The training methodology leverages
this data through several key self-supervised imitation mappings:

• A k-subgoal generator that maps a state si to a future state si+k, simulating the achievement of
intermediate goals.

• A value function that estimates the remaining steps to the solution by mapping state si to a numerical
value (i − n), representing the estimated distance from the goal.

• A policy that maps each state-action pair (si, si+d), with d ≤ k, to the corresponding action ai,
thereby guiding the decision-making process towards the solution.

34

Under review as submission to TMLR

E Offline Pretraining: Trajectories

E.1 Rubik’s Cube

E.1.1 Random

To construct a random successful trajectory, we performed 20 random permutations on an initially solved
Rubik’s Cube and took the reverse of this sequence, replacing each move with its reverse. Such solutions
are usually sub-optimal since random moves are not guaranteed to increase the distance from the solution.
They can even make loops in the trajectories. However, a cube scrambled with 20 moves is usually close to
a random state, so such trajectories give a decent space coverage.

E.1.2 Beginner, CFOP

Beginner and CFOP are algorithms commonly used by humans. They solve the cube by ordering the stickers
layer by layer. Because of that, the solutions are highly structured and long – usually between 100 and 200
moves. Both algorithms are composed of several subroutines that help building the consecutive layers. Thus,
the structure of such solutions highly resembles the subgoal search.

E.1.3 Kociemba

The Kociemba two-stage solver leverages the algebraic structure of the Rubik’s Cube. In the first stage, its
goal is to enter a specific subgroup. Since that subgroup is much smaller than the whole space, completing
the solution may be done efficiently. Kociemba finds reasonably short solutions (usually between 20 and 40
moves) and works reasonably fast.

E.1.4 Size Of Datasets

For training the components on a dataset collected by a single solver, we generate 100 000 trajectories. For
the experiment with diverse experts, each solver generates 25 000 trajectories for a total of 100 000.

E.2 INT

Trajectories are constructed from sequences of axiom applications, similarly to (Zawalski et al., 2023), who
followed (Wu et al., 2021). A set of up to 15 (out of 18) axioms is first selected, and then a random axiom
order is set and validated. Finally, a proof is converted to a relevant trajectory. Approximately 500,000
trajectories were generated for model pre-training.

We capped the number of axioms at 15 because some pairs of axioms (eg. terminal axioms) cannot be in
one trajectory.

E.3 N-Puzzle

To collect data for N-puzzles, we utilized an algorithm that initially arranges block number 1, followed by
block number 2, and so forth, as depicted in Figure 18. The training set comprises approximately 10, 000
trajectories.

E.4 Sokoban

To collect trajectories for Sokoban, we used a trained MCTS agent that gathered approximately 100, 000
trajectories.

35

Under review as submission to TMLR

F Algorithms

F.1 Best-First Search

Overview Best-First Search greedily prioritizes node expansions with the highest heuristic estimates,
aiming for paths that likely lead to the goal. While not ensuring optimality, BestFS provides a simple yet
efficient strategy for navigating complex search spaces. The high-level pseudocode for BestFS is outlined in
Algorithm 1, and the detailed pseudocode is presented in Algorithm 2.

Algorithm 1 Pseudocode for Best-First Search
while has nodes to expand do

Take node N with the highest value
Select children ni of N
Compute values vi for the children
Add (ni, vi) to the search tree

end while

Heuristic In our implementation, we adhere to the Best-First Search principle by utilizing the learned
value function, a common practice in the planning domain (Brunetto & Trunda, 2017; Czechowski et al.,
2021; Zawalski et al., 2023; Kujanpää et al., 2023a). It should be noted that in each of our experiments,
all the compared algorithms use the same value function network. This way we ensure that the differences
come solely from the algorithmic part.

Selecting children When expanding a node during search, the standard BestFS algorithm adds all its
children. However, in our implementation, we aimed to reduce the search tree size by selecting only the
most promising children. We achieve this by sorting the children according to their probability distribution
predicted by the policy network. For choosing the final subset of children, we employ two approaches. In
the simpler variant, we always select the top k actions. In the second variant, we add top children until their
cumulative probability exceeds a fixed threshold tconf .

This pruning does not adversely affect the standard algorithm, as nodes are still chosen based on their
heuristic values, while the threshold sets a practical limit on the search space. Our results demonstrate that
BestFS tends to perform much better with a confidence threshold (Figure 34). However, its performance
is highly sensitive to this threshold as it balances exploration and exploitation, illustrating the impact of
different confidence thresholds on success rates.

0.2 0.4 0.6 0.8 1.0
Value of the threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Figure 34: Comparison of success rates for the BestFS algorithm on the Rubik’s Cube with various confidence
threshold values. BestFS-X represents the BestFS algorithm with the confidence threshold set to X. Left:
The plot displays the achieved success rate relative to the graph size. Right: The plot illustrates the success
rate for a budget of 500 nodes.

36

Under review as submission to TMLR

Completeness In the Rubik’s Cube environment with random trajectories, the subgoal methods solve
more instances than BestFS given a low search budget, but with more resources, BestFS takes the lead (see
Figure 4). Also, in other experiments, we may observe that BestFS typically requires higher computational
budget to solve the simplest instances, but its performance increases considerably with more resources.

That behavior is related to the fact that the search trees built by hierarchical methods are much sparser
because the branching occurs only in the high-level nodes. On the other hand, the low-level algorithms can
cover a higher fraction of the space. On the extreme, if we used all the available actions for every expansion,
the low-level search would be guaranteed to find a solution if one exists. Our mechanism of selecting the
actions removes that guarantee. However, at the same time, it drastically improves performance (compare
BestFS-0.7 with BestFS-0.99 which is complete), which makes it a much better choice for our study.

We note that the high-level algorithms could be made complete, as proposed in (Kujanpää et al., 2023b;
Zawalski et al., 2023). However, to maximize the efficiency we choose to keep the tested algorithms in their
original form. The ability to search with sparse trees not only lets the methods advance fast, but also
withdraw quickly if the branch does not lead to the solution (is a dead end).

Hyperparameters To identify the most suitable solving parameters, we used grid search. Initially we grid
over coarse values (namely 0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9, and 0.99). Then we check finer values (with
precision of 0.05) around the best-performing threshold. The best-performing thresholds range from 0.6 to
0.85, depending on the environment and the components that are used.

For determining the best number of top actions k for the simpler variant, we simply check every possible
number of actions. Usually selecting 2 actions is by far the best choice.

Details regarding hyperparameters of the networks are listed in Appendix D.1.

Algorithm 2 Complete pseudocode for Best-First Search
Require:

value function network V ,
policy ρBF S

predicate of solution solved

function search(s0)
T ← ∅ {priority queue}
T .push((V (s0), s0))
parents ← {}
seen.add(s0) {seen is a set}

while 0 < len(T) and len(seen) < max_budget do
_, s← T.extractMax() {select node with the highest value}
actions← ρBF S(s)

for a in actions do
s′ ← envStep(s, a)

if s′ in seen then
continue

end if

seen.add(s′)
parents[s′]← s
T.push((V (s′), s′))

if solved(s′) then
{solution found}
return extractLowLevelTrajectory(s′, parents)

end if
end for

end while

return False {solution not found}

37

Under review as submission to TMLR

F.2 Monte Carlo Tree Search

Overview Our Monte Carlo Tree Search (MCTS) solver, designed for a single-player setting, is based on
the AlphaZero framework (Silver et al., 2018). The high-level workflow of MCTS is illustrated in Figure 35,
and detailed pseudocode is provided in Algorithm 3.

The algorithm’s operation consists of four primary stages:

• Selection: The most promising node is selected using Polynomial Upper Confidence Trees (PUCT),
augmented with an exploration weight to strike a balance between exploiting known strategies and
investigating new pathways.

• Expansion: The selected node is expanded, generating new child nodes that correspond to prospec-
tive future actions. This expansion widens the search tree and enables the exploration of various
outcomes.

• Simulation: Following the AlphaZero approach (Silver et al., 2018), policy and value networks re-
place traditional simulations. The policy network suggests favorable moves, while the value network
predicts their probability of success, directing the algorithm towards beneficial trajectories.

• Backpropagation: The insights derived from the networks are used to update node values, im-
proving future decision-making.

0.
7 0.3

0.
4 0.6

0.90.
1

0.
7 0.3

0.
4 0.6

0.90.
1

0.
55

0.45

0.
7 0.3

0.
4 0.6

0.90.
1

0.
55

0.36 0.74

0.45

0.36 0.74

SELECTION EXPANSION SIMULATION BACKPROPAGATION

Q Q

Q

Q

Q

Figure 35: Schematic diagram of the MCTS algorithm in our implementation. Arrows show policy network
probabilities and node values are valued network predictions. Q values, calculated via PUCT, integrate these
with exploration-exploitation balance.

Hyperparameters In the MCTS algorithm, the parameters were set as follows: sampling temperatures
were chosen from [0, 0.5, 1]. The number of steps varied between 200 and 1000, and the number of simulations
ranged from 5 to 300. The discount factor and exploration weight were consistently set at 1.

38

Under review as submission to TMLR

Algorithm 3 MCTS Solver
Require:

Number of simulations: Ns

Discount factor: γ
Exploration weight: cpuct
Sampling temperature: τ
Value function: V
Environment model: M
Initial state: initial_state from env

function Search((initial_state))
root← initial_state
iteration← 0
while iteration < Ns do

node← root
while node is not a leaf do

node← selectChild(node), according to PUCT formula
end while
leaf ← node
Expand the leaf using the environment model M , policy π, value function V , and discount factor γ
Backpropagate results through the path to update N, W, Q
iteration← iteration + 1

end while
best_child← Sample child of the root according to τ and N
return action leading to best_child

39

Under review as submission to TMLR

F.3 A∗ Search

Overview Like Best-First Search, A* prioritizes the exploration of promising nodes. However, A* strate-
gically guides its search by incorporating both the actual cost to reach a node and a heuristic estimate of the
remaining distance to the goal. This way it balances the greedy exploitation and conservative exploration.
The high-level pseudocode for A* is outlined in Algorithm 4, and the detailed pseudocode is presented in
Algorithm 5.

Algorithm 4 Pseudocode for A*
while has nodes to expand do

Take node N with the highest value
Select children ni of N
Compute values vi for the children
Compute depth di for the children
Add (ni, λdi + vi) to the search tree

end while

Heuristic A* guidance is achieved through the following cost function:

f(node) = λg(node) + h(node)

where:

• g(node): The cost to reach node from the start state, in our case its depth in the search tree.

• h(node): A heuristic estimate of the cost from node to the goal state.

• λ: A scaling factor balancing the influence of actual cost and heuristic estimate.

For heuristic h, we used a value network, like for BestFS (see Appendix F.1). If the heuristic used for
A* is admissible, i.e. it never overestimates the cost of reaching the goal, A* is guaranteed to find an
optimal solution. For instance, if we used h(node) ≡ 0, A* would reduce to the Dijkstra algorithm. The
heuristic that we learn is not guaranteed to be admissible. Firstly, it estimates the distance according to
the demonstrations, which is always an upper bound for the optimal distance. Secondly, the approximation
errors introduce additional uncertainty. However, our main focus is on finding any solution, not necessarily
an optimal one.

Selecting children During the search, A* maintains a priority queue of nodes to be explored. Similarly
to BetsFS (Appendix F.1) for reducing the search tree size, we select the most promising children. At each
iteration, the node with the lowest f(node) value is selected for expansion. The algorithm proceeds until the
goal state is reached or the computational budget is exceeded.

Hyperparameters The key parameter for A* is the cost weight λ. On the extreme, setting λ = 0 reduces
A* to greedy BestFS, while setting λ = ∞ makes it equivalent to Breadth-First Search. By tuning that
parameter, we control the trade-off between exploration and exploitation of the search.

To tune the depth parameter for our experiments, we grided over values [0.1, 0.2, 0.5, 1, 2, 5, 10]. However,
usually the best choice was to keep the cost weight low (0.1 or 0.2, see Figure 36). While conservative
search allows A* avoid more dead-ends than BestFS (see Figure 5.4), usually greedy steps lead to finding
the solution much faster.

40

Under review as submission to TMLR

0 2 4 6 8 10
Value of the threshold

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
e

Figure 36: Figures presented above illustrate the impact of depth cost scaling on the overall success rate of
the A* algorithm on Sokoban, employing a confidence threshold of 0.85. In most experiments, the smaller
the depth scaling factor is, the better is the final success rate. The left figure shows the success rate curves
for different choices of cost weight λ, while the right plot compares those variants for a fixed budget of 500
computation nodes.

Algorithm 5 Complete pseudocode for A∗ Search
Require:

value function network V
policy ρBF S

predicate of solution solved
depth scaling factor λ

function search(s0)
T ← ∅ {priority queue}
T .push((V (s0), s0))
parents ← {}
seen.add(s0) {seen is a set}

while 0 < len(T) and len(seen) < max_budget do
_, s← T.extractMax() {select node with the highest value}
actions← ρBF S(s)

for a in actions do
s′ ← envStep(s, a)

if s′ in seen then
continue

end if

seen.add(s′)
parents[s′]← s
T.push((V (s′)− λ · depth(s′), s′))

if solved(s′) then
{solution found}
return extractLowLevelTrajectory(s′, parents)

end if
end for

end while

return False {solution not found}

41

Under review as submission to TMLR

F.4 kSubS And AdaSubS

Overview AdaSubS is a hierarchical search algorithm designed to solve combinatorial problems by op-
erating on high-level nodes, which represent multiple steps rather than single actions. It employs multiple
generators Gk1 , Gk2 , . . . , Gkm

to generate subsequent subgoals, a value function V to estimate the distance
from a given state to the solution, and a conditional low-level policy P to execute a series of actions leading
from one subgoal to the next. kSubS is a special case of AdaSubS, where only a single generator is used.
These methods are introduced and studied in (Czechowski et al., 2021; Zawalski et al., 2023).

Stages The method begins by adding m initial nodes (one per each generator) to a priority queue, where
each initial node i is assigned a priority (ki, V(s0)). Here, ki is the length of the generator used during the
node’s expansion, and V(s0) estimates the distance (in low-level actions) between s0 and the solution. The
following steps are repeated until a solution is found or the budget is exhausted:

• Selection for expansion: The node ((k, V(s), s) with the highest priority is extracted from the
queue. This priority structure ensures that the algorithm prioritizes expanding the longest subgoals
whenever possible.

• Generating subgoals: The current state s is passed to the selected generator Gk, which produces
multiple subgoal propositions represented as states s∗

1, s∗
2, . . . , s∗

p.

• Verifying reachability: Since Gk can produce invalid or unreachable subgoals, each proposed
subgoal must be verified. The conditional low-level policy P begins an iterative process, taking
single steps from s towards the proposed subgoal s∗

j . If s∗
j is reached within k steps, the subgoal

is accepted, and new high-level nodes {
(
(ki, V(s∗

j)), s∗
j

)
}i∈{1...m} are added to the priority queue as

potential future subgoals to expand.

For a graphical overview of how AdaSubS works, see Appendix H.

Algorithm 6 Complete pseudocode for Adaptive Subgoal Search
Require:

C1 max number of nodes,
V value function network,
ρk0 , . . . , ρkm subgoal generators,
Solved predicate of solution

function Solve((s0))
T ← ∅ {priority queue with lexicographic order}
parents← {}
for k in k0, . . . , km do

T.push((k, V (s0)), s0)
end for
seen.add(s0) {seen is a set}
while 0 < len(T) and len(seen) < C1 do

(k, _), s← T.extract_max()
subgoals← ρk(s)
for s′ in subgoals do

if s′ not in seen then
if Is_Valid(s, s’) then

seen.add(s′)
parents[s′]← s
for k in k0, . . . , km do

T.push((k, V (s′)), s′)
end for
if Solved(s’) then

return ExtractLowLevelTrajectory(s’, parents)
end if

end if
end if

end for
end while
return False

42

Under review as submission to TMLR

F.5 HIPS And HIPS-ε

Here we show a pseudocode for HIPS and HIPS-ε methods. For details see Alg. 7

Algorithm 7 Complete pseudocode for HIPS with BestFS-PHS* and VQ-VAE
Require:

C1 max number of nodes,
V AE Variational Autoencoder for subgoal generation,
Solved predicate of solution,
ϵ exploration parameter for balancing,
V value function for PHS* cost estimation

function Extended_HIPS_Solve((s0))
Initialize search data structures, including priority queues.
seen.add(s0) {Track seen states}
while search conditions are met do

Use PHS* search strategy to select a state s.
Generate subgoals subgoals← V AE(s).
for each s′ in subgoals do

if s′ not seen and is valid then
Evaluate s′ using V for PHS* cost.
Update priority queue based on PHS* cost.
if Solved(s′) then

return Construct solution path.
end if

end if
end for

end while
return False {Solution not found}

43

Under review as submission to TMLR

G Wall Times

In our experiments, we focus on measuring the search budget in terms of the number of visited states before
finding the solution. However, it is also important to consider the total running time for completeness.

Subgoal methods introduce computational overhead. However, we note that each low-level method calls
policy and value function once in every visited state, and similarly, subgoal methods also call policy and
value once in every visited state. The only additional computation in subgoal methods comes from invoking
the subgoal generator, which occurs in a fraction of the nodes explored. In each experiment, all methods
share exactly the same heuristic function and use policies of equal size. As a result, the Complete Search
Budget metric should be closely aligned with computational cost.

We opted to focus on a budget metric that is hardware-independent, reproducible, and widely applicable,
ensuring that our results can serve as a reference point for future research. The Complete Search Budget
answers the question "How many states must be explored before finding a solution?" rather than "How long
does it take to find a solution?". These are slightly different questions, but both are relevant when assessing
planner quality.

We acknowledge that we did not optimize the implementation for runtime efficiency, instead opting for
the architectures used by (Czechowski et al., 2021) and (Zawalski et al., 2023) rather than optimizing
computational complexity. Additionally, measuring wall-clock time introduces confounding factors, such as
a bug in Hugging Face’s beam search implementation that prevents decoding parallelization, introducing
bias against subgoal methods.

For completeness, we report wall-clock times of each method in Table 3.

ρ-BestFS ρ-A* ρ-MCTS kSubS AdaSubS
Rubik 26 26 153 214 96
INT 1997 1985 - 1444 1999
Sokoban 34 36 59 125 123
NPuzzle 27 32 29 40 39

Table 3: Comparison of evaluation time of search algorithms. The values express the total time of solving
500 instances, in minutes.

While all methods perform with similar runtime in the INT environment, subgoal methods generally require
more time during evaluation in most other experiments. However, even the largest observed differences in
evaluation time mildly affect the main conclusions. For example, the robustness of subgoal methods to value
noise remains evident.

44

Under review as submission to TMLR

H Hierarchical Search

Best-First Search (variant with adaptive number of actions)

Planner

Policy produces actions
until probability treshold

Value Function

K-Subgoal Search

Planner

K-Subgoal
Generator

Value Function

Low-Level Policy

Best-First Search (variant with fixed number of action)

Planner

Policy produce k actions

Value Function

Adaptive Subgoal Search

Planner

Subgoal
Low-Level PolicyGenerators

Value Function

Linear trajectory with Behavioral Cloning Policy

Policy selects 1 action

Planner

VQ-VAE
produces fixed
number of
subgoals

Low-Level Policy

HIPS

Value Function

Figure 37: Overview of the search methods under consideration, accompanied by illustrative examples
depicted in various plots for each method. Specifically, straight blue lines are utilized to represent low-level
actions that occur within the search space. In contrast, long skip connections are used to symbolize subgoals
within the search process.

45

Under review as submission to TMLR

I Further Discussion On HIPS Results

HIPS and HIPS-ε (Kujanpää et al., 2023a;b) are recent hierarchical search algorithms proposing to generate
subgoals with variational autoencoders. We attempted to use HIPS and HIPS-ε in greedy and prior-informed
variations, and for all HIPS methods, the cost of inference was prohibitively high.

To compare these methods, we used A*-generated data from HIPS papers, in contrast to all other experiments
(which use data generated by us).

Our evaluation, illustrated in 38, shows that HIPS uses 100x more low-level nodes in search than comparable
subgoal search methods and baselines - despite relatively similar subgoal efficiency as calculated in relevant
papers. These findings informed our decision not to evaluate HIPS in the rest of the paper.

101 102 103 104

High-level node budget

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

AdaSubS
HIPS
HIPS-

101 102 103 104

Low-level node budget

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

kSubS
AdaSubS
HIPS
HIPS-
BestFS
Policy (BC)

Figure 38: A comparison of high-level and low-level node budgets for considered methods: HIPS, subgoal
search methods, and baselines on N-Puzzle. The low-level node budget represents the number of all states
that have ever been visited during the search. The bimodal distribution indicates that HIPS methods use
disproportionately (over 100x) more low-level nodes than comparable subgoal search methods and baselines.
This directly translates to prohibitively slow solving time.

46

Under review as submission to TMLR

J Common Pitfalls In Hierarchical Search evaluations

In this study, one of our primary goals is to identify common but often overlooked pitfalls in evaluating
hierarchical search methods, which can lead to misleading conclusions. Based on our findings, we propose
a set of guidelines that help ensure meaningful and consistent comparisons across different methods. We
observed that the nature of hierarchical search makes it easy, whether intentionally or not, to present results
in a way that favors certain methods, often without readers being aware. In this section, we present key
insights on this issue, with an emphasis on the following evaluation guidelines:

• Report results using a complete search budget.

• Include ρ-BestFS with a confidence threshold as a baseline.

• Ensure careful tuning of the confidence threshold.

• Use up-to-date code for running experiments.

J.1 Complete Search Budget

We define the performance metric in terms of success rate, which is the percentage of problem instances
solved within a specified complete search budget. This budget refers to the total number of states visited
during the search process. For hierarchical methods, this includes both the subgoals generated and the states
visited by the low-level policies connecting those subgoals.

Reporting the complete search budget is crucial, as opposed to the sparse search budget, which counts only
the high-level nodes in the search tree. As discussed in Appendix I, Kujanpää et al. (2023a) rely on the sparse
search budget for their evaluations. This creates a misleading impression that HIPS outperforms low-level
baselines, while in reality, it requires significantly more computational effort to solve the same problems.

To illustrate this issue, consider a simple environment where an agent must navigate a 100x100 empty room
to reach a goal on the opposite side. In this case, a hierarchical method may require only a single subgoal
– directly corresponding to the goal state – while a low-level method, even if following the optimal path,
would require at least 100 steps. A sparse search budget would misleadingly indicate that the hierarchical
method solves the task in one step, while the low-level approach requires 100 steps, implying a 100x higher
cost. However, both methods traverse the same path, making this comparison inaccurate. Using the complete
search budget, both methods would be assigned the same cost, providing a much more meaningful comparison.

This issue arises in practical settings as well. Figure 40 compares subgoal methods and low-level BestFS on
the Sokoban environment. The dashed line represents the same runs but evaluated with the sparse search
budget instead of the complete search budget. For BestFS, both budget measures are equivalent. The figure
clearly demonstrates that while kSubS and ρ-BestFS visit a similar number of states to solve an instance,
the sparse search budget falsely amplifies the difference between the two methods.

J.2 Baselines

A common evaluation practice in hierarchical search studies is to compare hierarchical methods against
the search algorithm used as the planner (Czechowski et al., 2021; Zawalski et al., 2023; Kujanpää et al.,
2023a;b). While this is generally a good approach, it is critical to ensure that baseline methods are properly
tuned to allow for fair comparisons.

Our study shows that the most effective low-level method is ρ-BestFS with a confidence threshold. This
simple greedy search often performs significantly better than other low-level methods and, in some cases, is
competitive with subgoal methods. However, if we were to follow prior works such as (Czechowski et al.,
2021; Zawalski et al., 2023) and restrict our comparisons to variants of BestFS that select a fixed number
of actions in each node expansion, without employing a confidence threshold (see Appendix F.1 for detailed
definitions and analysis), we would artificially widen the gap between BestFS and subgoal methods. As
noted in Appendix F.1, the performance of ρ-BestFS is highly sensitive to the confidence threshold, and

47

Under review as submission to TMLR

102 103

Graph size

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

kSubS-6
kSubS-4
kSubS-2
AdaSubS-6+4+2

BestFS-70%
BestFS-top 2
MCTS
A*

Figure 39: Solving the Rubik’s Cube. The light or-
ange line represents the best-performing variant of
BestFS that selects a fixed number of actions for
each expansion. The solid orange line represents
BestFS with actions confidence threshold, which is
much more efficient.

100 101 102 103

Graph size

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

kSubS-8 - all states
kSubS-8 - high-level
AdaSubS-8+4+1 - all states
AdaSubS-8+4+1 - high-level

BestFS-85%

Figure 40: Solving Sokoban. Solid lines correspond
to using complete search budget as the search tree
size metric. Dashed lines correspond to the same
runs, but using sparse search budget as the search
tree size metric. For BestFS, both methods are
equivalent.

proper tuning is essential. Nevertheless, we advocate for using ρ-BestFS with a confidence threshold as a
standard baseline in evaluations of hierarchical methods.

J.3 Code Quality

While our results generally align with the findings of (Czechowski et al., 2021; Zawalski et al., 2023), we
observed some notable differences. Most strikingly, when components were trained on reverse random shuffles
of the Rubik’s Cube, our models demonstrated significantly better performance. In particular, (Zawalski
et al., 2023) reports that both kSubS and AdaSubS substantially outperform ρ-BestFS. However, in our
experiments, these methods perform similarly, with only minor differences between them (see Figure 41).

Figure 41: Solving the Rubik’s Cube. Components are trained on reverse random shuffles. The left chart
present our results, while the right presents results of the same experiment from (Zawalski et al., 2023).

For this study, we re-implemented all algorithms from scratch, using up-to-date libraries and carefully tuning
hyperparameters. Our experiments revealed that low-level methods are highly sensitive to the quality of the
value function, whereas subgoal-based methods are more resilient (Section 5.2). We hypothesize that the
discrepancy in performance compared to (Czechowski et al., 2021; Zawalski et al., 2023) may stem from
insufficient training of the value function in their implementation, leading to the observed performance gap.

48

Under review as submission to TMLR

Using the original implementations of kSubS and AdaSubS, which is a common practice, would replicate
the same limitation. This shows the importance of re-implementing algorithms independently and carefully
tuning their components, ensuring that evaluations are not biased by potential shortcomings in the original
implementations.

49

Under review as submission to TMLR

K Proof Of The Search Advancement formula

Theorem 3 (Search advancement formula, complete statement). Let gk : S → P(S) be a stochastic k-subgoal
generator that, given a state s ∈ S samples a set of b subgoals {si} such that the distances d(si, s) are inde-
pendent, uniformly distributed in the interval [−k; k]. Let V : S → R be a value function with approximation
error uniformly distributed in the interval [−σ; σ].

Then, after n iterations of search, the expected total progress toward the goal is:

EAdv = nb

4σk

∫ k

−k

x

(∫ σ

−σ

ũ(x + h)b−1dh

)
dx, (3)

where ũ(x) is CDF of the sum of two uniform variables U(−k, k)+U(−σ, σ). Additionally, if we approximate
that sum as U(−k − σ, k + σ), we get

EAdv ≈
n

(
(k + σ)b(bk2 + bkσ − 2kσ − 2σ2) + σb(2kσ + bkσ + 2σ2) − kb(bk2)

)
(b + 1)(b + 2)kσ(k + σ)b−1 (4)

Proof. Let A1, . . . , Ab be independent and identically distributed (i.i.d.) random variables sampled from
U(−k, k), and let B1, . . . , Bb be i.i.d. random variables sampled from U(−σ, σ). Denote the CDF of the
sum Ai + Bi as ũ(x), and its corresponding probability density function (PDF) as p(x) = ũ′(x). Let
I = arg maxi(Ai + Bi).

We now define the cumulative likelihood of selecting the largest sum among the subgoals:

CLS(x) = P (∀1≤i≤b Ai + Bi < x) .

Since the Ai’s and Bi’s are independent, it follows that CLS(x) = ũ(x)b, which represents the cumulative
distribution of the largest sum Ai + Bi. Differentiating this expression gives the PDF of the largest sum:

PLS(x) = CLS′(x) = b · ũ(x)b−1 · p(x).

Now, consider the event that AI = x, which is equivalent to the event that the maximum maxi(Ai + Bi) =
x + h for some h ∈ [−σ, σ] and BI = h. Given that maxi(Ai + Bi) = x + h, there are p(x + h) · 4σk possible
values of BI , since AI ∈ [−k, k] and BI ∈ [−σ, σ]. Therefore, the PDF of this variable is

q(x) =
∫ σ

−σ

PLS(x + h)
p(x + h) · 4σk

dh =
∫ σ

−σ

b · ũ(x + h)b−1

4σk
dh.

Thus, the expected value of AI , which represents the progress in each step, is given by

E[AI] =
∫ k

−k

xq(x) dx = b

4σk

∫ k

−k

x

(∫ σ

−σ

ũ(x + h)b−1 dh

)
dx.

If we model the search process as advancing to the best subgoal in each iteration, the total expected progress
after n iterations is

EAdv = nE[AI] = nb

4σk

∫ k

−k

x

(∫ σ

−σ

ũ(x + h)b−1 dh

)
dx.

Finally, by approximating the PDF p(x) ≈ 1
2k+2σ1[−k−σ,k+σ], and substituting this approximation into the

previous expression, we arrive at the closed-form approximation:

EAdv ≈
n

(
(k + σ)b(bk2 + bkσ − 2kσ − 2σ2) + σb(2kσ + bkσ + 2σ2) − kb(bk2)

)
(b + 1)(b + 2)kσ(k + σ)b−1 .

50

Under review as submission to TMLR

L Proof Of The Densification Of The Action Space Theorem

In Section 5.3, we showed experimentally that both in the mathematical INT environment and Rubik’s Cube
with multiplied action space the advantage of subgoal methods is significant. We attributed those benefits
to the ability of subgoal methods to use states as actions and the reduced diversity in low-level search. And
indeed, we can prove in general that as the action space gets more complex, the diversity of top actions
drops.

To give an illustrative example, in the Rubik’s Cube experiment, to model the increasingly complex action
space, for an arbitrary state we can view the training data as a ground-truth density function f over an
interval [0, 1], that is split evenly between the actions (i.e. into 12 intervals of length 1/12). Then, we
can define arbitrarily dense action spaces An consisting of n points distributed evenly in the domain. For
instance, A12 corresponds to the standard Rubik’s Cube action space, while A1200 corresponds to the variant
multiplied 100 times. Our theorem confirms that the actions selected by the policy gets less diverse as the
complexity of the action space increases, up to the extreme of converging to a single point as n approaches
infinity. In practice, it is even more general, since the data-driven action distribution f may also model
smooth interpolation between actions.

While this is rather intuitive when the learned distributions are perfect, it may seem that approximation
errors, induced both by the limited training data and the policy network can actually improve diversity.
We show that the result holds even in presence of arbitrarily large approximation errors, which is a bit
counter-intuitive.

Formally, the theorem is as follows:
Theorem 4 (Densification of the action space). Fix any state s from the state space S. Let f : A → [0, 1]
be the action distribution induced by the data-collecting policy for the state s. Assume that f is continuous
and has a unique maximum. For clarity, assume A = [0, 1].

Consider a sequence of increasingly dense discrete action spaces An := {i/n}n
i=0 ⊂ A. Let ρn : S × An →

[0, 1] be a family of policies that learn the distribution f |An
over actions, with uniform approximation error

U(−E, E), where E ∈ R+. Let rn be the range of the top K actions according to the probabilities estimated
by ρn. Then

lim
n→∞

E[rn] = 0.

Intuitively, this theorem states that as the action space become more dense and complex, the actions sampled
for search become increasingly less diverse, which strongly impedes successful planning. Note that this
analysis is strictly more general than the experiment in Section 5.3 with the Rubik’s Cube environment,
where we simply copied the available actions. Here we model the complexity by adding dense intermediate
actions, which leads to a similar conclusion.

While we assume a one-dimensional action domain for clarity, it is straightforward to generalize the proof
to cover arbitrarily high-dimensional action spaces.

Firstly, we shall prove the following key lemma.
Lemma 1. Let f : [0, 1] → R be a continuous function with a unique maximum. Let {an} be a partition
of the interval [0, 1] into n uniformly spaced points, i.e., an,i = i

n for i = 0, 1, . . . , n. Define en,i as i.i.d.
samples from a uniform distribution U(−E, E). For a fixed n, let rn ∈ R denote the smallest interval length
such that the points in {an} corresponding to the top K values of f(an,i) + en,i are contained within this
interval. Then

lim
n→∞

E[rn] = 0.

Proof. Define pn,i,k as the probability that f(an,i) + en,i is the k-th highest value among all points in {an}.
Let m be the unique point such that f(m) is maximal. Without loss of generality, we may assume that
m = 0.

51

Under review as submission to TMLR

Let dn,k denote the expected distance of the k-th highest point from 0, expressed as

dn,k :=
n∑

i=0
pn,i,kan,i.

For sufficiently large n, it holds that rn ≤ dn,1 + . . . + dn,K ≤ Kdn,K . Thus, it suffices to prove that
limn→∞ dn,K = 0.

Fix α ∈ (0, 1) such that f(an,αn) ≥ f(an,α′n) for each α′ > α. Since f is continuous and m = 0 is
the unique maximum of f , there exist such α arbitrarily close to 0. Let qn,α be the probability that
f(an,αn)+en,αn is among the top K values. Since m is a unique maximum, there exists 0 < β < α such that
f(an,βn) > f(an,αn). Therefore, if at least K points an,i with i/n < β satisfy en,i > E−(f(an,βn)−f(an,αn)),
then f(an,αn) + en,αn cannot be among the top K. The probability of this event is a strict upper bound on
qn,α.

The events en,i > E − (f(an,βn) − f(an,αn)) are pairwise independent, each occurring with probability

c := f(an,βn) − f(an,αn)
2E

> 0.

For sufficiently large n, the probability that at most K of the βn trials succeed is bounded by

1 − K

(
βn

K

)
(1 − c)βn.

Using the asymptotic behavior of binomial coefficients and exponential terms, it follows that

lim
n→∞

n2qn,α = 0, (5)

with convergence that is exponential.

Using the definition of dn,K , decompose it as

dn,K =
n∑

i=0
pn,i,Kan,i =

αn∑
i=0

pn,i,Kan,i +
n∑

i=αn

pn,i,Kan,i.

For i ≥ αn, since we know that f(an,αn) ≥ f(an,α′n) for each α′ > α, we can bound pn,i,K by pn,αn,K for
sufficiently large n. Therefore

n∑
i=αn

pn,i,Kan,i ≤ (1 − α)npn,αn,K .

Since pn,αn,K ≤ qn,α, it follows that

(1 − α)n2pn,αn,K ≤ (1 − α)n2qn,α.

According to Equation 5, this term converges to 0.

For i ≤ αn, observe that an,i < α and the probabilities pn,i,K sum to at most 1. Thus
αn∑
i=0

pn,i,Kan,i ≤ α.

Combining these bounds, we have
lim

n→∞
dn,K ≤ α.

Since α > 0 was an arbitrarily small constant, it follows that limn→∞ dn,K = 0.

By the relation rn ≤ Kdn,K and the fact that limn→∞ dn,K = 0, we conclude that

lim
n→∞

E[rn] = 0.

52

Under review as submission to TMLR

Now, Theorem 4 is a straightforward implication of Lemma 1, applied to the sequence of policies ρn and
increasingly dense action spaces An.

53

Under review as submission to TMLR

M Comparison with DeepCubeA

In contrast to the general-purpose search methods and pre-defined heuristics examined in our main study,
DeepCubeA (McAleer et al., 2019) takes a different approach: it learns a value function and heuristic
directly through deep reinforcement learning. This allowed DeepCubeA to successfully solve the Rubik’s
Cube without relying on human-provided knowledge. To provide a more complete picture of the performance
landscape, and to understand the relative strengths of learned versus pre-defined heuristics, we include a
comparison with DeepCubeA.

DeepCubeA employs Iterative Deepening A* (IDA*) as its core search algorithm. IDA* is a variant of A*
that performs a series of depth-first searches with increasing cost thresholds. In each iteration, it explores
nodes in a depth-first manner, but only up to a maximum cost defined by f(node) = g(node) + h(node),
where g(node) is the path cost (depth) and h(node) is the heuristic estimate of the remaining cost. If a
solution is not found within the current threshold, the threshold is increased, and the search restarts. This
process continues until a solution is found or a resource limit is reached.

While IDA* guarantees finding an optimal solution (given an admissible heuristic), it can revisit the same
nodes multiple times across iterations, leading to redundant computations. A*, as described in Section 5,
maintains an open list of all explored nodes, avoiding this redundancy. Because A* explores all nodes up
to a given cost before expanding nodes with higher costs, and given that we are primarily concerned with
finding any solution rather than necessarily the optimal solution, A* provides a more efficient exploration
strategy for our analysis, and effectively majorizes the behavior of IDA*.

Figure 42: Comparison with DeepCubeA

Figure 42 presents a comparison of methods used in our study (hierarchical AdaSubS and low-level ρ-BestFS)
with DeepCubeA – a well-established algorithm that solved the Rubik’s Cube with deep learning and tree
search, without human knowledge. The plots show evaluation in Rubik’s Cube (left), Sokoban (middle), and
N-Puzzle (right). The performance of DeepCubeA is weaker or on-par with the methods that we analyze in
the paper.

The takeaway from this comparison is twofold. Firstly, performance of our implementations is competitive
with well-established general-purpose solvers. Secondly, it is hard to understand the relation between search
algorithms if they use different heuristics for solving. Hence, we stress that in each experiment presented in
the main paper, all methods share the same value function to ensure a fair comparison.

54

Under review as submission to TMLR

N Solution quality

Environment Algorithm Tree size Solution
length

Solution
length
(subgoals)

N-Puzzle

BestFS 354.43 354.08 -
A* 354.09 353.56 -
MCTS 742.04 347.43 -
kSubS-8 353.66 353.66 45.67

Sokoban

BestFS 185.24 48.98 -
A* 85.04 45.68 -
MCTS 255.0 45.1 -
kSubS-8 101.92 46.88 7.23

Rubik’s Cube

BestFS 152.25 48.92 -
A* 185.23 45.46 -
MCTS 716.46 33.32 -
kSubS-4 303.52 73.58 26.65

Table 4: Average values of tree size, number of leaves, branching factor (average number of children), and
solution length were calculated for 100 boards solved by all presented algorithms. Additionally, for the
subgoal method, the average number of subgoals on the winning path was determined.

Figure 43: The distribution of solution length in Sokoban. The
right part of each plot illustrates the distribution for the meth-
ods that we used. The left part corresponds to the optimal
solutions for the tested instances obtained using Breadth-First
Search. These algorithms were evaluated on 494 commonly
solved instances.

Figure 44: The average difference be-
tween the solutions found by each al-
gorithm and the optimal solutions for
the Sokoban environment. These algo-
rithms were evaluated on 494 commonly
solved instances.

Quite surprisingly, in each domain, the shortest solutions are found by p-MCTS. p-A* typically performs only
slightly worse in that metric. While A* is theoretically capable of finding optimal solutions, our heuristic
is not guaranteed to be admissible, and we additionally apply depth weighting for greater efficiency, which
introduces suboptimality. Interestingly, Subgoal Search finds shorter solutions than its low-level counterpart
p-BestFS in Sokoban and N-Puzzle, but longer ones in the Rubik’s Cube.

We also compared the solutions found in Sokoban to optimal paths computed using BFS. On average, the
computed solutions are about 6–9 steps longer.

We note that the quality of solutions found by hierarchical search is bounded by (1) how often the generator
proposes subgoals on the optimal path, (2) the quality of low-level paths computed by the policy, and (3)
the ability of the value function to recognize optimal states. In contrast, low-level methods are bounded only

55

Under review as submission to TMLR

by the value function (assuming they can expand actions exhaustively). However, we note that AdaSubS,
one of the hierarchical methods we evaluate, can effectively leverage both long-horizon and short, 1-step
subgoals, helping bridge this gap. We believe that further tuning that method could produce a hierarchical
search that explicitly balances effectiveness and solution quality. However, while this is an exciting direction
to explore, it lies beyond the scope of our current work and we leave it for future research.

56

	
	Introduction
	Related Work
	Combinatorial Environments
	Problem Formulation

	Subgoal Methods
	Training Components
	Performance Metrics

	Analysis
	Subgoal Methods are Robust to Diverse Sources of Data
	Subgoal Methods are Value Noise Filters
	Subgoal Methods Handle Complex Action Spaces
	Subgoal Methods Avoid Dead Ends
	Subgoal Methods Generalize Out-Of-Distribution

	Discussion of the Results and Future Directions
	Conclusions
	Reproducibility Statement
	Appendix

	 Appendix
	Environments
	Key Factors For Hierarchical Search
	Learning from diverse data sources
	Value Approximation Errors
	Complex Action Spaces
	Dead Ends
	Examples Of Dead-Ends In kSubS vs. BestFS

	Network Architectures & Training Details
	Offline Pretraining
	Components
	Supervised Objectives

	Offline Pretraining: Trajectories
	Rubik's Cube
	Random
	Beginner, CFOP
	Kociemba
	Size Of Datasets

	INT
	N-Puzzle
	Sokoban

	Algorithms
	Best-First Search
	Monte Carlo Tree Search
	A* Search
	kSubS And AdaSubS
	HIPS And HIPS-

	Wall Times
	Hierarchical Search
	Further Discussion On HIPS Results
	Common Pitfalls In Hierarchical Search evaluations
	Complete Search Budget
	Baselines
	Code Quality

	Proof Of The Search Advancement formula
	Proof Of The Densification Of The Action Space Theorem
	Comparison with DeepCubeA
	Solution quality

