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Abstract

Many critical decisions, such as personalized medical diagnoses and product pric-
ing, are made based on insights gained from designing, observing, and analyzing
a series of experiments. This highlights the crucial role of experimental design,
which goes beyond merely collecting information on system parameters as in
traditional Bayesian experimental design (BED), but also plays a key part in facili-
tating downstream decision-making. Most recent BED methods use an amortized
policy network to rapidly design experiments. However, the information gathered
through these methods is suboptimal for down-the-line decision-making, as the
experiments are not inherently designed with downstream objectives in mind. In
this paper, we present an amortized decision-aware BED framework that prioritizes
maximizing downstream decision utility. We introduce a novel architecture, the
Transformer Neural Decision Process (TNDP), capable of instantly proposing the
next experimental design, whilst inferring the downstream decision, thus effectively
amortizing both tasks within a unified workflow. We demonstrate the performance
of our method across several tasks, showing that it can deliver informative designs
and facilitate accurate decision-making.

1 Introduction

In a wide array of disciplines, from clinical trials (Cheng and Shen, 2005) to medical imaging (Burger
et al., 2021), a fundamental challenge is the design of experiments to infer the distribution of some
unobservable, unknown properties of the systems under study. Bayesian Experimental Design (BED)
(Lindley, 1956; Chaloner and Verdinelli, 1995; Ryan et al., 2016; Rainforth et al., 2024) is a powerful
framework in this context, guiding and optimizing experimental design by maximizing the expected
amount of information about parameters gained from experiments, see Fig. 1(a). However, the
ultimate goal in many tasks extends beyond parameter inference to inform a downstream decision-
making task by leveraging our understanding of these parameters. For example, in personalized
medical diagnostics, a model is built based on historical data to facilitate an optimal treatment for
a new patient (Bica et al., 2021). This data typically comprises patient covariates, administered
treatments, and observed outcomes. Since the query of such data tends to be expensive due to, e.g.,
privacy issues, we need to actively design queries to optimize resource utilization. Here, when the
goal is to improve decisions, the strategy of experimental designs should not focus solely on inferring
the parameters of the model, but rather on guiding the final decision-making for the new patient, to
ensure that each query contributes maximally to the diagnostic decision.
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Figure 1: Overview of BED workflows. (a) Traditional BED, which iterates between optimizing
designs, running experiments, and updating the model via Bayesian inference. (b) Amortized BED,
which uses a policy network for rapid experimental design generation. (c) Our decision-aware
amortized BED integrates decision utility in training to facilitate downstream decision-making.

Traditional BED methods (Rainforth et al., 2018; Foster et al., 2019, 2020; Kleinegesse and Gutmann,
2020) do not take down-the-line decision-making tasks into account during the experimental design
phase. As a result, inference and decision-making processes are carried out separately, which is
suboptimal for decision-making in scenarios where experiments can be adaptively designed. Loss-
calibrated inference, which was originally introduced by Lacoste-Julien et al. (Lacoste-Julien
et al., 2011) for variational approximations in Bayesian inference, provides a concept that adjusts
the inference process to capture posterior regions critical for decision-making tasks. Rather than
focusing on parameter estimation, the idea is to directly maximize the expected downstream utility,
recognizing that accurate decision-making can proceed without exact knowledge of the posterior as
not all regions of the posterior contribute equally to the downstream task. Inspired by this concept,
we could consider integrating decision-making directly into the experimental design process to align
the proposed designs more closely with the ultimate decision-making task.

To pick the next optimal design, standard BED methods require estimating and optimizing the
expected information gain (EIG) over the design space, which can be extremely time-consuming.
This limitation has led to the development of amortized BED (Foster et al., 2021; Ivanova et al., 2021;
Blau et al., 2022, 2023), a policy-based method which leverages a neural network policy trained on
simulated experimental trajectories to quickly generate designs, as illustrated in Fig. 1(b). Given
an experiment history, these policy-based methods determine the next experimental design through
a single forward pass, significantly speeding up the design process. Another significant advantage
of amortized BED methods is their capacity to extract and utilize unstructured domain knowledge
embedded in historical data. Unlike traditional methods, which never reuse the information from past
data, amortized methods can integrate this knowledge to refine and improve design strategies for new
experiments. In our problem setting, the benefits of amortization are also valuable where decisions
must be made swiftly, such as when determining optimal treatment for patients in urgent settings.

In this paper, we propose an amortized decision-making-aware BED framework, see Fig. 1(c). We
identify two key aspects where previous amortized BED methods fall short when applied to down-
stream decision-making tasks. First, the training objective of the existing methods does not consider
downstream decision tasks. Therefore, we introduce the concept of Decision Utility Gain (DUG)
to guide experimental design to better align with the downstream objective. DUG is designed to
measure the improvement in the maximum expected utility derived from the new experiment. Second,
to obtain the optimal decision, we still need to explicitly approximate the predictive distribution of
the outcomes to estimate the utility. Current amortized methods learn this distribution only implicitly
and therefore do not fully amortize the decision-making process. To address this, we propose a novel
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Transformer neural decision process (TNDP) architecture with dual output heads: one acting as a
policy network to propose new designs, and another to approximate the predictive distribution to
support the downstream decision-making. This setup allows an iterative approach where the system
autonomously proposes informative experimental designs and makes optimal final decisions. Finally,
since our ultimate goal is to make optimal decisions at the final stage, which may involve multiple
experiments, it is crucial that our experimental designs are not myopic or overly greedy by only
maximizing next-step decision utility. Therefore, we develop a non-myopic objective function that
ensures decisions are made with a comprehensive consideration of future outcomes.

Contributions. In summary, the contributions of our work include:

• We propose the concept of decision utility gain (DUG) for guiding the next experimental
design with a direct focus on optimizing down-the-line decision-making tasks.

• We present a novel architecture – Transformer neural decision process (TNDP) – designed
to amortize the experimental designs directly for downstream decision-making.

• We empirically show the effectiveness of TNDP across a variety of experimental design
tasks involving decision-making, where it significantly outperforms other methods that do
not consider downstream decisions.

2 Preliminaries

2.1 Bayesian experimental design

BED (Lindley, 1956; Ryan et al., 2016; Rainforth et al., 2024) is a powerful statistical framework that
optimizes the experimental design process. The primary goal of BED is to sequentially select a set of
experimental designs ξ ∈ Ξ and gather outcomes y, to maximize the amount of information obtained
about the parameters of interest, denoted as θ. Essentially, BED seeks to minimize the entropy of
the posterior distribution of θ or, equivalently, to maximize the information that the experimental
outcomes provide about θ.

At the heart of BED lies the concept of Expected Information Gain (EIG), which quantifies the value
of different experimental designs based on how much they are expected to reduce uncertainty about
θ, measured in terms of expected entropy (H[·]) reduction:

EIG(ξ) = Ep(y|ξ) [H [p(θ)]−H [p(θ|ξ, y)]] . (1)

The optimal design is then defined as ξ∗ = argmaxξ∈Ξ EIG(ξ). In practice, calculating EIG is a
computationally challenging task because it involves integrations over p(y|ξ) and p(θ|ξ, y), which
are both intractable. In recent years, various methods have been proposed to make the computation
of the EIG feasible in practical scenarios, such as nested Monte Carlo estimators (Rainforth et al.,
2018) and variational approximations (Foster et al., 2019). However, even with these advancements,
the computational load remains significant, hindering feasibility in tasks that demand rapid designs.
This limitation has pushed forward the development of amortized BED methods, which significantly
reduce computational demands during the deployment stage.

2.2 Amortized BED

Amortized BED methods represent a significant shift from traditional experimental optimization tech-
niques. Instead of optimizing for each experimental design separately, Foster et al. (2021) developed
a parameterized policy π, which directly maps the experimental history h1:t = {(ξ1, y1), ..., (ξt, yt)}
to the next design ξt+1 = π(h1:t). To train such a policy network, Foster et al. (2021) proposed using
sequential Prior Contrastive Estimation (sPCE) to optimize the lower bound of the total EIG across
the entire T -step experiments trajectory:

sPCE(π, L) = Ep(θ0:L)p(h1:T |θ0,π)

[
log

p(h1:T |θ0, π)
1

L+1

∑L
ℓ=0 p(h1:T |θℓ, π)

]
, (2)

where θ1:L are contrastive samples drawn from the prior distribution. Although the training of such a
policy network is computationally expensive, once trained, the network can act as an oracle to quickly
propose the next design through a single forward pass, thus amortizing the initial training cost over
numerous deployments.
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2.3 Bayesian decision theory

Bayesian decision theory (Berger, 2013) provides an axiomatic framework for decision-making
under uncertainty, systematically incorporating probabilistic beliefs about unknown parameters into
decision-making processes. It introduces a task-specific utility function u(θ, a), which quantifies the
value of the outcomes from different decisions a ∈ A when the system is in state θ. The optimal
decision is then determined by maximizing the expected utility, which integrates the utility function
over the unknown system parameters, given the available knowledge h1:t:

a∗ = argmax
a∈A

Ep(θ|h1:t)[u(θ, a)]. (3)

In many scenarios, outcomes are stochastic and it is more typical to make decisions based on their
predictive distribution p(y|ξ, h1:t) = Ep(θ|h1:t)[p(y|ξ, θ, h1:t)], such as in clinical trials where the
optimal treatment is chosen based on predicted patient responses rather than solely on underlying
biological mechanisms. A similar setup can be found in (Kuśmierczyk et al., 2019; Vadera et al., 2021).
As we switch the belief about the state of the system to the outcomes and to keep as much information
as possible, we need to evaluate the effect of θ on all points of the design space. Thus, instead of the
posterior over the latent state θ, we represent our belief directly as p(yΞ|h1:t) ≡ {p(y|ξ, h1:t)}ξ∈Ξ,
i.e. a joint predictive (posterior) distribution of outcomes over all possible designs given the current
information h1:t.1 The utility is then expressed as u(yΞ, a), which relies on the decision a and
all possible predicted outcomes yΞ. It is a natural extension of the traditional definition of utility
by marginalizing out the posterior distribution of θ. The rule of making the optimal decision is
reformulated in terms of the predictive distribution as:

a∗ = argmax
a∈A

Ep(yΞ|h1:t)[u(yΞ, a)]. (4)

Traditional methods usually separate the inference and decision-making steps, which are optimal
when the true posterior or the predictive distribution can be computed exactly. However, in most
cases the posteriors are not directly accessible, and we often resort to using approximate distributions.
This necessity results in a suboptimal decision-making process as the approximate posteriors often
focus on representing the full posterior yet fail to ensure high accuracy in regions crucial for decision-
making. Loss-calibrated inference (Lacoste-Julien et al., 2011) emerges as an effective solution to
address this problem. It calibrates the inference by focusing on utility rather than mere accuracy of the
approximation, thereby ensuring a more targeted posterior estimation. This method has been applied
to improving Markov chain Monte Carlo (MCMC) methods (Abbasnejad et al., 2015), Bayesian
neural networks (Cobb et al., 2018) and expectation propagation (Morais and Pillow, 2022).

3 Decision-aware BED

3.1 Problem setup

Our objective is to optimize the experimental design process for down-the-line decision-making. In
this paper, we consider scenarios in which we design a series of experiments ξ ∈ Ξ and observe
corresponding outcomes y to inform a final decision-making step. We assume we have a fixed
experimental budget with T query steps. For decision-making, we consider a set of possible decisions,
denoted as a ∈ A, with the objective of identifying an optimal decision a∗ that maximizes a predefined
prediction-based utility function u(yΞ, a).

3.2 Decision Utility Gain

Our method focuses on designing the experiments to directly improve the quality of the final decision-
making. To quantify the effectiveness of each experimental design in terms of decision-making, we
introduce Decision Utility Gain (DUG), which is defined as the difference in the expected utility of
the best decision, with the new information obtained from the current experimental design, versus the
best decision with the information obtained from previous experiments.

1This definition assumes conditional independence of the outcomes given the design. More generally,
p(yΞ|h1:t) defines a joint distribution or a stochastic process indexed by the set Ξ (Parzen, 1999), where a
familiar example could be a Gaussian process posterior defined on Ξ ⊆ Rd (Rasmussen and Williams, 2006).
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Definition 3.1. Given a historical experimental trajectory h1:t−1, the Decision Utility Gain (DUG)
for a given design ξt and its corresponding outcome yt at step t is defined as follows:

DUG(ξt, yt) =max
a∈A

Ep(yΞ|h1:t−1∪{(ξt,yt)}) [u(yΞ, a)]−max
a∈A

Ep(yΞ|h1:t−1) [u(yΞ, a)] . (5)

DUG measures the improvement in the maximum expected utility from observing a new experimental
design, differing in this from standard marginal utility gain (see e.g., Garnett, 2023). The optimal
design is the one that provides the largest increase in maximal expected utility. Shifting from
parameter-centric to utility-centric evaluation, we directly evaluate the design’s influence on the
decision utility, bypassing the need to reduce the uncertainty of unknown latent parameters.

At the time we choose the design ξt, the outcome remains uncertain. Therefore, we should consider
the Expected Decision Utility Gain (EDUG) with respect to the marginal distribution of the outcomes
to select the next design.
Definition 3.2. The Expected Decision Utility Gain (EDUG) for a design ξt, given the historical
experimental trajectory h1:t−1, is defined as:

EDUG(ξt) = Ep(yt|ξt,h1:t−1) [DUG(ξt, yt)] . (6)

With EDUG, we can guide the experimental design without calculating the posterior distribution. If
we knew the true predictive distribution, we could always determine the one-step lookahead optimal
design by maximizing EDUG across the design space with ξ∗ = argmaxξ∈Ξ EDUG(ξ). However,
in practice, the true predictive distributions are often unknown, making the optimization of EDUG
exceptionally challenging. This difficulty arises due to the inherent bi-level optimization problem and
the need to evaluate two layers of expectations, both over the unknown predictive distribution.

To avoid the expensive computational cost of optimizing EDUG, we propose leveraging a policy
network, inspired by Foster et al. (2021), that directly maps historical data to the next design. This
approach sidesteps the continuous need to optimize EDUG by learning a design strategy over many
simulated experiment trajectories during the training phase. It can dramatically reduce computational
demands at deployment, allowing for more efficient real-time decisions.

4 Amortizing decision-aware BED

A fully amortized BED framework for decision-making requires not only amortizing the experimental
design but also the predictive distribution to approximate the expected utility. Moreover, permutation
invariance is often assumed in sequential BED (Foster et al., 2021)2, meaning that the sequence of
experiments does not influence the cumulative information gained. Conditional neural processes
(CNPs) (Garnelo et al., 2018; Nguyen and Grover, 2022; Huang et al., 2023b) provide a suitable
basis for developing our framework due to their design, which not only respects the permutation
invariance of the inputs by treating them as an unordered set but also amortizes modeling of the
predictive distributions. See Appendix A for a brief introduction to CNPs and TNPs.

4.1 Transformer Neural Decision Processes

The architecture of our model, termed Transformer Neural Decision Process (TNDP), is a novel
architecture building upon the Transformer neural process (TNP) (Nguyen and Grover, 2022). It aims
to amortize both the experimental design and the predictive distributions for the subsequent decision-
making process. The data architecture of our system comprises four parts D = {D(c), D(p), D(q),GI}:

• A context set D(c) = h1:t = {(ξ(c)
i , y(c)

i )}ti=1 contains all past t-step designs and outcomes.

• A prediction set D(p) = {(ξ(p)
i , y(p)

i )}np
i=1 consists of np design-outcome pairs used for

approximating p(yΞ|h1:t), which is closely related to the training objective of the CNPs.
The output from this head can then be used to estimate the expected utility.

• A query set D(q) = {ξ(q)
i }nq

i=1 consists of nq candidate experimental designs being consid-
ered for the next step. In scenarios where the design space Ξ is continuous, we randomly
sample a set of query points for each iteration during training. In the deployment phase,
optimal experimental designs can be obtained by optimizing the model’s output.

2When permutation invariance does not hold in some cases, our model can be easily adapted by adding
positional encoding to the input.
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Figure 2: Illustration of TNDP. (a) An overview of TNDP architecture with input consisting of 2
observed design-outcome pairs from D(c), 2 designs from D(p) for prediction, and 2 candidate designs
from D(q) for query. (b) The corresponding attention mask. The colored squares indicate that the
elements on the left can attend to the elements on the top in the self-attention layer of ftfm.

• Global information GI = [t, γ] where t represents the current step in the experimental
sequence, and γ encapsulates task-related information, which could include contextual data
relevant to the decision-making process. We will further explain the choice of γ in Section 6.

TNDP comprises four main components: the data embedder block femb, the Transformer block ftfm,
the prediction head fp, and the query head fq. Each component plays a distinct role in the overall
decision-aware BED process. The full architecture is shown in Fig. 2(a).

At first, each set of D is processed by the data embedder block femb to map to an aligned
embedding space. These embeddings are then concatenated to form a unified representation
E = concat(E(c),E(p),E(q),EGI). Please refer to Appendix B for a detailed explanation of how
we embed the data. After the initial embedding, the Transformer block ftfm processes E using
self-attention mechanisms to produce a single attention matrix, which is subsequently processed by an
attention mask (see Fig. 2(b)) that allows for selective interactions between different data components,
ensuring that each part contributes appropriately to the final output. To explain, each design from
the prediction set D(p) is configured to attend to itself, the global information, and the historical
data, reflecting the dependence of the predictions on the historical data and the independence from
other designs. Similarly, each ξ(q) in the query set D(q) is also restricted to attend only to itself, the
global information, and the historical data. This setup preserves the independence of each candidate
design, ensuring that the evaluation of one design neither influences nor is influenced by others.
The output of ftfm is then split according to the specific needs of the query and prediction head
λ = [λ(p),λ(q)] = ftfm(E).

The primary role of the prediction head fp is to approximate p(yΞ|h1:t) with a family of parameter-
ized distributions q(yΞ|pt), where pt = fp(λ

(p)
t ) is the output of fp at the step t. The training of fp is

by minimizing the negative log-likelihood of the predicted probabilities:

L(p) = −
T∑

t=1

np∑
i=1

log q(y(p)
i |pi,t) = −

T∑
t=1

np∑
i=1

logN (y(p)
i |µi,t,σ

2
i,t), (7)

where pi,t represents the output of design ξ(p)
i at step t. Here we choose a Gaussian likelihood with µ

and σ representing the predicted mean and standard deviation split from p.

The query head fq processes the transformed embeddings λ(q) from the Transformer block to generate
a policy distribution over possible experimental designs. Specifically, it converts the embeddings into
a probability distribution used to select the next experimental design. The outputs of the query head,
q = fq(λ

(q)), are mapped to a probability distribution via a Softmax function:

π(ξ(q)
j,t|h1:t−1) =

exp (qj,t)∑nq
i=0 exp(qi,t)

, (8)
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where qj,t represents the t-step’s output for the candidate design ξ(q)
j .

To design a reward signal that guides fq in proposing informative designs, we first define a single-
step immediate reward based on DUG (Eq. (5)), replacing the true predictive distribution with our
approximated distribution:

rt(ξ
(q)
t ) = max

a∈A
Eq(yΞ|pt) [u(yΞ, a)]−max

a∈A
Eq(yΞ|pt−1) [u(yΞ, a)] . (9)

This reward quantifies how the experimental design influences our decision-making by estimating the
improvement in expected utility that results from incorporating new experimental outcomes. However,
this objective remains myopic, as it does not account for the future or the final decision-making. To
address this, we employ the REINFORCE algorithm (Williams, 1992), which allows us to consider
the impact of the current design on future rewards. The final loss of fq can be written as the negative
expected reward for the complete experimental trajectory:

L(q) = −
T∑

t=1

Rt log π(ξ
(q)
t |h1:t−1), (10)

where Rt =
∑T

k=t α
k−trk(ξ

(q)
k ) represents the non-myopic discounted reward. The discount factor

α is used to decrease the importance of rewards received at later time step. ξ(q)
t is obtained through

sampling from the policy distribution ξ(q)
t ∼ π(·|h1:t−1).

The update of fq depends critically on the accuracy with which fp approximates the predictive
distribution. Ultimately, the effectiveness of decision-making relies on the informativeness of the
designs proposed by fq, ensuring that every step in the experimental trajectory is optimally aligned
with the overarching goal of maximizing the decision utility. The full algorithm of our method is
shown in Appendix C.

5 Related work

Lindley (1972) proposes the first decision-theoretic BED framework, later reiterated by Chaloner
and Verdinelli (1995). However, their utility is defined based on individual designs, while our
utility is formulated in terms of a stochastic process and is designed for the final decision-making
task after multiple rounds of experimental design. Recently, several other BED frameworks that
focus on different downstream properties have been proposed. Bayesian Algorithm Execution
(BAX) (Neiswanger et al., 2021) develops a BED framework that optimizes experiments based on
downstream properties of interest. BAX introduces a new metric that queries the next experiment by
maximizing the mutual information between the property and the outcome. CO-BED (Ivanova et al.,
2023) introduces a contextual optimization method within the BED framework, where the design
phase incorporates information-theoretic objectives specifically targeted at optimizing contextual
rewards. Neiswanger et al. (2022) presents an information-based acquisition function for Bayesian
optimization which explicitly considers the downstream task. Zhong et al. (2024) proposes a goal-
oriented BED framework for nonlinear models using MCMC to optimize the EIG on predictive
quantities of interest. Filstroff et al. (2024) presents a framework for active learning that queries data
to reduce the uncertainty on the posterior distribution of the optimal downstream decision.

In recent years, various amortized BED methods have emerged. Foster et al. (2021) is the first to
introduce this framework; subsequent work extends it to scenarios with unknown likelihood (Ivanova
et al., 2021) and improved performance using reinforcement learning (Blau et al., 2022; Lim et al.,
2022). The latest research proposes a semi-amortized framework that periodically updates the policy
during the experiment to improve adaptability (Ivanova et al., 2024). To date, no amortized BED
method has considered downstream decision-making.

Our proposed architecture is based on pre-trained Transformer models. Transformer-based neural
processes (Müller et al., 2021; Nguyen and Grover, 2022; Chang et al., 2024) serve as the foundational
structure for our approach, but they have not considered experimental design. Decision Transformers
(Chen et al., 2021; Zheng et al., 2022) can be used for sequentially designing experiments. However,
we additionally amortize the downstream decision-making process, making the learning process more
challenging.
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Figure 3: Results of synthetic regression and decision-aware active learning. (a) The top figure
represents the true function and the initial known points. The red line indicates the location of x∗.
The blue star marks the next query point, sampled from the policy’s predicted distribution shown
in the bottom figure. (b) Mean and standard error of the proportion of correct decisions on 100 test
points w.r.t. the acquisition steps. Our TNDP significantly outperforms other methods.

6 Experiments

In this section, we evaluate our proposed framework on several tasks. Our experimental ap-
proach is detailed in Appendix B. In Appendix F.3, we provide additional ablation studies
of TNDP to show the effectiveness of our query head and the non-myopic objective function.
The code to reproduce our experiments is available at https://github.com/huangdaolang/
amortized-decision-aware-bed.

6.1 Toy example: synthetic regression

We begin with an illustrative example to show how our TNDP works. We consider a 1D synthetic
regression task where the goal is to perform regression at a specific test point x∗ on an unknown
function. To accurately predict this point, we need to sequentially design some new points to query.
This example can be viewed as a prediction-oriented active learning (AL) task (Smith et al., 2023).

The design space Ξ = X is the domain of x, and y is the corresponding noisy observations of the
function. Let Q(X ) denote the set of combinations of distributions that can be output by TNDP, we
can then define decision space to be A = Q(X ). The downstream decision is to output a predictive
distribution for y∗ given a test point x∗, and the utility function u(yΞ, a) = log q(y∗|x∗, h1:t) is the
log probability of y under the predicted distribution, given the queried historical data ht.

During training, we sample functions from Gaussian Processes (GPs) (Rasmussen and Williams,
2006) with squared exponential kernels of varying output variances and lengthscales and randomly
sample a point as the test point x∗. We set the global contextual information λ as the test point x∗.
For illustration purposes, we consider only the case where T = 1. Additional details for the data
generation can be found in Appendix E.

Results. From Fig. 3(a), we can observe that the values of π concentrate near x∗, meaning our
query head fq tends to query points close to x∗ to maximize the DUG. This is an intuitive example
demonstrating that our TNDP can adjust its design strategy based on the downstream task.

6.2 Decision-aware active learning

We now show another application of our method in a case of decision-aware AL studied by Filstroff
et al. (2024). In this experiment, the model will be used for downstream decision-making after
performing AL, i.e., we will use the learned information to take an action towards a specific target.
A practical application of this problem is personalized medical diagnosis introduced in Section 1,
where a doctor needs to query historical patient data to decide on a treatment for a new patient.

We use the same problem setup as in Filstroff et al. (2024). The decision space consists of Nd

available decisions, a ∈ A ∈ {1, ..., Nd}. The design space Ξ = X ×A is composed of the patient’s
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Figure 4: Results on Top-k HPO task. For each meta-dataset, we calculated the average utility
across all available test sets. The error bars represent the standard deviation over five runs. TNDP
consistently achieved the best performance in terms of utility.

covariates x and the decisions a they receive. The outcome y is the treatment effect after the patient
receives the decision, which is influenced by real-world unknown parameters θ such as medical
conditions. For historical data, each patient is associated with only one decision. The utility function
u(yΞ, a) = I(â∗, a∗) is a binary accuracy score that measures whether we can make the correct
decision for a new patient x∗ based on the queried history, where â∗ is the predicted Bayesian optimal
decision and a∗ the true optimal decision. Here, u(yΞ, a) = 1 if and only if â∗ = a∗.

In our experiment, we use the synthetic dataset from Filstroff et al. (2024), the details of the data
generating process can be found in Appendix F. We set Nd = 4 and use independent GPs to
generate different outcomes. Each data point is randomly assigned a decision, and the outcome is
the corresponding y value from the associated GP. We randomly select a test point x∗ and determine
the optimal decision a∗ based on the GP that provides the maximum y value at x∗. We set global
contextual information λ as the covariates of the test point x∗.

We compare TNDP with other non-amortized AL methods: random sampling (GP-RS), uncertainty
sampling (GP-US), decision uncertainty sampling (GP-DUS), targeted information (GP-TEIG)
introduced by Sundin et al. (2018), and decision EIG (GP-DEIG) proposed by Filstroff et al. (2024).
A detailed description of each method can be found in Appendix F. Each method is tested on 100
different x∗ points, and the average utility, i.e., the proportion of correct decisions, is calculated.

Results. The results are shown in Fig. 3(b), where we can see that TNDP achieves significantly
better average accuracy than other methods. Additionally, we conduct an ablation study of TNDP in
Appendix F.3 to verify the effectiveness of fq. We further analyze the deployment running time to
show the advantage of amortization, see Appendix D.1.

6.3 Top-k hyperparameter optimization

In traditional optimization tasks, we typically only aim to find a single point that maximizes the
underlying function f . However, instead of identifying a single optimal point, there are scenarios
where we wish to estimate a set of top-k distinct optima. For example, this is the case in robust
optimization, where selecting multiple points can safeguard against variations in data or model
performance.

In this experiment, we choose hyperparameter optimization (HPO) as our task and conduct experi-
ments on the HPO-B datasets (Arango et al., 2021). The design space Ξ ⊆ X is a finite set defined
over the hyperparameter space and the outcome y is the accuracy of a given configuration on a specific
dataset. Our decision is to find k hyperparameter sets, denoted as a = (a1, ..., ak) ∈ A ⊆ X k, with
ai ̸= aj . The utility function is then defined as u(yΞ, a) =

∑k
i=1 yai

, where yai
is the accuracy

corresponding to the hyperparameter configuration ai. In this experiment, the global contextual
information λ = ∅.

We compare our methods with five different BO methods: random sampling (RS), Upper Confidence
Bound (UCB), Expected Improvement (EI), Probability of Improvement (PI), and an amortized
method PFNs4BO (Müller et al., 2023), which is a transformer-based model designed for hyperpa-
rameter optimization. We set k = 3 and T = 50, starting with an initial dataset of 5 points. Our
experiments are conducted on four search spaces selected from the HPO-B benchmark. All results
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are evaluated on a predefined test set, ensuring that TNDP does not encounter these test sets during
training. For more details, see Appendix G.

Results. From the experimental results (Fig. 4), our method demonstrates superior performance across
all four meta-datasets, particularly during the first 10 queries, achieving clearly better utility gains.
This indicates that our TNDP can effectively identify high-performing hyperparameter configurations
early in the optimization process.

Finally, we included a real-world experiment on retrosynthesis planning. Specifically, our task is
to assist chemists in identifying the top-k synthetic routes for a novel molecule, as selecting the
most practical routes from many random routes generated by the retrosynthesis software can be
troublesome. The detailed description of the task and the results are shown in Appendix G.3.

7 Discussion

7.1 Limitations & future work

We recognize that the training of the query head inherently poses a reinforcement learning (RL)
(Li, 2017) problem. Currently, we employ a basic REINFORCE algorithm, which can result in
unstable training, particularly for tasks with sparse reward signals. For more complex problems in
the future, we could deploy advanced RL methods, such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017); the trade-offs include the introduction of additional hyperparameters and
increased computational cost. Like all amortized approaches, our method requires a large amount
of data and upfront training time to develop a reliable model. Besides, our architecture is based on
the Transformer, which suffers from quadratic complexity with respect to the input sequence length.
This can become a bottleneck when the query set is very large. Future work could focus on designing
more sample-efficient methods to reduce the data and training requirements. Our TNDP follows
the common practice in the neural processes literature (Garnelo et al., 2018) of using independent
Gaussian likelihoods. If modeling correlations between points is crucial for the downstream task, we
can replace the output with a joint multivariate normal distribution (Markou et al., 2022) or predict the
output autoregressively (Bruinsma et al., 2023). Following most BED approaches, our work assumes
that the model is well-specified. However, model misspecification or shifts in the utility function
during deployment could impact the performance of the amortized model (Rainforth et al., 2024).
Future work could address the challenge of robust experimental design under model misspecification
(Huang et al., 2023a). Another limitation is that our system is currently constrained to accepting
designs of the same dimensionality. Future work could focus on developing dimension-agnostic
methods to expand the scope of amortization. Lastly, our model is trained on a fixed-step length,
assuming a finite horizon for the experimental design process. Future research could explore the
design of systems that can handle infinite horizon cases, potentially improving the applicability of
TNDP to a broader range of real-world problems.

7.2 Conclusions

In this paper, we proposed an amortized framework for decision-aware Bayesian experimental design
(BED). We introduced the concept of Decision Utility Gain (DUG) to guide experimental design
more effectively toward optimizing decision outcomes. Towards amortization, we developed a
novel Transformer Neural Decision Process (TNDP) architecture with dual output heads: one for
proposing new experimental designs and another for approximating the predictive distribution to
facilitate optimal decision-making. Our experimental results demonstrated that TNDP significantly
outperforms traditional BED methods across a variety of tasks. By integrating decision-making
considerations directly into the experimental design process, TNDP not only accelerates the design
of experiments but also improves the quality of the decisions derived from these experiments.
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Appendix
The appendix is organized as follows:

• In Appendix A, we provide a brief introduction to conditional neural processes (CNPs) and
Transformer neural processes (TNPs).

• In Appendix B, we describe the details of our model architecture and the training setups.
• In Appendix C, we present the full algorithm for training our TNDP architecture.
• In Appendix D, we compare the inference time with other methods and show the overall

training time of TNDP.
• In Appendix E, we describe the details of our toy example.
• In Appendix F, we describe the details of the decision-aware active learning example.
• In Appendix G, we describe the details of the top-k hyperparameter optimization task, along

with additional results on the retrosynthesis planning task.

A Conditional neural processes

CNPs (Garnelo et al., 2018) are designed to model complex stochastic processes through a flexible
architecture that utilizes a context set and a target set. The context set consists of observed data points
that the model uses to form its understanding, while the target set includes the points to be predicted.
The traditional CNP architecture includes an encoder and a decoder. The encoder is a DeepSet
architecture to ensure permutation invariance, it transforms each context point individually and then
aggregates these transformations into a single representation that captures the overall context. The
decoder then uses this representation to generate predictions for the target set, typically employing a
Gaussian likelihood for approximation of the true predictive distributions. Due to the analytically
tractable likelihood, CNPs can be efficiently trained through maximum likelihood estimation.

A.1 Transformer neural processes

Transformer Neural Processes (TNPs), introduced by Nguyen and Grover (2022), improve the
flexibility and expressiveness of CNPs by incorporating the Transformer’s attention mechanism
(Vaswani et al., 2017). In TNPs, the transformer architecture uses self-attention to process the context
set, dynamically weighting the importance of each point. This allows the model to create a rich
representation of the context, which is then used by the decoder to generate predictions for the
target set. The attention mechanism in TNPs facilitates the handling of large and variable-sized
context sets, improving the model’s performance on tasks with complex input-output relationships.
The Transformer architecture is also useful in our setups where certain designs may have a more
significant impact on the decision-making process than others. For more details about TNPs, please
refer to Nguyen and Grover (2022).

B Implementation details

B.1 Embedders

The embedder femb is responsible for mapping the raw data to a space of the same dimension. For
the toy example and the top-k hyperparameter task, we use three embedders: a design embedder
f
(ξ)
emb, an outcome embedder f (y)

emb, and a time step embedder f (t)
emb. Both f

(ξ)
emb and f

(y)
emb are multi-layer

perceptions (MLPs) with the following architecture:

• Hidden dimension: the dimension of the hidden layers, set to 32.
• Output dimension: the dimension of the output space, set to 32.
• Depth: the number of layers in the neural network, set to 4.
• Activation function: ReLU is used as the activation function for the hidden layers.

The time step embedder f (t)
emb is a discrete embedding layer that maps time steps to a continuous

embedding space of dimension 32.
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For the decision-aware active learning task, since the design space contains both the covariates and the
decision, we use four embedders: a covariate embedder f (x)

emb, a decision embedder f (d)
emb, an outcome

embedder f (y)
emb, and a time step embedder f (t)

emb. f (x)
emb, f (y)

emb and f
(t)
emb are MLPs which use the same

settings as described above. The decision embedder f (d)
emb is another discrete embedding layer.

For context embedding E(c), we first map each ξ(c)
i and y(c)

i to the same dimension using their
respective embedders, and then sum them to obtain the final embedding. For prediction embedding
E(p) and query embedding E(q), we only encode the designs. For EGI, except the embeddings of the
time step, we also encode the global contextual information λ using f

(x)
emb in the toy example and the

decision-aware active learning task. All the embeddings are then concatenated together to form our
final embedding E.

B.2 Transformer blocks

We utilize the official TransformerEncoder layer of PyTorch (Paszke et al., 2019) (https://
pytorch.org) for our transformer architecture. For all experiments, we use the same configuration:
the model has 6 Transformer layers, with 8 heads per layer, the MLP block has a hidden dimension
of 128, and the embedding dimension size is set to 32.

B.3 Output heads

The prediction head, fp is an MLP that maps the Transformer’s output embeddings of the query set to
the predicted outcomes. It consists of an input layer with 32 hidden units, a ReLU activation function,
and an output layer. The output layer predicts the mean and variance of a Gaussian likelihood, similar
to CNPs.

For the query head fq, all candidate experimental designs are first mapped to embeddings λ(q) by the
Transformer, and these embeddings are then passed through fq to obtain individual outputs. We then
apply a Softmax function to these outputs to ensure a proper probability distribution. fq is an MLP
consisting of an input layer with 32 hidden units, a ReLU activation function, and an output layer.

B.4 Training details

For all experiments, we use the same configuration to train our model. We set the initial learning rate
to 5e-4 and employ the cosine annealing learning rate scheduler. The number of training epochs is
set to 50,000, and the batch size is 16. For the REINFORCE, we use a discount factor of α = 0.99.

C Full algorithm for training TNDP

Algorithm 1 Transformer Neural Decision Processes (TNDP)
1: Input: Utility function u(yΞ, a), prior p(θ), likelihood p(y|θ, ξ), query horizon T
2: Output: Trained TNDP
3: while within the training budget do
4: Sample θ ∼ p(θ) and initialize D
5: for t = 1 to T do
6: ξ(q)

t ∼ πt(·|h1:t−1) ▷ sample next design from policy
7: Sample yt ∼ p(y|θ, ξ) ▷ observe outcome
8: Set h1:t = h1:t−1 ∪ {(ξ(q)

t , yt)} ▷ update history
9: Set D(c) = h1:t, D

(q) = D(q) \ {ξ(q)
t } ▷ update D

10: Calculate rt(ξ
(q)
t ) with u(yΞ, a) using Eq. (9) ▷ calculate reward

11: end for
12: Rt =

∑T
k=t α

k−trk(ξ
(q)
k ) ▷ calculate cumulative reward

13: Update TNDP using L(p) (Eq. (7)) and L(q) (Eq. (10))
14: end while
15: At deployment, we can use f (q) to sequentially query T designs. Afterward, based on the queried

experiments, we perform one-step final decision-making using the prediction from f (p).
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D Computational cost analysis

D.1 Inference time analysis

We evaluate the inference time of our algorithm during the deployment stage. We select decision-
aware active learning as the experiment for our time comparison. All experiments are evaluated on
an Intel Core i7-12700K CPU. We measure both the acquisition time and the total time. The
acquisition time refers to the time required to compute one next design, while the total time refers to
the time required to complete 10 rounds of design. The final results are presented in Table A1, with
the mean and standard deviation calculated over 10 runs.

Traditional methods rely on updating the GP and optimizing the acquisition function, which is
computationally expensive. D-EIG and T-EIG require many model retraining steps to get the next
design, which is not tolerable in applications requiring fast decision-making. However, since our
model is fully amortized, once it is trained, it only requires a single forward pass to design the
experiments, resulting in significantly faster inference times.

Method Acquisition time (s) Total time (s)

GP-RS 0.00002(0.00001) 28(7)
GP-US 0.07(0.01) 29(7)
GP-DUS 0.38(0.02) 44(5)
T-EIG (Sundin et al., 2018) 1558(376) 15613(3627)
D-EIG (Filstroff et al., 2024) 572(105) 5746(1002)
TDNP (ours) 0.015(0.004) 0.31(0.06)

Table A1: Comparison of computational costs across different methods. We report the mean value
and (standard deviation) derived from 10 runs with different seeds.

D.2 Overall training time

Throughout this paper, we carried out all experiments, including baseline model computations and
preliminary experiments not included in the final paper, on a GPU cluster featuring a combination
of Tesla P100, Tesla V100, and Tesla A100 GPUs. We estimate the total computational usage to be
roughly 5000 GPU hours. For each experiment, it takes around 10 GPU hours on a Tesla V100 GPU
with 32GB memory to reproduce the result, with an average memory consumption of 8 GB.

E Details of toy example

E.1 Data generation

In our toy example, we generate data using a GP with the Squared Exponential (SE) kernel, which is
defined as:

k(x, x′) = v exp

(
− (x− x′)2

2ℓ2

)
, (A1)

where v is the variance, and ℓ is the lengthscale. Specifically, in each training iteration, we draw a
random lengthscale ℓ ∼ 0.25 + 0.75× U(0, 1) and the variance v ∼ 0.1 + U(0, 1), where U(0, 1)
denotes a uniform random variable between 0 and 1.

F Details of decision-aware active learning experiments

F.1 Data generation

For this experiment, we use a GP with a Squared Exponential (SE) kernel to generate our data. The
covariates x are drawn from a standard normal distribution. For each decision, we use an independent
GP to simulate different outcomes. In each training iteration, the lengthscale for each GP is randomly
sampled as ℓ ∼ 0.25+ 0.75×U(0, 1) and the variance as v ∼ 0.1+U(0, 1), where U(0, 1) denotes
a uniform random variable between 0 and 1.
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F.2 Other methods description

We compare our method with other non-amortized approaches, all of which use GPs as the functional
prior. Each model is equipped with an SE kernel with automatic relevance determination. GP
hyperparameters are estimated with maximum marginal likelihood.

Our method is compared with the following methods:

• Random sampling (GP-RS): randomly choose the next design ξt from the query set.

• Uncertainty sampling (GP-US): choose the next design ξt for which the predictive distribu-
tion p(yt|ξt, ht−1) has the largest variance.

• Decision uncertainty sampling (GP-DUS): choose the next design ξt such that the predictive
distribution of the optimal decision corresponding to this design is the most uncertain.

• Targeted information (GP-TEIG) (Sundin et al., 2018): a targeted active learning criterion,
introduced by (Sundin et al., 2018), selects the next design ξt that provides the highest EIG
on p(y∗|x∗, ht−1 ∪ {(ξt, yt)}).

• Decision EIG (GP-DEIG) (Filstroff et al., 2024): choose the next design ξt which directly
aims at reducing the uncertainty on the posterior distribution of the optimal decision. See
Filstroff et al. (2024) for a detailed explanation.

F.3 Ablation study

We also carry out an ablation study to verify the effectiveness of our query head and the non-myopic
objective function. We first compare TNDP with TNDP using random sampling (TNDP-RS), and the
results are shown in Fig. A1(a). We observe that the designs proposed by the query head significantly
improve accuracy, demonstrating that the query head can propose informative designs based on
downstream decisions.

We also evaluate the impact of the non-myopic objective by comparing TNDP with a myopic version
that only optimizes for immediate utility rather than long-term gains (α = 0). The results, presented
in Fig. A1(b), show that TNDP with the non-myopic objective function achieves higher accuracy
across iterations compared to using the myopic objective. This indicates that our non-myopic
objective effectively captures the long-term benefits of each design choice, leading to improved
overall performance.
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Figure A1: Comparison of TNDP variants on the decision-aware active learning task. (a)
Shows the effect of the query head, where TNDP outperforms TNDP-RS, demonstrating its ability
to generate informative designs. (b) Illustrates the impact of the non-myopic objective, with TNDP
achieving higher accuracy than the myopic version.
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G Details of top-k hyperparameter optimization experiments

G.1 Data

In this task, we use HPO-B benchmark datasets (Arango et al., 2021). The HPO-B dataset is a
large-scale benchmark for HPO tasks, derived from the OpenML repository. It consists of 176 search
spaces (algorithms) evaluated on 196 datasets, with a total of 6.4 million hyperparameter evaluations.
This dataset is designed to facilitate reproducible and fair comparisons of HPO methods by providing
explicit experimental protocols, splits, and evaluation measures.

We extract four meta-datasets from the HPOB dataset: ranger (id=7609, dx=9), svm (id=5891, dx=8),
rpart (id=5859, dx=6), and xgboost (id=5971, dx=16). In the test stage, the initial context set is
chosen based on their pre-defined indices. For detailed information on the datasets, please refer to
https://github.com/releaunifreiburg/HPO-B.

G.2 Other methods description

In our experiments, we compare our method with several common acquisition functions used in HPO.
We use GPs as surrogate models for these acquisition functions. All the implementations are based
on BoTorch (Balandat et al., 2020) (https://botorch.org/). The acquisition functions compared
are as follows:

• Random Sampling (RS): This method selects hyperparameters randomly from the search
space, without using any surrogate model or acquisition function.

• Upper Confidence Bound (UCB): This acquisition function balances exploration and
exploitation by selecting points that maximize the upper confidence bound. The UCB is
defined as:

αUCB(x) = µ(x) + κσ(x), (A2)
where µ(x) is the predicted mean, σ(x) is the predicted standard deviation, and κ is a
parameter that controls the trade-off between exploration and exploitation.

• Expected Improvement (EI): This acquisition function selects points that are expected to
yield the greatest improvement over the current best observation. The EI is defined as:

αEI(x) = E[max(0, f(x)− f(x+))], (A3)

where f(x+) is the current best value observed, and the expectation is taken over the
predictive distribution of f(x).

• Probability of Improvement (PI): This acquisition function selects points that have the
highest probability of improving over the current best observation. The PI is defined as:

αPI(x) = Φ

(
µ(x)− f(x+)− ω

σ(x)

)
, (A4)

where Φ is the cumulative distribution function of the standard normal distribution, f(x+)
is the current best value observed, and ω is a parameter that encourages exploration.

In addition to those non-amortized GP-based methods, we also compare our method with an amortized
surrogate model PFNs4BO (Müller et al., 2023). It is a Transformer-based model designed for
hyperparameter optimization which does not consider the downstream task. We use the pre-trained
PFNs4BO-BNN model which is trained on HPO-B datasets and choose PI as the acquisition function,
the model and the training details can be found in their official implementation (https://github.
com/automl/PFNs4BO).

G.3 Additional experiment on retrosynthesis planning

We now show a real-world experiment on retrosynthesis planning (Blacker et al., 2011). Specifically,
our task is to help chemists identify the top-k synthetic routes for a novel molecule (Mo et al., 2021),
as it can be challenging to select the most practical routes from many random options generated by the
retrosynthesis software (Stevens, 2011; Szymkuć et al., 2016). In this task, the design space for each
molecule m is a finite set of routes that can synthesize the molecule. The sequential experimental
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design is to select a route for a specific molecule to query its score y, which is calculated based on
the tree edit distance (Bille, 2005) from the best route. The downstream task is to recommend the
top-k routes with the highest target-specific scores based on the collected information.
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Figure A2: Results of retrosynthesis planning
experiment. The utility is the sum of the quality
scores of top-k routes and is calculated with 50
molecules. Our TNDP outperforms the random
search baseline.

In this experiment, we choose k = 3 and
T = 10, and set the global information γ = m.
We train our TNDP on a novel non-public meta-
dataset, including 1500 molecules with 70 syn-
thetic routes for each molecule. The represen-
tation dimension of the molecule is 64 and that
of the route is 264, both of which are learned
through a neural network. Given the high-
dimensional nature of the data representation,
it is challenging to directly compare TNDP with
other GP-based methods, as GPs typically strug-
gle with scalability and performance in such
high-dimensional settings. Therefore, we only
compare TNDP with TNDP using random sam-
pling. The final results are evaluated on 50 test
molecules that are not seen during training, as
shown in Fig. A2.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we propose an amortized decision-aware BED framework
(Section 3 and Section 4), addressing the desiderata delineated in the abstract and in the
introduction. We explicitly state the contributions at the end of the introduction. The
experimental results presented in Section 6 match the claims made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work explicitly in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully describe our model architecture in Section 4, and we also provide the
implementation details in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have included the code repository link in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the experimental settings for all experiments in Ap-
pendix E,Appendix F,Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the experiment results are accompanied by error bars. We also report the
method for calculating the error bars in each experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the compute resources in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is foundational research and not tied to particular applications. We
believe there is no negative societal impact on the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the dataset, and also provide the URLs
for the code packages we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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