
Under review as submission to TMLR

Generative Feature Training of Thin 2-Layer Networks

Anonymous authors
Paper under double-blind review

Abstract

We consider the approximation of functions by 2-layer neural networks with a small number
of hidden weights based on the squared loss and small datasets. Due to the highly non-convex
energy landscape, gradient-based training often suffers from local minima. As a remedy, we
initialize the hidden weights with samples from a learned proposal distribution, which we
parameterize as a deep generative model. To train this model, we exploit the fact that with
fixed hidden weights, the optimal output weights solve a linear equation. After learning
the generative model, we refine the sampled weights with a gradient-based post-processing
in the latent space. Here, we also include a regularization scheme to counteract potential
noise. Finally, we demonstrate the effectiveness of our approach by numerical examples.

1 Introduction

We investigate the approximation of real-valued functions f : [0, 1]d → R. To this end, assume that we are
given samples (xk, yk)M

k=1, where xk ∈ [0, 1]d are independently drawn from some distribution νdata and
yk ≈ f(xk) are possibly noisy observations of f(xk). For approximating f based on (xk, yk)M

k=1, we study
parametric architectures fw,b : [0, 1]d → R of the form

fw,b(x) = Re

(N∑
l=1

blΦ(⟨wl, x⟩)
)

, (1)

where Re denotes the real part, Φ: R → C is a nonlinear function, and w1, ..., wN ∈ Rd are the features with
corresponding weights b1, ..., bN ∈ C. If the function Φ is real-valued, the model (1) simplifies to a standard
2-layer neural network architecture without Re and with b1, ..., bN ∈ R. The more general model (1) also
covers other frameworks such as random Fourier features (Rahimi & Recht, 2007).

For a fixed activation function Φ and width N , we aim to find parameters (w, b) ∈ Rd,N ×CN such that the
fw,b from (1) approximates f well. From a theoretical perspective, we can minimize the mean squared error
(MSE), namely (

ŵ, b̂
)

∈ arg min
w,b

∥f − fw,b∥2
L2(νdata), (2)

to obtain the parameters (ŵ, b̂). In practice, however, we do not have direct access to νdata and f , but only
to data points (xk, yk)M

k=1, where xk are iid samples from νdata and yk are noisy versions of f(xk). Hence,
we replace (2) by the empirical risk minimization

(
ŵ, b̂

)
∈ arg min

w,b

M∑
k=1

|yk − fw,b(xk)|2. (3)

However, if M is small, minimizing (3) can lead to significant overfitting towards the training samples
(xk, yk)M

k=1 and poor generalization. To circumvent this problem, we investigate the following principles.

• We use architectures of the form (1) with small N . This amounts to the implicit assumption that
f can be sparsely represented with this model. Unfortunately, such under-parameterized networks
(N ≪ M) are difficult to train with conventional gradient-based algorithms (Boob et al., 2022;
Holzmüller & Steinwart, 2022), see also Table 1. Hence, we require an alternative training strategy.

1

Under review as submission to TMLR

• Often, we have prior information about the regularity of f , i.e., that f is in some Banach space B
with a norm of the form

∥f∥p
B =

∫
[0,1]d

∥Lf(x)∥p
qdx, (4)

where L is some differential operator and p, q ≥ 1. A common example within this framework is
the space of bounded variation (Ambrosio et al., 2000), which informally corresponds to the choice
L = ∇, q = 2 and p = 1. In practice, the integral in (4) is often approximated using Monte Carlo
methods with uniformly distributed samples (x̃m)S

m=1 ⊂ [0, 1]d. If we use (4) as regularizer for fw,b,
the generalization error can be analyzed in Barron spaces (Li et al., 2022).

Contribution We propose a generative modeling approach to solve (3). To this end, we first observe that
the minimization with respect to b is a linear least squares problem. Based on this, we analytically express
the optimal b̂ in terms of w, which leads to a reduced problem. Using the implicit function theorem, we can
compute ∇w b̂(w) and hence the gradient of the reduced objective. To facilitate its optimization, we replace
the deterministic features w with stochastic ones, and optimize over their underlying distribution pw instead.
We parameterize this distribution as pw = Gθ#N (0, Id) with a deep network Gθ : Rd → Rd. Hence, we coin
our approach as generative feature training. Further, we propose to add a Monte Carlo approximation of the
norm (4) to the reduced objective. With this regularization, we aim to prevent overfitting.

2 Related Work

Random Features Random feature models (RFM) first appeared in the context of kernel approximation
(Rahimi & Recht, 2007; Liu et al., 2021), which enables the fast computation of large kernel sums with certain
error bounds, see also Rahimi & Recht (2008); Cortes et al. (2010); Rudi & Rosasco (2017). Representations
of the form (1) with only a few active features, so-called sparse random features (Yen et al., 2014), can be
computed based on ℓ1 basis pursuit (Hashemi et al., 2023). Since this often leads to suboptimal approximation
accuracy, later works by Bai et al. (2024); Xie et al. (2022); Saha et al. (2023) instead proposed to apply
pruning or hard-thresholding algorithms to reduce the size of the feature set. Commonly, the features w
are sampled from Gaussian mixtures with diagonal covariances. For adapting these to the data, Potts &
Schmischke (2021); Potts & Weidensager (2024) propose to identify the relevant subspaces for the feature
proposal based on the ANOVA decomposition. Such features with only a few non-zero entries also enable
a fast evaluation of the representation (1) via the non-equispaced fast Fourier transform (Dutt & Rokhlin,
1993; Potts et al., 2001). For kernel approximations, this can be also achieved with slicing methods (Hertrich,
2024; Hertrich et al., 2024), which are again closely related to random feature models (Rux et al., 2024).

Adaptive Features There are also other attempts to design data-adapted proposal distributions pw for
random features (Li et al., 2019b). More recently, Bolager et al. (2023) proposed to only sample the features
w in regions where it matters, i.e., based on the available gradient information. While this allows some
adaption, the w still remain fixed after sampling them (a so-called greedy approach). Towards fully adaptive
(Fourier) features w, Li et al. (2019a) propose to alternately solve for the optimal b, and to then perform a
gradient update for the w. Kammonen et al. (2020) propose to instead update the w based on some Markov
Chain Monte Carlo method. While both methods update the proposal distribution pw, they do not embed
the linear least squares problem into this step. It is well known that such alternating updates can perform
poorly in certain instances. Note that learnable features have been also used in the context of positional
encoding (Li et al., 2021).

2-Layer ReLU Networks We can interpret 2-layer neural networks as adaptive kernel methods (E et al.,
2019). Moreover, they have essentially the same generalization error as the random feature model. Several
works investigate the learning of the architecture (1) with Φ = ReLU based on a (modified) version of the
empirical risk minimization (3). Based on convex duality, Pilanci & Ergen (2020) derive a semi-definite
program to find a global minimizer of (3). A huge drawback is that this method scales exponentially in
the dimension d. Later, several accelerations based on convex optimization algorithms have been proposed
(Bai et al., 2023; Mishkin et al., 2022). Following a different approach, Barbu (2023) proposed to use an

2

Under review as submission to TMLR

alternating minimization over the parameters w and b that keeps the activation pattern fixed throughout
the training. While this has an improved complexity of O(d3) in the dimension d, the approach is still
restricted to ReLU-like functions Φ. A discussion of the rich literature on global minimization guarantees in
the over-parameterized regime (N ≫ M) is not within the scope of this paper.

Bayesian Networks Another approach that samples neural network weights is Bayesian neural networks
(BNNs) (Neal, 2012; Jospin et al., 2022). This allows to capture the uncertainty on the weights in overpa-
rameterized architectures. A fundamental difference to our approach and random feature models is that we
sample the features (wl)N

l=1 independently from the same distribution, while BNNs usually learn a separate
one for each wl. Further, BNNs are usually trained by minimizing an evidence lower bound instead of (8),
see for example (Graves, 2011; Blundell et al., 2015), which is required to prevent collapsing distributions.

3 Generative Feature Learning

Given data points (xk, yk)M
k=1 with yk ≈ f(xk) for some underlying function f : [0, 1]d → R, we aim to find

the optimal features w = (wl)N
l=1 ⊂ Rd and corresponding weights b ∈ CN such that fw,b ≈ f , where the

approximator fw,b is defined in (1). Before we introduce our learning scheme for the parameters w and b,
we discuss two important choices of the nonlinearity Φ: R → C that appear in the literature.
Example 1.

i) Fourier Features: The choice Φ(x) = e2πix is reasonable if the ground-truth function f can be
represented by few Fourier features, e.g., if it is smooth. As discussed in Section 2, the deployed
features w are commonly selected by randomized pruning algorithms.

ii) 2-Layer Neural Network: For Φ: R → R, we can restrict ourselves to b ∈ RN . Common examples
are the ReLU Φ(x) = max(x, 0) and the sigmoid Φ(x) = ex

1+ex . Then, fw,b corresponds to a 2-layer
neural network (i.e., with one hidden layer). Using the so-called bias trick, we can include a bias
into (1). That is, we use padded data-points (xk, 1) ∈ Rd+1 such that the last entry of the feature
vectors wlinRd+1 can act as bias. Similarly, an output bias can be included by padding the hidden
layer output with some constant value.

In the following, we outline our training procedure for optimizing the parameters w and b in fw,b. As
first step, we derive an analytic formula for the optimal weights b in the empirical risk minimization (3)
with fixed features w. Then, in the spirit of random Fourier features, we propose to sample the w from a
proposal distribution pw, which we learn based on the generative modeling ansatz pw = Gθ#N (0, Id). As
last step, we fine-tune the sampled features w = Gθ(z) by updating the sampled latent features z with the
Adam optimizer. In order to be able to deal with noisy function values yk ≈ f(xk), we can regularize the
approximation fw,b during training. Our complete approach is summarized in Algorithm 1.

3.1 Computing the Optimal Weights

For fixed w = (wl)M
l=1, any optimal weights b(w) ∈ CN for (3) solves the linear system

AT
wAwb(w) = AT

wy, (5)

where y = (yk)N
k=1 and Aw = (Φ(⟨xk, wl⟩))N,M

k,l=1. In order to stabilize the numerical solution of (5), we deploy
Tikhonov regularization with small regularization strength ε > 0, and instead compute b(w) as the unique
solution of

(AT
wAw + εI)b(w) = AT

wy. (6)
A key aspect of our approach is that we can compute ∇wb(w) using the implicit function theorem. This
requires solving another linear equation of the form (6) with a different right hand side. For small N , the
most efficient approach for solving (6) is to use a LU decomposition, and to reuse the obtained decomposition
for the backward pass. This procedure is readily implemented in many AD packages such as PyTorch, and
no additional coding is required.

3

Under review as submission to TMLR

Algorithm 1 GFT and GFT-p training procedures.
1: Given: data (xk, yk)M

k=1, architecture fw,b, generator Gθ, latent distribution η
2: while training Gθ do
3: sample N latent zl ∼ η and set w = Gθ(z)
4: compute optimal b(w) and ∇wb(w) based on (6)
5: compute ∇θL(θ) or ∇θLreg(θ) with automatic differentiation
6: perform Adam update for θ

7: if GFT-p then
8: while refining w do
9: set w = Gθ(z)

10: compute optimal b(w) and ∇wb(w) based on (6)
11: compute ∇zF (z) or ∇zFreg(z) with automatic differentiation
12: perform Adam update for z

13: Output: features w and optimal weights b(w)

Now, by inserting the solution b(w) of (6) into the empirical loss (3), we obtain the reduced loss

L(w) =
M∑

k=1
|f(xk) − fw,b(w)(xk)|2. (7)

Naively, we can try to minimize (7) directly via a gradient-based iterative method (such as Adam with its
default parameters) starting at some random initialization w0 = (w0

l)N
l=1 ⊂ Rd. However, L(w) is non-

convex, and our comparisons in Section 4 reveal that the optimization frequently gets stuck in local minima.
Consequently, a good initialization w0 is crucial if we want to minimize (7) with a gradient-based method.
In the spirit of random Fourier features, we propose to initialize the features w as independent identically
distributed (iid) samples from a proposal distribution pw. To the best of our knowledge, current random
Fourier feature methods all rely on a handcrafted pw.

3.2 Learning the Proposal Distribution

Since the optimal pw is in general not expressible without knowledge of f , we aim to learn it from the
available data (xk, yk)M

k=1 based on a generative model. That is, we take a simple latent distribution η (such
as the normal distribution N (0, Id)) and make the parametric ansatz pw = Gθ#η. Here, Gθ : Rd → Rd is
a fully connected neural network with parameters θ and # denotes the push-forward of η under Gθ. To
optimize the parameters θ of the distribution pw = Gθ#η, we minimize the expectation of the reduced loss
(7) with iid features sampled from Gθ#η, namely the loss

L(θ) = Ew∼(Gθ#η)⊗N [L(w)] = Ez∼η⊗N [L(Gθ(z))] = Ez∼η⊗N

[
M∑

k=1
|f(xk) − fGθ(z),b(Gθ(z))(xk)|2

]
. (8)

The loss (8) can now be minimized by a stochastic gradient-based algorithm. That is, in each step, we
sample one realization z ∼ η⊗N of the latent features to get an estimate for the expectation in (8). Then,
we compute the gradient of the integrand with respect to θ for this specific z, and update θ with our chosen
optimizer. In the following, we provide some intuition why this approach outperforms standard training
approaches. At the beginning of the training, most of the randomly sampled features w do not fit to the
data. Hence, they will suffer from vanishing gradients and be updated only slowly. On the other hand, since
the stochastic generator Gθ#η leads to an evaluation of the objective L(w) at many different locations, we
quickly gather gradient information for a large variety of features locations. In particular, always taking fresh
samples from the iteratively updated proposal distribution pw helps to efficiently get rid of useless features.

3.3 Feature Refinement: Adam in the Latent Space

Once the feature distribution pw = Gθ#η is learned, we sample a collection z0 = (z0
l)N

l=1 of iid latent features
z0

l ∼ η. By design, the associated features w0 = Gθ(z0) (with Gθ being applied elementwise to z0
1 , ..., z0

N)

4

Under review as submission to TMLR

serve as an estimate for a minimizer of (7). This estimate w0 is now fine-tuned with the Adam optimizer.
That is, starting in z0, we minimize the function

F (z) = L(Gθ(z)) =
M∑

k=1
|f(xk) − fGθ(z),b(Gθ(z))(xk)|2, (9)

where L is the loss function from (7). By noting that ∇F (z) = ∇Gθ(z)T∇L(Gθ(z)), this corresponds to
initializing the Adam optimizer for the function L(w) with w0 = Gθ(z0), and to additionally precondition
it by the Jacobian matrix of the generator Gθ. If the step size is chosen appropriately, we expect that the
value of F (z) will decrease with the iterations. Conceptually, our refinement approach is similar to many
second-order optimization routines, which also require a good initialization for convergence.

3.4 Regularization for Noisy Data

If the number of training points M is small or if the noise on the values yk ≈ f(xk) is strong, the minimization
of the empirical risk (3) can suffer from overfitting (i.e., the usage of high-frequency features). In order to
prevent this, we can deploy a regularizer of the form (4). This leads to the regularized training problem

ŵ ∈ arg min
w

M∑
k=1

|yk − fw,b(w)(xk)|2 + λ

(∫
[0,1]d

∥∥Lfw,b(w)(x)
∥∥p

q
dx

) 1
p

(10)

with λ > 0. We choose the parameters in (10) as L = ∇, p = 1 and q = 1, which leads to the (anisotropic)
total variation regularizer (Acar & Vogel, 1994; Chan & Esedoglu, 2005). More precisely, we get

R(w) =
∫

[amin,amax]
∥∇fw,b(w)(x)∥1dx, (11)

where U[amin,amax] is the uniform distribution on [amin, amax], where amin = min{xk : k = 1, ..., M} and
amax = max{xk : k = 1, ..., M} are the entry-wise minimum and maximum of the training data. For our
generative training formulation (8), adding (11) leads to the problem

Lreg(θ) = Ew∼(Gθ#η)⊗N [L(w) + λR(w)] , (12)

Similarly, we replace the F from (9) by

Freg(z) = F (z) + λR(Gθ(z)) (13)

for the feature refinement in the latent space. If we have more specific knowledge about the function f that
we try to approximate, then we can also apply more restrictive regularizers of the form (10). As discussed in
Section 2, several random feature methods instead regularize the feature selection by incorporating sparsity
of the feature vectors wl ∈ Rd, namely that they only have a few non-zero entries.

4 Experiments

We demonstrate the effectiveness of our method with three numerical examples. First, we visually inspect
the obtained features. Here, we also check if they recover the correct subspaces. Secondly, we benchmark
our methods on common test functions from approximation theory, i.e., with a known groundtruth. Lastly,
we target regression on some datasets from the UCI database.

4.1 Setup and Comparisons

For all experiments, we deploy the architecture fw, b in (1) with N = 100 features (wl)N
l=1 and one of the

functions Φ from Example 1:

• We deploy Φ(x) = e2πix without the bias trick. This corresponds to the approximation of the
underlying ground truth function by Fourier features.

5

Under review as submission to TMLR

• We deploy Φ(x) = ex

1+ex , which corresponds to a 2-layer network with sigmoid activation functions.
To improve the expressiveness of the model, we apply the bias trick for both layers.

Further, we choose the generator Gθ for the proposal distribution pw = Gθ#N (0, Id) as ReLU network with
3 hidden layers and 512 neurons per hidden layer. It remains to pick the regularization strength λ. For this,
we divide the original training data into a training (90%) and a validation (10%) set. Then, we train Gθ for
each λ ∈ {0} ∪ {1 × 10k : k = −4, ..., 0} and choose the λ with the best validation error. To minimize the
involved regularized loss functions Lreg (proposal distribution, see also (12)) and Freg (fine tuning, see also
(13)), we run 40000 steps of the Adam optimizer. For all other hyperparameters, we refer to our code.

In our tables, we refer to the different settings as generative feature training with (GFT-p) and without
(GFT) post-processing, and specify the choice of Φ as “Fourier” and “sigmoid” activation. We compare the
obtained results with algorithms from the random Fourier feature literature, and with standard training of
neural networks. More precisely, we consider the following comparisons:

• Sparse Fourier Features: We compare with the random Fourier feature based methods SHRIMP
(Xie et al., 2022), HARFE (Saha et al., 2023), SALSA (Kandasamy & Yu, 2016) and ANOVA-
boosted random Fourier features (ANOVA-RFF; Potts & Weidensager, 2024). We do not rerun the
methods and take the results reported by Xie et al. (2022); Potts & Weidensager (2024).

• 2-Layer Neural Networks: We train the parameters of the 2-layer neural networks fw, b with the
Adam optimizer. Here, we use exactly the same architecture, loss function and activation function
as for GFT. Additionally, we include results for the ReLU activation function Φ(x) = max(x, 0).

Our PyTorch implementation is available online1. We run all experiments on a NVIDIA RTX 4090 GPU,
where the training of a single model takes between 30 seconds and 2 minutes (depending on the model).

4.2 Visualization of Generated Features

First, we inspect the learned features w in a simple setting. To this end, we consider the function g : R2 → R
with g(x) = sin(4πx2

1 +1)+cos(4π(x4
2 +x2). Since each summand of g depends either on x1 or x2, its Fourier

transform is supported on the coordinate axes. To make the task more challenging, we slightly adapt the
problem by also concatenating g with two linear transforms Ai, which leads to the three test functions

gi(x) = g(Aix), with A1 =
(

1 0
0 1

)
, A2 =

(
cos(π

4) − sin(π
4)

sin(π
4) cos(π

4)

)
, A3 =

(
1 0.3

0.3 1

)
. (14)

In all cases, the Fourier transform is supported on a union of two subspaces. Now, we learn the features w
with our GFT and GFT-p method based on 2000 samples that are drawn uniformly from [0, 1]2, and plot the
obtained locations in Figure 1. The gray lines indicate the support of the Fourier transforms of the gi, and
the size of the markers indicates the magnitude of the associated bl. For all functions gi, the selected features
are indeed located in the support of the Fourier transform. In contrast, if we do the same for methods that
enforce sparse feature vectors, such as the ANOVA-RFF, the features are forced to be located on the axes.
Consequently, these methods are not expected to work for g2 and g3 and indeed the obtained error is large.
For functions where the subspaces are orthogonal, such as g2, this issue was recently addressed in Ba et al.
(2024) by learning the associated transform in the feature space.

4.3 Function Approximation

We use the same experimental setup as in (Potts & Weidensager, 2024, Table 7.1), that is, the test functions

• Polynomial: f1(x) = x2
4 + x2x3 + x1x2 + x4;

• Isigami: f2(x) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1);

1The code is available as supplementary material.

6

Under review as submission to TMLR

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
ANOVA-RFF for g1, test MSE: 6.45E-05

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
ANOVA-RFF for g2, test MSE: 9.66E-01

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
ANOVA-RFF for g3, test MSE: 8.88E-01

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT for g1, test MSE: 1.23E-04

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT for g2, test MSE: 3.84E-05

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT for g3, test MSE: 2.49E-03

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT-p for g1, test MSE: 6.17E-07

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT-p for g2, test MSE: 1.03E-06

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
GFT-p for g3, test MSE: 1.63E-04

Figure 1: Location of the generated features for different methods and the functions gi from (14). The size
of the markers reflects the magnitude of the associated weights bl. The gray lines indicate the support of the
Fourier transform of the underlying gi. As expected, methods enforcing sparse features (such as ANOVA-
RFF) only work for functions whose Fourier transforms aligns to the axes.

7

Under review as submission to TMLR

Table 1: Comparison with sparse feature methods for function approximation: We report the MSE over the
test set averaged over 5 runs. The values for ANOVA-RFF, SHRIMP and HARFE are taken from Potts &
Weidensager (2024). The deployed λ is indicated below each result.

Method Function f1 Function f2 Function f3

Method Activation (d, M) = (5, 300) (d, M) = (10, 500) (d, M) = (5, 500) (d, M) = (10, 1000) (d, M) = (5, 500) (d, M) = (10, 200)
ANOVA-RFF Fourier 1.40 × 10−6 1.46 × 10−6 2.65 × 10−5 2.62 × 10−5 1.00 × 10−4 9.80 × 10−3

SHRIMP Fourier 1.83 × 10−6 5.00 × 10−4 8.20 × 10−3 5.50 × 10−3 2.00 × 10−4 3.81 × 10−1

HARFE Fourier 5.82 × 10−1 2.38 × 100 1.38 × 10−1 6.65 × 10−1 3.64 × 100 3.98 × 100

neural net

Fourier 2.36 × 10−4 1.03 × 10−3 5.28 × 10−5 2.23 × 10−4 3.14 × 10−3 2.96 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4)

sigmoid 3.84 × 10−5 5.34 × 10−5 2.25 × 10−5 3.71 × 10−5 2.56 × 10−3 2.15 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 0) (λ = 1 × 10−3)

ReLU 4.57 × 10−4 1.25 × 10−3 1.21 × 10−4 1.65 × 10−4 6.77 × 10−2 1.55 × 100

(λ = 1 × 10−4) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−3)

GFT
Fourier 2.72 × 10−7 5.00 × 10−7 1.03 × 10−7 4.09 × 10−7 5.87 × 10−5 4.47 × 10−3

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4)

sigmoid 3.18 × 10−6 1.81 × 10−6 4.09 × 10−7 6.01 × 10−7 6.40 × 10−4 1.18 × 10−2

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4)

GFT-p
Fourier 6.05 × 10−8 5.46 × 10−8 2.02 × 10−8 8.15 × 10−8 6.26 × 10−6 1.89 × 10−4

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0)

sigmoid 1.05 × 10−6 5.60 × 10−7 4.97 × 10−8 1.12 × 10−7 1.50 × 10−5 9.94 × 10−3

(λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 0) (λ = 1 × 10−4)

• Friedmann-1: f3(x) = 10 sin(πx1x2) + 20(x3 − 1
2)2 + 10x4 + 5x5.

The input dimension d is set to 5 or 10 for each fk. In particular, the fk might not depend on all entries of
the input x. For their approximation, we are given samples xk ∼ U[0,1]d , k = 1, ..., M , and the corresponding
noise-less function values fk(xk). The number of samples M and the input dimension d are specified for
each setting. As test set we draw M additional samples from U[0,1]d . We deploy our training methods GFT
and GFT-p as well as standard neural network training to the architecture fw,b. The MSE on the test
set are given in Table 1. There, we also include ANOVA-random Fourier features, SHRIMP and HARFE
for comparison. Note that we always report the MSE for the best choice of ρ from Potts & Weidensager,
2024, Table 7.1. We observe that GFT-p with Fourier activation functions outperforms the other approaches
significantly. In particular, both the GFT and GFT-p consistently improve over the gradient-based training
of the same approximation architecture fw,b. This is in line with the analysis of gradient-based training in
recent works (Boob et al., 2022; Holzmüller & Steinwart, 2022). As expected, Fourier activation functions
are best suited for this task.

So far, we considered functions fi that can be represented as sums, where each summand only depends on a
small number of input variables xi. While this assumption is crucial for the sparse Fourier feature methods
from Table 1, it is not required for GFT and GFT-p. Therefore, we also benchmark our methods on the
following non-decomposable functions and compare the results with standard neural network training:

• h1(x) = sin(
∑d

i=1 xi) + ∥x∥2
2

• h2(x) =
√

∥x − 1
2 e∥1, where e is the vector with all entries equal to one

• h3(x) =
√

f3(x) =
√

10 sin(πx1x2) + 20(x3 − 1
2)2 + 10x4 + 5x5.

The results are given in Table 2. As in the previous case, we can see a clear advantage of GFT and GFT-p.

4.4 Regression on UCI Datasets

Next, we apply our method for regression on several UCI datasets. For this setting, we do not have an under-
lying ground truth function f . Here, we want to compare standard neural network training and our methods
GFT and GFT-p with SHRIMP and SALSA. Hence, we use their numerical setup. For each method and each

8

Under review as submission to TMLR

Table 2: Function approximation: We report the MSE over the test set averaged over 5 runs. The deployed
λ is indicated below each result.

Method Function h1 Function h2 Function h3

Method Activation (d, M) = (10, 1000) (d, M) = (20, 1000) (d, M) = (5, 500)

neural net

Fourier 6.03 × 10−2 1.34 × 10−2 2.68 × 10−4

(λ = 1 × 10−3) (λ = 0) (λ = 0)

sigmoid 4.17 × 10−2 5.94 × 10−3 4.42 × 10−4

(λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−4)

ReLU 5.64 × 10−1 6.89 × 10−3 5.56 × 10−3

(λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−3)

GFT
Fourier 2.62 × 10−2 3.54 × 10−3 2.34 × 10−4

(λ = 1 × 10−3) (λ = 1 × 10−4) (λ = 1 × 10−4)

sigmoid 9.36 × 10−2 1.10 × 10−2 4.70 × 10−4

(λ = 1 × 10−4) (λ = 1 × 10−4) (λ = 1 × 10−4)

GFT-p
Fourier 8.96 × 10−3 2.57 × 10−3 1.04 × 10−4

(λ = 0) (λ = 1 × 10−4) (λ = 0)

sigmoid 6.06 × 10−2 1.00 × 10−2 2.84 × 10−4

(λ = 1 × 10−3) (λ = 1 × 10−4) (λ = 1 × 10−4)

Table 3: Regression on UCI datasets: We report the MSE on the test datasets averaged over 5 runs. The
values for SHRIMP and SALSA are taken from Xie et al. (2022). The deployed λ is indicated below each
result.

Method Dataset

Method Activation Propulsion Galaxy Airfoil CCPP Telemonit Skillkraft
(d, M) = (15, 200) (d, M) = (20, 2000) (d, M) = (41, 750) (d, M) = (59, 2000) (d, M) = (19, 1000) (d, M) = (18, 1700)

SHRIMP Fourier 1.02 × 10−6 5.41 × 10−6 2.65 × 10−1 6.55 × 10−2 6.00 × 10−2 5.81 × 10−1

SALSA Fourier 8.81 × 10−3 1.35 × 10−4 5.18 × 10−1 6.78 × 10−2 3.47 × 10−2 5.47 × 10−1

neural net

Fourier 9.07 × 10−3 4.46 × 10−4 3.41 × 10−1 6.97 × 10−2 2.51 × 10−2 6.01 × 10−1

(λ = 1 × 10−2) (λ = 1 × 10−4) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 10−3) (λ = 1 × 10−1)

sigmoid 9.21 × 10−3 1.67 × 10−4 3.31 × 10−1 8.01 × 10−2 7.86 × 10−2 1.57 × 100

(λ = 0) (λ = 1 × 10−4) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 10−3) (λ = 1 × 10−3)

ReLU 5.92 × 10−4 4.72 × 10−4 3.66 × 10−1 6.73 × 10−2 2.71 × 10−2 2.23 × 100

(λ = 1 × 10−3) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 10−2) (λ = 1 × 100)

GFT
Fourier 8.31 × 10−7 3.31 × 10−5 2.34 × 10−1 8.06 × 10−2 1.05 × 10−2 5.66 × 10−1

(λ = 0) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−2) (λ = 1 × 10−2) (λ = 1 × 100)

sigmoid 1.22 × 10−5 7.42 × 10−5 2.90 × 10−1 6.86 × 10−2 1.35 × 10−2 9.68 × 10−1

(λ = 0) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 1 × 10−4) (λ = 1 × 10−1)

GFT-p
Fourier 6.97 × 10−7 5.36 × 10−6 2.34 × 10−1 8.04 × 10−2 6.48 × 10−3 5.65 × 10−1

(λ = 0) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−2) (λ = 0 × 100) (λ = 1 × 100)

sigmoid 1.67 × 10−5 1.85 × 10−5 2.89 × 10−1 6.84 × 10−2 9.39 × 10−3 9.88 × 10−1

(λ = 0) (λ = 0) (λ = 1 × 10−1) (λ = 1 × 10−1) (λ = 0) (λ = 1 × 10−1)

dataset, the MSE on the test split of the respective dataset is given in Table 3. Compared to the remaining
methods, SHRIMP and SALSA appear to be a bit more robust to noise and outliers, which frequently appear
in the UCI datasets. This is behavior not surprising, since the enforced sparsity of the feature vectors wl for
those methods is a strong implicit regularization. Incorporating similar sparsity constraints on the wl into
our generative training is left for future research. Even without such a regularization, GFT-p manages to
achieve the best performance on most datasets. Again, both GFT and GFT-p achieve significantly better
results than the training with the Adam optimizer.

5 Discussion

Summary We proposed a training procedure for 2-layer neural networks with a small number of hidden
neurons. In our procedure, we sample the hidden weights from a generative model and compute the optimal
output weights by solving a linear system. To enhance the results, we apply a post-processing scheme in the
latent space of the generative model and regularize the loss function. Numerical examples have shown that
the proposed generative feature training outperforms the standard training procedure significantly.

9

Under review as submission to TMLR

Outlook Our approach can be extended in several directions. First, we could train deeper networks in a
greedy way similar to (Belilovsky et al., 2019). Recently, this has been also done in the context of sampled
networks in (Bolager et al., 2023). Moreover, we can encode a sparse structure on the features by replacing the
latent distribution N(0, Id) with a lower-dimensional latent model or by considering mixtures of generative
models. From a theoretical side, we want to characterize the global minimizers of the functional in (8) and
their relations to the Fourier transform of the target function.

Limitations If the number of hidden neurons N gets large, then solving the linear system (6) becomes
very expensive. However, this corresponds to the overparameterized regime where gradient-based methods
should start to work again. Moreover, we computation of the optimal output layer requires to consider all
data points at once, such that we cannot use minibatching. While this might slow down the training for
large datasets, we would like to emphasize that 2-layer neural networks usually explicitly target the setting
of small datasets, where this issue is less important.

References
Robert Acar and Curtis R Vogel. Analysis of bounded variation penalty methods for ill-posed problems.

Inverse Problems, 10(6):1217–1229, 1994.

Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of Bounded Variation and Free Discontinuity
Problems. Oxford Mathematical Monographs. Oxford University Press, New York, 2000.

Fatima Antarou Ba, Oleh Melnyk, Christian Wald, and Gabriele Steidl. Sparse additive function decompo-
sitions facing basis transforms. Foundations of Data Science, 6(4):514–552, 2024.

Yatong Bai, Tanmay Gautam, and Somayeh Sojoudi. Efficient global optimization of two-layer ReLU net-
works: Quadratic-time algorithms and adversarial training. SIAM Journal on Mathematics of Data Sci-
ence, 5(2):446–474, 2023.

Yaxuan Bai, Xiaofan Lu, and Linan Zhang. Function approximations via ℓ1-ℓ2 optimization. Journal of
Applied & Numerical Optimization, 6(3):371–389, 2024.

Adrian Barbu. Training a two-layer ReLU network analytically. Sensors, 23(8):4072, 2023.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale to Ima-
genet. In International Conference on Machine Learning, pp. 583–593. PMLR, 2019.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Erik Lien Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling weights of deep
neural networks. In Advances in Neural Information Processing Systems, volume 37, 2023.

Digvijay Boob, Santanu S Dey, and Guanghui Lan. Complexity of training ReLU neural network. Discrete
Optimization, 44:100620, 2022.

Tony F Chan and Selim Esedoglu. Aspects of total variation regularized l1 function approximation. SIAM
Journal on Applied Mathematics, 65(5):1817–1837, 2005.

Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the impact of kernel approximation on learning
accuracy. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp.
113–120. JMLR, 2010.

Alok Dutt and Vladimir Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM Journal on
Scientific computing, 14(6):1368–1393, 1993.

Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer neural networks.
Communications in Mathematical Sciences, 17(5):1407–1425, 2019.

10

Under review as submission to TMLR

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information Pro-
cessing Systems, volume 24, 2011.

Abolfazl Hashemi, Hayden Schaeffer, Robert Shi, Ufuk Topcu, Giang Tran, and Rachel Ward. Generalization
bounds for sparse random feature expansions. Applied and Computational Harmonic Analysis, 62:310–330,
2023.

Johannes Hertrich. Fast kernel summation in high dimensions via slicing and Fourier transforms. arXiv
preprint arXiv:2401.08260, 2024.

Johannes Hertrich, Tim Jahn, and Michael Quellmalz. Fast summation of radial kernels via QMC slicing.
arXiv preprint arXiv:2410.01316, 2024.

David Holzmüller and Ingo Steinwart. Training two-layer ReLU networks with gradient descent is inconsis-
tent. Journal of Machine Learning Research, 23(181):1–82, 2022.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun. Hands-
on Bayesian neural networks—a tutorial for deep learning users. IEEE Computational Intelligence Maga-
zine, 17(2):29–48, 2022. doi: 10.1109/MCI.2022.3155327.

Aku Kammonen, Jonas Kiessling, Petr Plecháč, Mattias Sandberg, and Anders Szepessy. Adaptive random
Fourier features with Metropolis sampling. arXiv preprint 2007.10683, 2020.

Kirthevasan Kandasamy and Yaoliang Yu. Additive approximations in high dimensional nonparametric
regression via the SALSA. In International Conference on Machine Learning, pp. 69–78. PMLR, 2016.

Lingfeng Li, Xue-Cheng Tai, and Jiang Yang. Generalization error analysis of neural networks with gradient
based regularization. Communications in Computational Physics, 32(4):1007–1038, 2022.

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable Fourier features for multi-dimensional
spatial positional encoding. Advances in Neural Information Processing Systems, 34:15816–15829, 2021.

Yanjun Li, Kai Zhang, Jun Wang, and Sanjiv Kumar. Learning adaptive random features. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4229–4236, 2019a.

Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of random Fourier
features. In International Conference on Machine Learning, pp. 3905–3914. PMLR, 2019b.

Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan AK Suykens. Random features for kernel approxima-
tion: A survey on algorithms, theory, and beyond. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10):7128–7148, 2021.

Aaron Mishkin, Arda Sahiner, and Mert Pilanci. Fast convex optimization for two-layer ReLU networks:
Equivalent model classes and cone decompositions. In International Conference on Machine Learning, pp.
15770–15816. PMLR, 2022.

Radford M Neal. Bayesian Learning for Neural Networks. Springer Science & Business Media, 2012.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time convex
optimization formulations for two-layer networks. In International Conference on Machine Learning, pp.
7695–7705. PMLR, 2020.

Daniel Potts and Michael Schmischke. Interpretable approximation of high-dimensional data. SIAM Journal
on Mathematics of Data Science, 3(4):1301–1323, 2021.

Daniel Potts and Laura Weidensager. ANOVA-boosting for random Fourier features. arXiv preprint
2404.03050, 2024.

Daniel Potts, Gabriele Steidl, and Manfred Tasche. Fast Fourier transforms for nonequispaced data: A
tutorial. Modern Sampling Theory: Mathematics and Applications, pp. 247–270, 2001.

11

Under review as submission to TMLR

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems, volume 20, 2007.

Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In 46th Annual
Allerton Conference on Communication, Control, and Computing, pp. 555–561. IEEE, 2008.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features. In
Advances in Neural Information Processing Systems, volume 30, 2017.

Nicolaj Rux, Michael Quellmalz, and Gabriele Steidl. Slicing of radial functions: a dimension walk in the
Fourier space. arXiv preprint arXiv:2408.11612, 2024.

Esha Saha, Hayden Schaeffer, and Giang Tran. HARFE: Hard-ridge random feature expansion. Sampling
Theory, Signal Processing, and Data Analysis, 21(2):27, 2023.

Yuege Xie, Robert Shi, Hayden Schaeffer, and Rachel Ward. SHRIMP: Sparser random feature models
via iterative magnitude pruning. In Bin Dong, Qianxiao Li, Lei Wang, and Zhi-Qin John Xu (eds.),
Proceedings of Mathematical and Scientific Machine Learning, volume 190 of Proceedings of Machine
Learning Research, pp. 303–318. PMLR, 2022.

Ian En-Hsu Yen, Ting-Wei Lin, Shou-De Lin, Pradeep K Ravikumar, and Inderjit S Dhillon. Sparse random
feature algorithm as coordinate descent in Hilbert space. In Advances in Neural Information Processing
Systems, volume 27, 2014.

12

	Introduction
	Related Work
	Generative Feature Learning
	Computing the Optimal Weights
	Learning the Proposal Distribution
	Feature Refinement: Adam in the Latent Space
	Regularization for Noisy Data

	Experiments
	Setup and Comparisons
	Visualization of Generated Features
	Function Approximation
	Regression on UCI Datasets

	Discussion

