Under review as a conference paper at ICLR 2026

CAUTIOUS OPTIMIZERS: IMPROVING TRAINING WITH
ONE LINE OF CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

AdamW has been the default optimizer for transformer pretraining. For many years,
our community searched for faster and more stable optimizers with only constrained
positive outcomes. In this work, we propose a one-line modification in Pytorch
to any momentum-based optimizer, which we rename cautious optimizer, e.g. C-
AdamW and C-Lion. Our theoretical result shows that this modification preserves
Adam’s Hamiltonian function and it does not break the convergence guarantee
under the Lyapunov analysis. In addition, a whole new family of optimizers is
revealed by our theoretical insight. Among them, we pick the simplest one for
empirical experiments, showing not only consistent speed-up on LLM pretraining,
but also image classification, with minimum extra tuning on hyperparameters.

1 INTRODUCTION

Algorithm 1 Caution an Optimizer (OPT) in PyTorch

m = (u * g > 0).to(g.dtype)
p.add_(u * m/ (m.mean ()+eps), alpha=-1r)

Optimization is an important and constantly evolving field in modern machine learning. Undoubtedly,
Adam (,) and AdamW (s) are the most consequential optimizers
proposed almost a decade ago. Since then, many efforts (, ,)
have been made to discover better and faster optimizers beyond these two However, until now,
AdamW remains the dominant workhorse for applications, from pre-training Large Language Models
(LLMs) (,) to fine-tuning text to image diffusion (,), with no
real challenges to their ruling status.

In the dawn of the era of LLMs, the arms race of model scaling intensifies (s).
A faster optimizer means more training tokens can be consumed within the same amount of time.
Ultimately, this leads to more capable models (,). Hence, the interest in searching
for an optimizer beyond AdamW is re-kindled. Recent progress in new AdamW alternatives such
as Lion (s ;), SHAMPOO (s), SOAP (s),
ADOPT (s), and Schedule-Free (s), all claim substantial
improvement over AdamW.

However, these methods normally requires non-trivial efforts to obtain optimal results, especially
hyperparameter tuning, which greatly limits their potential and wide adoption. In light of this
dilemma, we propose cautious optimizers, an exceptionally simple performance booster of any
momentum-based optimizer that only requires one line of modification (see Algorithm 1). The
change is simple: do not update unless the proposed update direction and the current gradients are
aligned. With this minor change, we obtain consistent improvement over the base optimizer without
modification of the original optimal hyperparameters.

To provide an overview of the idea, let us consider a general optimizer for minimizing the loss £(w):
Wiy < Wi — €Uy,

where u, is the negative update direction of the parameter w; at iteration ¢, and €, > 0 is the step
size. We will assume that the update represents a generic momentum-based optimizer, including,

Under review as a conference paper at ICLR 2026

for example, Polyak and Nesterov momentum, Adam, and Lion. In all these momentum-based
optimizers, u; does not necessarily align with the gradient direction g; = V.L(w;), which can result
in a temporary increase in the loss function and slow down convergence.

Cautious optimizers avoid this issue by adding a simple mask function based on the sign consistency
of u; and g;:

Wi41 < Wy — €UL O ¢(Ut o gt),

where o denotes an element-wise product, and ¢ is a map that reweights the update based on the
product u; o g;. We simply take it as

o(vz) = a(ve)l(ve > 0),

so that the update is zeroed out for coordinates on which the sign of u; and g, are inconsistent. Here
a(x) is a positive scaling factor, introduced to compensate the decrease of update magnitude due to
masking. A simple choice of « is

dim(vx)

a(z) = nnz(vz > 0) 4+ &’

ey
where dim(-) and nnz(-) represent the total number of elements and the number of non-zero elements
of the input vector, respectively. Here, £ > 0 is a positive constant, which we set to £ = 1 by default.
See Algorithms 1 and 2 for more details.

This modification ensures the new negative update to have a non-negative inner product with the gra-
dient, and hence decreases the loss monotonically when the step size is sufficiently small. Specifically,
Taylor approximation shows

L(wys1) — L(wy) ~ —er(ug 0 ge) d(ugoge) < 0.

This ensures decrease of the loss, i.e., £L(w;+1) < L(w;), when the step size is sufficiently small. In
comparison, typical momentum-based optimizers do not always guarantee a monotonic decrease in
loss even with infinitesimal step sizes. The nature of momentum dynamics introduces oscillations
due to inertia-like effects.

Our theoretical analysis shows that the modified algorithm converges to local optima under mild
conditions on the base optimizers. An interesting aspect of this algorithm is that it does not get stuck
at non-stationary points of the loss, even if u; can be temporarily completely conflicting with g;
and is therefore entirely masked out. This is because, in typical momentum methods, the update
direction u; continues to accumulate the gradients and will eventually be updated to have a positive
inner product with gy if it is stuck at a non-stationary point.

Our theoretical analysis encompasses both continuous-time and discrete-time cases. In the continuous-
time setting, our theory shows that the modified algorithm guarantees convergence to local optima
for optimizers that admit a Hamiltonian+Descent structure (s),
which broadly includes almost all existing popular algorithms, such as Adam L10n heavy ball, and
Nesterov momentum. For these algorithms, we demonstrate that the cautious optimizers, with ¢
satisfying x¢(x) > max(z,0), retains the monotonic decreasing properties of the original Lyapunov
(or Hamiltonian) functions of these algorithms while additionally minimizing the loss function. In
the discrete-time setting, we analyze the behavior of various variants of mask functions and establish
general conditions under which updates from cautious optimizers yield larger local descents compared
to their base optimizers.

To summarize our contributions, we present the following:
* We propose Cautious Optimizers, a simple performance booster for any momentum-based
optimizer, implemented with just a single line of code.

» We theoretically demonstrate that cautious optimizers preserve the convergence guarantees
of the base optimizer while also accelerating the decrease of the loss function.

* We show consistent improvements across various tasks, from pretraining LLM to image
classification.

Under review as a conference paper at ICLR 2026

Algorithm 2 Cautious AdamW (C-AdamW)

Require: parameter w, step sizes {e; }, dampening factors 31,82 € [0,1), e > 0, weight decay
v = 0.
1: Initialize ¢ = 0, and mg, vg.
2: while w; not converged do
3 t+t+1
gt < Vli(wi 1)
my < Bimy 1+ (1 — B1)g:
vy < Bovy_1 + (1 — o) g}
My < my/(1— Bi)
’lA)t <— ’Ut/(l — 65)
9: utFmt/(\/’lA)it+€)
10: ¢ < [(upo0gr > 0) /I Compute alignment mask
11: € = € m /] Scale Ir, d is dimension of ¢
12: w; <+ w1 — € pouy /I Masked update
13: Wy — Wy — YWy /I Add weight decay
14: end while

AN A S

2 THEORY

We start with introducing a general Hamiltonian descent framework for the continuous-time forms
of general momentum algorithms (Section 2.1). We then introduce the cautious optimizers in the
continuous time form and discuss its theoretical properties (Section 2.2). Finally, we discuss in
Section 2.3 theoretical properties of cautious optimizers in discrete time forms.

2.1 HAMILTONIAN+DESCENT

In the continuous-time form, most momentum-based algorithms can be viewed as variants of the
damped Hamiltonian system, which admit a Lyapunov (or Hamiltonian) function that certifies their
convergence towards the stationary points.

The Lyapunov function is typically an augmented loss function H(w, s) defined over both the
weights w and an optimization state vector s (which includes the momentum). It must satisfy
ming H(w, s) = L(w), so that minimizing £(w) is equivalent to minimizing H(w, s). This is
typically achieved using a separable Hamiltonian of the form

H(w, s) = L(w) + K(s),

where K(+) is any lower-bounded function. Consulting physical intuitions, we can think of as the
total energy of a system parameterized by (w, s), with £ and K representing the potential energy
and kinetic energy, respectively.

The continuous-time form of common momentum-based algorithms can be unified into:
d
— W = 7VIC(825) — @t(VE(wt))
. @)

ast = Vﬁ(wt) - \Ilt(VIC(St))a

where ®;(-) and U,(-) are monotonic mappings satisfying

2 2
|z, = (&, ®(x)) >0, 2|l = (@, ¥:(2)) > 0,
for any . With ®(x) = ¥(x) = 0, the system in (2) reduces to the standard Hamiltonian system,

which preserves H(w;, s;) = const along the trajectory. When the descending components ®; and
U, are added, the system ensures that H(w, s) becomes monotonically non-decreasing:

d
&’H(wt,st) = —Ay(vw,vs) <0, 3)

where Ay (vwy, vsy) = ||V£(wt)|\it + HVIC(St)”?yt .

Under review as a conference paper at ICLR 2026

On the other hand, £(w), which is the true objective, is not necessarily decreasing monotonically.
There can be cases where £(w) increases temporarily in exchange for a large decrease in the kinetic
energy K(s), while still ensuring a decrease in the total energy H = £ + K. Specifically,

d
&E(wt) = *Aﬂ(wt, St)» “®

Ap(we, 8¢) = VL(w) VK(se) + [VL(wy)|5, -
Here, A, (w;, s;) may be negative due to the cross term.

See Appendix for the Hamiltonian of common optimizers including Adam (,) and
Lion-XC (, ;).

2.2 CAUTIOUS DYNAMICS

Our idea is to change the dynamics to make it simultaneously decrease both H(w, s) and L(w). We
do this with a modified system:

T = Vﬁ(ﬁt) o V’C(gt)
d

aﬁt = —p(Ty) o VK(5;) — O(VL(wW:)) 5)
d_ _ _
ast = VL('LUf> — \I/t(V’C(St)),

where o denotes the element-wise product and ¢ is a vector to vector mapping. Here we weigh each
element of the update direction V/A(5;) based on the product of VI(s) with the gradient VL(w).
Note that we do not need to apply a mask on the ®;(V L(w;) term since it is always non-increasing
by definition of ®;.

The following conditions on the choice of function ¢ ensure that the system decreases both H and L
simultaneously.

Theorem 2.1. Following the dynamics in (5) in R%, we have

d, ,_ _ _ _ _
W 3) = @ (1 - ¢(@:)) — Aw, (W4, 50),
S cw) = -3 o@) — VL@,

= @] (1 - 6(®) ~ Ac, (.5,

Here, Ay, (W, 8:) and Ap, (Wy, St), as defined in (3) and (4), respectively, represent the decreasing
rates of H and L in accordance with the original system (2). Hence:

olfx" (1 —¢(x)) < 0forany x € R? then both H and L decreases faster than the original system:

d
EH(Etvgt) < —Ay, (Wy,35:) <0,

d
&ﬁ(ﬁt) < —Ag, (Wi, 3).

o Ifx " ¢(x) > 0 for any x € R, then L decreases monotonically, %E(Et) <0.

One sufficient condition for ¢ to satisfy both conditions in Theorem 2.1 is to enforce the following
element-wise constraint:

p(vz); > 1ifz; > 0, and p(vz); <0ifz; <0, (6)

where ¢(vx); denotes the i-th element of ¢(vx). Under this condition, both 7 and £ decrease
monotonically following the cautious dynamics, at a rate faster than the original systems. In particular,
the default choice ¢(vx) = a(vx)l(ve > 0) with a(vx) > 1 satisfies the conditions above.

Under review as a conference paper at ICLR 2026

Convergence to Stationary Points In addition to monotonically decreasing the loss function, we
want to ensure that the algorithm does not get stuck unless the solution reaches a stationary point,
which in practice is typically a local optimum, of the loss function. The following result demonstrates
that this property holds under the same conditions as the original Hamiltonian descent system.

Corollary 2.2. Assume that the norm || - ||, is positive definite, ¥(0) = 0, and that H(w, s) =
L(w) + K(s) is differentiable. Then, the bounded solutions of the original system (2) converge to a
stationary point of H(w, s). Similarly, the bounded solutions of (5) also converge to a stationary
point of H(w, s).

2.3 DISCRETE-TIME ANALYSIS

We analyze the discrete time case, demonstrating that each step of cautious optimizers are at least as
good as the step of the original optimizers under mild conditions.

We will consider a generic update of form

W41 = Wi — €U (Wi, Sk),
Skt+1 = Sk + vi(wi, k),

(N

where uy, v, are vector fields that define the updates, and ¢, is the step size. We write the cautious
variants as

W1 = WE — €LUL 0177%, Uy, = wp (W, Sk)

Sk+1 = Sk + v (Wk, Sk),

®)

where v, is a mask vector determined by the algorithm, v¢,, = a(@y, o vg,,)I(wy o vg, > 0),
where Ug;,, = VL(Wy,).
The follow is a comparison result showing that each step of the cautious optimizer yields larger loss
decrease than the original optimizer under mild conditions.
Theorem 2.3. Consider (7) and (8) with a p-smooth loss function L(-). Assume the element-wise
operator ¢ satisfies

A(vz) = —vz ' (1 — ¢(vz)) > 0.
Starting from (wy, 8¢) = (Wy, St), we have

LWei1) < L(weyr),

< 2A (vugovgy)
= pllorell 2w]| +[ore)’

which holds for step size €, where T, = U0(1—v¢,) andvg, = VL(W,).
This result works only for a range of step sizes due to the need of Taylor approximation. In
Appendix A.5, we show a case when the comparison holds for all step sizes when using a different
mask function based on inner products and when L is convex. The following is another result showing
that when imposing more restrictive conditions on the mask to the step size that ensure that the
cautious optimizer is guaranteed to decrease loss at each step.

Theorem 2.4. Consider updates (7) and (8). Assuming L(+) is pi-smooth, and consider the following
mask function:

wk = ol (Vﬁ(ﬁk) o VUL > %Wk OW}C) s
where {ay } is any sequence and o > € ay,. Starting from (wy, s;) = (Wy, 8¢), we have

L(Wps1) < L)

The results above demonstrate that cautious optimizers reduce the loss more efficiently than the
original optimizers at each single step. A natural question is whether these comparison results
can be extended to multiple steps. This, however, becomes challenging because, after the first
step, the two optimizers explore different regions of the loss landscape, making it easy to construct
counterexamples where one method outperforms the other. This is consistent with the no free lunch
theorems, which state that no single optimizer can dominate another across all possible loss functions
(,). Nevertheless, it is reasonable to expect that the advantage observed in
a single step would naturally extend to multiple steps for the practical loss functions encountered in
deep learning, as evidenced by the experiments presented.

Under review as a conference paper at ICLR 2026

= GD === GDM = == C-GDM o wl * Optimum

a .) b) <) d)
Optimization Trajectories o 0gptimization Trajectories L(wy) H(Wt, St)
//////ﬁ\\\\\\\\\“‘\ P 10-1 100
ey \\\\\ 0.01 107 1077 4
c
-~ _g 10715 _g 10-14
£ 0.00 g 1022 | £ 102
ey E
© 10-29 4 z 10-28 |
-0.01
10—36 4 10*35 4
4-0.02 A - - - : : ;
-0.02 0.00 0.02 0 20 40 0 20 40
wy Step t Step t

Figure 1: We compare gradient descent with Polyak momentum (GDM) and its element-wise cautious variant
(C-GDM), using gradient descent (GD) as a baseline. The step size for GD and the hyperparameters of GDM
(including step size and momentum coefficients) are chosen to achieve the optimal convergence rates, which can
be analytically derived (see, e.g., Goh (2017)). For cautious optimizers, step sizes ¢ and momentum coefficients
[are empirically tuned, as shown in Figure 2. Detailed experimental settings are described in Section 3.1. In
Plot (a), we visualize the optimization trajectories of the three methods, starting from the initial point (1, 1) with
zero-initialized momentum. Notably, C-GDM converges to the optimum with significantly reduced overshooting
and oscillation, Plot (b) zooms in on the trajectories from Plot (a), focusing on a smaller region (0.02 x 0.02)
for enhanced clarity. Furthermore, Plots (c) and (d) show that C-GDM consistently and monotonically decreases
both the objective and the Hamiltonian associated with the original GDM, highlighting its superior performance
in minimizing these metrics compared to GDM.

GDM . C-GDM dc—0.01

1. 1. $e=0a
* Min Conv Rate: 2.94e-01 # Min Conv Rate: 2.91e-01

0.8

Figure 2: Convergence rate heatmaps for the objective function with condition number x = 4 (same setup
as in 1). The heatmaps illustrate convergence rates, where values greater than 1 indicate divergence for the
corresponding (e, 3) configuration. Smaller convergence rates correspond to faster convergence. From left
to right, we show heatmaps for ¢. with ¢ = 0.01, 0.1 and @inner as shown in (13). Note that ¢ represents a
constant function, reducing to gradient descent with momentum (GDM), whose optimal convergence rate is
given in closed form (Goh, 2017). From the heatmaps, it is clear that all cautious momentum variants¢. with
¢ =0.01,0.1 and ¢inner demonstrate superior convergence rates compared to GDM.

3 EXPERIMENTS

In this section, we evaluate the performance of cautious optimizers compared to their standard
counterparts, highlighting the benefits introduced by the cautious masking mechanism. We begin
with a 2D toy experiment to provide a visual demonstration of how cautious masking improves
optimization. Subsequently, we extend the evaluation to large-scale pretraining tasks for both
language and vision models, comparing the performance of standard optimizers and their cautious
variants.

3.1 2D OPTIMIZATION TOY

We consider a 2D optimization problem with objective £(w) = r(w1)? + (w2)?, where w =
(w1, ws) € R? is the parameter. Obviously, the optimum is at w* = (0,0). We set x = 4 in our
experiments. We apply gradient descent (GD), gradient descent with Polyak momentum (GDM), and
cautious gradient descent with momentum (C-GDM) on this toy example, starting from wy = (1, 1).
Specifically, for GDM, we adopt the conventional momentum update:

St Bst_l + Vﬁ(wt), Wt < W1 — €8y,

where 8 € [0, 1) and € is the learning rate.

Under review as a conference paper at ICLR 2026

Observation: On the right of Figure 1, we compare GDM and C-GDM with the same hyperparam-
eters (e, 3). We ablate over different combinations of (3, €) € {(0.01,0.5), (0.01,0.9), (0.01,0.99),
(0.01,0.999), (0.1,0.99), (0.001,0.99) }. Across all settings, C-GDM outperforms GDM, confirming
the importance of cautious masking. Given the same (¢,), cautious is always not worse than mo-
mentum, and often it gives significant improvement, especially when the choice (e, /3) is suboptimal
for momentum, meaning that cautious masking makes it more robust. From the left of Figure 1, one
can see that GDM, due to the momentum, has fluctuating £(w;), while C-GDM ensures that £(w;)
monotonically decreases. In addition, C-GDM achieves a faster drop in terms of GDM’s Hamiltonian.

In Figure 1, we compare GDM and C-GDM, each using their optimal (¢, 3). For GDM, the optimal
values are derived theoretically (e.g., (s)), while for C-GDM, they are obtained through
a grid search. Despite using the optimal configuration, GDM exhibits significant overshooting,
oscillations, and slower loss convergence. In contrast, C-GDM achieves smoother trajectories,
reduced overshooting, and faster convergence, demonstrating its superior stability and efficiency.

We estimate an algorithm’s convergence rate as the slope of log £(w;) over time via linear regression
and plot heatmaps over (¢, 3)-space, where € and § are the learning rate and momentum. Figure 2
shows that cautious methods achieve lower optimal convergence rates compared to the momentum

method (ﬁ: , red dot). The heatmaps highlight that all cautious momentum variants outperform

GDM in convergence rates.

3.2 PRETRAINING LARGE LANGUAGE MODELS (LLMS)

We begin by investigating the language modeling task using a 100M LLaMA (,)
model as the foundational architecture. The models are trained on the C4 (Colossal Clean Crawled
Corpus) dataset (,), a large-scale web-crawled text corpus containing billions of
tokens. We provide results from the following settings: we take a 100M model and train it with batch
size up to 2 million tokens for 50 billion tokens (25x Chinchilla Optimal). For optimization, we
employ AdamW (,) and Lion (,), two popular optimizers in modern
language modeling, as baselines. These are compared with their cautious counterparts, which we
term Cautious AdamW (C-AdamW) and Cautious Lion (C-Lion).

Ir le-4 3e-4 le-3 3e-3 le-2 2e-2 3e-2 le-1
AdamW 85.050 24.384 19.249 19.007 18.965 19.609 * ek
C-AdamW - - 19.065 18.771 18.684 18.821 - -

Ir 3e-5 le-4 3e-4 6e-4 le-3 le-2

Lion *% 28.250 21.401 21.937 *k w

C-Lion — 21.354 19.795 20.403 20.977 *k

Table 1: We report final evaluation perplex, the lower the better. ”**” are runs that did not converge due to
either too large or too small learning rates. ”—" stands for runs we skip due to lack of baseline comparison.
Each model is trained with batch size up to 2 million tokens for 50 billion tokens in total (25 x Chinchilla
Optimal(,). We use 51 = 0.9, B2 = 0.95 and weight decay 0.1 on AdamW; Sequence
lengths of all models are 1024. For Lion experiments, we follow the recommendation from the (s

) and use 51 = 0.95 and B2 = 0.98. For scheduler, we use CosineAnnealing with warmup and the
learning rate is decayed to 10% of the initial learning rate. Gradient accumulation is set to 8 to increase the
global batch size.

Observation: As shown in Table 1, Cautious Optimizers demonstrate consistent improvements in
both evaluation perplexity and sample efficiency. Table 1 shows the cautious modification is robust
across learning rates and Cautious doesn’t change the optimality of hyperparameter search done
on the base optimizers. Surprisingly, Cautious can also tolerate a higher learning rate in the Lion
experiments and achieve stable training even when the baseline diverges.

To further confirm our finding, we also include a scaling experiment with C-AdamW on FineWeb-Edu
(,), a more recent and higher quality web-scale text dataset. After rigorous and
thorough hyperparameter search, we found that C-AdamW is consistently outperforming baseline
AdamW. In table 2, we report optimal results for each scale.

Under review as a conference paper at ICLR 2026

Table 2: Perplexity comparison between AdamW and C-AdamW across different model scales at 1x Chinchilla
(,), hyperparameters are extensively searched with coordinate descent over a discrete grid.
Details can be found in appendix C

Scale AdamW C-AdamW Improvement (%)

130M 27.39 27.30 0.33
300M 18.30 18.28 0.10
520M 15.07 14.92 1.00
1.2B 11.36 11.32 0.32

Furthermore, we perform downstream evaluation on the produced 1.2B checkpoints with 1x Chin-
chilla (20 x tpp) on 7 downstream tasks, where the checkpoint trained by catuious optimizer wins in
5 of them (MMLU, OpenBookQA, Arc Easy as well as HellaSwag and Arc Challenge).

Task / Group Metric AdamW C-AdamW

Arc Easy (R) acc 0.6082 + 0.0100 0.6090 + 0.0100
Arc Challenge (s) accnorm 0.2875 £0.0132 0.2978 £ 0.0134
Hellaswag (R) acccnorm 0.4169 + 0.0049 0.4193 + 0.0049
Lambada OpenAl (,) acc 0.3311 + 0.0066 0.3229 + 0.0065
OpenBookQA (,) acc 0.2340 + 0.0190 0.2360 + 0.0190
PIQA (R) accnorm 0.6774 + 0.0109 0.6768 + 0.0109
MMLU (,) acc 0.2529 + 0.0037 0.2535 + 0.0037

Table 3: Comparison of benchmark results between C-AdamW and AdamW across multiple tasks and MMLU
groups. All evaluations are done with LM Eval-Harness(s). Bold indicates the better score.

3.3 IMAGE CLASSIFICATION

We also include a classic classification task on Mini-ImageNet on ViT (,) with
two additional optimizers MARS (,) and LaProp (,), both are
momentum-based optimizers and their cautious variants perform consistently better as shown in the
table 4.

Method Eval_Topl
C-AdamW 73.52
AdamW 72.11
C-LaProp 73.92
LaProp (s) 71.73
C-MARS 74.91
MARS (,) 74.06

Table 4: Top-1 evaluation accuracy on Mini-ImageNet, the higher the better. We can see that the cautious variant
is better across base optimizer options. Hyperparameters can be found in appendix D

4 RELATED WORK

We provide a brief overview of existing efforts on designing Adam-like optimizers, and the related
works on Hamiltonian dynamics.

Adam and Its Variants A plethora of Adam variants have been developed to address different
aspects of optimization challenges (, ; ,). AdamW (

,) introduced a key improvement by decoupling weight decay from optimization steps,
restoring the original formulation of weight decay regularization. NAdam (,) incorporated
Nesterov updates into Adam, while AdaBelief (,) refined the second momentum

Under review as a conference paper at ICLR 2026

v to track the EMA of (g; — m;)?, improving generalization. Adan (,) added an
extra momentum term for better training performance, albeit at the cost of additional memory usage.
More recently, ADOPT (,) innovated by folding normalized updates into first-
order momentum updates. From an efficiency perspective, several approaches target memory cost
reduction. AdaFactor (R) factorizes second-order statistics into a row-column
outer product, enabling sub-linear memory usage. K-Fac (,) approximates
the Fisher information matrix with a Kronecker-factored representation, supporting sublinear natural
gradient updates. Techniques like fused gradient computation (,) further minimize
memory costs.(,) is a concurrent work that focus on continuous learning setting. In
contrast to these approaches, our proposed C-AdamW introduces a single-line modification to the
widely used AdamW optimizer. This modification not only retains the simplicity and efficiency of
AdamW but also eliminates the need for hyperparameter tuning, as the default parameters of AdamW
suffice. Furthermore, while many of the aforementioned methods focus on optimizing or extending
specific aspects of the Adam algorithm, C-AdamW is more generalit seamlessly integrates with all
momentum-based optimizers, offering a general solution with minimal implementation effort.

Hamiltonian Dynamics Hamiltonian dynamics, rooted in classical mechanics, provides a pow-
erful mathematical framework for analyzing the motion of systems in continuous spaces. This
perspective has gained traction in optimization, where the 1ntr0duct10n of Hamlltoman pr1n01ples
sheds light on momentum-based algorithms (

R). Unlike Gradient Descent (GD), Wthh ensures a monotomc decrease in
the objectlve function, momentum-based methods often follow non-monotonic trajectories, posing

unique analytical challenges (,). To address this, researchers have developed multiple
Lyapunov functions for convex settings (, ;), providing a
structured approach to analyze convergence. (,) offered a physwal interpretation

of momentum in optimization, linking it to the dynamics described by Hamiltonian mechanics, and
demonstrated how these principles underpin classical methods like those of Nesterov and Polyak (

,). Furthermore, Hamiltonian dynamics have been instrumental in deriving convergence
rates for accelerated methods (s) and, more recently, for advanced optimizers like
Lion (R) and its distributed variant (R). In a related vein, (

,) explored optimization methods from the perspective of continuous-time ODEs, empha-
sizing their Hamiltonian structure. Mirror Descent, a related framework, has been shown to maintain
efficiency estimates with a mild dependence on the dimensionality of de(:1510n variables, making it
particularly suitable for large-scale optimization problems ().
These advancements highlight the versatility and depth of Hamiltonian formahsm in bridging the gap
between optimization theory and practical algorithm design.

5 CONCLUSION

In summary, we introduce Cautious Optimizers, an enhancement for momentum-based optimizers
that can be implemented with a single line of code. Our theoretical analysis demonstrates that
Cautious Optimizers not only preserve the convergence guarantees of the base optimizers but also
accelerate the reduction of the loss function. Empirically, it delivers faster LLM pretraining and
better accuracy on image classification. Finally, we suggest a few promising future directions: (1)
Apply cautious optimizers to more settings such as reinforcement learning and continuous learning;
(2) masking in the eigenspace rather than the parameter space; (3) rigorous analyses of how cautious
optimizers strictly improve the convergence rate (empirically shown in 1).

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anonymous. Improving adaptive moment optimization via preconditioner diagonalization. In
Submitted to The Thirteenth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NdNuKMEv9y. under review.

https://openreview.net/forum?id=NdNuKMEv9y

Under review as a conference paper at ICLR 2026

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness. Straight
to zero: Why linearly decaying the learning rate to zero works best for llms. arXiv preprint
arXiv:2502.15938, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained optimization:
As lyapunov predicts. arXiv preprint arXiv:2310.05898, 2023a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023b.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023c.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
Ashok Cutkosky. The road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentumn.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842—-1850. PMLR, 2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
Tunstall. The n+ implementation details of rlhf with ppo: A case study on tl; dr summarization.
arXiv preprint arXiv:2403.17031, 2024.

10

https://zenodo.org/records/12608602
http://distill.pub/2017/momentum

Under review as a conference paper at ICLR 2026

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference On Learning Theory, pp. 1042—-1085. PMLR,
2018.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in continuous
and discrete time. Advances in neural information processing systems, 28, 2015.

Kaizhao Liang, Bo Liu, Lizhang Chen, and Qiang Liu. Memory-efficient llm training with online
subspace descent. arXiv preprint arXiv:2408.12857, 2024.

Bo Liu, Lemeng Wu, Lizhang Chen, Kaizhao Liang, Jiaxu Zhu, Chen Liang, Raghuraman Krish-
namoorthi, and Qiang Liu. Communication efficient distributed training with distributed lion.
arXiv preprint arXiv:2404.00438, 2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qi jie Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2023. URL https://api.semanticscholar.org/
CorpusID:259187846.

Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet.
Hamiltonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

James Martens and Roger Baker Grosse. Optimizing neural networks with kronecker-factored
approximate curvature. In International Conference on Machine Learning, 2015. URL https:
//api.semanticscholar.org/CorpusID:11480464.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Yurii Evgenevich Nesterov. A method for solving the convex programming problem with convergence
rate o (1/k" 2). In Dokl. akad. nauk Sssr, volume 269, pp. 543-547, 1983.

Son Nguyen, Lizhang Chen, Bo Liu, and Qiang Liu. H-fac: Memory-efficient optimization with
factorized hamiltonian descent. arXiv preprint arXiv:2406.09958, 2024.

Guilherme Penedo, Hynek Kydlivcek, AntonLozhkov, M argaret Mitchell, Colin ARaf fel, LeandroV on Werra, Thoma
Decantingtheweb forthe finesttextdataatscale.Advances in Neural Information Processing Systems, 37 :
30811 — —30849, 2024.

Powerlnfer. Powerinfer/qwq-longcot-500k, 2024.

Qwen. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL https:
//awenlm.github.io/blog/gwg-32b-preview/.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://api.semanticscholar.org/CorpusID:259187846
https://api.semanticscholar.org/CorpusID:259187846
https://api.semanticscholar.org/CorpusID:11480464
https://api.semanticscholar.org/CorpusID:11480464
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211-252, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596—4604. PMLR, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139-1147.
PMLR, 2013.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
Tomoshi liyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam
can converge with any \beta_2 with the optimal rate. arXiv preprint arXiv:2411.02853, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Belinda Tzen, Anant Raj, Maxim Raginsky, and Francis Bach. Variational principles for mirror
descent and mirror langevin dynamics. IEEE Control Systems Letters, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Shaowen Wang, Anan Liu, Jian Xiao, Huan Liu, Yuekui Yang, Cong Xu, Qiangian Pu, Suncong
Zheng, Wei Zhang, and Jian Li. Cadam: Confidence-based optimization for online learning. arXiv
preprint arXiv:2411.19647, 2024.

Ashia C Wilson, Benjamin Recht, and Michael I Jordan. A lyapunov analysis of momentum methods
in optimization. arXiv preprint arXiv:1611.02635, 2016.

David H Wolpert and William G Macready. No free lunch theorems for optimization. [EEE
transactions on evolutionary computation, 1(1):67-82, 1997.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models. arXiv preprint arXiv:2411.10438, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Guogiang Zhang, Niwa Kenta, and W Bastiaan Kleijn. Extending adamw by leveraging its second
moment and magnitude. arXiv preprint arXiv:2112.06125, 2021.

12

Under review as a conference paper at ICLR 2026

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795-18806, 2020.

Liu Ziyin, Zhikang T Wang, and Masahito Ueda. Laprop: Separating momentum and adaptivity in
adam. arXiv preprint arXiv:2002.04839, 2020.

A APPENDIX

The appendix is organized into the following key components:

* Cautious Hamiltonian Descent: We provide conditions 2.1 on the choice of function ¢
ensure that the system decreases both H and £ simultaneously and Corollary 2.2 asserts
that with a positive definite norm and differentiable Hamiltonian, bounded solutions of the
discussed systems converge to a stationary point of the Hamiltonian.

* Applications to Optimizers: In section A.3, the cautious framework is applied to derive
cautious variants of popular optimizers, including Adam, Signed Momentum, and Lion,
highlighting their theoretical properties and practical advantages.

* Discrete-Time Analysis: A rigorous analysis connects the continuous-time dynamics to
discrete-time updates, providing convergence guarantees and bounds on loss reduction for
cautious optimizers.

* Pseudocode: We present the implementation details for cautious optimizers, focusing on
the cautious Lion optimizer as a representative example.

» Experimental Details: Comprehensive details on the experimental setup, hyperparameters,
and hardware configurations are provided, demonstrating the effectiveness of cautious
optimizers in accelerating convergence and improving performance on large-scale tasks
such as language modeling and masked autoencoder pretraining.

A.1 HAMILTONIAN OF COMMON OPTIMIZERS

We introduce the Hamiltonian functions of the common optimizers.

Example A.1. Adam (,) yields the following continuous-time form and Hamiltonian,
d vmy d
oWy = — - = a(VL -
el N T il a(VL(vwy) — vmy),

%vvt = b(VL(vw)?? — vuy),

1 vm
ith H , , =L —(—, .
wi (vw, vm, Vo) (vw) + 2@(\/”7)Jr S vma
We can show that L H(vwy, vmy, vv,) < 0 when a > b/4.
Example A.2. The Lion-KC optimizer (, sa) (without weight decay) can be written

into

d
&’th = VK:((l — b)vmt — bVE('UU)t)),

U= —a(VL(vwy) + vmy)

where a > 0, b € [0, 1] and K(vx) is any convex function that attains the minimum at vz = 0. One
of its Hamiltonians that yields the Hamiltonian+descent structure (Eq (13) in Chen et al. (,
) is
1
H(vw, vm) = al(vw) + 13 ((1 = b)vm).
See () for other Hamiltonian functions. Lion-K includes a large family algorithms as

special cases, including Polyka momentum, Nesterov momentum, signed momentum, mirror descent,
Frank-Wolfe, etc.

13

Under review as a conference paper at ICLR 2026

A.2 CAUTIOUS DYNAMICS

We establish conditions in Theorem 2.1 for the function ¢ that ensure simultaneous decreases in
both H and L. Corollary 2.2 further asserts that, with a positive definite norm and differentiable
Hamiltonian, bounded solutions of the systems converge to a stationary point of the Hamiltonian.

Theorem 2.1. Following the dynamics in (5) in R%, we have
d

aH(ﬁmgt) = (& (1 - ¢(x1)) — Mgy, (W1, 5),

and
—L(W,) = —F, p(@;) — | VL@ ||3,
= (& (1-¢(®)) — Ar, (W, 51),

Here, Ay, (W, S;) and Az, (W, S;), as defined in (3) and (4), respectively, represent the decreasing
rates of H and £ in accordance with the original system (2). Hence:

s Ifz"(1— ¢(x)) < 0forany x € R? then both H and £ decreases faster than the original

system:

d_ .

aH(wt,St) < _A”Ht(wtast) <0,

d

aﬁ(ﬁt) < —Apr, (W, 8).

o IfxT¢(x) > 0 for any & € R?, then £ decreases monotonically,

d
&E@t) <0.

Proof. For simplicity, we write T, = VL(w;) o VI (5;).

Recall the definition of Ay, (w;, 8:) and Az, (wy, 8¢):
Ay (@1, 50) = IVL@) |5, + [VEGE)IG,
Ap(We,5;) = VLW@,) VKGE) + | VL@, -

Following the dynamics in (5), let us see the derivation of H w.r.t. ¢:

d, . _
&H(Wt, St)

T (1= o)) — Ay (W, 5).)

Given the fact that ¢ is an element-wise operator, it is noteworthy that if = - (1 — ¢(x)) < 0,
then the first term in (9) 17 ((VL(w) o VK (3)) o (1 — ¢(VL(w) o VK(3)))) < 0 since we see
VL(w)o VK(3) as &.

Next, let us look into the derivative of £(w;) w.r.t. ¢:

L @) = V@) (~VK(.) 0 6(VE(@,) 0 VK(51)) — (VL (w)))

dt
= VL@, (VK(E,) o ¢(VL@,) 0o VK(3;))) — VL(w,) " ®(VL(W,))
=z (@) — VL), (10)
= (@ (1- (@) - Az, (W1, 51). (11)

14

Under review as a conference paper at ICLR 2026

It is evident that if & " ¢(z) > 0 for any & € RY, then the first term in (10), T, ¢(T;), satisfies
Z, ¢(®;) > 0. Consequently, 4 L(w,) < 0. This condition holds when =" ¢(z) > 0 for all
x € R4

It is noteworthy that if & " (1—¢(x)) < 0 forany = € RY, then the first term in (11), &, (1—¢(Z;)) <
0, holds. Consequently, we have 2 £(w,) < —A,, (W, 5;).

O

Corollary 2.2. Assume that the norm || - ||3 is positive definite, ¥'(0) = 0, and that H(w, s) =
L(w) + K(s) is differentiable. Then, the bounded solutions of the original system (2) converge to
a stationary point of H(w, s). Similarly, the bounded solutions of (5) also converge to a stationary
point of H(w, s).

Proof. First, Let us look at system (2), we use LaSalle’s invariance principle to find the conditions
that the accumulation points (positive limit points)(w™*, s*) satisfy:

IVLw)3, = IVK(s")II%, =0.

By the assumption that || - [|3,, is positive definite and ¥(0) = 0, we have VK (s*) = 0.

For positive limit points of systems (2), if VL(w*) # 0, then the point (w*, s*) is not a positive
limit point since

§* = VL(w*) — U, (VK(s")) = VL(w*) # 0.

Thus, VL(w*) = 0. Together with VI(s*) = 0, we conclude that (w*, s*) is a stationary point of
H(w, s).

For system (5), the proof follows the same reasoning.

A.3 EXAMPLES OF CAUTIOUS DYNAMICS

In this section, we instantiate results on Adam, Signed Momentum, and Lion, along with their
cautious variants. While the standard methods are widely used, our focus is on introducing and
analyzing the cautious versions of these algorithms to better understand their dynamics and stability.

A.3.1 CAUTIOUS ADAM

Adam: We begin by recalling the continuous-time dynamics of the Adam optimizer:

d my
att T T o te
S = B (VE(w,)),
= B (VE(w) 7 —),
where the associated Hamiltonian is given by:
H(ws, my, vy) :E(wt)+2;1<\/gbt+e,mt>. (12)

The time evolution of the Hamiltonian can be derived as:

dH(we, o) e [mi® o2\ _ (1o B2 [
dt T 4B, <v?/2+6,V£(wt) 1 15 \/v»t+€,mt)

For stability, we require % < 0, which leads to 5; > %.

15

Under review as a conference paper at ICLR 2026

Cautious Adam: We now introduce a cautious variant of Adam. In this case, the update for w; is
modified by introducing an indicator function that enforces alignment between the gradient and the
momentum:

gw - _H(VE('LUt) omy > O) O My
ac ' VUi + € '

The dynamics for m; and v; remain the same. It is straightforward to verify that the loss function
L(w;) serves as a Lyapunov function:

+I(VL(w) omy > 0) omy
<0.
Vs + € -

Meanwhile, by Theorem 2.1, H(ws, my, v:) = L(w;) + ﬁ <ﬁ, mt> is also monotonically

d
&E(wt) = —Vﬁ('wt)

decreasing. Therefore, 7 remains a valid Hamiltonian for Cautious Adam.

A.3.2 CAUTIOUS SIGNED (POLYAK) MOMENTUM

Signed Momentum: The update rule for Signed Momentum is:
w; = —sign(my),
m; = VL(w) — my.
The Hamiltonian for this system is:
H(we, my) = L(wy) + |11,

with time evolution:

Cautious Signed Momentum: The cautious variant modifies the update rule for w; by introducing
an indicator:

w; = —sign(m;) © (VL(w;) o my > 0).

The Lyapunov function remains the loss £(w;), with:
dﬁ(wt)

W) |9 L) © VL) o me > 0)1

By Theorem 2.1, H(ws, m:) = L(w;) + ||m]|1 is also monotonically decreasing. Therefore, H
remains a valid Hamiltonian for Cautious Signed Momentum.

A.3.3 CAUTIOUS LION

Lion: The dynamics of Lion () are given by:
m; = aVL(wy) — ymy,
w; = —sign(my),
where m; = m; — e(aVL(w;) + ym;). The associated Hamiltonian is:
H(we, my) = al(wy) + (1 —ev)|lmyl]s.
The time derivative is:

H(ws,my) = —(1 = ey)l[meflr = yllmel.

Cautious Lion: In the cautious version, the update for w; is modified:

w; = —sign(my) © [(VL(w;s) oy > 0).
By Theorem 2.1, H(wy, m;) = al(w,) + (1 — ey)||my||1 is also monotonically decreasing.
Therefore, H remains a valid Hamiltonian for Cautious Lion.

Meanwhile, the Lyapunov function remains £(w;), with:
dL’(wt)

EE — IV L(w) © VL (w:) o 72 > 0)1.

16

Under review as a conference paper at ICLR 2026

A.4 DISCRETE TIME ANALYSIS

We analyze the discrete time case, demonstrating that cautious optimizers are at least as good as the
original optimizers under mild conditions.

Theorem 2.3. Consider (7) and (8) with the loss function £(-) u-smooth. Assume the element-wise
operator ¢ satisfies
A(vz) = —vz ' (1 — ¢(vz)) > 0.
starting from (wy, s;) = (W, S;), we have
L(Wiy1) < L(Wig1),

< 2A (DU 0gr)
= wplorell -l I +2re)

which holds for step size ¢; where v7; = wzo(1—v¢,) and g, = VL(W;).

Proof. First, we calculate the difference between w; 1 and w;, 1, then we use p-smooth condition
to bound the difference between L£(w;1) and L(W41).

ﬁt—&-l — W41 = —Gt(ﬁt O'Uiqst — ’LLt) = —€t(ﬂt Owt - ﬁt) = €4UTy.
Let us use p-smooth condition to bound the £ difference
L(Wy41)—L(wis1)

< @VL(we) o + S o7

- T Hooy— 2

= (VL(we) + VL(wiy1) — VL(wy)) o7 + 5¢t [o7:|]

= & VL(w) T, + € (VL(weg1) — VL(wy)) | 7 + gef Ak

< eVL(w) BT + e ||[VL(wey1) — VL(wy)|| |7 + %ef |oF||> //Cauchy Schwarz inequality
= &89, o7 + u [T 77| + S Ilom|* gl v <.

= —eA(w, 0 vg,) + € p|[oue| |[or || + gﬁf o7 |
<0. //By the choice of ;.
O

Theorem A.3. Assume L(w) is p-smooth and differentiable, and the element-wise operator ¢
satisfies x - ¢(x) > 0 as shown in Theorem 2.1. With (W;, ;) following the update in (8) with
constant step size €:

Uy = u(Wy, 5¢)
Wiy1 = Wy — €Uy 0 VP,
Si41 = 5t + v (W, Sy).
Assume € > 0, we have:
E(ﬁl) — ,C(ﬁ*) pe

+ 7BT7

T
1 . _
=L@ omll, < S o

t=1

where By = Z;‘F:l |z

> w* = argmin,, L(w), and for notions, we write], = x ' ¢(x),Vr.

Proof. Using the p-smoothness of £(w), we expand L(w;11) — L(wy):
L(@41) — L(w;) < VL(W@,) (W1 —W1) + g [41—,
Substitute Wy, — W; = —€Wy 0 VP, to get:

—_ 2 R
ﬁ(@t+1) — ﬁ(@t) S —€ - Vﬁ(ﬁt)-r (ﬁt) U¢t) + % Hﬁt o) U¢t|‘2 .

17

Under review as a conference paper at ICLR 2026

Simplify using the definition of [|-|| ; and |-/, :
VL(w,)" (w ovd,) = ||L(w,) oty
which gives:

2
L@r11) — £(@0) < e (1@ 0|,) + -]

Summing over t = 1,...,T, we obtain a telescoping sum:

T 5 T
L@ra) = L@1) < =Y (L@ owill,) + 5= D]

t=1

Rearranging, dividing by T'e, and noting L(Wr1) > L(W™*), we get:

T _ _

1 . L(w,) — L(W") e

— E < \TY =N 2
T heme) 0wl < Te + 2TBT7

where Br = "/_, |[@:||*. This concludes the proof. O

Theorem A.4. Consider updates (7) and (8). Assuming L(-) is p-smooth and the scaled step size
exar < o, and consider the following mask function:

wk = Olk]I(V,C(ﬁk) ovuy > %Wk Omk)7

we have
ﬁ(@]ﬁ.l) < E(ﬁk)

which holds for any step size €, > 0.

Proof. By smoothness, we have
L(w}i1)—L(wy)

< VL@ (@1 1) + 5 [Wers w3

— \NT /L — Mei b = 1|2
= —e.VL(wy) ' (v, our) + = |véy 0w,

- (—Vﬁ('wk)T(]I(Vﬁ(wk.) o T > %mk o TUL) o Tx) + @ HH(W(@) o Ty, > %mk o Ty
< eray (—V/J('wk)T(]I(VE('wk) o VUL > %Wk o Tuy) o Uy) + % HMVE(E]C) ovuUE > %Wk omk) o1

<0.

A.5 INNER PRODUCT MASKS

Out of theoretical interest, let us consider a case of using an inner product mask:
_ S o
vy, = I(u,, vg;, > 0), vgr = VL(wy),

which yields a scalar that applies to the entire update vector. In comparison, the element-wise mask
in the paper treats each element separately.

This case is interesting because, on convex functions, the cautious optimizers is always no worse than
the base optimizers, regardless of the step size choices.

18

Under review as a conference paper at ICLR 2026

Theorem A.5. Assume L(-) is convex, and v, = 1(w, VL(W},) > 0). Then, starting from the
same point (wy, S;,) = (W, Si), we have

LWry1) < L(wp).

which holds for any step size € > 0.

Proof. If @, VL(Wy) > 0, we have vg,, = 1, and wy 1 = W41, and L(Wpy1) = L(wp1).
If H,IVﬁ(Ek) < 0, we have v¢,, = 0 and Wy, 1 = wy. By the convexity of £, we have
L(wpy1) = L(Wht1) = L(wy, — euy) — L(wg)
> —euy VL(wy) > 0.
This proves the result. O

Corollary A.6. Consider the elementary test function:
1 2
£(w) = 5 llao w3,

where a € R® is a non-zero vector. This is commonly used as the testbed for optimization algorithms
in theoretical analysis.

Assume uy, and vy, are element-wise mappings. We have L(Wt1) < L(wg41) given (wg, Sg) =
(Wy,, 3), with either the inner product mask vo,, = (@, VL(Wy) > 0), or the element-wise mask

vo, = l(uy, o VL(wy) > 0).

Proof. The inner product case is implied by Theorem A.5. For element-wise mask, since the loss
is an element-wise sum, and the update functions are element-wise mappings, which can apply
Theorem A.5 on each element.

This argument, of course, can be extended to general convex and separable loss functions of form
L(w) =3, Li(w;). O

Theorem A.7. Consider update (8). Assuming L(-) is p-smooth, and consider the following mask

function:
QU i€,

vy, = al(VL(wk) ' ouy, > [o|),

where oy, is a scaling factor.

We have
ﬁ(ﬁk_;,_l) < E(Ek)

which holds for any step size €, > Q.

19

Under review as a conference paper at ICLR 2026

Ablation on ¢: To analyze the impact of cautious masking, we conduct ablation studies on different
choices of ¢. Our results show that the performance is not sensitive to the specific choice of ¢, as all
cautious variants incorporating these functions consistently outperform GDM. This underscores the
robustness and effectiveness of cautious masking, as shown in Figure 3.

The tested ¢ functions are defined as follows:
¢ =1(z > 0) — cl(z <0),
(binner =]I(iUTy > 0) (13)

These results highlight that cautious masking enhances optimization stability and performance across
diverse settings.

L(w¢)
100 .
10—8 .

v 101 | = GDM

= — C-GDM

8 10—24_

'_g' — ¢c=0.01
10732 4 m— e =0.1
1040 | — ¢inner

0 20 40
Step t

Figure 3: This plot presents an ablation study evaluating the performance of various ¢ configurations. We
compare the loss curves for different ¢ choices. Across all tested configurations, the cautious GDM variants,
¢c with ¢ = 0.01,0.1, and @inner as defined in (13), consistently outperform standard GDM with optimal
hyper-parameter configration (Goh,).

20

Under review as a conference paper at ICLR 2026

A.6 PESUDO CODE

See Algorithm 3 for the Cautious variant of the Lion optimizer.

Algorithm 3 C-Lion Optimizer

Require: learning rate ¢, momentum coefficient 51, 32 € [0, 1), weight decay factor
1: Initialize parameter vector w;
2: Initializet =0, mg =0
3: while w; not converged do

4: t+—t+1

50 g+ Vli(wi_q) {Get gradients at timestep ¢}
6: ug < sign(Brmi—1 + (1 —F1) - gt) {get the signed update}
7o omy 4 PBomy—1 + (1= B2) - g {update momentum}
8: ¢+ I(upog, >0) /I Compute alignment mask
9: & =¢ W // Scale Ir, d is dimension of ¢

10: wg wi_1 — E,Pouy /I Masked update
11: w; + wy — eywy {Weight decay}
12: end while

B CAUTIOUS MASK STUDY

Figure 4 shows the ratio of active dimensions r; = nnz(vuy o vg, > 0)/dim(vuy o Ug,) across
the training iteration £ on LLaMA 100M. It see that it decreases from 1 and stabilizes around 0.55.
This suggests that the scaling factor generally lies within the range [1, 1.55]. The stable ratio does not
change significantly across different models.

Figure 4: The sparsity
.75 . _ mnz(x>0)
075 — mtey rat19 r(x) = ~gin(x)
during pretraining of
LLaMA 100M on the
0.65 C4 dataset using the

C-AdamW optimizer.

060 The ratio quantifies
the proportion of
%7 nonzero elements in

: ; w — the representations
0 500 1000 1500 r
Steps over training steps.

Ratio

C ADDITIONAL DETAILS ON LLM SCALING

The training sequence length is set to be 4096 and we perform coordinate-descent over discrete grids
for all optimizer hyperparameters (Ir, weight decay, warmup, (31, 52, €, max-grad-norm, batch size).
The following tables 5, 6 show the optimal set of parameters for each scale.

D ADDITIONAL DETAILS ON MINI-IMAGENET

Here you can find the hyperparameter search of the Mini-ImageNet experiments. The findings are
consistent with our LLM experiments.

21

Under review as a conference paper at ICLR 2026

AdamW C-AdamW
130M 300M 520M 1.2B 130M 300M 520M 1.2B

Learning rate (Ir) 0.008 0.008 0.004 0.002 0.008 0.008 0.008 0.006
Weight decay (wd) 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1

Hyperparameter

Warmup steps 2000 2000 1000 1000 2000 2000 2000 2000
B 0.9 0.9 0.9 0.9 095 098 098 0.8
B2 098 098 098 098 098 098 098 098
€ le-20 1le-10 1le-10 1e-05 1le-15 le-25 1e-25 le-16
Max-grad-norm 1 1 1 2 1 2 1 1
Batch size 128 128 256 256 128 128 256 256

Table 5: Optimal hyperparameters (from coordinate-descent over discrete grids) for AdamW and C-AdamW
across model scales.

Hyperparameter Range

Learning rate (Ir) {0.001, 0.002, 0.004, 0.006, 0.008, 0.010, 0.012, 0.014, 0.016, 0.018, 0.020}
Weight decay (wd) {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}

Warmup steps {500, 1000, 2000, 4000, 6000}

b1 {0.85, 0.90, 0.92, 0.95, 0.98, 0.99}

B2 {0.96, 0.98, 0.99, 0.995, 0.9995}

€ {1e-30, 1e-25, 1e-20, le-15, 1e-10, le-5}

Max-grad-norm {05,1,2,4}

Batch size {32, 64, 128, 256, 512}

Table 6: Discrete grid for hyperparameter search

Eval Topl Comparison

== adamw, Ir=2e-04
cadamw, Ir=2e-04
== adamw, Ir=5e-04
—— cadamw, Ir=5e-04
== adamw, Ir=1e-03, clip grads
== adamw, Ir=1e-03
cadamw, Ir=1e-03
—— cadamw, Ir=1e-03, clip grads

60

50

Eval Topl
IN
S

@
S

20

0 25 50 75 100 125 150 175 200
Epoch

Figure 5: AdamW/C-AdamW learning rate search on Mini-ImageNet

22

Under review as a conference paper at ICLR 2026

1188
1189
1190
1191
1192
1193
1194
1195
1196 60
1197
1198 50
1199
1200
1201
1202
1203
1204
1205 ©
1206
1207 0

0 25 50 75 100 125 150 175 200
1208 Epoch
1209
1210 Figure 6: LaProp/C-LaProp learning rate search on Mini-ImageNet
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220 Eval Top1 Comparison

Eval Topl Comparison

== laprop, Ir=2e-04
—— claprop, Ir=2e-04
== laprop, Ir=5e-04
—— claprop, Ir=5e-04
== laprop, Ir=1e-03
~—— claprop, Ir=1e-03
== laprop, Ir=2e-03
- claprop, Ir=2e-03

70

Eval Topl
B
S

@
S

20

1221 - — = mars, I=5e-04

—— cmars, Ir=5e-04
1222 i == mars, Ir=1e-03
1223

—— cmars, Ir=1e-03
60
1224

~ = mars, Ir=2e-03
= cmars, Ir=2e-03
1225
1226
1227
1228
1229 "
1230
1231 20
1232
1233 10
1234
1 235 0 25 50 75 100 125 150 175 200
Epoch
1236
1237 Figure 7: MARS/C-MARS learning rate search on Mini-ImageNet
1238
1239
1240
1241

Eval Topl
B
S

23

Under review as a conference paper at ICLR 2026

final_eval_loss

— adamw_lr_0.01_linear_decay v
2.935
2.93
2.925
2.92
2.915
Step
150k 160k 170k 180k 190k 200k
Figure 8: This experiment follows the same setup as the previous 100M Llama experiment in 1
E ADDITIONAL EXPERIMENTS
E.1 LEARNING RATE SCHEDULER ABLATION
We notice a concurrent work (,) suggests that reducing learning rate straight to

zero with linear decay is beneficial. To preliminarily validate the robustness of cautious optimizer,
we took the 100M model setup in our LLM pretraining experiment and swap in the new scheduler.
We found cautious optimizers stably outperform baselines.

E.2 BATCH SI1ZE ABLATION ON 60M

We take the 60M parameter model and perform a sweep on Batch Sizes and train for 1.2 billion
tokens (1 x Chinchilla) on C4 and we are reporting perplexity (lower the better).

Batch Size (tokens) 24K 120K 600K

AdamW 38,5 372 417
C-AdamW 372 362 40.6

Table 7: Perplexity of AdamW vs. C-AdamW across different batch sizes.

E.3 MUON (,)

We tested a preliminary version of C-Muon (Fig 9) and found that results encouraging as follows.
Although at the time of submission we are not able to verify it at larger scale, it could potentially be a
very interesting future direction.

E.4 POST-TRAINING LLM

To further test cautious optimizers in language modeling tasks, we perform two post-training experi-
ments. First, we instruction-tune Qwen2.5-1.5B-Instruct (,) on the PowerInfer/QWQ-
LONGCOT-500K (.), a dataset focusing on enhancing the model’s reasoning abil-
ities by data distilled from QwQ-32B-Preview (,). Then we follow the experiment
setting in (s) to perform RLHF alignment with PPO (R) on
EleutherAl/pythia-1b-deduped.

24

Under review as a conference paper at ICLR 2026

final_eval_loss
= muon_lIr_0.001

0

2.96
2.958
2.956
2.954

2.952

Ste
2.95 &

150k 160k 170k 180k 190k 200k

Figure 9: Following the same 100M model training setup in 1, we also preliminarily test the latest popular
optimizer Muon () and find cautious improves upon the baseline.

Observation: In both experiments, we find under same training steps and PPO episodes, cautious
optimizers obtain lower training loss as well as higher rewards. This indicates potential of our
proposed method beyond pretraining tasks.

Figure 10: (a) shows training loss

o757 @ '“St'”“ti_"";::iv:‘g . (PIRAFWIRPPO. o the task of instruction finetuing
goaml | caemu | e Qwen2.5-1.5B-instruct on the dis-
0500 | S tilled dataset from QwQ for S00K
= & Y . .
AN Nl — o Question and answer pairs. (b)

0425 il s shows RLHF reward with PPO for

0 20k 40k 60k 80k 100k 0 200k 400k 600k 800k M] mjllion episodes In both cases,
Training Steps Training Episodes M =
C-AdamW outperforms AdamW.

E.5 PRETRAINING MASKED AUTOENCODERS (MAES)

Masked Autoencoders (MAEs) (,) have emerged as a powerful approach for pretraining
Vision Transformers (ViTs) (,) on large-scale datasets like ImageNet-1K (

,). This task involves reconstructing 75% of randomly masked image patches, a
challenging objective that requires extensive training over hundreds of epochs and millions of images.
The primary goal is to learn robust visual representations that are generalizable across downstream
vision tasks. The quality of these representations is typically measured by the final evaluation loss,
which reflects how accurately the model reconstructs masked test images; lower evaluation loss
indicates higher-quality representations. The results of our experiments are summarized in Figure 11,
where we compare the performance of the cautious optimizer against the AdamW baseline.

Adamw Figure 11: Evaluation

T CAemW oss of pretrained MAEs
g 06 on ImageNet1K on ViT
jg 0.60 backbone for 50 epochs,

using AdamW and C-
AdamW. Hyperparame-
030 ters can be found in Ta-

2000 4000 6000 8000
Global Step ble 8.

Observation: From figure 11, we observe that the cautious optimizer achieves lower evaluation
loss faster compared to AdamW. This result highlights the effectiveness of the cautious approach

25

Under review as a conference paper at ICLR 2026

Params | [Ba Learning rate | weight decay | Batch Size
110 M 0.9 | 0.999 1.5x107% 0.05 4096

Table 8: Hyperparameters for MAE experiment. This experiment follows the optimal setup provided in

(2022)

in improving the precision of reconstruction and, consequently, the quality of the learned visual
representations.

F MISCELLANEOUS

The masking and scaling would incur some additional costs. However, in practice we observe that
the impact is minimum to overall throughput in the Distributed Data Parallel setting. For our 100M
model runs on 16 GPUs, AdamW has token throughput of 579383 token/s, whereas C-AdamW has
551483 tokens/s, which is around 3% difference in training throughput. Note that this is comparing
our naive cautious implementation against the fused pytorch implementation.

As for other distributed training setting, such as tensor parallel, masking operation is element-wise
hence not communication-bound, whereas scaling would require global statistics. However, the
communication is also minimum, since only a single floating-point number (the local mean) needs
to be all-gathered by other workers. Given modern GPU bandwidth, this should incur only minor
overhead.

Table 9: Training efficiency comparison between AdamW and C-AdamW.

Method Wall-Clock (h) Throughput (token/s)

AdamW 10.547 571,839.76
C-AdamW 10.567 560,488.63

26

	Introduction
	Theory
	Hamiltonian+Descent
	Cautious Dynamics
	Discrete-Time Analysis

	Experiments
	2D Optimization Toy
	Pretraining Large Language Models (LLMs)
	Image Classification

	Related Work
	Conclusion
	Appendix
	Hamiltonian of Common Optimizers
	Cautious Dynamics
	Examples of Cautious Dynamics
	Cautious Adam
	Cautious Signed (Polyak) Momentum
	Cautious Lion

	Discrete time Analysis
	Inner Product Masks
	Pesudo Code

	Cautious Mask Study
	Additional Details on LLM Scaling
	Additional Details on Mini-ImageNet
	Additional Experiments
	Learning Rate Scheduler Ablation
	Batch Size Ablation on 60M
	Muon jordan2024muon
	Post-training LLM
	Pretraining Masked Autoencoders (MAEs)

	Miscellaneous

