
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAUTIOUS OPTIMIZERS: IMPROVING TRAINING WITH
ONE LINE OF CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

AdamW has been the default optimizer for transformer pretraining. For many years,
our community searched for faster and more stable optimizers with only constrained
positive outcomes. In this work, we propose a one-line modification in Pytorch
to any momentum-based optimizer, which we rename cautious optimizer, e.g. C-
AdamW and C-Lion. Our theoretical result shows that this modification preserves
Adam’s Hamiltonian function and it does not break the convergence guarantee
under the Lyapunov analysis. In addition, a whole new family of optimizers is
revealed by our theoretical insight. Among them, we pick the simplest one for
empirical experiments, showing not only consistent speed-up on LLM pretraining,
but also image classification, with minimum extra tuning on hyperparameters.

1 INTRODUCTION

Algorithm 1 Caution an Optimizer (OPT) in PyTorch
param p, update u from OPT, grad g
m = (u * g > 0).to(g.dtype)
p.add (u * m/(m.mean()+eps), alpha=-lr)

Optimization is an important and constantly evolving field in modern machine learning. Undoubtedly,
Adam (Kingma, 2014) and AdamW (Loshchilov, 2017) are the most consequential optimizers
proposed almost a decade ago. Since then, many efforts (Zhang et al., 2021; Loshchilov et al., 2017)
have been made to discover better and faster optimizers beyond these two. However, until now,
AdamW remains the dominant workhorse for applications, from pre-training Large Language Models
(LLMs) (Touvron et al., 2023) to fine-tuning text to image diffusion (Rombach et al., 2022), with no
real challenges to their ruling status.

In the dawn of the era of LLMs, the arms race of model scaling intensifies (Achiam et al., 2023).
A faster optimizer means more training tokens can be consumed within the same amount of time.
Ultimately, this leads to more capable models (Kaplan et al., 2020). Hence, the interest in searching
for an optimizer beyond AdamW is re-kindled. Recent progress in new AdamW alternatives such
as Lion (Chen et al., 2024; 2023a), SHAMPOO (Gupta et al., 2018), SOAP (Vyas et al., 2024),
ADOPT (Taniguchi et al., 2024), and Schedule-Free (Defazio et al., 2024), all claim substantial
improvement over AdamW.

However, these methods normally requires non-trivial efforts to obtain optimal results, especially
hyperparameter tuning, which greatly limits their potential and wide adoption. In light of this
dilemma, we propose cautious optimizers, an exceptionally simple performance booster of any
momentum-based optimizer that only requires one line of modification (see Algorithm 1). The
change is simple: do not update unless the proposed update direction and the current gradients are
aligned. With this minor change, we obtain consistent improvement over the base optimizer without
modification of the original optimal hyperparameters.

To provide an overview of the idea, let us consider a general optimizer for minimizing the loss L(w):

wt+1 ← wt − ϵtut,

where ut is the negative update direction of the parameter wt at iteration t, and ϵt > 0 is the step
size. We will assume that the update represents a generic momentum-based optimizer, including,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

for example, Polyak and Nesterov momentum, Adam, and Lion. In all these momentum-based
optimizers, ut does not necessarily align with the gradient direction gt = ∇L(wt), which can result
in a temporary increase in the loss function and slow down convergence.

Cautious optimizers avoid this issue by adding a simple mask function based on the sign consistency
of ut and gt:

wt+1 ← wt − ϵtut ◦ ϕ(ut ◦ gt),

where ◦ denotes an element-wise product, and ϕ is a map that reweights the update based on the
product ut ◦ gt. We simply take it as

ϕ(vx) = α(vx)I(vx > 0),

so that the update is zeroed out for coordinates on which the sign of ut and gt are inconsistent. Here
α(x) is a positive scaling factor, introduced to compensate the decrease of update magnitude due to
masking. A simple choice of α is

α(x) =
dim(vx)

nnz(vx > 0) + ξ
, (1)

where dim(·) and nnz(·) represent the total number of elements and the number of non-zero elements
of the input vector, respectively. Here, ξ > 0 is a positive constant, which we set to ξ = 1 by default.
See Algorithms 1 and 2 for more details.

This modification ensures the new negative update to have a non-negative inner product with the gra-
dient, and hence decreases the loss monotonically when the step size is sufficiently small. Specifically,
Taylor approximation shows

L(wt+1)− L(wt) ≈ −ϵt(ut ◦ gt)⊤ϕ(ut ◦ gt) ≤ 0.

This ensures decrease of the loss, i.e., L(wt+1) ≤ L(wt), when the step size is sufficiently small. In
comparison, typical momentum-based optimizers do not always guarantee a monotonic decrease in
loss even with infinitesimal step sizes. The nature of momentum dynamics introduces oscillations
due to inertia-like effects.

Our theoretical analysis shows that the modified algorithm converges to local optima under mild
conditions on the base optimizers. An interesting aspect of this algorithm is that it does not get stuck
at non-stationary points of the loss, even if ut can be temporarily completely conflicting with gt
and is therefore entirely masked out. This is because, in typical momentum methods, the update
direction ut continues to accumulate the gradients and will eventually be updated to have a positive
inner product with gt if it is stuck at a non-stationary point.

Our theoretical analysis encompasses both continuous-time and discrete-time cases. In the continuous-
time setting, our theory shows that the modified algorithm guarantees convergence to local optima
for optimizers that admit a Hamiltonian+Descent structure (Chen et al., 2023a; Liang et al., 2024),
which broadly includes almost all existing popular algorithms, such as Adam, Lion, heavy ball, and
Nesterov momentum. For these algorithms, we demonstrate that the cautious optimizers, with ϕ
satisfying xϕ(x) ≥ max(x, 0), retains the monotonic decreasing properties of the original Lyapunov
(or Hamiltonian) functions of these algorithms while additionally minimizing the loss function. In
the discrete-time setting, we analyze the behavior of various variants of mask functions and establish
general conditions under which updates from cautious optimizers yield larger local descents compared
to their base optimizers.

To summarize our contributions, we present the following:

• We propose Cautious Optimizers, a simple performance booster for any momentum-based
optimizer, implemented with just a single line of code.

• We theoretically demonstrate that cautious optimizers preserve the convergence guarantees
of the base optimizer while also accelerating the decrease of the loss function.

• We show consistent improvements across various tasks, from pretraining LLM to image
classification.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 2 Cautious AdamW (C-AdamW)

Require: parameter w, step sizes {ϵt}, dampening factors β1, β2 ∈ [0, 1), e > 0, weight decay
γ ≥ 0.

1: Initialize t = 0, and m0,v0.
2: while wt not converged do
3: t← t+ 1
4: gt ← ∇wLt(wt−1)
5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)g

2
t

7: m̂t ←mt/(1− βt
1)

8: v̂t ← vt/(1− βt
2)

9: ut ← m̂t/(
√
v̂t + e)

10: ϕt ← I(ut ◦ gt > 0) // Compute alignment mask
11: ϵt = ϵt

d
∥ϕt∥0+1 // Scale lr, d is dimension of ϕt

12: wt ← wt−1 − ϵtϕt◦ut // Masked update
13: wt ← wt − ϵtγwt // Add weight decay
14: end while

2 THEORY

We start with introducing a general Hamiltonian descent framework for the continuous-time forms
of general momentum algorithms (Section 2.1). We then introduce the cautious optimizers in the
continuous time form and discuss its theoretical properties (Section 2.2). Finally, we discuss in
Section 2.3 theoretical properties of cautious optimizers in discrete time forms.

2.1 HAMILTONIAN+DESCENT

In the continuous-time form, most momentum-based algorithms can be viewed as variants of the
damped Hamiltonian system, which admit a Lyapunov (or Hamiltonian) function that certifies their
convergence towards the stationary points.

The Lyapunov function is typically an augmented loss function H(w, s) defined over both the
weights w and an optimization state vector s (which includes the momentum). It must satisfy
minsH(w, s) = L(w), so that minimizing L(w) is equivalent to minimizing H(w, s). This is
typically achieved using a separable Hamiltonian of the form

H(w, s) = L(w) +K(s),
where K(·) is any lower-bounded function. Consulting physical intuitions, we can think ofH as the
total energy of a system parameterized by (w, s), with L and K representing the potential energy
and kinetic energy, respectively.

The continuous-time form of common momentum-based algorithms can be unified into:

d

dt
wt = −∇K(st)− Φt(∇L(wt))

d

dt
st = ∇L(wt)−Ψt(∇K(st)),

(2)

where Φt(·) and Ψt(·) are monotonic mappings satisfying

∥x∥2Φt
:= ⟨x,Φt(x)⟩ ≥ 0, ∥x∥2Ψt

:= ⟨x,Ψt(x)⟩ ≥ 0,

for any x. With Φ(x) = Ψ(x) = 0, the system in (2) reduces to the standard Hamiltonian system,
which preservesH(wt, st) = const along the trajectory. When the descending components Φt and
Ψt are added, the system ensures thatH(w, s) becomes monotonically non-decreasing:

d

dt
H(wt, st) = −∆H(vwt,vst) ≤ 0, (3)

where ∆H(vwt,vst) := ∥∇L(wt)∥2Φt
+ ∥∇K(st)∥2Ψt

.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

On the other hand, L(w), which is the true objective, is not necessarily decreasing monotonically.
There can be cases where L(w) increases temporarily in exchange for a large decrease in the kinetic
energy K(s), while still ensuring a decrease in the total energyH = L+K. Specifically,

d

dt
L(wt) = −∆L(wt, st), (4)

∆L(wt, st) := ∇L(wt)
⊤∇K(st) + ∥∇L(wt)∥2Φt

.

Here, ∆L(wt, st) may be negative due to the cross term.

See Appendix for the Hamiltonian of common optimizers including Adam (Kingma, 2014) and
Lion-K (Chen et al., 2023b;a).

2.2 CAUTIOUS DYNAMICS

Our idea is to change the dynamics to make it simultaneously decrease bothH(w, s) and L(w). We
do this with a modified system:

xt = ∇L(wt) ◦ ∇K(st)
d

dt
wt = −ϕ(xt) ◦ ∇K(st)− Φt(∇L(wt))

d

dt
st = ∇L(wt)−Ψt(∇K(st)),

(5)

where ◦ denotes the element-wise product and ϕ is a vector to vector mapping. Here we weigh each
element of the update direction∇K(st) based on the product of∇K(s) with the gradient∇L(w).
Note that we do not need to apply a mask on the Φt(∇L(wt) term since it is always non-increasing
by definition of Φt.

The following conditions on the choice of function ϕ ensure that the system decreases bothH and L
simultaneously.

Theorem 2.1. Following the dynamics in (5) in Rd, we have

d

dt
H(wt, st) = (x⊤

t (1− ϕ(xt))−∆Ht(wt, st),

d

dt
L(wt) = −x⊤

t ϕ(xt)− ∥∇L(wt)∥2Φt

= (x⊤
t (1− ϕ(xt))−∆Lt

(wt, st),

Here, ∆Ht
(wt, st) and ∆Lt

(wt, st), as defined in (3) and (4), respectively, represent the decreasing
rates ofH and L in accordance with the original system (2). Hence:

• If x⊤(1−ϕ(x)) ≤ 0 for any x ∈ Rd, then bothH and L decreases faster than the original system:

d

dt
H(wt, st) ≤ −∆Ht(wt, st) ≤ 0,

d

dt
L(wt) ≤ −∆Lt(wt, st).

• If x⊤ϕ(x) ≥ 0 for any x ∈ Rd, then L decreases monotonically, d
dtL(wt) ≤ 0.

One sufficient condition for ϕ to satisfy both conditions in Theorem 2.1 is to enforce the following
element-wise constraint:

ϕ(vx)i ≥ 1 if xi > 0, and ϕ(vx)i ≤ 0 if xi < 0, (6)

where ϕ(vx)i denotes the i-th element of ϕ(vx). Under this condition, both H and L decrease
monotonically following the cautious dynamics, at a rate faster than the original systems. In particular,
the default choice ϕ(vx) = α(vx)I(vx ≥ 0) with α(vx) ≥ 1 satisfies the conditions above.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Convergence to Stationary Points In addition to monotonically decreasing the loss function, we
want to ensure that the algorithm does not get stuck unless the solution reaches a stationary point,
which in practice is typically a local optimum, of the loss function. The following result demonstrates
that this property holds under the same conditions as the original Hamiltonian descent system.
Corollary 2.2. Assume that the norm ∥ · ∥2Ψ is positive definite, Ψ(0) = 0, and that H(w, s) =
L(w) +K(s) is differentiable. Then, the bounded solutions of the original system (2) converge to a
stationary point of H(w, s). Similarly, the bounded solutions of (5) also converge to a stationary
point ofH(w, s).

2.3 DISCRETE-TIME ANALYSIS

We analyze the discrete time case, demonstrating that each step of cautious optimizers are at least as
good as the step of the original optimizers under mild conditions.

We will consider a generic update of form

wk+1 = wk − ϵkuk(wk, sk),

sk+1 = sk + vk(wk, sk),
(7)

where uk,vk are vector fields that define the updates, and ϵk is the step size. We write the cautious
variants as

wk+1 = wk − ϵkuk ◦ vϕk, uk = uk(wk, sk)

sk+1 = sk + vk(wk, sk),
(8)

where vϕk is a mask vector determined by the algorithm, vϕk = α(uk ◦ vgk)I(uk ◦ vgk > 0),
where vgk = ∇L(wk).

The follow is a comparison result showing that each step of the cautious optimizer yields larger loss
decrease than the original optimizer under mild conditions.
Theorem 2.3. Consider (7) and (8) with a µ-smooth loss function L(·). Assume the element-wise
operator ϕ satisfies

∆(vx) := −vx⊤(1− ϕ(vx)) ≥ 0.

Starting from (wt, st) = (wt, st), we have

L(wt+1) ≤ L(wt+1),

which holds for step size ϵt ≤ 2∆(vut◦vgt)
µ∥vrt∥(2·∥ut∥+∥vrt∥) , where vrt = ut◦(1−vϕt) and vgt = ∇L(wt).

This result works only for a range of step sizes due to the need of Taylor approximation. In
Appendix A.5, we show a case when the comparison holds for all step sizes when using a different
mask function based on inner products and when L is convex. The following is another result showing
that when imposing more restrictive conditions on the mask to the step size that ensure that the
cautious optimizer is guaranteed to decrease loss at each step.
Theorem 2.4. Consider updates (7) and (8). Assuming L(·) is µ-smooth, and consider the following
mask function:

vϕk = αkI
(
∇L(wk) ◦ vuk ≥

µσ

2
vuk ◦ vuk

)
,

where {αk} is any sequence and σ ≥ ϵkαk. Starting from (wt, st) = (wt, st), we have

L(wk+1) ≤ L(wk).

The results above demonstrate that cautious optimizers reduce the loss more efficiently than the
original optimizers at each single step. A natural question is whether these comparison results
can be extended to multiple steps. This, however, becomes challenging because, after the first
step, the two optimizers explore different regions of the loss landscape, making it easy to construct
counterexamples where one method outperforms the other. This is consistent with the no free lunch
theorems, which state that no single optimizer can dominate another across all possible loss functions
(Wolpert & Macready, 1997). Nevertheless, it is reasonable to expect that the advantage observed in
a single step would naturally extend to multiple steps for the practical loss functions encountered in
deep learning, as evidenced by the experiments presented.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

b)a) c) d)

Figure 1: We compare gradient descent with Polyak momentum (GDM) and its element-wise cautious variant
(C-GDM), using gradient descent (GD) as a baseline. The step size for GD and the hyperparameters of GDM
(including step size and momentum coefficients) are chosen to achieve the optimal convergence rates, which can
be analytically derived (see, e.g., Goh (2017)). For cautious optimizers, step sizes ϵ and momentum coefficients
β are empirically tuned, as shown in Figure 2. Detailed experimental settings are described in Section 3.1. In
Plot (a), we visualize the optimization trajectories of the three methods, starting from the initial point (1, 1) with
zero-initialized momentum. Notably, C-GDM converges to the optimum with significantly reduced overshooting
and oscillation, Plot (b) zooms in on the trajectories from Plot (a), focusing on a smaller region (0.02× 0.02)
for enhanced clarity. Furthermore, Plots (c) and (d) show that C-GDM consistently and monotonically decreases
both the objective and the Hamiltonian associated with the original GDM, highlighting its superior performance
in minimizing these metrics compared to GDM.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0
GDM

Min Conv Rate: 3.32e-01

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0
C-GDM

Min Conv Rate: 2.94e-01

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0 c = 0.01
Min Conv Rate: 2.91e-01

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0 c = 0.1
Min Conv Rate: 2.86e-01

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0 inner
Min Conv Rate: 3.22e-01

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2: Convergence rate heatmaps for the objective function with condition number κ = 4 (same setup
as in 1). The heatmaps illustrate convergence rates, where values greater than 1 indicate divergence for the
corresponding (ϵ, β) configuration. Smaller convergence rates correspond to faster convergence. From left
to right, we show heatmaps for ϕc with c = 0.01, 0.1 and ϕinner as shown in (13). Note that ϕ0 represents a
constant function, reducing to gradient descent with momentum (GDM), whose optimal convergence rate is
given in closed form (Goh, 2017). From the heatmaps, it is clear that all cautious momentum variantsϕc with
c = 0.01, 0.1 and ϕinner demonstrate superior convergence rates compared to GDM.

3 EXPERIMENTS

In this section, we evaluate the performance of cautious optimizers compared to their standard
counterparts, highlighting the benefits introduced by the cautious masking mechanism. We begin
with a 2D toy experiment to provide a visual demonstration of how cautious masking improves
optimization. Subsequently, we extend the evaluation to large-scale pretraining tasks for both
language and vision models, comparing the performance of standard optimizers and their cautious
variants.

3.1 2D OPTIMIZATION TOY

We consider a 2D optimization problem with objective L(w) = κ(w1)
2 + (w2)

2, where w =
(w1, w2) ∈ R2 is the parameter. Obviously, the optimum is at w∗ = (0, 0). We set κ = 4 in our
experiments. We apply gradient descent (GD), gradient descent with Polyak momentum (GDM), and
cautious gradient descent with momentum (C-GDM) on this toy example, starting from w0 = (1, 1).
Specifically, for GDM, we adopt the conventional momentum update:

st ← βst−1 +∇L(wt), wt ← wt−1 − ϵst,

where β ∈ [0, 1) and ϵ is the learning rate.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Observation: On the right of Figure 1, we compare GDM and C-GDM with the same hyperparam-
eters (ϵ, β). We ablate over different combinations of (β, ϵ) ∈ {(0.01, 0.5), (0.01, 0.9), (0.01, 0.99),
(0.01, 0.999), (0.1, 0.99), (0.001, 0.99)}. Across all settings, C-GDM outperforms GDM, confirming
the importance of cautious masking. Given the same (ϵ, β), cautious is always not worse than mo-
mentum, and often it gives significant improvement, especially when the choice (ϵ, β) is suboptimal
for momentum, meaning that cautious masking makes it more robust. From the left of Figure 1, one
can see that GDM, due to the momentum, has fluctuating L(wt), while C-GDM ensures that L(wt)
monotonically decreases. In addition, C-GDM achieves a faster drop in terms of GDM’s Hamiltonian.

In Figure 1, we compare GDM and C-GDM, each using their optimal (ϵ, β). For GDM, the optimal
values are derived theoretically (e.g., (Goh, 2017)), while for C-GDM, they are obtained through
a grid search. Despite using the optimal configuration, GDM exhibits significant overshooting,
oscillations, and slower loss convergence. In contrast, C-GDM achieves smoother trajectories,
reduced overshooting, and faster convergence, demonstrating its superior stability and efficiency.

We estimate an algorithm’s convergence rate as the slope of logL(wt) over time via linear regression
and plot heatmaps over (ϵ, β)-space, where ϵ and β are the learning rate and momentum. Figure 2
shows that cautious methods achieve lower optimal convergence rates compared to the momentum
method (

√
κ−1√
κ+1

, red dot). The heatmaps highlight that all cautious momentum variants outperform
GDM in convergence rates.

3.2 PRETRAINING LARGE LANGUAGE MODELS (LLMS)

We begin by investigating the language modeling task using a 100M LLaMA (Touvron et al., 2023)
model as the foundational architecture. The models are trained on the C4 (Colossal Clean Crawled
Corpus) dataset (Raffel et al., 2020), a large-scale web-crawled text corpus containing billions of
tokens. We provide results from the following settings: we take a 100M model and train it with batch
size up to 2 million tokens for 50 billion tokens (25× Chinchilla Optimal). For optimization, we
employ AdamW (Loshchilov, 2017) and Lion (Chen et al., 2023c), two popular optimizers in modern
language modeling, as baselines. These are compared with their cautious counterparts, which we
term Cautious AdamW (C-AdamW) and Cautious Lion (C-Lion).

lr 1e-4 3e-4 1e-3 3e-3 1e-2 2e-2 3e-2 1e-1

AdamW 85.050 24.384 19.249 19.007 18.965 19.609 ** **
C-AdamW – – 19.065 18.771 18.684 18.821 – –

lr 3e-5 1e-4 3e-4 6e-4 1e-3 1e-2

Lion ** 28.250 21.401 21.937 ** **
C-Lion – 21.354 19.795 20.403 20.977 **

Table 1: We report final evaluation perplex, the lower the better. ”**” are runs that did not converge due to
either too large or too small learning rates. ”–” stands for runs we skip due to lack of baseline comparison.
Each model is trained with batch size up to 2 million tokens for 50 billion tokens in total (25 × Chinchilla
Optimal(Hoffmann et al., 2022)). We use β1 = 0.9, β2 = 0.95 and weight decay 0.1 on AdamW; Sequence
lengths of all models are 1024. For Lion experiments, we follow the recommendation from the (Chen et al.,
2023a) and use β1 = 0.95 and β2 = 0.98. For scheduler, we use CosineAnnealing with warmup and the
learning rate is decayed to 10% of the initial learning rate. Gradient accumulation is set to 8 to increase the
global batch size.

Observation: As shown in Table 1, Cautious Optimizers demonstrate consistent improvements in
both evaluation perplexity and sample efficiency. Table 1 shows the cautious modification is robust
across learning rates and Cautious doesn’t change the optimality of hyperparameter search done
on the base optimizers. Surprisingly, Cautious can also tolerate a higher learning rate in the Lion
experiments and achieve stable training even when the baseline diverges.

To further confirm our finding, we also include a scaling experiment with C-AdamW on FineWeb-Edu
(Penedo et al., 2024), a more recent and higher quality web-scale text dataset. After rigorous and
thorough hyperparameter search, we found that C-AdamW is consistently outperforming baseline
AdamW. In table 2, we report optimal results for each scale.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Perplexity comparison between AdamW and C-AdamW across different model scales at 1× Chinchilla
(Hoffmann et al., 2022), hyperparameters are extensively searched with coordinate descent over a discrete grid.
Details can be found in appendix C

Scale AdamW C-AdamW Improvement (%)
130M 27.39 27.30 0.33
300M 18.30 18.28 0.10
520M 15.07 14.92 1.00
1.2B 11.36 11.32 0.32

Furthermore, we perform downstream evaluation on the produced 1.2B checkpoints with 1× Chin-
chilla (20× tpp) on 7 downstream tasks, where the checkpoint trained by catuious optimizer wins in
5 of them (MMLU, OpenBookQA, Arc Easy as well as HellaSwag and Arc Challenge).

Task / Group Metric AdamW C-AdamW

Arc Easy (Clark et al., 2018) acc 0.6082 ± 0.0100 0.6090 ± 0.0100
Arc Challenge (Clark et al., 2018) acc norm 0.2875 ± 0.0132 0.2978 ± 0.0134
Hellaswag (Zellers et al., 2019) acc norm 0.4169 ± 0.0049 0.4193 ± 0.0049
Lambada OpenAI (Radford et al., 2019) acc 0.3311 ± 0.0066 0.3229 ± 0.0065
OpenBookQA (Mihaylov et al., 2018) acc 0.2340 ± 0.0190 0.2360 ± 0.0190
PIQA (Bisk et al., 2020) acc norm 0.6774 ± 0.0109 0.6768 ± 0.0109

MMLU (Hendrycks et al., 2021) acc 0.2529 ± 0.0037 0.2535 ± 0.0037

Table 3: Comparison of benchmark results between C-AdamW and AdamW across multiple tasks and MMLU
groups. All evaluations are done with LM Eval-Harness(Gao et al., 2024). Bold indicates the better score.

3.3 IMAGE CLASSIFICATION

We also include a classic classification task on Mini-ImageNet on ViT (Dosovitskiy, 2020) with
two additional optimizers MARS (Yuan et al., 2024) and LaProp (Ziyin et al., 2020), both are
momentum-based optimizers and their cautious variants perform consistently better as shown in the
table 4.

Method Eval Top1

C-AdamW 73.52
AdamW 72.11
C-LaProp 73.92
LaProp (Ziyin et al., 2020) 71.73
C-MARS 74.91
MARS (Yuan et al., 2024) 74.06

Table 4: Top-1 evaluation accuracy on Mini-ImageNet, the higher the better. We can see that the cautious variant
is better across base optimizer options. Hyperparameters can be found in appendix D

4 RELATED WORK

We provide a brief overview of existing efforts on designing Adam-like optimizers, and the related
works on Hamiltonian dynamics.

Adam and Its Variants A plethora of Adam variants have been developed to address different
aspects of optimization challenges (Kingma, 2014; Loshchilov & Hutter, 2017). AdamW (Loshchilov
& Hutter, 2017) introduced a key improvement by decoupling weight decay from optimization steps,
restoring the original formulation of weight decay regularization. NAdam (Dozat, 2016) incorporated
Nesterov updates into Adam, while AdaBelief (Zhuang et al., 2020) refined the second momentum

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

vt to track the EMA of (gt − mt)
2, improving generalization. Adan (Xie et al., 2024) added an

extra momentum term for better training performance, albeit at the cost of additional memory usage.
More recently, ADOPT (Taniguchi et al., 2024) innovated by folding normalized updates into first-
order momentum updates. From an efficiency perspective, several approaches target memory cost
reduction. AdaFactor (Shazeer & Stern, 2018) factorizes second-order statistics into a row-column
outer product, enabling sub-linear memory usage. K-Fac (Martens & Grosse, 2015) approximates
the Fisher information matrix with a Kronecker-factored representation, supporting sublinear natural
gradient updates. Techniques like fused gradient computation (Lv et al., 2023) further minimize
memory costs.(Wang et al., 2024) is a concurrent work that focus on continuous learning setting. In
contrast to these approaches, our proposed C-AdamW introduces a single-line modification to the
widely used AdamW optimizer. This modification not only retains the simplicity and efficiency of
AdamW but also eliminates the need for hyperparameter tuning, as the default parameters of AdamW
suffice. Furthermore, while many of the aforementioned methods focus on optimizing or extending
specific aspects of the Adam algorithm, C-AdamW is more generalit seamlessly integrates with all
momentum-based optimizers, offering a general solution with minimal implementation effort.

Hamiltonian Dynamics Hamiltonian dynamics, rooted in classical mechanics, provides a pow-
erful mathematical framework for analyzing the motion of systems in continuous spaces. This
perspective has gained traction in optimization, where the introduction of Hamiltonian principles
sheds light on momentum-based algorithms (Sutskever et al., 2013; Nesterov, 1983; Nguyen et al.,
2024; Anonymous, 2024). Unlike Gradient Descent (GD), which ensures a monotonic decrease in
the objective function, momentum-based methods often follow non-monotonic trajectories, posing
unique analytical challenges (Jin et al., 2018). To address this, researchers have developed multiple
Lyapunov functions for convex settings (Krichene et al., 2015; Wilson et al., 2016), providing a
structured approach to analyze convergence. (Sutskever et al., 2013) offered a physical interpretation
of momentum in optimization, linking it to the dynamics described by Hamiltonian mechanics, and
demonstrated how these principles underpin classical methods like those of Nesterov and Polyak (Nes-
terov, 1983). Furthermore, Hamiltonian dynamics have been instrumental in deriving convergence
rates for accelerated methods (Jin et al., 2018) and, more recently, for advanced optimizers like
Lion (Chen et al., 2023a) and its distributed variant (Liu et al., 2024). In a related vein, (Maddison
et al., 2018) explored optimization methods from the perspective of continuous-time ODEs, empha-
sizing their Hamiltonian structure. Mirror Descent, a related framework, has been shown to maintain
efficiency estimates with a mild dependence on the dimensionality of decision variables, making it
particularly suitable for large-scale optimization problems (Tzen et al., 2023; Krichene et al., 2015).
These advancements highlight the versatility and depth of Hamiltonian formalism in bridging the gap
between optimization theory and practical algorithm design.

5 CONCLUSION

In summary, we introduce Cautious Optimizers, an enhancement for momentum-based optimizers
that can be implemented with a single line of code. Our theoretical analysis demonstrates that
Cautious Optimizers not only preserve the convergence guarantees of the base optimizers but also
accelerate the reduction of the loss function. Empirically, it delivers faster LLM pretraining and
better accuracy on image classification. Finally, we suggest a few promising future directions: (1)
Apply cautious optimizers to more settings such as reinforcement learning and continuous learning;
(2) masking in the eigenspace rather than the parameter space; (3) rigorous analyses of how cautious
optimizers strictly improve the convergence rate (empirically shown in 1).

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anonymous. Improving adaptive moment optimization via preconditioner diagonalization. In
Submitted to The Thirteenth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NdNuKMEv9y. under review.

9

https://openreview.net/forum?id=NdNuKMEv9y

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness. Straight
to zero: Why linearly decaying the learning rate to zero works best for llms. arXiv preprint
arXiv:2502.15938, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained optimization:
As lyapunov predicts. arXiv preprint arXiv:2310.05898, 2023a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023b.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023c.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
Ashok Cutkosky. The road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
Tunstall. The n+ implementation details of rlhf with ppo: A case study on tl; dr summarization.
arXiv preprint arXiv:2403.17031, 2024.

10

https://zenodo.org/records/12608602
http://distill.pub/2017/momentum

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference On Learning Theory, pp. 1042–1085. PMLR,
2018.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in continuous
and discrete time. Advances in neural information processing systems, 28, 2015.

Kaizhao Liang, Bo Liu, Lizhang Chen, and Qiang Liu. Memory-efficient llm training with online
subspace descent. arXiv preprint arXiv:2408.12857, 2024.

Bo Liu, Lemeng Wu, Lizhang Chen, Kaizhao Liang, Jiaxu Zhu, Chen Liang, Raghuraman Krish-
namoorthi, and Qiang Liu. Communication efficient distributed training with distributed lion.
arXiv preprint arXiv:2404.00438, 2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qi jie Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2023. URL https://api.semanticscholar.org/
CorpusID:259187846.

Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet.
Hamiltonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

James Martens and Roger Baker Grosse. Optimizing neural networks with kronecker-factored
approximate curvature. In International Conference on Machine Learning, 2015. URL https:
//api.semanticscholar.org/CorpusID:11480464.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Yurii Evgenevich Nesterov. A method for solving the convex programming problem with convergence
rate o (1/κˆ 2). In Dokl. akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Son Nguyen, Lizhang Chen, Bo Liu, and Qiang Liu. H-fac: Memory-efficient optimization with
factorized hamiltonian descent. arXiv preprint arXiv:2406.09958, 2024.

Guilherme Penedo, Hynek Kydlı́vcek,AntonLozhkov,MargaretMitchell, Colin ARaffel, LeandroV onWerra, ThomasWolf, et al.Thefinewebdatasets :
Decantingthewebforthefinesttextdataatscale.Advances in Neural Information Processing Systems, 37 :
30811−−30849, 2024.

PowerInfer. Powerinfer/qwq-longcot-500k, 2024.

Qwen. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL https:
//qwenlm.github.io/blog/qwq-32b-preview/.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://api.semanticscholar.org/CorpusID:259187846
https://api.semanticscholar.org/CorpusID:259187846
https://api.semanticscholar.org/CorpusID:11480464
https://api.semanticscholar.org/CorpusID:11480464
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam
can converge with any \beta 2 with the optimal rate. arXiv preprint arXiv:2411.02853, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Belinda Tzen, Anant Raj, Maxim Raginsky, and Francis Bach. Variational principles for mirror
descent and mirror langevin dynamics. IEEE Control Systems Letters, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Shaowen Wang, Anan Liu, Jian Xiao, Huan Liu, Yuekui Yang, Cong Xu, Qianqian Pu, Suncong
Zheng, Wei Zhang, and Jian Li. Cadam: Confidence-based optimization for online learning. arXiv
preprint arXiv:2411.19647, 2024.

Ashia C Wilson, Benjamin Recht, and Michael I Jordan. A lyapunov analysis of momentum methods
in optimization. arXiv preprint arXiv:1611.02635, 2016.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models. arXiv preprint arXiv:2411.10438, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Guoqiang Zhang, Niwa Kenta, and W Bastiaan Kleijn. Extending adamw by leveraging its second
moment and magnitude. arXiv preprint arXiv:2112.06125, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795–18806, 2020.

Liu Ziyin, Zhikang T Wang, and Masahito Ueda. Laprop: Separating momentum and adaptivity in
adam. arXiv preprint arXiv:2002.04839, 2020.

A APPENDIX

The appendix is organized into the following key components:

• Cautious Hamiltonian Descent: We provide conditions 2.1 on the choice of function ϕ
ensure that the system decreases both H and L simultaneously and Corollary 2.2 asserts
that with a positive definite norm and differentiable Hamiltonian, bounded solutions of the
discussed systems converge to a stationary point of the Hamiltonian.

• Applications to Optimizers: In section A.3, the cautious framework is applied to derive
cautious variants of popular optimizers, including Adam, Signed Momentum, and Lion,
highlighting their theoretical properties and practical advantages.

• Discrete-Time Analysis: A rigorous analysis connects the continuous-time dynamics to
discrete-time updates, providing convergence guarantees and bounds on loss reduction for
cautious optimizers.

• Pseudocode: We present the implementation details for cautious optimizers, focusing on
the cautious Lion optimizer as a representative example.

• Experimental Details: Comprehensive details on the experimental setup, hyperparameters,
and hardware configurations are provided, demonstrating the effectiveness of cautious
optimizers in accelerating convergence and improving performance on large-scale tasks
such as language modeling and masked autoencoder pretraining.

A.1 HAMILTONIAN OF COMMON OPTIMIZERS

We introduce the Hamiltonian functions of the common optimizers.
Example A.1. Adam (Kingma, 2014) yields the following continuous-time form and Hamiltonian,

d

dt
vwt = −

vmt√
vvt + e

,
d

dt
vmt = a(∇L(vwt)− vmt),

d

dt
vvt = b(∇L(vwt)

⊙2 − vvt),

with H(vw,vm,vv) = L(vw) + 1

2a
⟨ vm√

vv + e
, vma.

We can show that d
dtH(vwt,vmt,vvt) ≤ 0 when a ≥ b/4.

Example A.2. The Lion-K optimizer (Chen et al., 2023b;a) (without weight decay) can be written
into

d

dt
vwt = ∇K((1− b)vmt − b∇L(vwt)),

d

dt
vmt = −a(∇L(vwt) + vmt)

where a ≥ 0, b ∈ [0, 1] and K(vx) is any convex function that attains the minimum at vx = 0. One
of its Hamiltonians that yields the Hamiltonian+descent structure (Eq (13) in Chen et al. (Chen et al.,
2023a)) is

H(vw,vm) = aL(vw) + 1

1− b
K((1− b)vm).

See Chen et al. (2023a) for other Hamiltonian functions. Lion-K includes a large family algorithms as
special cases, including Polyka momentum, Nesterov momentum, signed momentum, mirror descent,
Frank-Wolfe, etc.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 CAUTIOUS DYNAMICS

We establish conditions in Theorem 2.1 for the function ϕ that ensure simultaneous decreases in
both H and L. Corollary 2.2 further asserts that, with a positive definite norm and differentiable
Hamiltonian, bounded solutions of the systems converge to a stationary point of the Hamiltonian.

Theorem 2.1. Following the dynamics in (5) in Rd, we have
d

dt
H(wt, st) = (x⊤

t (1− ϕ(xt))−∆Ht
(wt, st),

and
d

dt
L(wt) = −x⊤

t ϕ(xt)− ∥∇L(wt)∥2Φt

= (x⊤
t (1− ϕ(xt))−∆Lt

(wt, st),

Here, ∆Ht
(wt, st) and ∆Lt

(wt, st), as defined in (3) and (4), respectively, represent the decreasing
rates ofH and L in accordance with the original system (2). Hence:

• If x⊤(1− ϕ(x)) ≤ 0 for any x ∈ Rd, then bothH and L decreases faster than the original
system:

d

dt
H(wt, st) ≤ −∆Ht

(wt, st) ≤ 0,

d

dt
L(wt) ≤ −∆Lt(wt, st).

• If x⊤ϕ(x) ≥ 0 for any x ∈ Rd, then L decreases monotonically,

d

dt
L(wt) ≤ 0.

Proof. For simplicity, we write xt = ∇L(wt) ◦ ∇K(st).
Recall the definition of ∆Ht

(wt, st) and ∆Lt
(wt, st):

∆H(wt, st) := ∥∇L(wt)∥2Φt
+ ∥∇K(st)∥2Ψt

∆L(wt, st) := ∇L(wt)
⊤∇K(st) + ∥∇L(wt)∥2Φt

.

Following the dynamics in (5), let us see the derivation ofH w.r.t. t:
d

dt
H(wt, st)

= ∇L(wt)
⊤ẇt +∇K(st)⊤ṡt

= ∇L(wt)
⊤ (−∇K(st) ◦ ϕ(xt)− Φt(∇L(wt))) +∇K(st)⊤ (∇L(wt)−Ψt(∇K(st)))

= ∇L(wt)
⊤ (∇K(st) ◦ (1− ϕ(xt)))−∇L(wt)

⊤Φt(∇L(wt))−∇K(st)⊤Ψt(∇K(st))
= 1⊤ ((∇L(wt) ◦ ∇K(st)) ◦ (1− ϕ(∇L(wt) ◦ ∇K(st))))− ∥∇L(wt)∥2Φ − ∥∇K(st)∥

2
Ψt

= x⊤
t (1− ϕ(xt))−∆H(wt, st). (9)

Given the fact that ϕ is an element-wise operator, it is noteworthy that if x · (1 − ϕ(x)) ≤ 0,
then the first term in (9) 1⊤ ((∇L(w) ◦ ∇K(s)) ◦ (1− ϕ(∇L(w) ◦ ∇K(s)))) ≤ 0 since we see
∇L(w) ◦ ∇K(s) as x.

Next, let us look into the derivative of L(wt) w.r.t. t:

d

dt
L(wt) = ∇L(wt)

⊤ (−∇K(st) ◦ ϕ(∇L(wt) ◦ ∇K(st))− Φt(∇L(wt)))

= −∇L(wt)
⊤ (∇K(st) ◦ ϕ(∇L(wt) ◦ ∇K(st)))−∇L(wt)

⊤Φt(∇L(wt))

= −x⊤
t ϕ(xt)− ∥∇L(wt)∥2Φt

(10)

= (x⊤
t (1− ϕ(xt))−∆Lt

(wt, st). (11)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

It is evident that if x⊤ϕ(x) ≥ 0 for any x ∈ Rd, then the first term in (10), x⊤
t ϕ(xt), satisfies

x⊤
t ϕ(xt) ≥ 0. Consequently, d

dtL(wt) ≤ 0. This condition holds when x⊤ϕ(x) ≥ 0 for all
x ∈ Rd.

It is noteworthy that if x⊤(1−ϕ(x)) ≤ 0 for any x ∈ Rd, then the first term in (11), x⊤
t (1−ϕ(xt)) ≤

0, holds. Consequently, we have d
dtL(wt) ≤ −∆Lt(wt, st).

Corollary 2.2. Assume that the norm ∥ · ∥2Ψ is positive definite, Ψ(0) = 0, and that H(w, s) =
L(w) +K(s) is differentiable. Then, the bounded solutions of the original system (2) converge to
a stationary point ofH(w, s). Similarly, the bounded solutions of (5) also converge to a stationary
point ofH(w, s).

Proof. First, Let us look at system (2), we use LaSalle’s invariance principle to find the conditions
that the accumulation points (positive limit points)(w∗, s∗) satisfy:

∥∇L(w∗)∥2Φt
= ∥∇K(s∗)∥2Ψt

= 0.

By the assumption that ∥ · ∥2Ψt
is positive definite and Ψt(0) = 0, we have∇K(s∗) = 0.

For positive limit points of systems (2), if ∇L(w∗) ̸= 0, then the point (w∗, s∗) is not a positive
limit point since

ṡ∗ = ∇L(w∗)−Ψt(∇K(s∗)) = ∇L(w∗) ̸= 0.

Thus,∇L(w∗) = 0. Together with∇K(s∗) = 0, we conclude that (w∗, s∗) is a stationary point of
H(w, s).

For system (5), the proof follows the same reasoning.

A.3 EXAMPLES OF CAUTIOUS DYNAMICS

In this section, we instantiate results on Adam, Signed Momentum, and Lion, along with their
cautious variants. While the standard methods are widely used, our focus is on introducing and
analyzing the cautious versions of these algorithms to better understand their dynamics and stability.

A.3.1 CAUTIOUS ADAM

Adam: We begin by recalling the continuous-time dynamics of the Adam optimizer:

d

dt
wt = −

mt√
vt + ϵ

,

d

dt
mt = β1 · (∇L(wt)−mt),

d

dt
vt = β2 · (∇L(wt)

⊙2 − vt),

where the associated Hamiltonian is given by:

H(wt,mt,vt) = L(wt) +
1

2β1

〈
mt√
vt + ϵ

,mt

〉
. (12)

The time evolution of the Hamiltonian can be derived as:

dH(wt,mt,vt)

dt
= − β2

4β1

〈
m⊙2

t

v
3/2
t + ϵ

,∇L(wt)
⊙2

〉
−

(
1− β2

4β1

)〈
mt√
vt + ϵ

,mt

〉
.

For stability, we require dH
dt ≤ 0, which leads to β1 ≥ β2

4 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Cautious Adam: We now introduce a cautious variant of Adam. In this case, the update for wt is
modified by introducing an indicator function that enforces alignment between the gradient and the
momentum:

d

dt
wt = −

I(∇L(wt) ◦mt > 0) ◦mt√
vt + ϵ

.

The dynamics for mt and vt remain the same. It is straightforward to verify that the loss function
L(wt) serves as a Lyapunov function:

d

dt
L(wt) = −∇L(wt)

⊤ I(∇L(wt) ◦mt > 0) ◦mt√
vt + ϵ

≤ 0.

Meanwhile, by Theorem 2.1, H(wt,mt,vt) = L(wt) +
1

2β1

〈
mt√
vt+ϵ ,mt

〉
is also monotonically

decreasing. Therefore,H remains a valid Hamiltonian for Cautious Adam.

A.3.2 CAUTIOUS SIGNED (POLYAK) MOMENTUM

Signed Momentum: The update rule for Signed Momentum is:
ẇt = −sign(mt),

ṁt = ∇L(wt)−mt.

The Hamiltonian for this system is:
H(wt,mt) = L(wt) + ∥mt∥1,

with time evolution:
dH
dt

= −∥mt∥1.

Cautious Signed Momentum: The cautious variant modifies the update rule for wt by introducing
an indicator:

ẇt = −sign(mt)⊙ I(∇L(wt) ◦mt > 0).

The Lyapunov function remains the loss L(wt), with:
dL(wt)

dt
= −∥∇L(wt)⊙ I(∇L(wt) ◦mt > 0)∥1.

By Theorem 2.1, H(wt,mt) = L(wt) + ∥mt∥1 is also monotonically decreasing. Therefore, H
remains a valid Hamiltonian for Cautious Signed Momentum.

A.3.3 CAUTIOUS LION

Lion: The dynamics of Lion Chen et al. (2023a) are given by:
ṁt = α∇L(wt)− γmt,

ẇt = −sign(m̃t),

where m̃t = mt − ε(α∇L(wt) + γmt). The associated Hamiltonian is:
H(wt,mt) = αL(wt) + (1− εγ)∥mt∥1.

The time derivative is:
Ḣ(wt,mt) = −(1− εγ)∥m̃t∥1 − γ∥mt∥1.

Cautious Lion: In the cautious version, the update for wt is modified:
ẇt = −sign(m̃t)⊙ I(∇L(wt) ◦ m̃t > 0).

By Theorem 2.1, H(wt,mt) = αL(wt) + (1 − εγ)∥mt∥1 is also monotonically decreasing.
Therefore,H remains a valid Hamiltonian for Cautious Lion.

Meanwhile, the Lyapunov function remains L(wt), with:
dL(wt)

dt
= −∥∇L(wt)⊙ I(∇L(wt) ◦ m̃t > 0)∥1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 DISCRETE TIME ANALYSIS

We analyze the discrete time case, demonstrating that cautious optimizers are at least as good as the
original optimizers under mild conditions.

Theorem 2.3. Consider (7) and (8) with the loss function L(·) µ-smooth. Assume the element-wise
operator ϕ satisfies

∆(vx) := −vx⊤(1− ϕ(vx)) ≥ 0.

starting from (wt, st) = (wt, st), we have

L(wt+1) ≤ L(wt+1),

which holds for step size ϵt ≤ 2∆(vut◦vgt)
µ∥vrt∥(2·∥ut∥+∥vrt∥) , where vrt = ut◦(1−vϕt) and vgt = ∇L(wt).

Proof. First, we calculate the difference between wt+1 and wt+1, then we use µ-smooth condition
to bound the difference between L(wt+1) and L(wt+1).

wt+1 −wt+1 = −ϵt(ut ◦ vϕt − ut) = −ϵt(ut ◦ vϕt − ut) = ϵtvrt.

Let us use µ-smooth condition to bound the L difference

L(wt+1)−L(wt+1)

≤ ϵt∇L(wt+1)
⊤vrt +

µ

2
ϵ2t ∥vrt∥

2

= ϵt (∇L(wt) +∇L(wt+1)−∇L(wt))
⊤
vrt +

µ

2
ϵ2t ∥vrt∥

2

= ϵt∇L(wt)
⊤vrt + ϵt (∇L(wt+1)−∇L(wt))

⊤
vrt +

µ

2
ϵ2t ∥vrt∥

2

≤ ϵt∇L(wt)
⊤vrt + ϵt ∥∇L(wt+1)−∇L(wt)∥ ∥vrt∥+

µ

2
ϵ2t ∥vrt∥

2 //Cauchy Schwarz inequality

= ϵtvg
⊤
t vrt + ϵ2tµ ∥vut∥ ∥vrt∥+

µ

2
ϵ2t ∥vrt∥

2 //vg⊤t vrt ≤ 0.

= −ϵt∆(ut ◦ vgt) + ϵ2tµ ∥vut∥ ∥vrt∥+
µ

2
ϵ2t ∥vrt∥

2

≤ 0. //By the choice of ϵt.

Theorem A.3. Assume L(w) is µ-smooth and differentiable, and the element-wise operator ϕ
satisfies x · ϕ(x) ≥ 0 as shown in Theorem 2.1. With (wt, st) following the update in (8) with
constant step size ϵ:

ut = ut(wt, st)

wt+1 = wt − ϵut ◦ vϕt

st+1 = st + vt(wt, st).

Assume ϵ > 0, we have:

1

T

T∑
t=1

∥L(wt) ◦ ut∥ϕ ≤
L(w1)− L(w∗)

Tϵ
+

µϵ

2T
BT ,

where BT =
∑T

t=1 ∥ut∥2, w∗ = argminwL(w), and for notions, we write ∥x∥ϕ = x⊤ϕ(x),∀x .

Proof. Using the µ-smoothness of L(w), we expand L(wt+1)− L(wt):

L(wt+1)− L(wt) ≤ ∇L(wt)
⊤(wt+1 −wt) +

µ

2
∥wt+1 −wt∥2 .

Substitute wt+1 −wt = −ϵut ◦ vϕt to get:

L(wt+1)− L(wt) ≤ −ϵ · ∇L(wt)
⊤ (

ut ◦ vϕt

)
+

µϵ2

2

∥∥ut ◦ vϕt

∥∥2 .
17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Simplify using the definition of ∥·∥ϕ and ∥·∥Φt
:

∇L(wt)
⊤ (

ut ◦ vϕt

)
= ∥L(wt) ◦ ut∥ϕ ,

which gives:

L(wt+1)− L(wt) ≤ −ϵ
(
∥L(wt) ◦ ut∥ϕ

)
+

µϵ2

2
∥ut∥2 .

Summing over t = 1, . . . , T , we obtain a telescoping sum:

L(wT+1)− L(w1) ≤ −ϵ
T∑

t=1

(
∥L(wt) ◦ ut∥ϕ

)
+

µϵ2

2

T∑
t=1

∥ut∥2 .

Rearranging, dividing by Tϵ, and noting L(WT+1) ≥ L(W ∗), we get:

1

T

T∑
t=1

∥L(wt) ◦ ut∥ϕ ≤
L(w1)− L(w∗)

Tϵ
+

µϵ

2T
BT ,

where BT =
∑T

t=1 ∥ut∥2. This concludes the proof.

Theorem A.4. Consider updates (7) and (8). Assuming L(·) is µ-smooth and the scaled step size
ϵkαk ≤ σ, and consider the following mask function:

vϕk = αkI(∇L(wk) ◦ vuk ≥
µσ

2
vuk ◦ vuk),

we have

L(wk+1) ≤ L(wk).

which holds for any step size ϵk ≥ 0.

Proof. By smoothness, we have

L(wk+1)−L(wk)

≤ ∇L(wk)
⊤(wk+1 −wk) +

µ

2
∥wk+1 −wk∥22

= −ϵk∇L(wk)
⊤(vϕk ◦ uk) +

µϵ2k
2

∥∥vϕk ◦ uk

∥∥2
2

= ϵkαk

(
−∇L(wk)

⊤(I(∇L(wk) ◦ vuk ≥
µσ

2
vuk ◦ vuk) ◦ uk) +

µϵkαk

2

∥∥∥I(∇L(wk) ◦ vuk ≥
µσ

2
vuk ◦ vuk) ◦ uk

∥∥∥2
2

)
≤ ϵkαk

(
−∇L(wk)

⊤(I(∇L(wk) ◦ vuk ≥
µσ

2
vuk ◦ vuk) ◦ uk) +

µσ

2

∥∥∥I(∇L(wk) ◦ vuk ≥
µσ

2
vuk ◦ vuk) ◦ uk

∥∥∥2
2

)
≤ 0.

A.5 INNER PRODUCT MASKS

Out of theoretical interest, let us consider a case of using an inner product mask:

vϕk = I(u⊤
k vgk > 0), vgk = ∇L(wk),

which yields a scalar that applies to the entire update vector. In comparison, the element-wise mask
in the paper treats each element separately.

This case is interesting because, on convex functions, the cautious optimizers is always no worse than
the base optimizers, regardless of the step size choices.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Theorem A.5. Assume L(·) is convex, and vϕk = I(u⊤
k∇L(wk) ≥ 0). Then, starting from the

same point (wk, sk) = (wk, sk), we have

L(wk+1) ≤ L(wk+1).

which holds for any step size ϵk ≥ 0.

Proof. If u⊤
k∇L(wk) > 0, we have vϕk = 1, and wk+1 = wk+1, and L(wk+1) = L(wk+1).

If u⊤
k∇L(wk) ≤ 0, we have vϕk = 0 and wk+1 = wk. By the convexity of L, we have

L(wk+1)− L(wk+1) = L(wk − ϵuk)− L(wk)

≥ −ϵu⊤
k∇L(wk) > 0.

This proves the result.

Corollary A.6. Consider the elementary test function:

L(w) =
1

2
∥a ◦w∥22 .

where a ∈ Rd is a non-zero vector. This is commonly used as the testbed for optimization algorithms
in theoretical analysis.

Assume uk and vk are element-wise mappings. We have L(wk+1) ≤ L(wk+1) given (wk, sk) =
(wk, sk), with either the inner product mask vϕk = I(u⊤

k∇L(wk) ≥ 0), or the element-wise mask
vϕk = I(uk ◦ ∇L(wk) ≥ 0).

Proof. The inner product case is implied by Theorem A.5. For element-wise mask, since the loss
is an element-wise sum, and the update functions are element-wise mappings, which can apply
Theorem A.5 on each element.

This argument, of course, can be extended to general convex and separable loss functions of form
L(w) =

∑
i Li(wi).

Theorem A.7. Consider update (8). Assuming L(·) is µ-smooth, and consider the following mask
function:

vϕk = αkI(∇L(wk)
⊤vuk ≥

αkµϵk
2
∥vuk∥2),

where αk is a scaling factor.

We have

L(wk+1) ≤ L(wk).

which holds for any step size ϵk ≥ 0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Ablation on ϕ: To analyze the impact of cautious masking, we conduct ablation studies on different
choices of ϕ. Our results show that the performance is not sensitive to the specific choice of ϕ, as all
cautious variants incorporating these functions consistently outperform GDM. This underscores the
robustness and effectiveness of cautious masking, as shown in Figure 3.

The tested ϕ functions are defined as follows:

ϕc = I(x > 0)− cI(x ≤ 0),

ϕinner = I(x⊤y ≥ 0). (13)

These results highlight that cautious masking enhances optimization stability and performance across
diverse settings.

Figure 3: This plot presents an ablation study evaluating the performance of various ϕ configurations. We
compare the loss curves for different ϕ choices. Across all tested configurations, the cautious GDM variants,
ϕc with c = 0.01, 0.1, and ϕinner as defined in (13), consistently outperform standard GDM with optimal
hyper-parameter configration (Goh, 2017).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.6 PESUDO CODE

See Algorithm 3 for the Cautious variant of the Lion optimizer.

Algorithm 3 C-Lion Optimizer

Require: learning rate ϵ, momentum coefficient β1, β2 ∈ [0, 1), weight decay factor γ
1: Initialize parameter vector wt

2: Initialize t = 0, m0 = 0
3: while wt not converged do
4: t← t+ 1
5: gt ← ∇wLt(wt−1) {Get gradients at timestep t}
6: ut ← sign(β1mt−1 + (1− β1) · gt) {get the signed update}
7: mt ← β2mt−1 + (1− β2) · gt {update momentum}
8: ϕt ← I(ut ◦ gt ≥ 0) // Compute alignment mask
9: ϵt = ϵt

d
∥ϕt∥0+1 // Scale lr, d is dimension of ϕt

10: wt ← wt−1 − ϵtϕt◦ut // Masked update
11: wt ← wt − ϵγwt {Weight decay}
12: end while

B CAUTIOUS MASK STUDY

Figure 4 shows the ratio of active dimensions rk = nnz(vuk ◦ vgk > 0)/dim(vuk ◦ vgk) across
the training iteration k on LLaMA 100M. It see that it decreases from 1 and stabilizes around 0.55.
This suggests that the scaling factor generally lies within the range [1, 1.55]. The stable ratio does not
change significantly across different models.

0 500 1000 1500
Steps

0.55

0.60

0.65

0.70

0.75

Ra
tio

nnz(x > 0)
dim(x)

Figure 4: The sparsity
ratio r(x) = nnz(x>0)

dim(x)

during pretraining of
LLaMA 100M on the
C4 dataset using the
C-AdamW optimizer.
The ratio quantifies
the proportion of
nonzero elements in
the representations
over training steps.

C ADDITIONAL DETAILS ON LLM SCALING

The training sequence length is set to be 4096 and we perform coordinate-descent over discrete grids
for all optimizer hyperparameters (lr, weight decay, warmup, β1, β2, ϵ, max-grad-norm, batch size).
The following tables 5, 6 show the optimal set of parameters for each scale.

D ADDITIONAL DETAILS ON MINI-IMAGENET

Here you can find the hyperparameter search of the Mini-ImageNet experiments. The findings are
consistent with our LLM experiments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Hyperparameter AdamW C-AdamW

130M 300M 520M 1.2B 130M 300M 520M 1.2B

Learning rate (lr) 0.008 0.008 0.004 0.002 0.008 0.008 0.008 0.006
Weight decay (wd) 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1
Warmup steps 2000 2000 1000 1000 2000 2000 2000 2000
β1 0.9 0.9 0.9 0.9 0.95 0.98 0.98 0.98
β2 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
ϵ 1e-20 1e-10 1e-10 1e-05 1e-15 1e-25 1e-25 1e-16
Max-grad-norm 1 1 1 2 1 2 1 1
Batch size 128 128 256 256 128 128 256 256

Table 5: Optimal hyperparameters (from coordinate-descent over discrete grids) for AdamW and C-AdamW
across model scales.

Hyperparameter Range

Learning rate (lr) {0.001, 0.002, 0.004, 0.006, 0.008, 0.010, 0.012, 0.014, 0.016, 0.018, 0.020}
Weight decay (wd) {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}
Warmup steps {500, 1000, 2000, 4000, 6000}
β1 {0.85, 0.90, 0.92, 0.95, 0.98, 0.99}
β2 {0.96, 0.98, 0.99, 0.995, 0.9995}
ϵ {1e-30, 1e-25, 1e-20, 1e-15, 1e-10, 1e-5}
Max-grad-norm {0.5, 1, 2, 4}
Batch size {32, 64, 128, 256, 512}

Table 6: Discrete grid for hyperparameter search

Figure 5: AdamW/C-AdamW learning rate search on Mini-ImageNet

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 6: LaProp/C-LaProp learning rate search on Mini-ImageNet

Figure 7: MARS/C-MARS learning rate search on Mini-ImageNet

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 8: This experiment follows the same setup as the previous 100M Llama experiment in 1

E ADDITIONAL EXPERIMENTS

E.1 LEARNING RATE SCHEDULER ABLATION

We notice a concurrent work (Bergsma et al., 2025) suggests that reducing learning rate straight to
zero with linear decay is beneficial. To preliminarily validate the robustness of cautious optimizer,
we took the 100M model setup in our LLM pretraining experiment and swap in the new scheduler.
We found cautious optimizers stably outperform baselines.

E.2 BATCH SIZE ABLATION ON 60M

We take the 60M parameter model and perform a sweep on Batch Sizes and train for 1.2 billion
tokens (1× Chinchilla) on C4 and we are reporting perplexity (lower the better).

Batch Size (tokens) 24K 120K 600K
AdamW 38.5 37.2 41.7
C-AdamW 37.2 36.2 40.6

Table 7: Perplexity of AdamW vs. C-AdamW across different batch sizes.

E.3 MUON (JORDAN ET AL., 2024)

We tested a preliminary version of C-Muon (Fig 9) and found that results encouraging as follows.
Although at the time of submission we are not able to verify it at larger scale, it could potentially be a
very interesting future direction.

E.4 POST-TRAINING LLM

To further test cautious optimizers in language modeling tasks, we perform two post-training experi-
ments. First, we instruction-tune Qwen2.5-1.5B-Instruct (Yang et al., 2024) on the PowerInfer/QWQ-
LONGCOT-500K (PowerInfer, 2024), a dataset focusing on enhancing the model’s reasoning abil-
ities by data distilled from QwQ-32B-Preview (Qwen, 2024). Then we follow the experiment
setting in (Huang et al., 2024) to perform RLHF alignment with PPO (Schulman et al., 2017) on
EleutherAI/pythia-1b-deduped.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 9: Following the same 100M model training setup in 1, we also preliminarily test the latest popular
optimizer Muon Jordan et al. (2024) and find cautious improves upon the baseline.

Observation: In both experiments, we find under same training steps and PPO episodes, cautious
optimizers obtain lower training loss as well as higher rewards. This indicates potential of our
proposed method beyond pretraining tasks.

0 20k 40k 60k 80k 100k
Training Steps

0.425
0.450
0.475
0.500
0.525
0.550
0.575

Tr
ai

ni
ng

 L
os

s

(a) Instruction Tuning
AdamW
C-AdamW

0 200k 400k 600k 800k 1M
Training Episodes

2

4

6

8

Re
tu

rn

(b) RLHF with PPO

AdamW
C-AdamW

Figure 10: (a) shows training loss
on the task of instruction finetuing
Qwen2.5-1.5B-instruct on the dis-
tilled dataset from QwQ for 500K
question and answer pairs. (b)
shows RLHF reward with PPO for
1 million episodes. In both cases,
C-AdamW outperforms AdamW.

E.5 PRETRAINING MASKED AUTOENCODERS (MAES)

Masked Autoencoders (MAEs) (He et al., 2022) have emerged as a powerful approach for pretraining
Vision Transformers (ViTs) (Dosovitskiy, 2020) on large-scale datasets like ImageNet-1K (Rus-
sakovsky et al., 2015). This task involves reconstructing 75% of randomly masked image patches, a
challenging objective that requires extensive training over hundreds of epochs and millions of images.
The primary goal is to learn robust visual representations that are generalizable across downstream
vision tasks. The quality of these representations is typically measured by the final evaluation loss,
which reflects how accurately the model reconstructs masked test images; lower evaluation loss
indicates higher-quality representations. The results of our experiments are summarized in Figure 11,
where we compare the performance of the cautious optimizer against the AdamW baseline.

2000 4000 6000 8000
Global Step

0.50

0.55

0.60

0.65

0.70

Ev
al

 L
os

s

AdamW
C-AdamW

Figure 11: Evaluation
loss of pretrained MAEs
on ImageNet1K on ViT
backbone for 50 epochs,
using AdamW and C-
AdamW. Hyperparame-
ters can be found in Ta-
ble 8.

Observation: From figure 11, we observe that the cautious optimizer achieves lower evaluation
loss faster compared to AdamW. This result highlights the effectiveness of the cautious approach

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Params β1 β2 Learning rate weight decay Batch Size
110 M 0.9 0.999 1.5×10−4 0.05 4096

Table 8: Hyperparameters for MAE experiment. This experiment follows the optimal setup provided in He et al.
(2022)

in improving the precision of reconstruction and, consequently, the quality of the learned visual
representations.

F MISCELLANEOUS

The masking and scaling would incur some additional costs. However, in practice we observe that
the impact is minimum to overall throughput in the Distributed Data Parallel setting. For our 100M
model runs on 16 GPUs, AdamW has token throughput of 579383 token/s, whereas C-AdamW has
551483 tokens/s, which is around 3% difference in training throughput. Note that this is comparing
our naive cautious implementation against the fused pytorch implementation.

As for other distributed training setting, such as tensor parallel, masking operation is element-wise
hence not communication-bound, whereas scaling would require global statistics. However, the
communication is also minimum, since only a single floating-point number (the local mean) needs
to be all-gathered by other workers. Given modern GPU bandwidth, this should incur only minor
overhead.

Table 9: Training efficiency comparison between AdamW and C-AdamW.

Method Wall-Clock (h) Throughput (token/s)
AdamW 10.547 571,839.76
C-AdamW 10.567 560,488.63

26

	Introduction
	Theory
	Hamiltonian+Descent
	Cautious Dynamics
	Discrete-Time Analysis

	Experiments
	2D Optimization Toy
	Pretraining Large Language Models (LLMs)
	Image Classification

	Related Work
	Conclusion
	Appendix
	Hamiltonian of Common Optimizers
	Cautious Dynamics
	Examples of Cautious Dynamics
	Cautious Adam
	Cautious Signed (Polyak) Momentum
	Cautious Lion

	Discrete time Analysis
	Inner Product Masks
	Pesudo Code

	Cautious Mask Study
	Additional Details on LLM Scaling
	Additional Details on Mini-ImageNet
	Additional Experiments
	Learning Rate Scheduler Ablation
	Batch Size Ablation on 60M
	Muon jordan2024muon
	Post-training LLM
	Pretraining Masked Autoencoders (MAEs)

	Miscellaneous

