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Abstract

Vision-language representation learning models
(e.g., CLIP) have achieved state-of-the-art per-
formance on various downstream tasks, which
usually need large-scale training data to learn dis-
criminative representation. Recent progress on
generative diffusion models (e.g., DALL-E 2) has
demonstrated that diverse high-quality samples
can be synthesized by randomly sampling from
generative distribution. By virtue of generative
capability in this paper, we propose a novel vision-
language Representation Learning method with
diffusion-based Embedding Generation (RLEG),
which exploits diffusion models to generate fea-
ture embedding online for learning effective
vision-language representation. Specifically, we
first adopt image and text encoders to extract the
corresponding embeddings. Secondly, pretrained
diffusion-based embedding generators are har-
nessed to transfer the embedding modality online
between vision and language domains. The em-
beddings generated from the generators are then
served as augmented embedding-level samples,
which are applied to contrastive learning with the
variant of the CLIP framework. Experimental re-
sults show that the proposed method could learn
effective representation and achieve state-of-the-
art performance on various tasks including image
classification, image-text retrieval, object detec-
tion, semantic segmentation, and text-conditional
image generation.

1. Introduction

Vision-language representation learning (Radford et al.,
2021; Jia et al., 2021; Yuan et al., 2021; Singh et al., 2022;
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Figure 1. Input samples of image and text are encoded into a se-
mantic embedding space (squares). More generated embeddings
(circles) are utilized by sampling from pretrained diffusion-based
embedding generators. The input and generated embedding sam-
ples are simultaneously applied to a contrastive learning scheme.

Wang et al., 2022a; Yu et al., 2022) has received increasing
attention and achieved remarkable success in pretraining for
many computer vision tasks. Large-scale training data make
it possible to transfer pretraining models to various down-
stream tasks. However, collecting a high-quality dataset
for image-text pairs is non-trivial (Li et al., 2022b; Schuh-
mann et al., 2021; Byeon et al., 2022). Furthermore, the
collected image-text pairs can only cover part of semantic
contents from all possible real-world data, thus resulting
in a sparse distribution of learned representation in the em-
bedding space. In this paper, we attempt to learn robust
representation by generating training samples of rich diver-
sity online with generative models.

Recent advances in deep generative models (Brock et al.,
2019; Karras et al., 2020; van den Oord et al., 2017; Ho
et al., 2020; Dhariwal & Nichol, 2021; Ramesh et al., 2022;
Saharia et al., 2022) make it possible to produce various
high-quality realistic samples with different content under a
semantic condition. Traditional image-level or feature-level
data augmentation usually make fake modifications of input
data (e.g., adding noise, interpolating, random cropping),
while sampling data from a learnt generative space could
generate totally new and diverse realistic samples. Some
methods (Bowles et al., 2018; Frid-Adar et al., 2018; Zhang
et al., 2022; Liu et al., 2022) successfully augment training
data from generative models to acquire synthetic medical
images, foggy images, and images in different poses or
viewpoints. These works show that the pretrained generative
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models can learn extremely powerful latent representations,
which can be utilized for vision-language representation
learning.

We are also inspired by a hypothesis in generative model-
ing and manifold learning stating that real-world data tend
to lie on a low-dimensional manifold embedded in a high-
dimensional space (Roweis & Saul, 2000; Song & Ermon,
2020). The process of vision-language representation learn-
ing is to update the model to produce embeddings distributed
in such a manifold during training. In theory, generative
models could provide a dense manifold matched with real-
world data, and sampling data from such distribution is
beneficial to learning better representation. In this paper,
we train the model to match the embeddings sampled from
generative models, which can also be regarded as distilling
knowledge from a well-learnt dense manifold.

An important goal of vision-language representation learn-
ing is to align the embeddings of image and text pairs (Rad-
ford et al., 2021), which are usually collected from the Web.
We argue that aligning an image with only one text sample
is not enough since “a picture is worth a thousand words”.
Sampling data with similar semantic information from gen-
erative models will enrich the content of image and text
for alignment beyond the training dataset. In this paper,
multiple embedding samples are generated to enhance the
original embedding matching process.

In principle, we exploit the diffusion models (Ho et al.,
2020; Ramesh et al., 2022) in latent embedding space to
help train a better foundation model for vision-language
representation learning. Specifically, we first encode the in-
put image and text by an image encoder and a text encoder
respectively to obtain input embeddings for alignment. Sec-
ondly, diffusion-based embedding generators are applied for
sampling generated image embeddings transferred from the
text input embedding and sampling generated text embed-
dings transferred from the image input embedding, as shown
in Figure 1. Multiple samplings are used to produce more
generated embeddings for effective data augmentation in the
feature space. At last, we align the embeddings between in-
put embeddings and generated embeddings simultaneously
in a unified contrastive learning scheme. Extensive exper-
iments are conducted to analyze the proposed framework,
and results on various downstream tasks demonstrate the ef-
fectiveness of our method on vision-language representation
learning.

To summarize, the main contributions of this work are listed
as follows.

* We present a novel framework for learning effective
vision-language representation using diffusion-based
embedding generators.

* We successfully integrate generative models into con-

trastive learning models with cross-modality embed-
ding generation.

* We evaluate the effectiveness of our method on
various tasks including image classification, image-
text retrieval, object detection/segmentation, and text-
conditional image generation.

2. Related works

2.1. Vision-Language Representation Learning.

Learning representation from vision-language data has re-
ceived much attention and achieved significant progress in
the computer vision community. There are two main streams
of vision-language learning frameworks, i.e., contrastive-
learning frameworks, and generative-learning frameworks.
Contrastive-learning frameworks (Radford et al., 2021; Jia
et al., 2021; Yuan et al., 2021; Li et al., 2022b) demonstrate
that using language text as supervision is able to obtain
a good image encoder, which makes the pretraining scal-
able since image-text pairs is easier to access than label
annotations. Contrastive loss is used in these methods to
minimize the distance between embeddings of image-text
pairs. Pioneering methods such as CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) introduce large-scale
dataset to learn transferable visual features, which achieve
impressive success on different downstream vision tasks,
including image classification and cross-modal retrieval in
zero-shot settings.

Generative-learning frameworks (Yu et al., 2022; Wang
et al., 2022a;b; Dong et al., 2023) introduce the image or text
generation task beyond contrastive learning with image-text
pairs. The CoCa method (Yu et al., 2022) combines image
captioning and contrastive learning to align image and text
embeddings. GIT (Wang et al., 2022a) boosts the pretrain-
ing with language modeling to predict image caption with
a concatenation of image and text tokens. Currently, some
methods (Wang et al., 2022b; Dong et al., 2023) exploit
masked image modeling to further improve the performance
of the visual encoder. The generative tasks used in repre-
sentation learning enable the improvement of various mul-
timodal downstream tasks, such as image captioning (Lin
et al., 2014) and visual question answering (VQA) (Zhou
et al., 2020). In this paper, we utilize generative models for
generating image and text embeddings online to improve the
quality of both feature encoding and image-text alignment.

2.2. Feature-level Augmentation.

The common method of feature-level data augmentation
is to sample new features from a hypothesized data distri-
bution while keeping the semantic concepts not changed.
Most methods model the data distribution by modifying the
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Figure 2. Framework of our RLEG. We first use image and text encoders to extract the corresponding embeddings. Then, the pretrained
diffusion-based embedding generators are used to transfer the embedding modality online between vision and language domains. The
generated embeddings are served as augmented embedding-level samples, which are then applied to contrastive learning.

original input data.

Li et al. (Li et al., 2022a) aim to sample features from a hy-
pothesized multivariate Gaussian distribution. The authors
in (Kumar et al., 2019) propose a Linear Delta method by
simply adding the difference between two examples from
the same class to a new example. Dai et al. (Dai et al., 2019)
randomly erase feature elements with dropout and then com-
bine them with original feature. A more detailed survey
about image-level and feature-level data augmentation can
be found in (Mumuni & Mumuni, 2022). In contrast to mod-
ifying the original input data, the proposed method exploits
diffusion models to generate totally new samples from a
well-learnt generative distribution.

2.3. Diffusion-based Generative Models.

Diffusion-based generative models (Sohl-Dickstein et al.,
2015; Mehrjou et al., 2017; Sajjadi et al., 2018; Song et al.,
2021; Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal &
Nichol, 2021; Ho et al., 2022a; Ramesh et al., 2022; Saharia
et al., 2022) have witnessed significant advances in recent
years. The generating targets are various, such as image
synthesis (Sohl-Dickstein et al., 2015), video prediction (Ho
et al., 2022b; Hoppe et al., 2022), 3D shapes (Cai et al.,
2020), and graph generation (Niu et al., 2020).

Diffusion probabilistic models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) define a process of denoising from the Gaus-
sian distribution step-by-step to generate samples from the
real-world data distribution. In such training framework,
various architectures are proposed and have achieved impres-
sive generation results (Dhariwal & Nichol, 2021; Sajjadi
et al., 2018; Ho et al., 2022a; Mehrjou et al., 2017). In
the setting of vision-language tasks, text-to-image diffusion

models (Ramesh et al., 2022; Saharia et al., 2022) receive
much attention and become popular in the community. Both
DALL-E 2 (Ramesh et al., 2022) and Imagen (Saharia et al.,
2022) utilize diffusion models to generate images from text
embeddings. Imagen (Saharia et al., 2022) directly learns
the model from text-embedding inputs. DALL-E 2 (Ramesh
et al., 2022) first learns a diffusion decoder from the image-
embedding input, and a prior diffusion model is proposed
for translating the text embedding to a corresponding im-
age embedding, which enables the text-conditioned image
generation. In this paper, the diffusion models of dually
translating image-text embeddings are adopted to generate
samples online for the purpose of representation learning.

3. Method

The proposed framework consists of two main components,
as shown in Figure 2. One is image and text encoders to
extract the corresponding embeddings. The second is pre-
trained diffusion-based embedding generators to transfer the
embedding modality online between vision and language do-
mains. Then, unified losses are applied on the embeddings
to learn vision-language representation.

3.1. Vision-Language Contrastive Learning

We first revisit vision-language models based on contrastive
learning. Given a set of image-text pairs {x;, y, }~_;, where
x; is an input image and y; is its corresponding text descrip-
tion, an image encoder (e.g., ResNet (He et al., 2016) or
ViT (Dosovitskiy et al., 2021)) is adopted to extract image
feature vectors {vl}f\': 1> and a text encoder (e.g., BERT (De-
vlin et al., 2019)) is used to extract text feature vectors
{t;},. The feature vectors v; and ¢; are of the same di-
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mension and L2-normalized. During training, contrastive
loss is applied on a batch of image-text embedding pairs
{v;, t;}B |, which aims to reduce the distances of matched
image-text pairs while enlarging the distances between un-
matched ones.

In this paper, following the standard method CLIP (Rad-
ford et al., 2021) and the unified contrastive learning meth-
ods (Yang et al., 2022; Yuan et al., 2021), we adopt the
extension of transforming image-text pairs from one-to-one
mapping to one-to-multiple mapping relation. Specifically,
an input image x; is supposed to have only one correspond-
ing description text ¢, in one-to-one mapping assumption.
Under the one-to-multiple relation, there are a set of text
embeddings {t;} € R(4) corresponding to the i-th image
embedding v; in a large batch. The set R (%) of image to
multiple texts is pre-computed on the input dataset such that
the text descriptions share the same valid words after text
normalization (e.g., case normalization and text cleaning
by removing unrecognizable symbols, redundant spaces,
and so on), and the image duplication is also discovered to
compute the one-to-multiple relation set of fext to multiple
images.

Formally, we use the modified InfoNCE (van den Oord
et al., 2018) loss upon a batch of image-text embeddings.
The image-to-text contrastive loss is to align the image
embedding v; with a set of text embeddings R ()

It
Liz = Z| Bl Z log ZSXP(UZ r/T) . (D

S S exp(olt;/7)

where 7 is a learnable temperature parameter to scale the
pairwise cosine similarities. The text-to-image contrastive
loss is to align the text embedding ¢; with a set of image
embeddings R(j)

exp(vlt;/T)
SN exp(vlt;/7)

Ligi = — - (@)

In Equations (1) and (2), it would be the original InfoNCE
loss used in CLIP if there is only one relevant data point for
each i-th sample (i.e., the set size |R(:)| = |R(j)| = 1).

3.2. Diffusion-based Embedding Generation

Diffusion-based embedding generators are used as pre-
trained generative models in the proposed framework to
translate embeddings between image and text domains. We
follow the “prior” models used in DALL-E 2 (Ramesh
et al., 2022) to obtain the diffusion models, which are orig-
inally proposed to translate the CLIP text embedding to
corresponding image embedding for the purpose of text-
conditioned image generation.

Preliminary. To introduce the process of embedding gener-
ation, we give a brief overview of the diffusion-based gener-
ative models. Given an image embedding vy € ¢(vy), the
diffusion process gradually adds Gaussian noise with vari-
ance 3; € (0,1) at time ¢ in total T steps, which produces a
sequence of latent variables v, v1, ..., vr. Formally, the
diffusion process or forward process g is defined as follows:

T
g(virlvo) =[] a(vilvi-1) 3)
t=1

N V1= B, BI), (@)

where N is a Gaussian distribution. By defining oy == 1—03;
and a; == H::O «;, we can rewrite Equation (4) as:

= N(vs; Vaywo, (1 — a)I) ©)
= Vv + /(1 — ae, (6)

where € ~ N(0,I) is a random noise. The final v at a
large time T will be nearly a pure noise in A(0, I).

q(vi|vi-1) =

q(vi|vo)

Usually, a reverse process q(v¢_1|v;) is performed for gen-
erating samples by diffusion models. Starting from sampling
v from N(0, I), we approximate the reverse process with
po(vi—1|vt) to produce vy step-by-step:

po(vi—1|vy) = N(vi_1; pg(vy), 07 1), (7

where o} is a variance constant (Ho et al., 2020), and g, (v+)
could be estimated by a deep model with learnable parame-
ters 6.

Given an input sample vy, we can calculate the poste-
rior g(v;—1|vs, vg) using Bayes theorem (Ho et al., 2020;
Nichol & Dhariwal, 2021):

q(vi_1|ve,v0) = N(vi_1; i, (vs,v0), BiI),  (8)

where fi, (v, vo) and f3; are:

~ 1—(1,51

B = 1—a, 5t7 C)
_ N/ 1—ay_
i (vs, vo) = ﬁ jft + */0‘75 - a‘:* Do (10)

In the training phase, a noisy v; could be sampled by
Equation (6) on input v, and we can train the diffusion
model py to directly predict £, computed by Equation (10).
In practice (Ho et al., 2020), the network could predict
the noise € with a re-weighted loss function Lgmple =
Euo.e [|l€ — €o(v¢)|[?] derived by Equation (6) and Equa-
tion (10).

Generating Process. Given a pretrained deep diffusion
generative model €y (v, t) conditioned on text embedding ¢,
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we could sample data v starting from a normal distribution
vy ~ N(0,1) step-by-step:

1—0[t

N

Vi—1 =

1

\/7047 (vt ee(vt,t)> +oe.  (11)
Classifier-free guidance (Ho & Salimans, 2021) is used in
the embedding generators to enable the translation between
image and text embeddings. Specifically, when generat-
ing the image embedding from a normal distribution, the
text embedding ¢ is added as a condition to guide the sam-
pling process, and the generation is dependent on both the
unconditional and conditional predictions:

€g(vy,t) = weg(vy, t) + (1 —w)ep(vy),  (12)
where w is the guidance weight to control the effect of
conditional guidance, and €y (v, t) is used in Equation (11)
for sampling generations with classifier-free guidance.

Two generators are used in our framework, i.e., image-to-
text embedding generator and text-to-image embedding gen-
erator. Equation (11) and Equation (12) describe the process
of generating image embeddings given a text embedding as
guidance. A similar process of generating text embeddings
with an image embedding condition is performed by the
text-to-image embedding generator in our framework.

Multiple Samplings. We fix the pretrained generators and
generate embedding samples online to guide the representa-
tion learning process, which is regarded as embedding-level
data augmentation. Given an input image-text pair for repre-
sentation learning, we sample K embedding samples using
the corresponding generator by translating the embeddings
of input image and text. Multiple samplings readopted in
the proposed framework (i.e., K > 1). For example, given a
text embedding ¢ as a condition for text-to-image generator,
we sample v}, v5, ..., v generated embeddings online to
guide the training of encoders.

Multiple samplings are beneficial to representation learning.
First, sampling from diffusion generative models is a ran-
dom process, which may produce hard samples. Multiple
samplings could make the representation learning stable
with different types of generated samples. Second, gen-
erating multiple samples from the generative distribution
in the training batch provides more effective augmentation
data in a single training step, which could accelerate the
representation learning process.

The speed of sampling should be fast since we generate
the embeddings online during training. DDIM (Song et al.,
2021) sampling strategy is used to speed up the generation
process. In practice, we observe that a small sampling step
number (e.g. 5-10 steps) is sufficient to generate a valid
embedding with favorable image-text alignment.

3.3. Generative Distribution Guidance

The generated embeddings from a diffusion-based generator
are served as augmented embedding-level samples, which
lie in a generative distribution. The number of generated
samples could be infinite and be used to extend the limited
real-world training data.

Given input image embedding v and text embedding ¢, we
generate image embeddings v}, v}, ..., v’ by a text-to-
image embedding generator conditioned on text embedding
t. Similarly, generated text embeddings ¢}, t5, ..., t} are
sampled by an image-to-text embedding generator. The gen-
erated image embedding v, is viewed as a translation of the
input text embedding t. Aligning the input image embed-
ding v and the generated image embeddings would implic-
itly align v with ¢ from the input image-text pair. Therefore,
we adopt contrastive loss to align the input image embed-
ding v; with corresponding generated image embeddings

{vi.q,...,v,, ..., v} from all positive text embeddings
{tr}TGR(i).
exp(viv!, /7)
Lizi= ZZ Z ¥ (13)
i=1k= 1| reR Zj lexp('u U]k/T)

Similarly, the alignment from input text embedding to the
set of generated text embeddings is defined as:

T /
Loni= ZZ| Z EXP( b/ T) (14)

Jj=1lk=1 TGR ) Zz 1€ p(tthk/T)

Given the input embeddings and generated embeddings, the
final learning objective is defined as:

L= (Lot + Li2i) + MLizi + Liat), (15)
where ) is the weight to balance the losses.

The representation learning objective is composed of two
main parts: embedding alignment from real-world data and
generative distribution-guided learning. Using the genera-
tor as guidance can be also considered as training vision-
language encoders by distilling knowledge from the genera-
tive distribution space.

4. Implementation Details
4.1. Model architecture.

The proposed framework is composed of four parts, an im-
age encoder, a text encoder, an image-to-text embedding
generator, and a text-to-image embedding generator. Fol-
lowing (Radford et al., 2021), we employ a widely-used
vision Transformer ViT-B/32 (Dosovitskiy et al., 2021) as
the image encoder, and the text encoder is a BERT-like 12-
layer Transformer (Devlin et al., 2019) with width 512. We
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Table 1. Performance with and with/o generator guidance and
multiple-sampling (Multi-Sampling) on ImageNet dataset.

Generator ‘ Multi-Sampling ‘ Top-1 Acc. Top-5 Acc.
X X 30.1% 53.5%
v X 36.7% 61.3%
v v 39.1% 63.8%

Table 2. Performance with and with/o generator guidance and
multiple-sampling (Multi-Sampling) on COCO (C.) and Flick30K
(F.) datasets for text-to-image (T2I) and image-to-text (I2T) re-
trieval tasks.

Generator | Multi-S. | C.T2I C.12T | E T2l F.12T
X X 11.0% 17.3% | 17.8% 30.5%
v X 133%  21.0% | 22.5% 37.9%
v v 145% 235% | 262% 41.2%

apply a projector to obtain the image or text embedding
upon the output of the encoder, which is a two-layer MLP
but is ignored in Section 3.2 for simplicity.

We adopt the diffusion prior model in DALL-E 2 (Ramesh
et al., 2022) as the embedding generator. The generator
is a 12-layer decoder-only Transformer with the input of
image/text embeddings and predicts the text/image embed-
dings. We use the publicly available reproduction reposi-
tory (LAION-AI, 2022) of pre-training DALL-E 2 model
from LAION (Schuhmann et al., 2021). The image2text gen-
erator and text2image generator are pretrained on LAION-
400M (Schuhmann et al., 2021) dataset with the embed-
dings predicted by a publicly available pretrained CLIP
model (Radford et al., 2021). We note that the pretrained
generators can be prepared in advance before training the
proposed RLEG model.

For the process of input image-text pair, the image is resized
to 224 x 224 and results in 7 X 7 image patches when the
patch size is 32 x 32 for ViT-B/32. The text is truncated to
77 tokens as a pre-process. The number of multiple sam-
plings K is set to 4 as a trade-off of speed and performance.
The condition weight w during sampling is set to 2.0 for
better image-text alignment, and dynamic thresholding is
used following (Saharia et al., 2022). The loss weight A is
empirically set to 0.1.

4.2. Training settings.

We train the proposed model on the dataset of YFCC-15M
used in CLIP (Radford et al., 2021), a subset of YFCC-
100M (Thomee et al., 2016). Following the settings of (Rad-
ford et al., 2021), we use AdamW (Loshchilov & Hutter,
2019) as an optimizer, and the learning rate is initially set
to 5e — 4 and decayed to zero with a cosine scheduler. A
warm-up of the learning rate is used at the first 3 epochs.
The weight decay for model parameters is 0.1. The model
is trained from scratch for 32 epochs on 8 NVIDIA A100
GPUs. The batch size is set to 512 for each GPU card and a

total of 4096 in the experiments.

4.3. Downstream tasks.

After pre-training, the proposed model is evaluated in a
zero-shot setting on several downstream datasets, including
ImageNet (Deng et al., 2009), COCO (Lin et al., 2014), and
Flickr30K (Young et al., 2014). We note that the generators
in our framework are only used during pre-training, and
the embeddings extracted from the image encoder and text
encoder are finally adopted for downstream tasks.

For the image classification task of ImageNet, we construct
prompts with the 1K class label names following the setting
in CLIP (Radford et al., 2021). Then 1K text embeddings
are extracted from these text inputs with class label names.
Given an input image, the distances from image embedding
to the text embeddings are computed, and the class label is
predicted by the closest distance. Top-1 accuracy and top-5
accuracy are used for evaluation.

For the zero-shot image-text retrieval on MS-COCO and
Flickr30K, the pretrained model is used to extract embed-
dings from images and texts separately. Similarity scores
between image embeddings and text embeddings are used
for ranking. We use the R@K to report the recall of top-K
retrieval items.

We also conduct experiments on other downstream tasks
including object detection, semantic segmentation, and text-
conditional image generation, which will be described in
each experiment section.

5. Experiments and Analysis

We first conduct several ablation studies to show the compar-
isons when using different settings in the proposed frame-
work and give analysis on the help of introducing generative
models into representation learning . The proposed method
is evaluated on different downstream tasks, including image
classification, image-text retrieval, object detection, seman-
tic segmentation, and text-conditional image generation.

All the models in the experiments are trained on YFCC-15M
(CLIP version (Radford et al., 2021)) for a fair comparison.
Comparisons with previous methods are then provided on
image classification and image-text retrieval tasks.

5.1. Ablation Study

Generative models help vision-language learning. We
evaluate the models on both the image classification task
on ImageNet-1K (Deng et al, 2009) and the image-
text retrieval task on MS-COCO (Lin et al., 2014) and
Flicker30K (Young et al., 2014) datasets.

From Table 1, we observe that with the help of the guid-
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Figure 3. Comparisons during the training process among the methods without generator guidance (CLIP-Baseline), single sampling
guidance (RLEG-Single), and multiple samplings guidance (RLEG-Multiple). Thanks to generative embeddings, the training process is

accelerated to achieve similar results with smaller training epochs.

ance of diffusion-based generators, the proposed method
outperforms the baseline with respectively +9.0%, +10.3%
improvements on top-1 and top-5 accuracies of ImageNet-
1K classification in the zero-shot setting. The generated
embeddings provide strong and semantic data augmentation
for each class concept, which would boost the model to
learn a more robust representation for image classification.

For the image-text retrieval task, significant improvements
on COCO and Flicker30K are achieved when learning with
embedding generation, as shown in Table 2. Specifically,
the proposed method surpasses the baseline with +3.5%,
+6.2%, +8.4%, +10.7% on text-to-image and image-to-
text retrieval top-1 accuracy of COCO and Flicker30K, re-
spectively. The embedding generators act as modality trans-
lators during the sampling process. Training with generative
distribution guidance could implicitly force the model to
align the image and text embeddings, which is beneficial to
the cross-modal downstream tasks.

Furthermore, the representation learning process could be
accelerated with the help of sampling more effective data
from the generative distribution in one training step. As
shown in Figure 3, the model with generation guidance
can achieve similar results with smaller training epochs
compared to the baseline method (i.e., CLIP).

Generative guided model is a better generator backbone.
The vision-language learning with generator guidance could
produce a more powerful model with rich semantic informa-
tion, which is advantageous to train a better image generator.

Table 3. Performances with and with/o generator guidance on Ima-
geNet 64 x64 and COCO 64 x 64 image generation tasks.

Method ‘ Generator ‘ ImageNet FID COCO FID
CLIP Backbone X 11.5 15.7
RLEG Backbone v 9.3 13.1

Table 4. Performances with and with/o generator guidance on
COCO object detection and segmentation tasks in zero-shot set-
ting.

Method ‘ Generator ‘ Detection (AP)  Segmentation (mIoU)
CLIP ‘ X ‘ 42.7 79

RLEG v 46.9 11.3

We follow the DALL-E 2 framework and experimental set-
tings to train image generators with different representation
backbones of baseline CLIP and the proposed model.

We evaluate the performance of image generation on dataset
ImageNet and COCO in 64 x 64 generated image resolution.
The results of FID metric (Heusel et al., 2017) are shown in
Table 3. We can observe that the proposed method equipped
with embedding generators during training achieves better
results than the CLIP-based image generator. Learnt gener-
ative model enforces the image encoder to focus on more
semantic information using a large augmented embedding
space as a distillation target, resulting in a better representa-
tion backbone for training the generator.

Generative augmentation helps dense tasks. The gen-
erated samples from a dense generative distribution could
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Table 5. Comparison with the combination of different dataset size
and sampling factor K. ImageNet Top-1 accuracy (%) is reported,
and the percentage numbers in parentheses are the relative im-
provements based on K=0.

Table 6. Performance with large training dataset LAION-400M
and large model size ViT-L/14 for image encode on ImageNet
(IN), COCO (C.) and Flick30K (F.) datasets for image classificatin,
text-to-image (T2I) and image-to-text (I2T) retrieval tasks.

Dataset | K=0 | K=1 | K=2 | K=4 ‘
YECC3M | 164 | 20.1 (+22.6%) | 22.7 (+37.6%) | 24.3 (+48.2%)
CC3M 18.1 | 21.7 (+19.9%) | 23.9 (+32.0%) | 25.8 (+42.5%)

CC12M 26.8
YFCCI5M | 30.1

31.5 (+17.5%)
36.7 (+21.9%)

34.1 (+27.2%)
37.8 (+25.6%)

35.6 (+32.3%)
39.1 (+29.9%)

provide more fine-grained information for learning a bet-
ter image encoder, which is beneficial to apply on dense
downstream tasks, such as object detection and semantic
segmentation.

Following the setting in RegionCLIP (Zhong et al., 2022),
zero-shot object detection is conducted by matching the
features within proposal boxes (ground-truth boxes are used
for simplicity) and the class labels. It is used to evaluate the
representation learnt on local patches when applied to object
detection tasks. The results shown in Table 4 demonstrate
that the proposed model could attend to local patches and
extract more effective representation, which is beneficial for
object detection tasks.

To conduct zero-shot semantic segmentation, we apply
a pixel-text matching following DenseCLIP (Zhou et al.,
2022) by extracting embeddings from all segmentation class
labels for local point classification on image feature map. To
enlarge the resolution of the final image feature map, we use
336 x 336 image as input and divide it with 16 x 16 patch
size for all compared models. From Table 4, we can see
that the recognition ability on patch-level is improved with
generator guidance for segmentation task. We conjecture
that sampling from the generative distribution could provide
more appearance similar objects and augment the samples
with more fine-grained information.

Generating single or multiple samples. We use multi-
ple samplings in the proposed framework to generate more
embeddings for training. Experiments are conducted to
compare the performance of multiple samplings and sin-
gle sampling when generating image and text embedding
samples. In a single sampling setting, only one embedding
sample is generated (i.e., K = 1) by each generator in our
framework, and other settings are kept unchanged. The
results in Table 1 and Table 2 show that sampling multi-
ple embeddings in one training step could help learn more
effective representation and accelerate the representation
learning process as shown in Figure 3.

We also conduct several experiments with the combination
of different dataset size and sampling factor K in Table 5.
Specifically, we randomly select a subset of YFCC15M
to form a 3M size dataset YFCC3M, and use CC3M and
CC12M for another different size sources. For sampling fac-
tor K, we use four settings of K=0,1,2,4, where K=0 means

Method | INTop 1 | C.T2I C.I2T | E T2l FEI2T

CLIP 75.3 36.1 573 64.6 85.7
RLEG 79.8 43.7 59.5 73.9 89.3

Table 7. Comparison with different training time of CLIP and
RLEG on ImageNet-1K image classification task, where 16E and
32E mean training with 16 epochs or 32 epochs.

Method | CLIP-16E | RLEG-16E | CLIP-32E | RLEG-32E |
ImageNet Top-1 24.8% 33.2% 30.1% 39.1%
Training Time 9.6h 17.6h 19.2h 35.2h

the traditional CLIP model without generator guidance. In
addition, more experiments with larger K are not conducted
because of the limited GPU memory. As shown in Table 5,
sampling more samples consistently obtain superior perfor-
mance on different size datasets. The relative improvements
of K=1 are similar for YFCC3M and YFCCI15M, while
significant improvements are observed on YFCC3M and
CC3M when K=4. It demonstrates that smaller pre-training
datasets benefit more from more augmentations, which is
reasonable since data lacking problem plays more important
role for smaller dataset and enriching the training data could
improve the performance significantly.

Training with larger dataset and model. To evaluate the
scalability of the proposed framework, we train the proposed
model on a larger dataset LAION-400M (Schuhmann et al.,
2021) with a large ViT-L/14 encoder following the settings
in CLIP (Radford et al., 2021). The results in Table 6 show
that the proposed method still outperforms CLIP baseline
on ImageNet classification and image-text retrieval tasks
when pretraining on large-scale dataset. The improvements
demonstrate that training with generative distribution guid-
ance is scalable to be effective for representation learning.

Different hyper-parameter settings. We study differ-
ent settings of hyper-parameters used in our framework
on ImageNet top-1 accuracy. First, when using identity
mapping as the projector for mapping the embedding in-
stead of a two-layer MLP, the performance drops from
0.7% to 38.4%. Second, sampling embeddings with 5,
10, 50 steps in DDIM strategy obtains slightly differ-
ent results of 38.7%, 39.1%, 39.2%. Third, the condition
weight w during sampling with 0.1,1.0,2.0,5.0 attains
32.4%, 38.3%, 39.1%, 38.8% results, which controls the
balance of diversity and alignment. We note that the model
always promotes the performance compared to the baseline
without generator guidance under all different settings.

Number of parameters and training cost. The number of
learnable parameters of RLEG and CLIP is the same during
training. In testing phase, the generators are not used and
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Table 8. Comparison with previous vision-language pretraining methods with different supervision and augmentation on both vision and
vision-language tasks, including image classification on ImageNet-1K and image-text retrieval on COCO and Flickr30K. All the models
are evaluated with the same backbone, dataset, and other training settings.

Method TmageNet COCOT2l | COCOI2T | Flickr30K T2I | Flickr30K I2T
Top-1 Top-5 | R@l R@5 | R@l1 R@5 | R@l R@5 | R@l R@5
CLIP (Radford et al., 2021) 301 535 | 11.0 263 | 173 344 | 178 300 | 305 442
SLIP (Mu et al., 2022) 325 559 | 123 281 | 189 376 | 195 339 | 325 479
MS-CLIP (You et al., 2022) 343 572 | 131 299 | 203 432 | 224  40.1 | 348 513
MaskCLIP (Dong et al., 2023) | 36.0 588 | 14.1 341 | 21.8 446 | 242 435 | 389 57.0
DeCLIP (Li et al., 2022b) 362 593 | 143 345 | 216 441 | 246 458 | 392 587
RLEG (Ours) 391 638 | 145 347 | 235 477 | 262 442 | 412 60.1

the inference time is also same for RLEG and CLIP.

In the experiments, training one epoch for RLEG and CLIP
costs 1.1h and 0.6h respectively. To compare the perfor-
mances of RLEG and CLIP with same training time, we
train RLEG with about 16 epochs and CLIP with 32 epochs.
As shown in Table 7, RLEG still outperforms CLIP on Im-
ageNet Top-1 accuracy (33.2% vs. 30.1%) with similar
training cost. For a fair comparison, we also report the re-
sult of CLIP when training with 16 epochs, which achieves
24.8% as shown in Table 7.

5.2. Comparison with Previous Methods

In this section, we compare RLEG with previous vision-
language pretraining methods, including the baseline
CLIP (Radford et al., 2021), the variants of SLIP (Mu
et al., 2022), MS-CLIP (You et al., 2022), DeCLIP (Li
et al., 2022b) and MaskCLIP (Dong et al., 2023). Since the
reported results of these methods are obtained with differ-
ent backbones and dataset settings, we re-implement these
methods by using the same settings as ours for a fair com-
parison. Experiments are conducted on both vision and
vision-language tasks, including image classification on
ImageNet (Deng et al., 2009) and image-text retrieval on
COCO (Lin et al., 2014) and Flickr30K (Young et al., 2014).

Zero-shot image classification. The ImageNet classifica-
tion results in Table 8 show that our method outperforms
state-of-the-art vision-language pretraining methods with a
new learning scheme. The methods of SLIP, DeCLIP, and
MaskCLIP utilize more supervision signals from the avail-
able input dataset, such as self-supervision by multi-view
augmentation or patch-masked augmentation. In contrast,
the proposed method performs an embedding-level data aug-
mentation by generating samples instead of modifying the
input image or text, which extends the semantic content
from a dense generative distribution beyond the training
dataset. The augmented data could fulfill the concepts of
classes, which is beneficial to the representation learning
for image classification.

Zero-shot image-text retrieval. We further compare the

methods for zero-shot image-text retrieval task on MS-
COCO (Lin et al., 2014) and Flicr30K (Young et al., 2014).
The image-to-text and text-to-image results are reported
in Table 8. We report R@1 and R@5 metrics for both
two settings. We can observe from the results that the pro-
posed method achieves a favorable performance for the
cross-modal retrieval task. The embedding generators used
in our framework serve as translators between image and
text modalities, which implicitly improves the image-text
alignment during the representation learning process.

6. Limitations and Social Impacts

Although RLEG improves the representation learning on
many downstream tasks, it is limited to do alignment tasks
on image and text inputs, which is not as flexible as gen-
erative methods like image captioning. The diversity of
augmentation is also limited to the capability of the pre-
trained diffusion generators. Before used in production,
further analysis of the data and model should be taken to
reduce social biases. For example, harmful input texts or un-
suitable images may affect the model to produce unwanted
results in the real world.

7. Conclusion

We have presented a simple but effective representation
learning method, named RLEG, guided by diffusion-based
embedding generators. The diffusion models are exploited
to generate embeddings online to help learn effective vision-
language representation. The pretrained generators transfer
the embedding modality online between vision and lan-
guage domains. The generated embeddings are served as
augmented embedding-level samples, which are then ap-
plied to contrastive learning. The method could also be
considered as training vision-language encoders by distill-
ing knowledge from the generative data space. Experimental
results validate the effectiveness of the proposed RLEG on
various tasks including image classification, cross-modal
retrieval, object detection, semantic segmentation and text-
conditional image generation.
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