MoPe: Model Perturbation-based Privacy Attacks on
Language Models

Marvin Li* Jason Wang *
Harvard College Harvard College
marvinli@college.harvard.edu jasonwangl@college.harvard.edu
Jeffrey Wang * Seth Neel
Harvard College Harvard Business School
jgwang@college.harvard.edu sneel@hbs.edu
Abstract

Recent work has shown that Large Language Models (LLMs) can unintentionally
leak sensitive information present in their training data. In this paper, we present
MoPeg (Model Perturbations), a new method to identify with high confidence if a
given text is in the training data of a pre-trained language model, given white-box
access to the models parameters. MoPey adds noise to the model in parameter space
and measures the drop in the log-likelihood for a given point x, a statistic we show
approximates the trace of the Hessian matrix with respect to model parameters.
We compare MoPey to existing state-of-the-art loss-based attacks and other attacks
based on second-order curvature information (such as the trace of the Hessian with
respect to the model input). Across language models ranging from size 70M to
12B parameters, we show that MoPey is more effective than existing loss-based
attacks. We also find that the loss of a point alone is insufficient to determine
extractability—there are training points we can recover using our methods that
have average loss. This casts some doubt on prior work that uses the loss of a point
as evidence of memorization or “unlearning.”

1 Introduction

Over the last few years, Large Language Models or LLMs have set new standards in performance
across a range of tasks in natural language understanding and generation, often with very limited
supervision on the task at hand [Brown et al.|(2020)]. As a result, opportunities to use these models
in real-world applications proliferate, and companies are rushing to deploy them in applications as
diverse as A.IL assisted clinical diagnoses [Sharma et al.| (2023))], NLP tasks in finance [Wu et al.
(2023)], or an A.L “love coach” [Soper (2023)]. While early state of the art LLMs have been largely
trained on public web data [Radford et al.|(2019);|Gao et al.| (2021); [Biderman et al.| (2023b)); Black
et al[(2021)], increasingly models are being fine-tuned on data more relevant to their intended domain,
or even trained from scratch on this domain specific data. In addition to increased performance on
a range of tasks, training models from scratch is attractive to companies because early work has
shown it can mitigate some of the undesirable behavior associated with LLMs such as hallucination
[Ji et al.| (2022)], toxicity [Gehman et al.| (2020)], as well as copyright issues that may arise from
mimicking the training data [Franceschelli and Musolesi (2021);|Vyas et al.|(2023)]. For example,
BloombergGPT [Wu et al.[(2023)] is a 50-billion parameter auto-regressive language model that was
trained from scratch on financial data sources, and exhibits superior performance on tasks in financial
NLP.

* Alphabetical order; equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

While all of this progress seems set to usher in an era where companies deploy custom LLMs trained
on their proprietary customer data, one of the main technical barriers that remains is privacy. While
LLMs don’t overfit to training data to the same extent as other over-parameterized models, training
points do in general have lower loss than non-train points. This allows adversaries to perform what
is called a membership inference attack [Shokri et al|(2017)]: given access to the model and a
candidate sample z’, the adversary can determine with high-accuracy if x’ is in the training set.
While prior work shows privacy is a real concern when deploying language models, the loss-based
membership inference attacks used can extract specific points but perform quite poorly on average,
leaving significant room for improvement [Yu et al.| (2023); (Carlini et al.| (2021))]. Other recent
studies on data deletion [Jang et al.|(2022)] and memorization [Carlini et al.|(2023a))] in pre-trained
LLMs use the loss of a point to determine whether that point has been “deleted” from the model, or
conversely is “memorized.” Given that the loss of a point is a relatively poor indicator of training set
membership for LLMs, however, this raises a series of tantalizing questions we address here: (i) If a
point has average “loss” with respect to a language model 0, does that imply it cannot be detected as
a training point? (ii) Can we develop stronger MIA attacks against LLMs than existing loss-based
attacks?

Contributions We present several contributions:

* We develop a new membership inference attack we call MoPey, based on the idea that when
the model loss is localized around a training point, 6 is likely to lie in a “sharper” local
minima than if the point was a test point. Concretely, we do this by perturbing the model’s
parameters and measuring the change in loss (see Figure[l)), a statistic we show approximates
the trace of the Hessian with respect to model parameters, Tr(Hy).

¢ We are the first to evaluate the DetectGPT statistic of [Mitchell et al.| (2023)] for the task
of membership inference against pre-trained LLMs, a related perturbation method first
developed for LLM content detection; we show it outperforms attacks based on the loss.

 Using the Pythia suite from EleutherAl [Biderman et al.|(2023b)], we benchmark MoPey and
other attacks on models that range in size from 70M to 12B parameters.

* We demonstrate that MoPey significantly outperforms other attacks on models smaller than
1.4B parameters, with comparable results on larger models.

These results establish our techniques as state of the art for MIA against pre-trained LLMs in the

white-box setting where we can access the model weights. They also challenge conventional wisdom
that the loss of a point is in isolation a sufficently good proxy for training set membership.

Ltrain Ltest

A A
W

> >

6 6

Figure 1: MoPey detects training point membership by comparing the increase in loss on the point
when the model is perturbed, relative to the increase in loss of the perturbed model on a test point.

0+ €1

LOSSy
LOSSy

2 Membership Inference Attacks on LLMs

Given a training corpus C sampled i.i.d from a distribution D over sequences of tokens, autoregressive
language models optimize their parameters 6 to minimize the average loss, \Tll ming), - LOSSy (),

where LOSSy is defined as the negative log-likelihood [of the sequence with respect to 6. This is

typically referred to as “pre-training” on the task of next token prediction, to differentiate it from
“fine-tuning” for other downstream tasks which occurs subsequent to pre-training.

A membership inference attack (MIA) against a model 6 assigns a score M (x, 0) to a data point
indicating its confidence in whether x is in the training set of 6. To test a canonical membership
inference attack, we sample a random point € C with probability %; otherwise, we sample x ~ D.
We then compute Mz, 6) and threshold over some value 7, where we say « is a train point if
M(z,0) > 7 and not otherwise. Throughout the paper, as is common, we overload notation and refer
to M as a membership inference attack rather than specifying a specific threshold. By construction,
if M has accuracy above %, 6 must be leaking information about x.

The most commonly used membership inference attack, introduced in [Yeom et al.| (2018))], takes
M(z,0) = —£(x, 0); it predicts points are training points if their loss is less than —7, or equivalently
the confidence is greater than 7. We refer to this attack throughout as the loss attack, or LOSSy.
Different MIAs exist for language models in the fine-tuned and pre-trained settings. In the fine-tuned
setting, MIAs have been proposed [Ye et al.| (2021)); (Carlini et al.| (2022)); Sablayrolles et al.|(2019)]
that calibrate the threshold at which a point z is declared a training point to account for the component
of the loss that is specific to the example x. These approaches rely on training “shadow models",
an approach that assumes an adversary can train additional language models from scratch on fresh
data, or have access to a reference model that has been trained without the candidate point x (e.g.
attacks against fine-tuned language models). In the pre-trained setting, however, such attacks are
computationally impractical and so the state-of-the-art is loss-based thresholding. As such, we focus
our attention on MIAs against pre-trained models in this paper.

3 Perturbation Privacy Attacks
In this section, we introduce the formal underpinnings of perturbation-based privacy attacks.

MoPey. MoPey is based on the intuition that the loss landscape with respect to the weights
should be different around training versus testing points. In particular, we expect that since
§ ~ argming) .. {(x,0), the loss around 2’ € C should be sharper than around a random
point. Formally, given a candidate point x ~ D, we define:

MOPe(’(x) = EENN(O,UZI f(l‘, 0+ 6) - f(l’, 9)]7 (D

M params) [

where o2 is a variance hyperparameter that we specify beforehand, and § € R™=ms_ In practice,
rather than computing this expectation, we sample n noise values ¢; ~ N (0, 021,) and compute

TMparams
the empirical MoPe} (z) = £ Y7 | [((z, 0 + ;) — {(x,0)].
This gives rise to the natural MoPey thresholding attack, with our MIA statistic defined as M (x,0) =
MoPey (). Note that the time complexity of computing the MoPey statistic scales linearly with the

number of perturbed models and so we typically use < 20 perturbed models for computational
reasons. We now provide some theoretical grounding for our method.

In order to derive a more intuitive expression for MoPey(x) we start with the multivariate Taylor
approximation [Konigsberger (2000)]:

L0+ e,x)=1L000,2)+Vol(0,x) €+)
%GTHQG + O(€®) 3)

where Hy = V32/(0,) is the Hessian of log-likelihood with respect to 6 evaluated at z. Then
assuming o is sufficiently small that O(e®) in Equation|2]is negligible, rearranging terms and taking
the expectation with respect to € of both sides of () we get:

MoPeg(x) = Ecnr(0,021 LO0+ex)—L(0,x)] =

)
1 o2
EeNN(O7U2I"pamms) [§€TH0€] = ETr(H9)7

where the last identity is known as the Hutchinson Trace Estimator [Hutchinson| (1989)]. This
derivation sheds some light on the importance of picking an appropriate value of 0. We need it to
be small enough so that the Taylor approximation holds in Equation [2} but large enough that we

have enough precision to actually distinguish the difference in the log likelihoods in Equation [I]
Empirically, we find that ¢ = 0.005 works well across all model sizes, and we don’t observe a
significant trend on the optimal value of o (see Table[2]in the Appendix).

DetectGPT. The most closely related work to our MoPey method on a technical level is the recent
paper [Mitchell et al.|(2023)], who propose a perturbation-based method for detecting LLM-generated
text using probability curvature. Their method DetectGPT compares the log probabilities of a
candidate passage « and its randomly perturbed versions m(x) using the source model and another
generic pre-trained mask-filling model m; large drops in the log probability correspond to training
points. They show via a similar derivation that DetectGPT represents second-order curvature,
approximating the trace of the Hessian with respect to = : Tr(H,). However, it’s impossible to
actually perturb input token encodings x with continuous noise and have valid tokens; using a
masking model to simulate perturbations in x lacks the theoretical grounding of directly perturbing
. Nevertheless, while DetectGPT is designed to determine if x was generated by 6, an orthogonal
concern from privacy, we can still use a threshold based on the DetectGPT statistic for membership
inference, which we evaluate in Table E} We find that it outperforms the random baseline and is
comparable to loss-based attacks, but performs much worse than MoPey.

4 Attack Results

We benchmark our MIAs on the Pythia Suite [Biderman et al.|(2023b)]. Pythia is trained on The
Pile [Gao et al.| (2021)], which after deduplication contains 207B tokens from 22 primarily academic
sources. Crucially, The Pile has a clean training/validation split, as well as model checkpoints that
allow us to evaluate on a model corresponding to one full pass over the dataset. We evaluate attacks
using 1000 points sampled randomly from the training data and 1000 points from the test data.

For each MIA we report the AUC as an overall success metric. We also report the TPR at low FPR
rates (.05, .1), an approach [Carlini et al.[(2022)] advocates as a better metric for MIA performance.

Model Method AUC TPR; | TPR g5
70M LOSSy 0.5075 | 0.067 | 0.025
70M | DetectGPT | 0.5207 | 0.071 | 0.036
T0OM MoPey 0.6069 | 0.095 | 0.054
160M LOSSy 0.5118 | 0.071 | 0.030
160M | DetectGPT | 0.5155 | 0.076 | 0.034
160M MoPey 0.6478 | 0.126 | 0.058
410M LOSSy 0.5135 | 0.070 | 0.028
410M | DetectGPT | 0.5254 | 0.073 | 0.033
410M MoPey 0.5958 | 0.118 | 0.045

1B LOSSy 0.5161 | 0.069 | 0.029
1B DetectGPT | 0.5322 | 0.073 | 0.031
1B MoPey 0.5924 | 0.103 | 0.037

1.4B LOSSy 0.5168 | 0.067 0.029
1.4B | DetectGPT | 0.5336 | 0.069 0.029
1.4B MoPey 0.5656 | 0.091 | 0.046
2.8B LOSSy 0.5039 | 0.059 | 0.023
2.8B DetectGPT — — —

2.8B MoPeg 0.5320 | 0.051 0.023
6.9B LOSSy 0.5227 | 0.070 | 0.026
6.9B | DetectGPT — — —

6.9B MoPeg 0.5217 | 0.069 0.020

12B LOSSy 0.5252 | 0.068 | 0.024
12B DetectGPT — — —
12B MoPey 0.5164 | 0.067 0.024

Table 1: For each model size and attack, we report the AUC, TPR at FPR 0.1, and TPR at FPR .05.

Inspecting Table[T| we see that MoPey achives the highest AUCs at model sizes up to 2.8B, and is tied
at 6.9B, with similar relative performance to other methods at low FPRs. Interestingly, DetectGPT
also outperforms the random baseline and LOSSy at all model sizes. Note that we could not run
DetectGPT for models with 2.8B parameters and above due to the large computational burden of
performing mask-filling perturbations. See Appendix |G| for combined ROC curves for each method
across model sizes.

Model Size. Recent work [Carlini et al.| (2023al)] on the GPT-Neo [Black et al.| (2021)] models
evaluated on the Pile has shown that as model size increases so does memorization. Consisent with
this finding, we see that with increasing model size there is a gradual increase in the AUC achieved
by the LOSSy attack. However, MoPey and DetectGPT exhibit no such trend, with the highest MoPeg
AUC values actually coming at the two smallest model sizes! While this doesn’t directly contradict
previous results we find it very surprising. One potential explanation could be that the attack success
of MoPey is actually inversely correlated with model size, due to variance of the Hutchinson Trace
Estimator in Equation [2]increasing for larger models, and may not reflect the fact that larger Pythia
suite models are actually more private. That is, we conjecture an attack that could actually compute
Tr(Hy) might still enjoy increasing attack success with increasing model size.

MoPey vs LOSSy comparison. The disparities in MIA performance between MoPey and the other
attacks above (particularly LOSSg) imply that there must exist a number of training points where the
statistics take very different values. We’re particularly interested in MoPeg vs LOSSy, since much prior
work uses (some function of) LOSSy as a proxy for memorization and membership. Since MoPeg
outperforms LOSSy, particularly at smaller model sizes, there must be points with average loss values
but outlier MoPey values. We also investigated change in LOSSy vs MoPey across training data order
and saw LOSSy uniformly decreases whereas MoPey does not. See Appendix [F]for more details.

This also raises the obvious question of if the attacks can be combined to yield stronger attacks
than either attack in isolation. We find that while for smaller model sizes, we don’t get a significant
improvement over MoPey in AUC by ensembling, for the two largest model sizes, we do get a
significant improvement by thresholding on a weighted sum of the two statistics (after z-scoring).
See Appendix [E] for an investigation into combining LOSSy and MoPey attack statistics.

5 Social Impact Statement

As language models are ubiquitously deployed with few safeguards for protecting the privacy of
their data, understanding their vulnerabilities is of utmost importance. In this paper, we explore
the white-box setting of MIAs—an important setting due both to the prevalence of models with
publicly published weights (e.g., Llama 2, BLOOM, MPT, etc.) as well as risks from weights being
leaked from cybersecurity attack vectors. Our work demonstrates the concerning ability to infer the
membership of training data points, and challenges previous work using just loss as evidence for
memorization. MIAs can be used to check if a model has used training data without consent but we
also emphasize that they can be naturally extended for actual data extraction. Given these dangers,
we call on the research community to take greater action to study and remedy this privacy problem.

6 Future Directions

In this paper we develop an effective new MIA against pre-trained LLMs across a wide range of
model sizes, opening up several enticing avenues for future research. We show that detection methods
like DetectGPT can also function as privacy attacks, an observation that could extend to other types
of detection methods and generative models (e.g. GANSs, Diffusion models) which are currently
under-explored. Given our MIA is successful at low FPRs, future work could use MoPey as part of
a training data extraction attack in the style of [[Carlini et al.[|(2021);|Yu et al.| (2023)); |Carlini et al.
(2023b)]. Another major unresolved question in this work is why MoPey success actually scales
inversely with model size, which we conjecture is actually a property of the method, namely error
in the Hutchinson trace estimator, rather than the model. Finally, since our white-box MoPey attack
outperforms black-box attacks like LOSSy and DetectGPT, it raises the question of whether other
white-box attacks could improve attack success even further. For example, attacks based on the
parameter gradient have been shown to outperform loss-based attacks in other settings, and would be
a natural candidate to try against LLMs [Nasr et al.| (2019)].

References

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. 2021a. [Large-scale
differentially private bert.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. 2021b. [Large-scale
differentially private BERT. CoRR, abs/2108.01624.

Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raf. 2023a. Emergent and predictable memorization in large
language models.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. 2023b.
Pythia: A suite for analyzing large language models across training and scaling. arXiv preprint
arXiv:2304.01373.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-Neo: Large scale
autoregressive language modeling with meshtensorflow.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. [Language models
are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, page
1877-1901. Curran Associates, Inc.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. 2022.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 1897-1914. IEEE.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. 2023a. |Quantifying memorization across neural language models.

Nicholas Carlini, Utkarsh Kandpal, Jacob Lehman, Nicolas Papernot, and Florian Tramer. 2023b.
Lm-extraction: A benchmark for training data extraction from language models. https://github!
com/google-research/lm-extraction-benchmark.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B Brown, Dawn Song, Ulfar Erlingsson, et al. 2021. Extracting training
data from large language models. In USENIX Security Symposium, volume 6.

Christophe Dupuy, Radhika Arava, Rahul Gupta, and Anna Rumshisky. 2022. An efficient dp-sgd
mechanism for large scale nlp models.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2016. Calibrating noise to
sensitivity in private data analysis. J. Priv. Confidentiality, 7(3):17-51.

Giorgio Franceschelli and Mirco Musolesi. 2021. (Copyright in generative deep learning.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling. CoRR, abs/2101.00027.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. 2020.
Realtoxicityprompts: Evaluating neural toxic degeneration in language models. CoRR,
abs/2009.11462.

Michael F. Hutchinson. 1989. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics - Simulation and Computation, 18:1059-1076.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. 2022. Knowledge unlearning for mitigating privacy risks in language models,

http://arxiv.org/abs/2108.01624
http://arxiv.org/abs/2108.01624
http://arxiv.org/abs/2108.01624
http://arxiv.org/abs/2108.01624
http://arxiv.org/abs/2304.11158
http://arxiv.org/abs/2304.11158
https://doi.org/10.5281/zenodo.5551208
https://doi.org/10.5281/zenodo.5551208
https://proceedings.neurips.cc/paper/2020/hash/8a1a5f2fba0c1a3f2a8e8506f65c8d41-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8a1a5f2fba0c1a3f2a8e8506f65c8d41-Abstract.html
http://arxiv.org/abs/2202.07646
https://github.com/google-research/lm-extraction-benchmark
https://github.com/google-research/lm-extraction-benchmark
http://arxiv.org/abs/2107.14586
http://arxiv.org/abs/2107.14586
https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.29012/jpc.v7i3.405
http://arxiv.org/abs/2105.09266
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2009.11462
http://arxiv.org/abs/2210.01504

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2022. Survey of hallucination in natural language generation. CoRR,
abs/2202.03629.

Konrad Konigsberger. 2000. Analysis 2. Springer Berlin Heidelberg.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. 2021. Deduplicating training data makes language models better.
CoRR, abs/2107.06499.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. 2022. Large language models
can be strong differentially private learners|

Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami Smaili, Rahul Gupta, and Richard Zemel.
2022. Differentially private decoding in large language models.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detection using probability curvature.

Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and federated learning.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE.

Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Alexandre Sablayrolles, Matthijs Douze, Yann Ollivier, Cordelia Schmid, and Hervé Jégou. 2019.
White-box vs black-box: Bayes optimal strategies for membership inference.

Brihat Sharma, Yanjun Gao, Timothy Miller, Matthew M Churpek, Majid Afshar, and Dmitriy
Dligach. 2023. Multi-task training with in-domain language models for diagnostic reasoning.
arXiv preprint arXiv:2306.02077.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Membership inference
attacks against machine learning models,

Rebecca Soper. 2023. Can ai help you build relationships? amorai thinks so. https://techcrunch.
com/2023/05/13/ai-relationship-building-amorai/.

Nikhil Vyas, Sham Kakade, and Boaz Barak. 2023. Provable copyright protection for generative
models.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David Rosenberg, and Gideon Mann. 2023. Bloomberggpt: A large
language model for finance. arXiv preprint arXiv:2303.17564.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, and Reza Shokri. 2021. Enhanced membership
inference attacks against machine learning models. CoRR, abs/2111.09679.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. 2018. Privacy risk in machine
learning: Analyzing the connection to overfitting,

Weichen Yu, Tianyu Pang, Qian Liu, Chao Du, Bingyi Kang, Yan Huang, Min Lin, and Shuicheng
Yan. 2023. Bag of tricks for training data extraction from language models.

http://arxiv.org/abs/2202.03629
https://doi.org/10.1007/978-3-662-05702-5
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2110.05679
http://arxiv.org/abs/2110.05679
http://arxiv.org/abs/2205.13621
http://arxiv.org/abs/2301.11305
https://doi.org/10.1109/sp.2019.00065
https://doi.org/10.1109/sp.2019.00065
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
http://arxiv.org/abs/1908.11229
http://arxiv.org/abs/1610.05820
http://arxiv.org/abs/1610.05820
https://techcrunch.com/2023/05/13/ai-relationship-building-amorai/
https://techcrunch.com/2023/05/13/ai-relationship-building-amorai/
http://arxiv.org/abs/2302.10870
http://arxiv.org/abs/2302.10870
http://arxiv.org/abs/2111.09679
http://arxiv.org/abs/2111.09679
http://arxiv.org/abs/1709.01604
http://arxiv.org/abs/1709.01604
http://arxiv.org/abs/2302.04460

A Additional Related Work on LLLM Privacy.

[Carlini et al.| (2021); | Yu et al.| (2023)] focus on the problem of training data extraction from LLMs
by generating samples from the model, using loss-based MIAs to determine if the generated point is
actually a member of the training set that has been memorized. Both papers focus more on extraction
than explicitly evaluating membership inference attack success, and acknowledge existing MIAs
against LLMs are relatively weak. [Jang et al.|(2022)] studies the problem of unlearning a training
point from a trained model via taking gradient ascent steps. One metric they use to determine if a
point has been unlearned is if the loss on a point x that has been unlearned is close to the expected
loss for a test point. Our work has implications for this kind of definition of unlearning, as our results
show that an average LOSSy value does not mean the point cannot be easily detected as a training
point. Differentially private training |Dwork et al.|(2016)) is a canonical defense against MIAs, and
there has been a flurry of recent work on private model training in NLP [[Anil et al.|(2021a); Majmudar
et al.| (2022); Dupuy et al.[(2022)]. While [L1 et al.| (2022)] report success in fine-tuning language
models with differential privacy, it is know that privacy during pre-training comes at a great cost
to accuracy [Anil et al.|(2021b)]. Since pre-training with differential privacy remains a challenge,
existing work provides theoretical mitigation guarantees against our attacks on pre-trained models.

B Pythia Suite.

We identified EleutherAl’s Pythia [Biderman et al.[(2023b)] suite of models as the prime candidate for
studying membership inference attacks. Models in the Pythia suite are trained on the Pile [|Gao et al.
(2021)] dataset, which is an 825GB dataset of about 300B tokens, consisting of 22 primarily academic
sources. All our experiments are using models trained on a version of the Pile that was de-duplicated
using MinHashL.SH with a threshold of 0.87, which reduces the size to 207B tokens. We perform our
experiments in the de-duplicated regime as it has been shown that the presence of duplicated data
greatly increases the likelihood of training data memorization [Lee et al[(2021)], and so attacks in the
de-duplicated setting are significantly more compelling. We use a model checkpoint corresponding
to one full pass over the de-duplicated Pile. The data is tokenized using a BPE tokenizer developed
specifically on the Pile. Training examples are 2048 tokens, and the batch size used during training is
1024. In order to maintain an apples-to-apples comparison between train and test examples, we batch
test examples identically when evaluating our MIA attacks. Importantly, the Pile contains train vs.
test splits which allow us to evaluate our MIA attacks, and is also annotated with the order of points
during the training of all models allowing us to study the implications of training order for privacy.

The models in the Pythia suite are open source and available through Hugging Face, have publicly
available model checkpoints saved during training, and range in size from 70m parameters to 12B.
The models follow the transformer-based architecture in [Brown et al. (2020)], with some small
modifications [Biderman et al.| (2023b)].

C Compute Usage

We performed all experiments on AWS p3.2x1large and g5.12x1arge instances. Evaluating MoPeg
on the smallest size can be done in a Colab notebook; the largest size takes approximately 200 GPU
hours on A10G GPUs (48 hours on 4 cores). In total, we used approximately 1000 GPU hours to
perform the experiments in this paper.

D Hyperparameter Tuning

For MoPey we use n = 20 perturbed models; since we are approximating an expectation, we expect
our attack to be more accurate if we consider more models, but we also need to balance computational
considerations. We found the best noise level o for the models of sizes up to 2.8B parameters, by
conducting a grid search over o = [0.001, 0.005, 0.01, 0.05]. The highest AUC was achieved at 0.01
for the 1B parameter model, 0.001 for the 2.8B model and 0.005 for the remaining models. This
suggests that there was no relationship between the optimal value of ¢ and the model size. For the
6.9B and 12B parameter models, we chose a noise level of 0.005. We record the AUCs achieved at
different noise levels in Table [Z]in the Appendix.

Model | 0=.001 | 0=.005| 0=.01 | 0=.05
70M | 0.6034 | 0.6069 | 0.5708 | 0.4906
160M | 0.6394 | 0.6478 | 0.5613 | 0.5121
410M | 0.5915 | 0.5958 | 0.5367 | 0.5190

1B 0.5028 | 0.5142 | 0.5924 | 0.5111
1.4B | 0.5652 | 0.5656 | 0.5502 | 0.5136
2.8B | 0.5320 | 0.5086 | 0.5109 | 0.5030

Table 2: MoPey AUC per model size and noise level o.

E Ensemble Attacks and LOSS/MoPe Scatters

Below, we present ROC curves for the combined MoPE/LOSS attack at the largest model sizes,
where ensembling has substantial improvements. Additionally, we show scatter plots of MoPey and
LOSSy values in our tests with little correlation, indicating that MoPey must identify points that LOSSy
does not.

6.9b combination

1.0 4

0.8
et
)
= 0.6
]
2
]
W0
o
=
o 0.4+
2
',_

0.2

7 6.9b MoPe (AUC = 0.5217)
— 6.9b LOSS (AUC = 0.5227)
0.0 — 6.9b 0.55*MOPE + 0.45*L0OSS (AUC = 0.5500)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 2: LOSSy and MoPey Ensemble Attack

LOSS predictions (z-score, log-modulus) LOSS predictions (z-score, log-modulus) LOSS predictions (z-score, log-modulus)

LOSS predictions (z-score, log-modulus)

70m

160m

0.5

0.0 4

-0.51

=104

—154

2.0

0.5

0.0

;@ o “ol® o
"--!"}‘M .:.-

escofe, ofs S0 ¥

-15 -1.0 -0.5 0.0 0.5 10 15

-15 -1.0 -0.5

0.0

1b

0.5

2.0

0.5

0.0 4

—054

~104

=15+

2.01

2.0

0.5

0.0

=0.51

~104

—154

2.0

0.5

0.04

=0.51

—104

2.0

Training
® Validation

—2.0

-15 -1.0 -0.5 0.0 0.5 1.0
MoPe predictions (z-score, log-medulus)

-15 -1.0 -0.5

0.0

0.5

MoPe predictions (z-score, log-modulus)

Figure 3: LOSSy vs. MoPeg scatter plots across model sizes.

F Effect of Training Order on MIA Statistics

Below, we investigate how LOSSy and MoPey statistics vary on average depending on when they are
processed during training. Concretely, we sample 2000 points from 10 paired batches {0 — 1,9999 —
led,19999 — 2e4,...89999 — 9e4,97999 — 9.8e4}, which approximately correspond to the first
and last data batches that the Pythia models see during pre-training. For each set of 2000 points,
we compute the average LOSSy and MoPey values with respect to the 6 reached at the end of the
first epoch. Consistent with previous findings, loss declines for more recent batches; in contrast,
there is no such observable pattern at any fixed model size for the MoPey statistic! This finding is
consistent with recent work [Biderman et al.| (2023alb)] that studies memorization in the Pythia suite
and find no correlation between order in training and if a point is “memorized” (as defined in terms
of extractability).

LOSS Value vs lterations - 1B

2.18
—— Avg LOSS Stat in Train Batch

™
i
=

LOSS Values

™
.
~

T T T T T T T T T T
led 2e4 3e4 4e4 5e4 6e4 Te4 8ed 9e4 9.8e4
Training Batch #

MoPe Value vs Iterations - 1b

= -

—— Avg MoPe Stat in Train Batch

—0.465 -

—0.470 4

—0.475 4

MoPe Values

—0.480 4

—0.485 4

—0.490 4

T T T T T T T
ded 5ed4 6ed Te4 B8ed 9e4 9.8e4
Training Batch #

-
=
m
B
™
o
B
w
1]
=

Figure 4: Average LOSSy and MoPey scores per training batch with 95% CI for 1B model.

G Combined MIA ROC Curves

Below, we show combined ROC curves for LOSSy, MoPey, and DetectGPT membership inference
attacks across model sizes.

LOSS across model sizes

1.0 1 .
y
0.8 4
8
[}
o 0.6
']
2
=
I3
g 70m (AUC = 0.5075)
g 0.4 —— 160m (AUC = 0.5118)
= —— 410m (AUC = 0.5135)
—— 1b (AUC = 0.5161)
0.2 4 —— 1.4b (AUC = 0.5168)
L —— 2.8b (AUC = 0.5039)
e —— 6.9b (AUC = 0.5227)
004 <& 12b (AUC = 0.5252)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
MoPe across model sizes
1.0 A
0.8 1
&
m
= 0,6+
1)
2z
ad
8 70m (AUC = 0.6069)
g 0.4 1 160m (AUC = 0.6478)
= 410m (AUC = 0.5958)
1b (AUC = 0.5924)
0.2 4 1.4b (AUC = 0.5656)
2.8b (AUC = 0.5086)
2 6.9b (AUC = 0.5217)
004 =& 12b (AUC = 0.5164)
: : : : : :
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
DetectGPT
1.0 1
0.8
E
L]
o 0.6 A
Q
2
=
w
o
a.
v 0.4 -
g
70m (AUC = 0.5208)
0.2 —— 160m (AUC = 0.5155)
—— 410m (AUC = 0.5254)
—— 1b (AUC = 0.5322)
0.0 —— 1.4b (AUC = 0.5336)

T T
0.0 0.2 0.4 0.6 0.8 L0
False Positive Rate

Figure 5: LOSSy, MoPey, DetectGPT ROC curves.

12

	Introduction
	Membership Inference Attacks on LLMs
	Perturbation Privacy Attacks
	Attack Results
	Social Impact Statement
	Future Directions
	Additional Related Work on LLM Privacy.
	Pythia Suite.
	Compute Usage
	Hyperparameter Tuning
	Ensemble Attacks and LOSS/MoPe Scatters
	Effect of Training Order on MIA Statistics
	Combined MIA ROC Curves

