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ABSTRACT

Data collected in the Global COVID-19 Trends and Impact Surveys
(UMD Global CTIS), and data on variants sequencing from GISAID,
are used to evaluate the impact of the Omicron variant (in South
Africa and other countries) on the prevalence of COVID-19 among
unvaccinated and vaccinated population, in general and discrim-
inating by the number of doses. In South Africa, we observe that
the prevalence of COVID-19 in December (with strong presence
of Omicron) among the unvaccinated population is comparable to
the prevalence during the previous wave (in August-September), in
which Delta was the variant with the largest presence. However,
among vaccinated, the prevalence of COVID-19 in December is
much higher than in the previous wave. In fact, a significant re-
duction of the vaccine efficacy is observed from August-September
to December. For instance, the efficacy drops from 0.81 to 0.30 for
those vaccinated with 2 doses, and from 0.51 to 0.09 for those vacci-
nated with one dose. The study is then extended to other countries
in which Omicron has been detected, comparing the situation in
October (before Omicron) with that of December. While the re-
duction measured is smaller than in South Africa, we still found,
for instance, an average drop in vaccine efficacy from 0.53 to 0.45
among those vaccinated with two doses. Moreover, we found a
significant negative (Pearson) correlation of around —0.6 between
the measured prevalence of Omicron and the vaccine efficacy.
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1 INTRODUCTION

The Omicron variant B.1.1.529 of SARS-CoV-2 has seen an impres-
sive increase by January 2022 (when this study was completed),
since its initial classification in November 2021 [21]. In South Africa
it appears to have out-competed the Delta variant [10] and has
rapidly spread into Europe and other regions. Preliminary observa-
tions also indicate that it might spread faster and might have higher
immune evasiveness than previous variants [12]. While vaccination
still provides a level of protection against a serious disease [25],
recent results [14, 18, 20, 23] point towards a reduced level of pro-
tection against infection, especially from 15 weeks post the second
dose [3], and it is likely that the number of breakthrough infections
(i.e., infections among vaccinated people) will rise with the spread
of Omicron. It is also possible that the rapid spread of Omicron is
not only a consequence of high transmissibility but also of immune
evasiveness [18]. Some of the preliminary models [27] showed that
high transmissibility in combination with high immune evasiveness
could lead to a concerning health system overload [17].

Since the Spring of 2020, the University of Maryland in col-
laboration with Facebook has collected extensive survey data on
self-reported symptoms, infection, testing, behavior and, more re-
cently, vaccination status (UMD Global CTIS) [5, 30]. In mid De-
cember 2021, researchers used data from this survey concerning
the Gauteng province in South Africa to define different combina-
tions of symptoms that are associated with COVID-19 infection,
and combined those with self-reported vaccination status to com-
pare vaccine efficacy changes from a Delta dominant period to the
current Omicron dominant period [31]. Their findings showed a
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measurable drop of efficacy towards infection for those vaccinated
with two doses.

In this study we use self-reported confirmation of COVID-19
infection, from a subset of the UMD Global CTIS survey responses,
to derive an improved proxy for COVID-19 active cases (using a
Random Forest classifier) that tracks more closely the evolution of
confirmed cases. We use this improved proxy for analysing preva-
lence and vaccine efficacy changes in South Africa as a whole,
and in the Gauteng province, among those unvaccinated, partially
vaccinated, and fully vaccinated. We also compute results in other
countries that are currently experiencing a rise of Omicron B.1.1.529
cases, which show a significant negative correlation between the
prevalence of Omicron and the vaccine efficacy.

2 METHODS

2.1 Self-reported Survey Data

We use the responses to the UMD Global CTIS, which collects
more than 100,000 responses daily across the world (except in the
US, where the survey is run by CMU [26]). We have access to the
responses collected by agreement with UMD and Facebook (see
Appendix A). All the participants in the CTIS have declared to be
at least 18 years of age. The first step is removing abnormal re-
sponses, as proposed in Alvarez et al. [2]: We remove responses
that declare to have all symptoms or that declare unusual values
(greater than 100) in the quantitative questions of the survey (e.g.,
days of symptom duration, number of symptomatic contacts, num-
ber of people staying at the same place, etc.). In order to classify
the responses as positive or negative, several criteria have been
proposed in the literature. In particular, we consider the following
symptom-based COVID-like illness classifiers (see Appendix C for
the list of symptoms collected in the survey):

e UMD CLI [2, 8]: A response is considered to be positive if it
declares fever (symptom B1_1), along with cough (symptom
B1_2), or shortness of breath / difficulty breathing (symptom
B1_3). Otherwise, it is negative.

e Stringent CLI [31]: A response is positive if it declares anos-
mia (symptom B1_10), combined with fever (B1_1), muscle pain
(B1_6), or cough (B1_2). Otherwise, it is negative.

e Classic CLI [31]: A response is positive if it declares cough (B1_2),
combined with fever (B1_1), muscle pain (B1_6), or anosmia
(B1_10). Otherwise, it is negative.

e Broad CLI [31]: A response is positive if it declares muscle pain
(B1_6), combined with fever (B1_1), cough (B1_2), or anosmia
(B1_10). Otherwise, it is negative.

2.2 Machine Learning Classifier: Random Forest

The above methods for classifying cases as positive or negative
have two main limitations. First, they do not take into account
diagnostic uncertainty, e.g., the same set of symptoms might be
associated with some other condition. Second, these criteria are
not adaptive to possible changes in the symptoms experienced as
conditions change, e.g., as vaccination rates increase or new virus
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variants emerge. Thus, in this work, we introduce a new machine-
learning-based classifier: Random Forest!.

2.2.1 Ground-truth Set. After curating the responses, the next task
we face is determining whether they correspond to active cases
of COVID-19. This is somewhat direct for the subset of responses
that respond affirmatively to the survey question “B7: Have you
been tested for COVID-19 in the past 14 days?" and then respond
positively or negatively to the survey question “B8a: Did your most
recent test find that you had COVID-19?" [29]. For this work, we as-
sume that a participant responding affirmatively to both questions
is an active case of COVID-19 (i.e., it is a positive case). Similarly, a
participant responding affirmatively to Question B7 and negatively
to Question B8a is assumed not infected with COVID-19 (i.e., nega-
tive). This set of classified responses constitute a ground-truth set,
for which infection status (positive or negative) is available. Observe
that some positive cases in the ground truth are asymptomatic.
Unfortunately, this ground-truth set cannot be used directly
to estimate the prevalence of COVID-19 in the overall population,
because the set is usually very small and is not produced via uniform
random sampling: People who have reason to believe they may
be infected are more likely to be tested and therefore the ratio of
positives among those tested in the latest 14 days (i.e., the testing
positive rate, abbreviated TPR) is higher than the actual prevalence.

2.2.2 Creating the Machine Learning Classifier: Random Forest.
Each response to the survey includes a large number of questions.
Obviously, not all participants answer all questions, but a large
fraction responds to the most important questions. For instance, in
December 2021, out of 19, 740 responses from South Africa, 19,014
reported whether they had had COVID-19 or not. For training and
inference of the Random Forest classifier, we use only questions
with answers holding discrete values. From these we remove ques-
tions B7 and B8a, which are only used to create the ground-truth
set, as well as related questions, such as “B0: As far as you know,
have you ever had coronavirus (COVID-19)?” and “B15: Do any of
the following reasons describe why you were tested for COVID-19
in the past 14 days?”. Finally, we do not use the questions related
to vaccination, since we do not want them to influence the clas-
sification. The set of questions used can be found in Appendix D,
and includes almost 100 different questions (not only symptoms).
The answers to this set of questions are “dummified" before they
are used, i.e., a question with k possible answers (one of which
can be NA/NaN) is replaced by k binary attributes. The Random
Forest model is generated with the randomForest function in R. No
hyperparameter tuning is done, and the standard options of the
function are used, with the exception of limiting the model to 100
trees to reduce the training time.

Observe that the set of questions includes all symptoms, but also
has many more questions, including behavioral or demographic as-
pects. Since the ground truth contains asymptomatic positive cases,
the Random Forest classifier also identifies positive asymptomatic
cases. Moreover, the Random Forest classifier can give different
weights to different symptoms, while previously proposed symptom
based criteria are based on determining only whether a symptom is

!We have experimented with other ML algorithms, like XGBoost, and the results are
almost the same as those obtained with Random Forest.
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Country Quarter | Classifier Accuracy | Sensitivity | Specificity | F-score
Random Forest 0.85 0.80 0.86 0.61
UMD CLI 0.78 0.74 0.79 0.25
Argentina 2021-Q3 | Stringent CLI 0.82 0.85 0.82 0.44
Classic CLI 0.81 0.67 0.83 0.48
Broad CLI 0.80 0.64 0.82 0.45
Random Forest 0.95 0.81 0.96 0.51
UMD CLI 0.94 0.58 0.95 0.36
Japan 2021-Q3 | Stringent CLI 0.95 0.77 0.95 0.39
Classic CLI 0.93 0.44 0.96 0.42
Broad CLI 0.91 0.29 0.95 0.29
Random Forest 0.83 0.81 0.83 0.71
UMD CLI 0.71 0.70 0.72 0.34
South Africa | 2021-Q3 | Stringent CLI 0.79 0.87 0.77 0.57
Classic CLI 0.77 0.71 0.80 0.61
Broad CLI 0.76 0.70 0.78 0.57
Random Forest 0.90 0.71 0.91 0.51
UMD CLI 0.88 0.63 0.89 0.35
Argentina 2021-Q4 | Stringent CLI 0.88 0.70 0.89 0.37
Classic CLI 0.86 0.48 0.91 0.44
Broad CLI 0.86 0.47 0.90 0.42
Random Forest 0.97 0.69 0.97 0.31
UMD CLI 0.96 0.26 0.97 0.20
Japan 2021-Q4 | Stringent CLI 0.97 0.59 0.97 0.30
Classic CLI 0.94 0.18 0.97 0.22
Broad CLI 0.93 0.11 0.97 0.14
Random Forest 0.83 0.69 0.85 0.55
UMD CLI 0.79 0.63 0.81 0.35
South Africa | 2021-Q4 | Stringent CLI 0.80 0.74 0.80 0.32
Classic CLI 0.80 0.58 0.84 0.48
Broad CLI 0.80 0.58 0.84 0.47

Table 1: Performance for three different countries in two different 3-month periods (2021-Q3: July-September 2021 and 2021-Q4:
October-December 2021) of the different classifiers in the ground-truth set, when randomly divided into training (70%) and
testing (30%) subsets. The highest value for each country, period, and metric is shown in bold.

present or not. Thus, overall the Random Forest classifier is much
more versatile than the symptom-based criteria described in the
previous section. Additionally, there are other aspects that make the
Random Forest classifier(s) more adaptive: (1) We create different
models for different countries. It is expected that different countries
will have local characteristics, thus training a different classifier for
each country can capture them. (2) We create not one but several
models per country: one for each 3-month period. This allows the
model to capture and adapt to aspects that change over time, like
the level of vaccination, the surge of new variants, or the stringency
of measures imposed.

2.2.3 Evaluating the Classifiers. In order to verify whether the
Random Forest classifier provides better proxy estimates than the
symptoms-based classifiers, we selected a set of countries and tested
the performance of each classifier in the last two quarters of 2021.
To this end, we randomly divided the ground-truth set into a train-
ing and a testing set, with 70% and 30% of the responses of the
ground-truth set in each subset, respectively. Table 1 shows the
results for three countries that have detected Omicron in December

for the periods of July-September 2021 (2021-Q3) and of October-
December 2021 (2021-Q4). The classification performance metrics
used are accuracy (ratio of cases correctly classified over the size
of the test set), sensitivity / recall (ratio of cases correctly classified
as positive over the number of positive cases), specificity (ratio of
cases correctly classified as negative over the number of negative
cases), and F-score (harmonic mean of precision and recall, where
the precision is the ratio of cases correctly classified as positive over
the number of all cases classified as positive). As can be seen in Ta-
ble 1, Random Forest almost always shows the highest performance
(marked in bold) among the classification methods used.

As another test, we then selected a set of countries that includes
South Africa, along with the 20 countries that have the largest
number of available responses in the UMD Global CTIS dataset. For
each of these countries, the first two columns of Table 2 show the
official Test Positivity Rates obtained via Our World In Data [22, 24]
(OWID TPR) and the corresponding survey-based estimate from
the UMD Global CTIS dataset (CTIS TPR). The remaining columns
show the Pearson correlation coefficient between the time series
of Confirmed active cases (computed based on data from Johns
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Pearson correlation with Confirmed
OWID | CTIS || Random | UMD | Stringent | Classic | Broad

Country TPR TPR Forest CLI CLI CLI CLI

Argentina 0.09 0.17 0.95 0.97 0.96 0.92 0.91
Australia 0.01 0.02 0.93 0.46 0.31 -0.10 0.03
Brazil - 0.19 0.98 0.03 0.82 0.36 0.46
Canada 0.03 0.04 0.94 0.85 0.66 0.73 0.71

France 0.03 0.05 0.92 0.69 0.80 0.57 0.61

Germany 0.09 0.01 0.96 0.88 0.91 0.82 0.81

Hungary 0.08 0.16 0.93 0.85 0.95 0.82 0.79
India 0.02 0.16 0.31 -0.38 -0.31 -0.71 -0.37
Italy 0.02 0.03 0.98 0.86 0.85 0.71 0.72
Japan 0.05 0.04 0.93 0.90 0.84 -0.17 0.67
Mexico 0.27 0.22 0.97 0.99 0.98 0.95 0.98
Poland 0.08 0.16 0.96 0.82 0.97 0.80 0.80
Romania 0.07 0.09 0.94 0.96 0.98 0.96 0.95
Russia 0.05 0.14 0.38 0.34 0.37 0.41 0.33
South Africa 0.16 0.24 0.93 0.92 0.84 0.97 0.98
Spain 0.07 0.09 0.93 0.82 0.79 0.48 0.52
Sweden 0.06 0.05 0.91 0.83 0.74 0.71 0.67
Thailand 0.20 0.07 0.85 0.83 0.92 0.84 0.77
Ukraine 0.20 0.16 0.97 0.87 0.95 0.91 0.89
United Kingdom 0.04 0.06 0.84 0.70 0.52 0.59 0.60
Vietnam 0.06 0.02 0.83 0.79 0.79 0.74 0.78
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Table 2: Test-positivity rate (TPR) obtained from OWID and extracted from the UMD Global CTIS data for the 20 countries with
largest survey data and South Africa. Values of at most 0.1 are shown in bold. The rest of columns show the Pearson correlation
coefficient of each different proxy with the Confirmed time series. Correlation values of at least 0.9 are shown in bold. The
time period used is Jun 18th, 2021 to Dec 31st, 2021. The estimates have been smoothed with a rolling average of 14 days.

Hopkins University [11] as described by Alvarez et al. [2]) and that
of each of the candidate proxies in the period June 18th, 2021 (start
of the first period considered in [31]), to December 31st, 2021. All
time series have one value per day, which is the average of the
latest 14 days.

We can make two observations from Table 2. First, among all
candidate proxies considered, Random Forest achieves at least 0.9
correlation for the largest number of countries. Second, 17 out of
the 21 countries exhibit low TPR (< 0.1) values in at least one of
the first two columns (either official or survey-based TPR), and 11
out of the 21 exhibit low values in both columns, with 7 having
values no higher than 0.05 (the WHO considers countries to have
the epidemic under control when their TPR is below 0.05 [32]). This
suggests that such countries keep the case count under control and
report more accurate official data on confirmed cases. We can thus
interpret the higher correlation between the Random Forest proxy
and the Confirmed time series for the countries with low TPR as a
sign that this proxy constitutes the most promising option among
the five proxies considered, and thus will also be more accurate for
countries for which the official data will be less reliable.

2.3 Prevalence and Efficacy Estimation

The prevalence of COVID-19 estimated by a given classifier is the
ratio between the number of positive cases over the total number
of responses. Then, we consider four subsets of responses:

e Unvaccinated: Participants that respond negatively to the ques-
tion “V1: Have you had a COVID-19 vaccination?"

e Vaccinated: Participants that respond positively to Question V1.

e Vaccinated with 1 dose: Participants that respond positively to
Question V1 and declare having received 1 dose in Question “V2:
How many COVID-19 vaccinations have you received?"

e Vaccinated with 2 doses: Participants that respond positively to
Question V1 and declare having received 2 doses in Question V2.

Unfortunately, from the questions in the UMD Global CTIS it is not
possible to know whether those with one dose are fully vaccinated,
i.e., they have received a one-dose vaccine, or they simply received
only the first dose of a two-dose vaccination. Similarly, it is not
possible to know whether a survey respondent received a booster
shot. For each of the above subsets, the prevalence of COVID-19 is
computed as the fraction of responses classified as positive among
the responses that report a given vaccination status. For each proxy
we also estimate the vaccine efficacy (Vg) against illness as in [31],
based on the estimates of prevalence among unvaccinated (Py) and
vaccinated (Py):

VE=1-Py/Py.

The confidence intervals of this metric are obtained using the Katz-
log Method [1]. Since we have three subsets of vaccinated partici-
pants, we compute the vaccine efficacy for the subsets Vaccinated,
Vaccinated with 1 dose, and Vaccinated with 2 doses.
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Figure 1: Prevalence in South Africa obtained with the different proxies, smoothed with a rolling average of 14 days from June
18th to December 31st, 2021. In plot (a) we have the actual ratio (note that the y axis is in logarithmic scale). In plot (b) all
curves are normalized so the smallest value is 0 and the largest value is 1.
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Figure 2: Prevalence (a) and vaccination efficacy (b) in South Africa among people with different levels of vaccination, estimated

with Random Forest.

2.4 Countries and Time Periods

2.4.1 South Africa. The main objective of this work is to evaluate
the change in vaccine efficacy due to the Omicron variant. To this
end, we evaluate the decrease in vaccine efficacy in South Africa
and the Gauteng province, which is among the most affected, from
mid-June 2021 until the end of 2021. Moreover, to ensure that we
have sufficient data for our estimates, we concentrate on three
recent time periods, each lasting about a month, where more data
is available. During two of these time periods the Delta variant is

dominant: i) June 18 to July 18, 2021, the period considered in [31]
with low vaccination level, and ii) August 9 to September 6, 2021;
while in the last time period, December 1st to 31st, 2021, Omicron
is dominant (the information on variant presence is obtained from
[22], which extracts it from [7] via [10], details are available Table 5).

2.4.2  World. Beyond South Africa, we study the 50 countries for
which the UMD Global CTIS has the largest amount of data. For all
of them we compute the vaccine efficacy in the month of October (in
which Omicron was still not present) and in the month of December
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(in which Omicron was present). A computed efficacy value is only
considered if i) it is non-negative, ii) both prevalences Py and Py are
at least 0.01, and iii) the number of samples used to compute them
is at least 1000. We only consider further those countries for which
these three conditions hold for the efficacy value in December of at
least one among the vaccination status cases we consider.

We have observed that the information on prevalence of Omicron
becomes available [22] with a significant delay. Hence, most coun-
tries do not report relevant presence of Omicron until the second
half of December 2021. For that reason, we consider the prevalence
of Omicron reported from December 15th, 2021 to January 7th, 2022.
Furthermore, among the countries mentioned above, in order to
have a reasonable estimate of the prevalence of the Omicron vari-
ant, we consider only countries whose data is based on sequencing
at least 30 virus samples. We say that these are the countries with
presence of Omicron. For all countries with presence of Omicron, we
compare the estimated vaccination efficacy using Random Forest
among all three vaccination groups and for both periods. For this,
we adopt simple statistical methods, such as correlation analysis.

3 RESULTS
3.1 Prevalence and Vaccination Efficacy in
South Africa

Figures 1a and 1b show the prevalence of COVID-19 in South Africa
in the period June 18th to December 31st, 2021, with the different
proxies. The direct approach of Figure 1a shows a gap between
the estimate Confirmed derived from the official number of cases
and the other proxies. This gap can be explained in part by under-
detection in the official number of cases (in South Africa the test-
positivity rate is above 15%, as seen in Table 2). More generally (in
South Africa and elsewhere) symptom-based proxies can overes-
timate the number of cases when respondents report symptoms
that are consistent with COVID-19 but are produced by some other
condition. Figure 1b shows that if each curve is independently nor-
malized to the unit scale, all proxies closely track the evolution of
the official number of cases Confirmed.

We also analyzed the prevalence of COVID-19 in South Africa
depending on the vaccination status with the different proxies.
Our results (see Figures 5a to 5d in the Appendix) indicate that
the UMD CLI and Stringent CLI proxies show a low infection
prevalence in July-September and December when compared with
the other proxies. On the other hand, Classic CLI and Broad CLI
show a high prevalence in the period October-November, when
the official data was showing that the number of cases was very
low, possibly because of existing symptoms in the population not
related to COVID-19.

Here we focus on the Random Forest proxy; Figure 2a shows the
prevalence in South Africa across all reported vaccination states.
We can observe that the magnitude of the two waves (August-
September and December) is similar among the Unvaccinated pop-
ulation, while in the vaccinated groups (Vaccinated, Vaccinated
with 1 dose and Vaccinated with 2 doses) there is a much higher
rate of prevalence in the December wave. This hints at a decrease of
vaccine efficacy towards infection with the introduction of Omicron,
as we will show next. We also observe that, as expected, subjects
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vaccinated with two doses show higher protection that those re-
porting only one dose (with Vaccinated somewhere in between
since it combines both groups).

As for vaccination efficacy, Figure 2b shows the estimates for
South Africa, again with Random Forest. The estimates in October-
November have lower quality due to the sharp reduction of cases
in that period. However, when contrasting the August-September
period (with mostly Delta presence) to the December period (with
mostly Omicron presence) we can clearly observe the reduction of
vaccine efficacy towards infection in the latter.

Table 3 quantifies the estimated efficacy for the three periods
of interest and for the five classifiers, for South Africa and for the
Gauteng province.

3.2 Prevalence and Vaccination Efficacy in the
World

From the 50 countries with the largest amount of data in the CTIS
and having presence of Omicron, we select those with an acceptable
estimated efficacy value (where estimates are accepted if they follow
the three rules listed in Section 2.4.2). This results in a set of 24
countries. Table 4 presents the estimates of virus prevalence in the
these countries in the periods of October and December, and also
estimates of vaccination efficacy towards infection. Details about
vaccination levels are presented in Table 8 (vaccination data is
obtained from [19, 22]; the different vaccine types used in different
countries have not been taken into account).

Both prevalence estimates and the derived efficacy estimates
are obtained by the Random Forest classifier and shown with 95%
confidence intervals. The left-hand side of Table 4 focuses on the
data from individuals that declared their overall vaccination status
(using groups Vaccinated, Unvaccinated); its right-hand side makes
a more detailed characterization by considering the number of
doses declared (groups Vaccinated with 1 dose, Vaccinated with
2 doses, Unvaccinated). We also observe that there is less data on
individuals with only one dose, since this is a transient state in the
vaccination sequence. The full information on sample sizes can be
consulted in Tables 9 and 10.

Figure 3 complements the data in the tables. Figure 3a shows
three pairs of box plots. Each pair allows comparing vaccine efficacy
in October and December when considering data from the selected
countries. We observe that although results are inconclusive for
Vaccinated with 1 dose, there is a clear decrease of overall efficacy
when considering Vaccinated and Vaccinated with 2 doses. Tabular
data is available in Table 6.

Figures 3b-3d allow us to see a clear trend when plotting effi-
cacy against the most recent relative level of Omicron presence in
each selected country. For each case, we present a smoothed line
(Loess fitting curve, in blue), depicting a clear decreasing trend. We
also evaluated the correlation coefficient (using Pearson correla-
tion) and the corresponding p-value, which confirms its statistical
significance for the usual a = 5% (details in Table 7).

4 DISCUSSION

After its surge in South Africa, the Omicron variant is increasing
in prevalence in other countries. Although it is still unclear if this
variant is associated to a milder disease [13] several studies have
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Dec
Efficacy [95%CI]

Gauteng

Jun-Jul Aug-Sep Dec
Method Efficacy [95%CI] | Efficacy [95%CI] | Efficacy [95%CI]
South Africa

Vaccinated
Random Forest | 0.54 [0.48,0.59] 0.62 [0.58,0.65] 0.24 [0.17,0.30]
UMD CLI 0.60 [0.53,0.66] | 0.66 [0.61,0.70] | 0.46 [0.39,0.51]
Stringent CLI | 0.69 [0.63,0.74] | 0.70 [0.66,0.73] | 0.48 [0.40,0.55]
Classic CLI 0.55 [0.50,0.59] | 0.56 [0.52,0.59] | 0.38 [0.33,0.43]
Broad CLI 0.50 [0.44,0.54] | 0.49 [0.44,0.52] | 0.36 [0.30,0.41]

0.43 [0.33,0.51]
0.58 [0.44,0.68]
0.64 [0.53,0.72]
0.50 [0.42,0.58]
0.49 [0.39,0.57]

0.62 [0.54,0.69
0.63 [0.51,0.73
0.70 [0.61,0.78
0.51 [0.42,0.59
0.41 [0.31,0.50

]
]
]
]
]

0.30 [0.18,0.40]
0.52 [0.41,0.61]
0.57 [0.43,0.67]
0.48 [0.39,0.55]
0.45 [0.35,0.53]

Vaccinated with one dose

Random Forest | 0.50 [0.44,0.56] | 0.51 [0.46,0.55] | 0.09 [0.00,0.18]
UMD CLI 0.61[0.54,0.68] | 0.56[0.50,0.62] | 0.21[0.09,0.31]
Stringent CLI 0.67 [0.61,0.73] | 0.60 [0.54,0.65] | 0.23[0.07,0.36]
Classic CLI 0.53 [0.47,0.57] | 0.47 [0.42,0.51] | 0.21[0.13,0.28]
Broad CLI 0.46 [0.40,0.52] | 0.39[0.34,0.44] | 0.18 [0.09,0.26]

0.40 [0.28,0.49]
0.60 [0.46,0.71]
0.62 [0.49,0.71]
0.47 [0.37,0.56]
0.44 [0.33,0.53]

0.54 [0.44,0.63
0.58 [0.42,0.70
0.61 [0.47,0.71
0.47 [0.36,0.56
0.34 [0.20,0.45

]
]
]
]
]

0.14 [0.00,0.30]
0.38 [0.18,0.53]
0.39 [0.13,0.57]
0.35 [0.20,0.46]
0.29 [0.14,0.42]

Vaccinated with two doses

Random Forest | 0.76 [0.64,0.84] | 0.81 [0.78,0.84] | 0.30 [0.23,0.36]
UMD CLI 0.75 [0.57,0.86] | 0.85[0.79,0.88] | 0.56[0.50,0.61]
Stringent CLI 0.82[0.66,0.90] | 0.88[0.84,0.91] | 0.59[0.51,0.65]
Classic CLI 0.77 [0.66,0.84] | 0.71[0.67,0.75] | 0.45 [0.40,0.49]
Broad CLI 0.75 [0.63,0.83] | 0.66 [0.61,0.71] | 0.43[0.37,0.48]

0.62 [0.36,0.78
0.69 [0.27,0.87
0.85 [0.55,0.95
0.79 [0.59,0.90
0.80 [0.59,0.91]

]
]
]
]

0.77 [0.67,0.85
0.73 [0.54,0.84
0.88 [0.76,0.94
0.58 [0.44,0.68
0.54 [0.39,0.65

]
]
]
]

]

0.36 [0.24,0.46]
0.57 [0.45,0.66]
0.65 [0.51,0.74]
0.53 [0.44,0.60]
0.50 [0.41,0.58]

Table 3: Vaccine efficacy in South Africa and the Gauteng province, calculated for three time periods: June 18th to July 18th
(Jun-Jul), August 9th to September 6th (Aug-Sep), and December 1st to 31st (Dec).

Prevalence Prevalence Prevalence Vac efficacy Vac efficacy Vac 1 dose Vac 1 dose Vac 2 doses Vac 2 doses

Country Omicron COVID-19 Oct | COVID-19 Dec Oct Dec efficacy Oct efficacy Dec efficacy Oct efficacy Dec
Argentina 0.83 [0.76,0.91] || 0.02 [0.01,0.02] | 0.03 [0.03,0.03] || 0.48 [0.35,0.58] | 0.28 [0.12,0.41] || 0.03 [0.00,0.27] - 053 [0.41,0.62] | 0.31[0.15,0.43]
Belgium 0.320.29,034] || 0.02[0.02,0.02] | 0.05[0.050.05] || 0.53[0.39,0.64] | 0.38 [0.26,0.48] - - 0.55 [0.41,0.65] | 0.38 [0.26,0.48]
Brazil 0.58 [0.52,0.64] || 0.03[0.03,0.03] | 0.03[0.02,0.03] || 0.43[0.37,049] | 0.29[0.19,0.38] || 0.20 [0.11,0.28] - 0.50 [0.44,0.55] | 0.33[0.23,0.41]
Colombia 035 [0.26,0.44] || 0.03[0.03,0.03] | 0.03[0.03,0.03] || 0.55[0.49,0.61] | 0.49[0.39,0.56] || 0.44[0.35,0.53] | 0.36[0.22,0.47] || 0.61[0.55,0.67] | 0.53 [0.45,0.61]
Denmark 047 [0.46,0.49] || 0.01[0.01,0.01] | 0.05[0.05,0.05] - 0.49 [0.39,0.57] - - - 0.48 [0.38,0.57]
France 0.26 [0.24,027] || 0.01[0.01,0.01] | 0.03 [0.03,0.03] - 0.44 [0.39,0.49] - 0.46 [0.35,0.55] - 0.44 [0.39,0.49]
Germany 0.13 [0.13,0.14] || 0.01[0.01,0.01] | 0.02 [0.02,0.02] - 0.65 [0.62,0.68] - 0.44 [0.34,0.53] - 0.66 [0.63,0.69]
India 0.33[0.29,038] || 0.04[0.04,0.04] | 0.03[0.03,0.03] || 0.441[0.35052] | 0.42[0.28053] || 0.19[0.05031] | 0.07[0.00,0.26] || 0.54[0.47,0.61] | 0.49[0.37,0.58]
Ttaly 0.21[0.19,022] || 0.01[0.01,0.01] | 0.02 [0.02,0.02] - 0.61 [0.57,0.65] - 0.66 [0.57,0.72] - 0.61 [0.56,0.65]
Mexico 0.54 [0.49,0.58] || 0.05[0.05,0.05] | 0.04[0.04,0.04] || 0.57[0.54,0.59] | 0.51[0.46,0.55] || 0.36[0.32,0.40] | 0.22[0.14,0.30] || 0.66 [0.63,0.68] | 0.56[0.52,0.60]
Netherlands 0.30 [0.27,033] || 0.02[0.02,0.02] | 0.05[0.04,0.05] || 0.36[0.20,0.49] | 0.29 [0.18,0.38] - 0.16 [0.00,0.33] || 0.41[0.26,053] | 0.30[0.19,0.39]
Norway 0.25[0.15,036] || 0.01[0.01,0.01] | 0.03 [0.02,0.03] - 0.35 [0.10,0.52] - - - 0.35 [0.11,0.53]
Poland 0.03 [0.02,0.04] || 0.03[0.03,0.04] | 0.07 [0.06,0.07] || 0.50[0.42,0.56] | 0.57 [0.53,0.60] || 0.31[0.13,0.45] | 0.44[0.34,052] || 0.52[0.45,0.58] | 0.581[0.550.62]
Portugal 0.23[0.19,027] || 0.01[0.01,0.01] | 0.03[0.03,0.03] - 0.32[0.12,0.48) - 0.23 [0.00,0.44] - 0.33 [0.13,0.49]
Romania 0.04[0.00,0.08] || 0.06 [0.06,0.06] | 0.02[0.02,0.02] || 0.59[0.56,0.62] | 0.65[0.57,0.71] || 0.65[0.59,0.70] | 0.52[0.33,0.65] || 0.58[0.55,0.61] | 0.68 [0.60,0.74]
Russia 0.29[0.22,036] || 0.04[0.04,0.05] | 0.03[0.02,0.03] || 0.45[0.39,0.50] | 0.43[0.34,051] || 0.55[0.43,0.64] | 0.30 [0.09,0.46] || 0.44[0.38,0.50] | 0.46 [0.37,0.53]
Slovakia 0.10 [0.03,0.17] || 0.03 [0.03,0.03] | 0.06 [0.05,0.06] || 0.47 [0.32,0.59] | 0.54 [0.46,0.61] - - 0.50 [0.35,0.61] | 0.55[0.47,0.62]
South Africa 0.88 [0.81,0.96] || 0.04[0.04,0.04] | 0.12[0.12,0.13] || 0.50 [0.41,0.57] | 0.24[0.17,0.30] || 0.29[0.15,0.40] | 0.09[0.00,0.18] || 0.64 [0.56,0.70] | 0.30 [0.23,0.36]
Spain 0.46 [0.43,050] || 0.01[0.01,0.02] | 0.05[0.05,0.06] || 0.62[0.50,0.70] | 0.26 [0.15,0.36] || 0.34[0.09,0.52] | 0.30 [0.15,0.43] || 0.66 [0.55,0.74] | 0.26 [0.14,0.36]
Sweden 0.34[0.32,037] || 0.01[0.00,0.01] | 0.02[0.02,0.02] - 0.48 [0.36,0.57] - - - 0.48 [0.36,0.57]
Switzerland 039 [0.36,0.41] || 0.01[0.01,0.01] | 0.04 [0.04,0.04] - 0.52 [0.43,0.59] - - - 0.51 [0.42,0.59]
Turkey 0.10 [0.08,0.11] || 0.05[0.05,0.06] | 0.05[0.05,0.05] || 0.45[0.38,0.51] | 0.42 [0.33,0.51] - - 0.49 [0.42,0.55] | 0.44 [0.34,0.52]
United Kingdom | 0.66 [0.65,0.66] || 0.03[0.03,0.03] | 0.05[0.04,0.05] || 034[0.22,045] | 0.20[0.07,0.31] - - 0.36 [0.24,0.46] | 0.21[0.08,0.32]
Vietnam 0.02 [0.00,0.06] || 0.01[0.01,0.01] | 0.03 [0.03,0.03] - - - 0.25 [0.00,0.50] - -

Table 4: Prevalence of Omicron, prevalence of COVID-19, and vaccination efficacy in the countries with presence of Omicron

(as defined in Section 2.4.2). When data is insufficient to meet the defined selection criteria, it is omitted and replaced by

raised concerns over the decrease of vaccine effectiveness against
infection [14, 18, 20, 23] and this can lead to a wider spread of the
virus even in countries with a high vaccination uptake.

Daily participatory symptom surveillance has the potential to
offer a new instrument for assessing both global and local trends
in health status. While limited in assessing the ground truth, due
to the smaller control over the sample design and the need to pre-
serve anonymity, we believe that the vast number of daily survey
responses can compensate some of these factors. In this study, we
developed a method to adapt and calibrate against the reported

“«_»

SARS-CoV-2 infection status the selection of symptoms, and other
covariates from the survey, along different time periods and lo-
cations. As compared to methods that only use the presence or
absence of symptoms reported by survey respondents [31], our pro-
posed method was shown to provide a better proxy for assessing
the trend in infections, more closely tracking the official reported
cases, in particular in those countries that had a strong surveillance
and consistent test positivity rates.

Using this improved classifier we complemented earlier results
[31] that used traditional fixed combinations of symptoms, and
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Figure 3: Analysis of vaccine efficacy towards preventing infection: Sub-figure (a) shows distributions of efficacy in October and
December, for the countries with presence of Omicron (as defined in Section 2.4.2); Sub-figures (b,c,d) show vaccination efficacy
versus Omicron prevalence in the same set of countries, depending on vaccination status. For each country the 95% confidence
intervals of the two values are shown as black lines. The blue line is the Loess curve fitting of the data.

updated the analysis for South Africa showing the observed de-
crease in vaccine efficacy when contrasting a Delta-dominated pe-
riod (August-September 2021) with the recent Omicron-dominated
period (December 2021). We confirmed the presence of a measur-
able drop in vaccine efficacy from 0.62 (with 95% confidence in-
terval [0.58,0.65]) in the Delta period to 0.24 (95% CI [0.17,0.30])
in the Omicron period in the whole country (0.62[0.54,0.69] to
0.30[0.18, 0.40] in the Gauteng province). In addition, we confirmed
that having two doses of vaccine confers better protection than
one dose, both in Delta (0.81[0.78, 0.84] versus 0.51[0.46, 0.55]) and
Omicron (0.30[0.23, 0.36] versus 0.09[0.00, 0.18]) dominated peri-
ods. However, we have no data on the status of respondents with
regard to a possible booster dose.

These results are in line with other studies on the vaccine ef-
fectiveness against infection and more severe outcomes conducted
in several countries. Andrews et al. [4] used data from England to
study vaccine effectiveness against symptomatic infection. They
found that vaccine effectiveness against symptomatic disease was
higher for the Delta variant than for the Omicron variant. They
found that two doses of the ChAdOx1 nCoV-19 or the BNT162b2
vaccine provided low protection against Omicron, and that, while
a BNT162b2 or mRNA-1273 booster increased this protection, it
also waned with time. Buchan et al. [6] use data from Ontario,
Canada, to find out that vaccine effectiveness is higher with Delta
than with Omicron. For instance, 7-59 days after a second dose,
effectiveness against symptomatic infection was estimated to be
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89% for Delta and only 36% for Omicron. After a third dose, effec-
tiveness against symptomatic infection increased to 97% an 61%,
respectively, and was more than 95% against severe outcomes for
both variants. Kodera et al. [15] estimate the effectiveness of vacci-
nation against Delta and Omicron in Japan, and how it decreases
with time (the waning immunity). They found that the effectiveness
of vaccination for the Delta variant was 95% after the second shot.
From the reported data of 25,187 positive cases with confirmed
Omicron variant in Tokyo in January 2022, the effectiveness of
vaccination against Omicron after the second dose is estimated
below 65% compared to that of the Delta variant. Hansen et al. [9]
use Danish data to report vaccination effectiveness against Omi-
cron (B.1.1.529). They report effectiveness of 55.2% and 36.7% with
the BNT162b2 and mRNA-1273 vaccines, respectively, in the first
month after primary vaccination. They also observe that this effec-
tiveness is significantly lower than that against Delta infection and
declines rapidly. The effectiveness is re-established (54.6%) with
a booster shot of the BNT162b2 vaccine. So, all these studies find
that a difference in the effectiveness against infection of Omicron
versus Delta.

A difference can also be observed in the effectiveness against
hospitalization. Lauring et al. [16] evaluate effectiveness of mRNA
vaccines. They found that they are highly effective preventing
COVID-19 associated hospital admissions against Delta: 85% with
two doses and 94% with three doses, while the effectiveness de-
creases against Omicron: 65% with two doses and 86% with three
doses. The effectiveness against in-hospital mortality is also higher
against Delta (12.2%) than Omicron (7.1%). Stowe et al. [28] use data
from England to compare vaccine effectiveness against hospitaliza-
tion with Delta and Omicron. They observe that, while effectiveness
is lower and waning is faster for Omicron, this is partially due to
incidental cases (hospitalizations not caused by COVID-19), and the
difference decreases when only severe respiratory hospitalizations
are considered.

By January 7th, 2022, when we completed this study, there was a
small number of candidate countries exhibiting both a high preva-
lence of Omicron and a high level of sequencing data supporting it.
Nevertheless, we extend our analysis to these countries and show
the observed changes in efficacy when comparing the months of
October (pre-Omicron) with December (with partial presence of
Omicron). Although these results should be confirmed once the
level of Omicron becomes more dominant in many countries, we
have observed a significant level of correlation of around and be-
yond —0.6 between vaccine efficacy (with either one or two doses)
and the prevalence of Omicron. We must also make it clear that our
results show a reduction in efficacy in terms of protection against
infection, but this does not imply a reduction of vaccine efficacy in
protection against serious disease, hospitalization and death.

There are several assumptions that frame our analysis. We as-
sume that UMD Global CTIS answers provide a sample of the pop-
ulation that is interchangeable among the Delta and Omicron dom-
inated periods. Additionally, we did not take into account possible
effects from waning immunity and vaccine boost shots. However,
within the countries we consider we have a mix of different vacci-
nation timings, so that our observations appear to be valid under
different scenarios. We leave for future work a further analysis
where vaccination timing is taken into account.
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C LIST OF SYMPTOMS

In the UMD Global CTIS the following question is asked: “B1: In
the last 24 hours, have you had any of the following?" [29]. The fol-
lowing is the list of possible answers (non exclusive): Fever (B1_1),
Cough (B1_2), Difficulty breathing (B1_3), Fatigue (B1_4), Stufty or
runny nose (B1_5), Aches or muscle pain (B1_6), Sore throat (B1_7),
Chest pain (B1_8), Nausea (B1_9), Loss of smell or taste (B1_10),
Headache (B1_12), Chills (B1_13).

D QUESTIONS USED FOR THE MACHINE
LEARNING MODEL

The following is the list of survey questions whose answers are
used to create the Random Forest models, and to classify with
them the responses: B1_1, B1_2, B1_3, B1_4, B1_5, B1_6, B1_7,
B1_8,B1_9,B1_10,B1_11,B1_12, B1_13, B1_14, B1b_x1, Bib_x2,
B1b_x3,B1b_x4,B1b_x5,B1b_x6,B1b_x7, B1b_x8, B1b_x9, B1b_x10,
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Bib_x11, B1b_x12, Bib_x13, B1b_x14, B3, B5, B6, B9, B10, B11,
B12_1,B12_ 2, B12_3, B12_4, B12_5, B12_6, B13_1, B13_2, B13_3,
B13_4,B13_5,B13 6,B13_7,B14 1, B14 2, B14_3,B14 4, B14 5,
Co0_1,Co0_2,C0_3,C0_4,C0_5,C0_6,C1_m, C2, C3, C5, Ceé, C7, C8,
€9, C9a, C12, C13_1, C13_2, C13_3, C13_4, C13_5, C13_6, C14, D1,
D2, D3,D4,D5,D6_1,D6_2,D6_3, D7, D8, D9, D10, E2, E3, E4, E7,
H1, H2, H3.

The questions removed are B0, B7, B8, B15, and all the questions
related to vaccination (V-questions).

E VACCINATION IN SOUTH AFRICA

Figure 4 shows an area plot, estimated from the UMD Global CTIS
data, of the proportion of vaccinated with 1 dose, Vaccinated with
2 doses, and Unvaccinated from June 18th until December 31st,
2021. As can be seen, the ratio of the population vaccinated is low
at the beginning of this interval, especially with two doses. Then,
we can see a high increase in Vaccinated between July and October.
We point out that in each time point of this plot the proportions
are provided by a different set of surveys respondents, and it still
closely captures the increase of vaccination.

F COUNTRIES WITH OMICRON PREVALENCE

Table 8 shows basic official vaccination data on December 31st,
2021, of these countries. Table 4 shows the COVID-19 prevalence
and the vaccine efficacy in October and December in the countries
with presence of Omicron as defined in Section 2.4.2. When data
is insufficient to meet the defined selection criteria, it is omitted
and replaced by “~”. Both tables are presented alphabetically by
country name and also share a column depicting the most recent
data on Omicron prevalence among all virus samples.
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Figure 4: Evolution of the vaccination in South Africa as ratio of the population, estimated from the UMD Global CTIS data. A
small fraction of responses that declared being vaccinated without reporting the number of doses are not presented for clarity.
The values are from June 18th to December 31st, 2021, smoothed with a rolling average of 14 days.

Date % Delta | % Omicron | # samples
2021-06-14 45.23 0.00 1101
2021-06-28 78.09 0.00 1661
2021-07-12 88.90 0.00 2226
2021-07-26 94.30 0.00 1667
2021-08-09 95.19 0.00 1601
2021-08-23 97.58 0.00 1242
2021-09-06 97.01 0.00 1269
2021-09-20 95.77 0.00 923
2021-10-04 93.57 0.00 513
2021-10-18 93.56 0.00 450
2021-11-01 95.67 0.48 208
2021-11-15 69.30 20.18 114
2021-11-29 13.08 85.00 780
2021-12-13 0.92 95.92 980
2021-12-27 0.00 93.85 65

Table 5: Percentage of sequenced virus samples belonging to Delta and Omicron in South Africa from June 1st to December
31st of 2021. The third column presents the total number of samples reported on the corresponding date.

Prevalence Vaccination efficacy
Vaccination status October December October December
Vaccinated 2 doses | 0.02 [0.01,0.02] | 0.03 [0.03,0.04] | 0.53 [0.49,0.58] | 0.45 [0.39,0.50]
Vaccinated 0.02 [0.01,0.03] | 0.04 [0.03,0.04] | 0.49 [0.45,0.52] | 0.43 [0.37,0.48]
Vaccinated 1 dose | 0.03 [0.02,0.04] | 0.05 [0.04,0.06] | 0.34 [0.22,0.45] | 0.32 [0.23,0.41]
Unvaccinated 0.04 [0.03,0.05] | 0.06 [0.05,0.07] - -

Table 6: Prevalence of COVID-19 and vaccine efficacy (with 95% confidence interval) in the countries with presence of Omicron
in the periods of October and December 2021.
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Figure 5: Prevalence in South Africa among Vaccinated, Unvaccinated, Vaccinated with 1 dose, and Vaccinated with 2 doses,
with different proxies.

Correlation
Prevalence omicron vs | coefficient | P-value
Vaccination efficacy -0.680301 0.000354
Vacc. efficacy 1 dose -0.564977 | 0.035274
Vacec. efficacy 2 doses -0.628936 | 0.001306

Table 7: Correlation between prevalence of Omicron and vaccine efficacy in the countries with presence of Omicron.
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% % pop % pop % pop Vacc

Country doses/pop | vacc | fully vacc | booster | start date

Argentina 167.98 83.76 71.61 12.22 2020-12-29
Belgium 186.28 76.65 75.70 37.59 2020-12-28
Brazil 154.81 77.66 67.03 12.42 2021-01-17
Colombia 126.19 74.81 55.25 6.49 2021-02-17
Denmark 208.57 82.65 78.43 48.30 2021-02-05
France 183.78 78.61 73.48 33.28 2020-12-27
Germany 178.84 73.62 70.61 38.87 2020-12-27
India 103.98 60.69 43.29 0.00 2021-01-16
Italy 184.28 80.14 74.11 32.52 2020-12-27
Mexico 114.24 62.89 55.87 0.00 2020-12-24
Netherlands 162.18 77.54 71.18 18.50 2021-01-09
Norway 178.68 78.41 71.76 28.52 2020-12-08
Poland 124.32 57.34 55.68 18.16 2020-12-28
Portugal 190.72 91.47 89.53 29.44 2020-12-27
Romania 82.86 28.64 40.87 0.00 2020-12-27
Russia 100.31 50.60 45.76 5.06 2020-12-15
Slovakia 111.09 50.13 47.61 16.33 2021-01-11
South Africa 46.47 31.49 26.37 0.00 2021-02-18
Spain 178.69 84.85 81.01 29.40 2021-01-04
Sweden 172.96 76.14 72.68 0.00 2021-01-03
Switzerland 158.90 68.56 66.88 24.99 2020-12-21
Turkey 154.80 66.92 60.68 27.19 2021-01-14
United Kingdom 195.45 75.93 69.54 49.98 2021-01-10
Vietnam 153.75 79.00 69.71 0.00 2021-03-08

Table 8: Information about vaccination on December 31st, 2021, in the countries with presence of Omicron (as defined in
Section 2.4.2).

Total Total | Unvac | Unvac Vac Vac Vac 1D | Vac 1D | Vac 2D | Vac 2D
Country Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec
Argentina 44509 48807 3077 2778 40276 44590 3704 1884 36115 41783
Belgium 16448 18373 1687 1718 14266 16004 747 463 13327 15269
Brazil 198423 | 162402 9428 6552 183859 | 151114 38885 8680 142594 139517
Colombia 34859 33883 5437 2734 28457 30197 9979 7514 18034 22137
Denmark 19591 27284 917 1206 18279 25472 212 217 17781 24684
France 82767 111041 10234 11593 67393 95663 6369 4708 60218 89139
Germany 89348 110359 12601 11868 71980 95530 6655 5490 64611 88548
India 76675 68155 4076 2631 63803 60076 16798 7344 45967 51622
Italy 98712 112754 7023 6095 89120 103305 9066 5108 78852 96124
Mexico 139967 | 118861 12063 6472 119471 | 109330 35960 17776 82321 90162
Netherlands 27505 30803 3804 3380 23001 26621 2175 2025 20397 24087
Norway 16746 21862 935 1010 15536 20404 389 304 14980 19724
Poland 30295 38001 5318 6105 23924 30578 2327 2499 21236 27603
Portugal 22758 29352 1299 1368 21017 27340 3470 3172 17180 23631
Romania 45123 24638 11038 4917 32558 19022 4477 2451 27594 16192
Russia 35186 30037 12301 9001 21680 19884 2845 2819 18573 16779
Slovakia 9567 11323 1987 2208 7382 8841 306 487 6989 8215
South Africa 18308 19492 4149 4006 12805 14753 5009 4138 7624 10423
Spain 33455 51568 2035 2625 30652 47444 3814 3574 26453 43223
Sweden 53564 57823 3001 3200 49564 53544 699 443 48380 52348
Switzerland 14863 16755 2906 2617 11585 13742 886 676 10541 12824
Turkey 27159 22854 3238 2307 23033 19844 1473 729 21015 18561
United Kingdom 41812 47072 3080 3174 37421 42421 925 770 36109 41122
Vietnam 48955 39105 8043 1116 37073 36097 17325 3241 19233 32246

Table 9: Number of survey responses used in each period from the countries with presence of Omicron (as defined in Section 2.4.2),
for each level of vaccination.
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Pos Pos | Unvac | Unvac | Vac Vac | Vac1D | Vac 1D | Vac2D | Vac 2D
Country Oct | Dec Oct Dec Oct | Dec Oct Dec Oct Dec
Argentina 715 1302 87 99 594 1143 102 90 484 1034
Belgium 364 912 69 130 274 751 25 31 248 713
Brazil 5111 | 4066 405 224 4486 | 3648 1334 355 3072 3194
Colombia 1013 | 1103 285 158 666 897 291 280 364 596
Denmark 232 1405 24 116 196 1256 5 16 186 1228
France 703 3452 149 596 486 2733 102 130 377 2566
Germany 619 2253 155 580 428 1616 52 149 373 1453
India 2899 | 2231 186 93 1629 | 1235 623 242 958 939
Ttaly 558 2610 120 329 394 2158 67 95 322 2035
Mexico 6881 | 4747 1201 485 5167 | 4047 2287 1038 2808 2956
Netherlands 487 1441 95 210 367 1179 60 106 299 1046
Norway 147 569 15 39 127 516 10 17 116 495
Poland 1039 | 2504 298 749 676 1614 90 173 572 1416
Portugal 170 821 17 55 142 742 28 98 112 632
Romania 2579 448 1109 175 1335 239 158 42 1158 186
Russia 1550 775 752 318 727 401 79 70 633 323
Slovakia 276 635 89 216 174 397 14 36 157 360
South Africa 695 2348 249 599 388 1672 214 564 167 1093
Spain 468 2776 65 186 375 2479 80 177 290 2277
Sweden 297 1037 48 103 234 899 8 16 225 878
Switzerland 170 639 61 175 102 445 10 21 90 418
Turkey 1479 | 1143 288 181 1125 897 136 57 962 818
United Kingdom | 1321 | 2168 141 180 1124 | 1926 53 59 1060 1851
Vietnam 364 1271 58 35 251 1141 95 76 152 1043

Rufino et al.

Table 10: Number of survey responses classified as positive by Random Forest in each period from the countries with presence

of Omicron (as defined in Section 2.4.2), for each level of vaccination.
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