
Under review as a conference paper at ICLR 2024

DYNAMIC MODE DECOMPOSITION-INSPIRED
AUTOENCODERS FOR REDUCED-ORDER MODELING
AND CONTROL OF PDES : THEORY AND DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling and controlling complex spatiotemporal dynamical systems driven by
partial differential equations (PDEs) often necessitate dimensionality reduction
techniques to construct lower-order models for computational efficiency. This pa-
per studies a deep autoencoding learning method for modeling and controlling
dynamical systems governed by spatiotemporal PDEs. We first analytically show
that an optimization objective for learning a linear autoencoding reduced-order
model can be formulated, yielding a solution that closely resembles the result
obtained through the dynamic mode decomposition with control algorithm. Sub-
sequently, we extend this linear autoencoding architecture to a deep autoencoding
framework, enabling the development of a nonlinear reduced-order model. Fur-
thermore, we leverage the learned reduced-order model to design controllers using
stability-constrained deep neural networks. Empirical analyses are presented to
validate the efficacy of our approach in both modeling and controlling spatiotem-
poral dynamical systems, exemplified through applications to reaction-diffusion
systems and fluid flow systems.

1 INTRODUCTION

Performing high-fidelity simulations of physical systems governed by partial differential equations
(PDEs) incurs substantial computational costs, rendering subsequent tasks, such as control, ex-
tremely challenging if not infeasible. To overcome the computational challenge, typically, reduced-
order models (ROMs) are developed using dimensionality reduction techniques, enabling efficient
simulation and control. For controlled dynamical systems, the reduced-order modeling approaches
either combine analytical techniques with empirical approximation (Willcox & Peraire (2002)) or
are purely data-driven (Juang & Pappa (1985); Juang et al. (1993); Proctor et al. (2016)). Among
these, the dynamic mode decomposition (DMD) based methods have become widely popular in re-
cent years due to a strong connection between DMD and Koopman operator theory (Rowley et al.
(2009)). Another recent research trend involves utilizing deep neural networks (DNNs), particu-
larly autoencoders, for modeling and control of high-dimensional dynamical systems (Lusch et al.
(2018); Eivazi et al. (2020); Morton et al. (2018); Bounou et al. (2021); Chen et al. (2021)).

In this paper, our aim is to develop autoencoder-based ROMs for PDE-driven controlled dynamical
systems and leverage these ROMs to learn control policies for the original systems. There are
several viable approaches to constructing and training an autoencoder-based ROM for PDE-driven
dynamical systems, as demonstrated in the aforementioned studies. However, a controller designed
for the ROM is expected to perform well in the full system only if the ROM effectively captures the
dynamic characteristics of the underlying system. DMD has become a widely used technique for
extracting the dominant modes of underlying dynamics in a reduced-order model. This motivates us
to develop an autoencoding framework for controlled dynamical systems drawing inspiration from
the dynamic mode decomposition with control (DMDc) algorithm (Proctor et al. (2016)). We first
formulate an objective function for data-driven model learning of controlled dynamical systems in
a linear autoencoding configuration. We analytically show that the associated objective function
encourages a linear ROM that closely resembles the lower-order model obtained using the DMDc
algorithm. The linear autoencoding architecture is designed in such a way that its components can be
replaced with DNNs and the corresponding objective function can be optimized by gradient descent
to obtain a nonlinear ROM. A DNN-based nonlinear ROM provides more accurate predictions over

1

Under review as a conference paper at ICLR 2024

a longer temporal horizon, facilitating its integration into an offline control learning framework for
the underlying system.

2 RELATED WORK

In recent years, deep learning has seen widespread application in scientific and engineering prob-
lems, including understanding complex spatiotemporal dynamics and solving associated computa-
tional tasks. The majority of the research in this area focuses only on the modeling and prediction
of such complex dynamics using deep neural networks (DNNs) (Xingjian et al. (2015); Long et al.
(2018); Raissi (2018); Seo et al. (2019); Ayed et al. (2019); Donà et al. (2020)) and has found appli-
cation in several fields including fluid flow (Erichson et al. (2019); Eivazi et al. (2020); Srinivasan
et al. (2019)), biochemical and electric power systems (Yeung et al. (2019)), climate and ocean sys-
tems (Scher (2018); Ren et al. (2021); Yang et al. (2017); De Bézenac et al. (2019)), and structural
analysis Zhang et al. (2020), just to name a few. Encoder-decoder-based models, like the one utilized
in our approach, stand as a prevalent choice among various deep prediction models. Vlachas et al.
(2022) and Wiewel et al. (2020) combined encoder-decoder with recurrent network in latent space
to accelerate long-range simulation. Wu et al. (2022) used an autoencoder with a latent evolution
model, similar to ours; however, they considered inverse optimization only for static parameters.
Kim et al. (2019) introduced a generative autoencoder with a latent space dynamic model to gener-
ate realistic fluid simulation from latent parameters. Lee & Carlberg (2020) used the learned latent
representation from an autoencoder to form the trial basis for solving PDEs using Galerkin method.

A second line of research, though relatively less prevalent than modeling and prediction, is utiliz-
ing deep learning for controlling PDE-driven systems. Deep reinforcement learning (RL) is one
of the approaches utilized to learn control policies for such systems (Rabault et al. (2019); Tang
et al. (2020); Ma et al. (2018); Garnier et al. (2021); Beintema et al. (2020)). However, model-free
RL methods require running numerical solvers in every iteration to provide feedback to the agents,
which is computationally expensive. The same concern arises for the methods involving differen-
tiable simulators as in Holl et al. (2020); Takahashi et al. (2021). In comparison, our method avoids
the need for simulators during the learning as it learns from pre-collected data in an offline manner.

The alternative to model-free methods for control design takes the traditional approach: develop a
model first and then use that to design controllers. Bieker et al. (2020) and Morton et al. (2018) used
DNN-based model predictive control (MPC) framework, namely DeepMPC (Lenz et al. (2015)), in
fluid flow control. Bieker et al. (2020) used a recurrent neural network to model the dynamics of
only control-relevant quantities (i.e. lift and drag) of the system, which is then employed in an MPC
framework for the flow control tasks. Morton et al. (2018) followed the method proposed by Takeishi
et al. (2017) and used DNN-based embedding to first learn a linear reduced-order model in Koop-
man invariant subspace and then incorporate it in the MPC framework. Similar approaches have
been applied for controlling other spatiotemporal dynamics like control from video input (Bounou
et al. (2021)), automatic generation control in wind farms in the presence of dynamic wake effect
(Chen et al. (2021)), and transient stabilization in power grids (Ping et al. (2021)). These model-
based methods constrain the latent dynamic models to be linear and work well within a short time
window. Khodkar et al. (2019) showed that the linear combination of a finite number of dynamic
modes may not accurately represent the long-term nonlinear characteristics of complex dynamics
and adding nonlinear forcing terms yields better prediction accuracy (Eivazi et al. (2020)). The
linear ROMs need to be updated with online observations during operation for better prediction ac-
curacy. Accordingly, the aforementioned model-based approaches utilize the MPC framework to
optimize the control policy online using the updated dynamic model. Running online optimization
at every step may not be computationally feasible in many scenarios. Conversely, we investigate if
a nonlinear ROM provides a more accurate prediction over a longer time window so that an offline
control learning method can be used.

3 PROBLEM AND PRELIMINARIES

3.1 PROBLEM STATEMENT

Consider a time-invariant controlled dynamical system driven by a PDE

∂X
∂t

= M
(
X ,

∂X
∂ζ

,
∂2X
∂ζ2 , · · · ,U

)
, (1)

2

Under review as a conference paper at ICLR 2024

where X (ζ, t) ∈ R and U(ζ, t) ∈ R are the system state and the actuation (or control input),
respectively, at location ζ and time t. Space discretization of the state and actuation of (1) into dx
and du points, respectively, leads to a system of ordinary differential equations (ODEs) that can be
written as

dx

dt
= f(x,u). (2)

Here x(t) ∈ X ⊂ Rdx , dx >> 1 and u(t) ∈ U ⊂ Rdu are the space-discretized state and actuation,
respectively, at time t. Our objective is to learn a reduced-order model for this high-dimensional
(dx >> 1) system of (2) and use that ROM to learn a feedback controller u = π(x) that stabilizes
the system at a desired state. We consider a data-driven learning scenario and assume that we
have observations from the system consisting of time series data x(ti), i = 0, 1, · · · , n subjected to
random values of actuations u(ti), i = 0, 1, · · · , (n−1). Note, we use v (in place of v(t) for brevity)
as notation for any continuous-time variable (e.g., system state, control input), whereas v(ti) is used
to denote their discrete sample at time instance ti. We further assume that the system we are aiming
to stabilize at an equilibrium point is locally stabilizable, i.e., there exists a control policy such that
the desired state is asymptotically stable for the closed-loop system. Readers are encouraged to
reference the appendix A.1 for detailed formal definitions and constraints for stability.

3.2 DYNAMIC MODE DECOMPOSITION WITH CONTROL

DMD (Schmid (2010)) is a data-driven method that reconstructs the underlying dynamics using only
a time series of snapshots from the system. DMDc (Proctor et al. (2016)) is an extension of DMD for
dynamical systems with control. DMDc seeks best-fit linear operators A and B between successive
observed states and the actuations:

x̂(ti+1) = Ax(ti) +Bu(ti), i = 0, 1, · · · , n− 1, (3)

where x̂(t) denotes an approximation of x(t), A ∈ Rdx×dx , and B ∈ Rdx×du . Direct analysis of
(3) could be computationally prohibitive for dx >> 1. DMDc leverages dimensionality reduction
to compute a ROM

xR,DMDc(ti) = EDMDcx(ti), (4a)
xR,DMDc(ti+1) = AR,DMDcxR,DMDc(ti) +BR,DMDcu(ti), i = 0, 1, · · · , n− 1, (4b)

which retains the dominant dynamic modes of (3). Here, xR,DMDc(ti) ∈ Rrx is the reduced state,
where rx << dx, and EDMDc ∈ Rrx×dx , AR,DMDc ∈ Rrx×rx ,BR,DMDc ∈ Rrx×du . The full
state is reconstructed from the reduced state using the transformation x̂(ti) = DDMDcxR,DMDc(ti),
where DDMDc ∈ Rdx×rx . DMDc computes truncated singular value decomposition (SVD) of the
data matrices Y = [x(t1),x(t2), · · · ,x(tn)] ∈ Rdx×n and Ω = [ω(t0),ω(t1), · · · ,ω(tn−1)] ∈
R(dx+du)×n, ω(ti) = [x(ti)

⊤,u(ti)
⊤]⊤ ∈ Rdx+du as follows:

Y = ÛY Σ̂Y V̂ ⊤
Y , Ω = ÛΩΣ̂Ω V̂

⊤
Ω , (5)

where ÛY ∈ Rdx×rx , Σ̂Y ∈ Rrx×rx , V̂Y ∈ Rn×rx , ÛΩ ∈ R(dx+du)×rxu , Σ̂Ω ∈ Rrxu×rxu , and
V̂Ω ∈ Rn×rxu . Here, rx < min(dx, n) and rx < rxu < min(dx + du, n) denote the truncation
dimensions of SVDs. Utilizing the SVDs of (5), the parameters of the ROM (4) is obtained as

EDMDc = Û⊤
Y , DDMDc = ÛY , (6a)

AR,DMDc = Û⊤
Y Y V̂ΩΣ̂

−1

Ω Û⊤
Ω,1ÛY , BR,DMDc = Û⊤

Y Y V̂ΩΣ̂
−1

Ω Û⊤
Ω,2, (6b)

where ÛΩ,1 ∈ Rdx×rxu , ÛΩ,2 ∈ Rdu×rxu , and Û⊤
Ω = [Û⊤

Ω,1 Û⊤
Ω,2].

4 METHOD

4.1 LEARNING A REDUCED ORDER MODEL

To develop a nonlinear ROM utilizing DNNs that effectively capture the underlying dynamics, we
first investigate if we can obtain a linear ROM similar to DMDc, in a gradient descent arrangement.
Specifically, we analyze optimization objectives that encourage a DMDc-like solution for a reduced-
order modeling problem using linear networks (single layer without nonlinear activation). Consider
the following reduced-order modeling problem

xR(ti) = Exx(ti), xR(ti+1) = ARxR(ti) +BRu(ti), x̂(ti) = DxxR(ti), i = 0, 1, · · · , n− 1,
(7)

3

Under review as a conference paper at ICLR 2024

where the linear operators Ex ∈ Rrx×dx and Dx ∈ Rdx×rx projects and reconstructs back, re-
spectively, the high-dimensional system state to and from a low-dimensional feature xR ∈ Rrx .
The linear operators AR ∈ Rrx×rx and BR ∈ Rrx×du describe the relations between successive
reduced states and actuations. We refer to this reduced-order model with linear networks as linear
autoencoding ROM or LAROM. In the following, we first analyze the solution of the optimization
objective of LAROM for a fixed encoder Ex. Then we establish a connection between the solution
of LAROM and the solution of DMDc, and further discuss the choice of the encoder to promote
similarity between the two. Finally, we extend the linear model to a DNN-based model, which we
refer to as DeepROM.

4.1.1 ANALYSIS OF THE LINEAR REDUCED-ORDER MODEL FOR A FIXED ENCODER

The DMDc algorithm essentially solves for G̃ ∈ Rrx×(dx+du) to minimize 1
n

∑n−1
i=0

∥∥Exx(ti+1)−
G̃ω(ti)

∥∥2 for a fixed projection matrix Ex = EDMDc = Û⊤
Y . Here, ω(ti) is the concatenated vec-

tor of state and actuation as defined in section 3.2. The optimal solution G̃opt is then partitioned as
[Ã B̃] such that Ã ∈ Rrx×dx , B̃ ∈ Rrx×du . Finally, Ã is post-multiplied with the reconstruction
operator DDMDc = ÛY to get the ROM components AR,DMDc and BR,DMDc. Details of this process
along with the proofs are given in appendix B.5. Note, that the final step of this process (multipli-
cation of the operators) is feasible only for the linear case, not in the case when the projection and
reconstruction operators are nonlinear (e.g. DNNs). Therefore, we use an alternative formulation
with the following results to design a loss function that encourages a DMDc-like solution for (7) and
also offers dimensionality reduction when nonlinear components are used.
Theorem 4.1.1. Consider the following objective function

Lpred(Ex,G) =
1

n

n−1∑
i=0

∥∥Exx(ti+1)−GExuω(ti)
∥∥2, (8)

where G = [AR BR] ∈ Rrx×(rx+du),Exu =

[
Ex 0
0 Idu

]
∈ R(rx+du)×(dx+du), Idu being the

identity matrix of order du. For any fixed matrix Ex, the objective function Lpred is convex in the
coefficients of G and attains its minimum for any G satisfying

GExuΩΩ⊤E⊤
xu = ExY Ω⊤E⊤

xu, (9)

where Y and Ω are the data matrices as defined in section (3.2). If Ex has full rank rx, and ΩΩ⊤

is non-singular, then Lpred is strictly convex and has a unique minimum for

G = [AR BR] = ExY Ω⊤E⊤
xu(ExuΩΩ⊤E⊤

xu)
−1. (10)

Proof sketch. For any fixed Ex, the objective function of (8) can be written as Lpred(Ex,G) =∥∥vec(ExY) − (Ω⊤E⊤
xu ⊗ Irx)vec(G)

∥∥2, where ⊗ denotes the Kronecker product and vec(·)
denotes vectorization of a matrix. Optimizing this linear least-square problem, we get (9) and (10),
given the stated conditions are satisfied. The complete proof is given in appendix B.1.
Remark. For a unique solution, we assume that Ex has full rank. The other scenario, i.e., Ex is
rank-deficient suggests poor utilization of the hidden units of the model. In that case, the number
of hidden units (which represents the dimension of the reduced state) should be decreased. The
assumption that the covariance matrix ΩΩ⊤ is invertible can be ensured when n ≥ dx + du, by
removing any linearly dependent features in system state and actuation. When n < dx + du, the
covariance matrix ΩΩ⊤ is not invertible. However, similar results can be obtained by adding ℓ2
regularization (for the coefficients/entries of G) to the objective function. Proof of this is given in
appendix B.4.

4.1.2 THE CONNECTION BETWEEN THE SOLUTIONS OF THE LINEAR AUTOENCODING
MODEL AND DMDC

The connection between the ROM obtained by minimizing Lpred (for a fixed Ex), i.e., (10) and the
DMDc ROM of (6b) is not readily apparent. To interpret the connection, we formulate an alternative
representation of (10) utilizing the SVD and the Moore-Penrose inverse of matrices. This alternative
representation leads to the following result.

4

Under review as a conference paper at ICLR 2024

Corollary 4.1.1.1. Consider the (full) SVD of the data matrix Ω given by Ω = UΩΣΩV
⊤
Ω , where

UΩ ∈ R(dx+du)×(dx+du),ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n. If Ex = Û⊤
Y and ΩΩ⊤ is non-

singular, then the solution for G = [AR BR] corresponding to the unique minimum of Lpred can be
expressed as

AR = Û⊤
Y Y VΩΣ

∗U⊤
Ω,1ÛY , and BR = Û⊤

Y Y VΩΣ
∗U⊤

Ω,2, (11)

where [U⊤
Ω,1 U⊤

Ω,2] = U⊤
Ω with UΩ,1 ∈ Rdx×(dx+du),UΩ,2 ∈ Rdu×(dx+du), and

Σ∗ = limε→0(Σ
⊤
ΩU

⊤
Ω,1ÛY Û⊤

Y UΩ,1ΣΩ +Σ⊤
ΩU

⊤
Ω,2UΩ,2ΣΩ + ε2In)

−1Σ⊤
Ω .

Proof sketch. This can be derived by plugging Ex = Û⊤
Y into (10), and using the SVD definition

and the limit definition (Albert (1972)) of the Moore-Penrose inverse. The complete proof is given
in appendix B.3 that uses an alternative representation of (10) presented in appendix B.2.
Remark. It can be verified easily that if we use the truncated SVD (as defined by 5), instead of the
full SVD, for Ω in corollary 4.1.1.1, we get an approximation of (11):

ÂR = Û⊤
Y Y V̂Ω Σ̂

∗Û⊤
Ω,1ÛY , and B̂R = Û⊤

Y Y V̂Ω Σ̂
∗Û⊤

Ω,2, (12)

where Σ̂∗ = limε→0(Σ̂
⊤
ΩÛ

⊤
Ω,1ÛY Û⊤

Y ÛΩ,1Σ̂Ω +Σ̂
⊤
ΩÛ

⊤
Ω,2ÛΩ,2Σ̂Ω +ε2Irxu)

−1Σ̂
⊤
Ω . We can see

that (12) has the same form as (6b), except Σ̂
−1

Ω is replaced with Σ̂∗.

All the aforementioned results are derived for a fixed Ex and the relation to the DMDc is spe-
cific to the case Ex = Û⊤

Y . Note that the columns of the ÛY are the left singular vectors,
corresponding to the leading singular values, of Y . Equivalently, those are also the eigenvec-
tors, corresponding to the leading eigenvalues, of the covariance matrix Y Y ⊤. Lpred alone does
not constrain Ex to take a similar form and we need another loss term to encourage such form
for the encoder. To this end, we follow the work of Baldi & Hornik (1989) on the similarity be-
tween principle component analysis and linear autoencoders, optimized with the objective function:
Lrecon(Ex,Dx) = 1

n

∑n
i=1

∥∥x(ti) − DxExx(ti)
∥∥2. They showed that all the critical points of

Lrecon correspond to projections onto subspaces associated with subsets of eigenvectors of the co-
variance matrix Y Y ⊤. Moreover, Lrecon has a unique global minimum corresponding to the first rx
(i.e., the desired dimension of the reduced state) number of eigenvectors of Y Y ⊤, associated with
the leading rx eigenvalues. In other words, for any invertible matrix C ∈ Rrx×rx , Dx = UrxC
and Ex = C−1U⊤

rx globally minimizes Lrecon, where Urx denotes the matrix containing leading rx
eigenvectors of Y Y ⊤. Since the left singular vectors of Y are the eigenvectors of Y Y ⊤, we have
Urx = ÛY . Hence, we consider to utilize Lrecon to promote learning an encoder Ex in the form
of C−1Û⊤

Y . Accordingly, we propose to minimize the following objective function to encourage a
DMDc-like solution for LAROM:

L(Ex,Dx,G) = Lpred(Ex,G) + β1Lrecon(Ex,Dx), (13)

where β1 > 0 is a tunable hyperparameter.

4.1.3 EXTENDING THE LINEAR MODEL TO A DEEP MODEL

Here, we discuss the process of extending LAROM to a nonlinear reduced-order modeling frame-
work. We replace all the trainable components of LAROM, i.e., Ex,Dx, and G, with DNNs.
Specifically, we use an encoding function or encoder Ex : X → Rrx and a decoding function or
decoder Dx : Rrx → X to transform the high-dimensional system state to low-dimensional fea-
tures and reconstruct it back, respectively, i.e., xR = Ex(x), x̂ = Dx(xR), where xR ∈ Rrx

denotes the reduced state, and x̂ is the reconstruction of x. Unlike the linear case, we use
an encoder Eu : U → Rru , ru << du for the actuation as well, in cases where the control
space is also high-dimensional (for example, distributed control of spatiotemporal PDEs). The
control encoder Eu maps the high-dimensional actuation to a low-dimensional representation:
uR = Eu(u), where uR ∈ Rru denotes the encoded actuation. The encoded state and con-
trol are then fed to another DNN that represents the reduced order dynamics dxR

dt = F(xR,uR),
where F : Rrx × Rru → Rrx . Given the current reduced state xR(ti) and control input uR(ti),
the next reduced state xR(ti+1) can be computed by integrating F using a numerical integrator:
xR(ti+1) = xR(ti) +

∫ ti+1

ti
F
(
xR(t),uR(t)

)
dt

∆
= G

(
xR(ti),uR(ti)

)
. We can say that G is the

nonlinear counterpart of G.

5

Under review as a conference paper at ICLR 2024

ℰ𝒙

ℰ𝒖

ℱ

State
Encoder

State
Decoder

Control
Encoder

ROM
𝒙(𝑡𝑖) 𝒙R(𝑡𝑖)

𝒖(𝑡𝑖)

ෝ𝒙R(𝑡𝑖+1)

𝒖R(𝑡𝑖) 𝒙(𝑡𝑖+1)

𝒟𝒙

ෝ𝒙(𝑡𝑖)ℒrecon

ℒpred

ℰ𝒙
𝒙R(𝑡𝑖+1)

(a)

ℰ𝒙

ℰ𝒖

ℱ

State
Encoder

Control
Encoder

ROM

Π

ℱ𝑠

𝒱R 𝒙R

ℱ(𝒙R, 𝒖R)

Controller

Target
Dynamics

𝒙 𝒙R

𝒖

𝒖R

ℱ𝑠(𝒙R)

Lyapunov Function

ℒctrl

(b)

Figure 1: (a): Autoencoding architecture for reduced-order modeling. The state encoder Ex and
control encoder Eu reduce the dimension of the state and actuation, respectively. The ROM F takes
the current reduced state and actuation to predict the next reduced state, which is then uplifted to the
full state by the state decoder Dx. All modules are trained together using a combined loss involving
Lpred and Lrecon. The dashed arrow indicates that the Eu is used only when du >> 1; otherwise, the
actuation is used as a direct input to ROM. (b): The control learning process. Given a reduced state,
Fs predicts a target dynamics for the closed-loop system, and the controller Π predicts an actuation
to achieve that target. Both the modules are trained jointly using the loss function Lctrl. Parameters
of the dark-shaded modules are kept fixed during this process.

Note, here the ROM is represented as a continuous-time dynamics, unlike the linear case where
we used a discrete-time model. We use a discrete-time formulation for LAROM to establish its
similarity with DMDc, which is formulated in discrete time. DeepROM can be formulated in a
similar fashion as well. However, the specific control learning algorithm we used, which will be
discussed in the next subsection, requires vector fields of the learned ROM for training. Therefore,
we formulate the ROM in continuous time so that it provides the vector field F(xR,uR) of the
dynamics. In cases where only the prediction model is of interest and control learning is not required,
a discrete-time formulation should be used for faster training of the ROM.

We train Ex, Eu,Dx, and F by minimizing the following loss function, analogous to (13),

L(Ex, Eu,Dx,F) = Lpred(Ex, Eu,F) + β2Lrecon(Ex,Dx), (14)

where β2 > 0 is a tunable hyperparameter. Lpred and Lrecon are defined as Lpred(Ex, Eu,F) =

1
n

∑n−1
i=0

∥∥∥Ex(x(ti+1)
)
− G

(
Ex

(
x(ti)

)
, Eu

(
u(ti)

))∥∥∥2 and Lrecon(Ex,Dx) = 1
n

∑n
i=1

∥∥x(ti) −
Dx ◦ Ex

(
x(ti)

)∥∥2. Here, the operator ◦ denotes the composition of two functions. In experiments,
Lrecon also includes the reconstruction loss of the desired state where we want to stabilize the system.
Figure 1a shows the overall framework for training DeepROM.

4.2 LEARNING CONTROL

Once we get a trained ROM of the form dxR
dt = F(xR,uR) using the method proposed in section

4.1, the next goal is to design a controller for the system utilizing that ROM. Since our ROM is
represented by DNNs, we need a data-driven method to develop the controller. We adopt the ap-
proach presented by Saha et al. (2021) for learning control laws for nonlinear systems, represented
by DNNs. The core idea of the method is to hypothesize a target dynamics that is exponentially
stable at the desired state and simultaneously learn a control policy to realize that target dynamics in
the closed loop. A DNN is used to represent the vector field Fs : Rrx → Rrx of the target dynamics
dxR
dt = Fs(xR). We use another DNN to represent a controller Π : Rrx → Rdu that provides the

necessary actuation for a given reduced state xR: u = Π(xR). This control u is then encoded by
(trained) Eu to its low-dimensional representation uR. Finally, the reduced state xR and actuation
uR are fed to the (trained) ROM of dxR

dt = F(xR,uR) to get F(xR,uR). The overall framework for
learning control is referred to as deep reduced-order control (DeepROC) and is shown in Figure 1b.

Our training objective is to minimize the difference between F(xR,uR) and Fs(xR), i.e.,

Lctrl(Fs,Π) =
1

n

n∑
i=1

∥∥F(
Ex(x(ti)), Eu ◦Π ◦ Ex(x(ti))

)
−Fs ◦ Ex

(
x(ti)

)∥∥2. (15)

6

Under review as a conference paper at ICLR 2024

To minimize the control effort, we add a regularization loss with (15), and the overall training
objective for learning control is given by

Lctrl,reg(Fs,Π) = Lctrl(Fs,Π) + β3
1

n

n∑
i=1

∥∥Π(xR(ti))
∥∥2, (16)

where β3 > 0 is a tunable hyperparameter. Here we jointly train the DNNs representing Π and Fs

only, whereas the previously-trained DNNs for Ex, Eu, and F are kept frozen. Once all the DNNs
are trained, we only need Ex and Π during evaluation to generate actuation for the actual system,
given a full-state observation: u = Π ◦ Ex(x) = π(x). As we mentioned earlier, we require the
target dynamics, hypothesized by a DNN, to be exponentially stable at the desired state. Without
loss of generality, we consider stability at xR = 0. The system can be stabilized at any desired
state by adding a feedforward component to the control (see appendix A.1). Dynamics represented
by a standard neural network is not stable at any equilibrium point, in general. Kolter & Manek
(2019) showed that it is possible to design a DNN, by means of Lyapunov functions, to represent a
dynamics that is exponentially stable at an equilibrium point. Accordingly, we represent our target
dynamics as follows:

dxR

dt
= Fs(xR) = P(xR)−

ReLU
(
∇VR(xR)

⊤P(xR) + αVR(xR)
)

∥∇VR(xR)∥2
∇VR(xR), (17)

where α is a positive constant, ReLU(z) = max(0, z), z ∈ R, and VR : Rrx → R is a candidate
Lyapunov function. We use

VR(xR) = x⊤
R KxR, (18)

where K ∈ Rrx×rx is a positive definite matrix. The target dynamics of (17) is exponentially stable
at the origin, as shown in Kolter & Manek (2019).

5 EMPIRICAL RESULTS

5.1 BASELINES

The prediction performance of DeepROM is compared against DMDc and the Deep Koopman model
(Morton et al. (2018)). The Deep Koopman model shares a similar DNN-based autoencoding struc-
ture as ours, with the distinction that its (reduced-order) dynamic model is linear. The method
proposed by Morton et al. (2018) considers a model predictive scenario, where the state/system ma-
trix of the linear reduced-order model is updated with online observations during operation while
the input/control matrix is kept fixed. However, in contrast to the original method, we keep both
matrices fixed during the control operation as we consider offline control design in this paper. For
the same reason, we apply linear quadratic regulator (LQR) on the ROM obtained from the Deep
Koopman method, instead of model predictive control, to compare the control performance with our
method: DeepROC. The control performance is also compared against the reduced order controller
obtained by applying LQR on the ROM derived from DMDc. Details on the neural network archi-
tectures and training settings for the Deep Koopman model are given in appendix F. The similarity
between DMDc and LAROM can be visualized using the dynamic modes estimated in respective
methods. Due to space limitations, these visualizations are provided in the appendix E.

5.2 REACTION–DIFFUSION SYSTEM STABILIZATION

For the first experiment, we consider the Newell-Whitehead-Segel reaction-diffusion equation which
is used to describe various nonlinear physical systems including Rayleigh-Bénard convection. The
considered system is a bistable system with ±1 as stable and 0 as unstable equilibria. For the control
task, we consider feedback stabilization of this system at the unstable equilibrium 0, as studied
by Kalise & Kunisch (2018). Details on the system definition, dataset generation, neural network
architectures, and training settings are given in appendix C.

Prediction performance. First, we compare the performance of DeepROM, Deep Koopman model,
and DMDc in the prediction task. Note, this example uses low-dimensional actuation (just a single
variable). Accordingly, the control encoder Eu is not used here. Figure 2(a) shows the quantitative
comparison of the recursive multi-step predictions obtained using DMDc, Deep Koopman model,
and DeepROM. The prediction error is computed as normalized mean squared error (NMSE) with
respect to the solution obtained using the PDE solver. Prediction error increases more quickly for

7

Under review as a conference paper at ICLR 2024

Error with respect to desired profile ActuationPrediction error

(a) (b) (c)

Figure 2: (a): Prediction performance of different methods in the reaction–diffusion example.
The shaded interval shows the 95% confidence interval around the mean from 100 test sequences
and 3 different training instances. (b,c): Control performance of different methods in the reac-
tion–diffusion example. The shaded interval shows the 1-standard deviation range around the mean
from 3 different training instances.

DMDc and Deep Koopman than DeepROM as the linear ROMs become less accurate in the long
term. A qualitative comparison of the prediction performance of the methods for an example se-
quence is given in the appendix C.5.

Control performance. Figures 2(b,c) show the control performance of DeepROC, Deep Koopman
+ LQR, and DMDc + LQR in the task of stabilizing the system at the unstable equilibrium 0 from
an initial state 2 + cos(2πζ) cos(πζ). We use the following two metrics for comparison:

(i) mean squared error over time between the controlled solutions and the desired profile
(ii) the amount of actuation applied

All methods show similar closed-loop error profiles. However, DeepROC requires significantly
less amount of actuation in comparison with DMDc + LQR and Deep Koopman + LQR to reach
a similar steady-state error. DeepROC can account for the decaying nonlinear term −q3 present
in the system (47) and therefore learns to apply less actuation. A qualitative comparison of the
uncontrolled solution and the controlled solutions obtained using the three methods is given in the
appendix C.5.

For this example, we also compare performance with a model-based control method that optimizes
the control input of a trained surrogate model through backpropagation. Specifically, we investigate
the method proposed by Hwang et al. (2022). Such optimization technique is computationally ex-
pensive for time-dependent PDEs, particularly when a long trajectory is needed to be rolled out. We
observed that we can optimize the control input only up to a certain time step. Though the system
state reaches the target within this timeframe, it fails to stay stable since the target is an unstable
equilibrium and the control input is no longer effective. We added this result in the supplementary
(appendix C.5).

5.3 VORTEX SHEDDING SUPPRESSION IN FLUID

In this experiment, we consider modeling and suppressing vortex shedding in two-dimensional in-
compressible flow past a circular cylinder. This is a well-known problem (Schäfer et al. (1996))
and is of great importance for many engineering applications (Williamson (1996)). The density and
kinematic viscosity of the fluid are chosen such that the Reynolds number is Re = 50, which is just
above the cutoff for the onset of the vortex shedding (Williamson (1996)). In this case, vortices are
created at the back of the cylinder and are shed periodically from the upper and lower surfaces of the
cylinder forming a von Kármán vortex street (Morton et al. (2018)). Details on the problem setup,
dataset generation, neural network architectures, and training settings are given in appendix D.

Prediction performance. Figure 3(a) shows the quantitative comparison of the recursive multi-step
predictions, starting from t = 0.1, obtained using DMDc, Deep Koopman model, and DeepROM.
The initial state is chosen at t = 0.1 because the fluid does not reach the observation region W before
that time. The prediction error is computed as the mean squared error (MSE) with respect to the
solution obtained using a PDE solver. DeepROM shows lower prediction error in comparison with
DMDc. The Deep Koopman model shows better prediction performance than DeepROM and DMDc
during the initial few steps. However, its accuracy deteriorates rapidly and eventually becomes
comparable to that of DMDc. A qualitative comparison of the prediction performance of the three
methods is given in the appendix D.5. Additionally, we compare the prediction performance of
DeepROM for an unforced system with the transformer-based model VideoGPT (Yan et al. (2021)).

8

Under review as a conference paper at ICLR 2024

Error with respect to desired profile Actuation magnitudePrediction error

(a) (b) (c)

Figure 3: (a): Prediction performance of different methods in the fluid flow example. The shaded
interval shows 1-standard deviation range around the mean from 3 training instances. (b, c): Control
performance of different methods in the vortex shedding suppression task. The shaded interval
shows 1-standard deviation range around the mean from 3 training instances.

Results of this experiment are provided in appendix D.5 and indicate that VideoGPT generates
satisfactory predictions in the short term but falls short in capturing long-term dynamics.

Control performance. Figure 3(b,c) shows the control performance of DeepROC, Deep Koopman
+ LQR, and DMDc+LQR in the task of suppressing vortex shedding. The controllers of DeepROC
and DMDc + LQR directly estimate the high-dimensional actuation distributed over space. How-
ever, the same technique proved ineffective in suppressing the shedding for Deep Koopman + LQR.
Therefore, instead of directly estimating the distributed actuation, we utilize a low-dimensional rep-
resentation of the actuation for Deep Koopman + LQR. We represent the distributed actuation as a
linear combination of some space-dependent sinusoidal basis functions. The controller is designed
to estimate the coefficients of those basis functions in the linear combination. Details are provided
in appendix F.
We use the same metrics as the previous example for comparison except for actuation. Since dis-
tributed control is applied in this case, we use the magnitude of the actuation here. To reach a similar
steady-state error, DeepROC takes a longer time compared to DMDc and Deep Koopman + LQR.
DeepROM uses the least amount of actuation during the initial few steps, whereas Deep Koopman
+ LQR has the least steady-state actuation magnitude. A qualitative comparison of the uncontrolled
solution and the controlled solutions obtained using the three methods is given in the appendix D.5.

Comparison with full-order model-based control. In assessing the benefits of employing a
reduced-order model in contrast to a full-order model (FOM), we conduct an ablation study with
an FOM and the identical control method applied directly to it. While FOM exhibits superior pre-
diction accuracy for the initial steps, it experiences a rapid decline in accuracy over time. On the
other hand, FOM + NI4C (Saha et al. (2021)) shows better performance than DeepROC for the con-
trol task. However, it is crucial to highlight that the advantage of employing a reduced-order model
over a full-order model in control learning primarily resides in reduced computational complexity
without a substantial compromise in accuracy. Effective FLOP count (#E-FLOPs) per training or
prediction step for FOM is significantly higher (over 150X) than that of DeepROM despite a similar
parameter count. The substantial computational disparity arises due to the NI4C’s requirement for a
continuous-time formulation of the model, necessitating numerical integration during both training
and inference. Due to space limitations, the detailed quantitative comparisons of performance and
computational costs are provided in the supplementary (appendix D.5).

6 CONCLUSION

We presented a framework for autoencoder-based modeling and control learning for PDE-driven dy-
namical systems. The proposed reduced-order modeling framework is grounded on the connection
between dynamic mode decomposition for controlled systems and a linear autoencoding architecture
that can be trained using gradient descent. As we showed in experiments, DeepROM offers better
prediction accuracy than a linear ROM over a relatively longer prediction horizon when applied
to nonlinear systems. However, this advantage does not always translate to significant improve-
ment in control performance. Designing controllers for DNN-based models is a challenging task
due to the standard difficulties associated with non-convex optimization. Nevertheless, we envision
great prospects in solving many problems of control design for high-dimensional systems utilizing
autoencoder-based models as they continue to demonstrate their effectiveness in the analysis and
prediction of such systems.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Arthur Albert. Regression and the Moore-Penrose Pseudoinverse. Academic Press, 1972.

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning
dynamical systems from partial observations. arXiv preprint arXiv:1902.11136, 2019.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Gerben Beintema, Alessandro Corbetta, Luca Biferale, and Federico Toschi. Controlling rayleigh–
bénard convection via reinforcement learning. Journal of Turbulence, 21(9-10):585–605, 2020.

Katharina Bieker, Sebastian Peitz, Steven L Brunton, J Nathan Kutz, and Michael Dellnitz. Deep
model predictive flow control with limited sensor data and online learning. Theoretical and com-
putational fluid dynamics, 34:577–591, 2020.

Oumayma Bounou, Jean Ponce, and Justin Carpentier. Online learning and control of dynamical
systems from sensory input. In NeurIPS 2021-Thirty-fifth Conference on Neural Information
Processing Systems Year, 2021.

Kaixuan Chen, Jin Lin, Yiwei Qiu, Feng Liu, and Yonghua Song. Deep learning-aided model pre-
dictive control of wind farms for agc considering the dynamic wake effect. Control Engineering
Practice, 116:104925, 2021.

Emmanuel De Bézenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical processes:
Incorporating prior scientific knowledge. Journal of Statistical Mechanics: Theory and Experi-
ment, 2019(12):124009, 2019.

Jérémie Donà, Jean-Yves Franceschi, Sylvain Lamprier, and Patrick Gallinari. Pde-driven spa-
tiotemporal disentanglement. arXiv preprint arXiv:2008.01352, 2020.

Hamidreza Eivazi, Hadi Veisi, Mohammad Hossein Naderi, and Vahid Esfahanian. Deep neural net-
works for nonlinear model order reduction of unsteady flows. Physics of Fluids, 32(10):105104,
2020.

N Benjamin Erichson, Michael Muehlebach, and Michael W Mahoney. Physics-informed autoen-
coders for lyapunov-stable fluid flow prediction. arXiv preprint arXiv:1905.10866, 2019.

Paul Garnier, Jonathan Viquerat, Jean Rabault, Aurélien Larcher, Alexander Kuhnle, and Elie
Hachem. A review on deep reinforcement learning for fluid mechanics. Computers & Fluids,
225:104973, 2021.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable physics.
In International Conference on Learning Representations, 2020.

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving pde-constrained
control problems using operator learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36(4), pp. 4504–4512, 2022.

Jer-Nan Juang and Richard S Pappa. An eigensystem realization algorithm for modal parameter
identification and model reduction. Journal of guidance, control, and dynamics, 8(5):620–627,
1985.

Jer-Nan Juang, Minh Phan, Lucas G Horta, and Richard W Longman. Identification of ob-
server/kalman filter markov parameters-theory and experiments. Journal of Guidance, Control,
and Dynamics, 16(2):320–329, 1993.

Dante Kalise and Karl Kunisch. Polynomial approximation of high-dimensional hamilton–jacobi–
bellman equations and applications to feedback control of semilinear parabolic pdes. SIAM Jour-
nal on Scientific Computing, 40(2):A629–A652, 2018.

Hassan K. Khalil. Nonlinear systems. Prentice Hall, third edition, 2002.

10

Under review as a conference paper at ICLR 2024

Mohammad Amin Khodkar, Pedram Hassanzadeh, and Athanasios Antoulas. A koopman-based
framework for forecasting the spatiotemporal evolution of chaotic dynamics with nonlinearities
modeled as exogenous forcings. arXiv preprint arXiv:1909.00076, 2019.

Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer
graphics forum, volume 38(2), pp. 59–70. Wiley Online Library, 2019.

J Zico Kolter and Gaurav Manek. Learning stable deep dynamics models. Advances in neural
information processing systems, 32, 2019.

Kookjin Lee and Kevin T Carlberg. Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Systems, volume 10. Rome, Italy, 2015.

Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by
the finite element method: The FEniCS book, volume 84. Springer Science & Business Media,
2012.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International Conference on Machine Learning, pp. 3208–3216. PMLR, 2018.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh Manocha. Fluid directed rigid
body control using deep reinforcement learning. ACM Transactions on Graphics (TOG), 37(4):
1–11, 2018.

Jan R Magnus and Heinz Neudecker. Symmetry, 0-1 matrices and jacobians: A review. Econometric
Theory, 2(2):157–190, 1986.

George Matsaglia and George PH Styan. Equalities and inequalities for ranks of matrices. Linear
and multilinear Algebra, 2(3):269–292, 1974.

Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep dynami-
cal modeling and control of unsteady fluid flows. Advances in Neural Information Processing
Systems, 31, 2018.

Zuowei Ping, Zhun Yin, Xiuting Li, Yefeng Liu, and Tao Yang. Deep koopman model predictive
control for enhancing transient stability in power grids. International Journal of Robust and
Nonlinear Control, 31(6):1964–1978, 2021.

Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with control.
SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

Jean Rabault, Miroslav Kuchta, Atle Jensen, Ulysse Réglade, and Nicolas Cerardi. Artificial neural
networks trained through deep reinforcement learning discover control strategies for active flow
control. Journal of fluid mechanics, 865:281–302, 2019.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equa-
tions. The Journal of Machine Learning Research, 19(1):932–955, 2018.

Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang Wang.
Deep learning-based weather prediction: a survey. Big Data Research, 23:100178, 2021.

Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spec-
tral analysis of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.

Priyabrata Saha, Magnus Egerstedt, and Saibal Mukhopadhyay. Neural identification for control.
IEEE Robotics and Automation Letters, 6(3):4648–4655, 2021.

11

Under review as a conference paper at ICLR 2024

Michael Schäfer, Stefan Turek, Franz Durst, Egon Krause, and Rolf Rannacher. Benchmark compu-
tations of laminar flow around a cylinder. Springer, 1996.

Sebastian Scher. Toward data-driven weather and climate forecasting: Approximating a simple
general circulation model with deep learning. Geophysical Research Letters, 45(22):12–616,
2018.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid
mechanics, 656:5–28, 2010.

Sungyong Seo, Chuizheng Meng, and Yan Liu. Physics-aware difference graph networks for
sparsely-observed dynamics. In International Conference on Learning Representations, 2019.

Eduardo D Sontag. Mathematical control theory: deterministic finite dimensional systems, vol-
ume 6. Springer Science & Business Media, 2013.

Prem A Srinivasan, L Guastoni, Hossein Azizpour, PHILIPP Schlatter, and Ricardo Vinuesa. Predic-
tions of turbulent shear flows using deep neural networks. Physical Review Fluids, 4(5):054603,
2019.

Tetsuya Takahashi, Junbang Liang, Yi-Ling Qiao, and Ming C Lin. Differentiable fluids with solid
coupling for learning and control. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35(7), pp. 6138–6146, 2021.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces
for dynamic mode decomposition. Advances in neural information processing systems, 30, 2017.

Hongwei Tang, Jean Rabault, Alexander Kuhnle, Yan Wang, and Tongguang Wang. Robust active
flow control over a range of reynolds numbers using an artificial neural network trained through
deep reinforcement learning. Physics of Fluids, 32(5):053605, 2020.

Jonathan H. Tu, , Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz
and. On dynamic mode decomposition: Theory and applications. Journal of Computational
Dynamics, 1(2):391–421, 2014. doi: 10.3934/jcd.2014.1.391.

Pantelis R Vlachas, Georgios Arampatzis, Caroline Uhler, and Petros Koumoutsakos. Multiscale
simulations of complex systems by learning their effective dynamics. Nature Machine Intelli-
gence, 4(4):359–366, 2022.

Steffen Wiewel, Byungsoo Kim, Vinicius C Azevedo, Barbara Solenthaler, and Nils Thuerey. Latent
space subdivision: stable and controllable time predictions for fluid flow. In Computer Graphics
Forum, volume 39(8), pp. 15–25. Wiley Online Library, 2020.

Karen Willcox and Jaime Peraire. Balanced model reduction via the proper orthogonal decomposi-
tion. AIAA journal, 40(11):2323–2330, 2002.

Charles HK Williamson. Vortex dynamics in the cylinder wake. Annual review of fluid mechanics,
28(1):477–539, 1996.

Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential equa-
tions via latent global evolution. Advances in Neural Information Processing Systems, 35:2240–
2253, 2022.

SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional lstm network: A machine learning approach for precipitation nowcasting. In Ad-
vances in neural information processing systems, pp. 802–810, 2015.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.

Yuting Yang, Junyu Dong, Xin Sun, Estanislau Lima, Quanquan Mu, and Xinhua Wang. A cfcc-lstm
model for sea surface temperature prediction. IEEE Geoscience and Remote Sensing Letters, 15
(2):207–211, 2017.

12

Under review as a conference paper at ICLR 2024

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations
for koopman operators of nonlinear dynamical systems. In 2019 American Control Conference
(ACC), pp. 4832–4839. IEEE, 2019.

Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-informed multi-lstm networks for metamodeling
of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 369:113226,
2020.

13

Under review as a conference paper at ICLR 2024

A ADDITIONAL PRELIMINARIES

A.1 STABILIZATION OF CONTROLLED SYSTEMS

Suppose the function f in (2) is locally Lipschitz and (x = 0,u = 0) is an equilibrium pair of
the system, i.e., f(0,0) = 0. The system (2) is said to be locally stabilizable with respect to the
equilibrium pair if there exists a locally Lipschitz function π : X0 → U, π(0) = 0, defined on some
neighborhood X0 ⊂ X of the origin x = 0 for which the closed-loop system dx

dt = f(x, π(x)) is
locally asymptotically stable, i.e. ∥x(t0)∥ < δ implies limt→∞ x(t) = 0 (Sontag (2013)).

Stability of the closed-loop system dx
dt = f(x, π(x)) = h(x) at equilibrium points can be analyzed

using the method of Lyapunov. Let V : X → R be a continuously differentiable function such that

V(0) = 0, and V(x) > 0 ∀ x ∈ X \ {0}, (19)

and the time derivative of V along the trajectories
dV
dt

= ∇V(x)⊤ dx

dt
= ∇V(x)⊤h(x) ≤ 0 ∀ x ∈ X. (20)

Then, the equilibrium point x = 0 is stable, i.e., for each ϵ > 0, there exists a δ = δ(ϵ) > 0 such
that ∥x(t0)∥ < δ implies ∥x(t)∥ < ϵ, ∀t > t0. The function V with the above properties is called a
Lyapunov function. If dV

dt < 0 in some subset Xs ⊂ X \ {0}, then x = 0 is locally asymptotically
stable. Moreover, if there exist positive constants c1, c2, c3 and c4 such that

c1∥x∥2 ≤ V(x) ≤ c2∥x∥2, (21)

and
∇V(x)⊤h(x) ≤ −c3∥x∥2, ∀ x ∈ Xs, (22)

then x = 0 is exponentially stable, i.e., there exist positive constants δ, λ and γ such that ∥x(t)∥ ≤
λ∥x(t0)∥e−γ(t−t0), ∀∥x(t0)∥ < δ (Khalil (2002)).

Though the above formulation is for stabilization at the equilibrium point x = 0, the same can be
used for developing control to stabilize the system at any arbitrary point xss. In that case, a steady-
state control input uss is required that can maintain the equilibrium at xss, i.e., f(xss,uss) = 0.
The change of variables xe = x − xss,ue = u − uss leads to a transformed system where we
can apply the aforementioned formulation of stabilization. The overall control, in this case, u =
ue + uss comprises a feedback component ue and a feedforward component uss (Khalil (2002)).

In this paper, we assume that the system we are aiming to stabilize at an equilibrium point is sta-
bilizable in the sense of the aforementioned definition and criteria, i.e., there exists a continuously
differentiable function V and a Lipschitz continuous control law π such that criteria (19) and (20)
are conformed.

A.2 SOME PROPERTIES OF MATRICES USED FOR PROOFS

The proofs of the analytical results presented in this paper use the following properties of the rank
(denoted by rank(·)), the Kronecker product (denoted by ⊗) and vectorization of matrices (denoted
by vec(·)). All the definitions and properties are presented in the context of matrices over real
numbers.

For any conformable matrices D and E such that E has full row-rank,

rank(DE) = rank(D). (23a)

For any real matrix D,

rank(D⊤D) = rank(DD⊤) = rank(D⊤) = rank(D). (23b)

For any matrices (of compatible dimensions) D,E,F , and H ,

vec(DEF⊤) = (F ⊗D)vec(E), (24a)

(D ⊗E)⊤ = D⊤ ⊗E⊤, (24b)
(D ⊗E)(F ⊗H) = (DF ⊗EH), (24c)

14

Under review as a conference paper at ICLR 2024

whenever these quantities are defined. Furthermore, if D and E are symmetric and positive semidef-
inite (resp. positive definite), then D ⊗ E is symmetric and positive semidefinite (resp. positive
definite), i.e.,

D ⪰ 0,E ⪰ 0 =⇒ (D ⊗E) ⪰ 0; D ≻ 0,E ≻ 0 =⇒ (D ⊗E) ≻ 0. (24d)

Proofs of (23) and (24) can be found in (Matsaglia & PH Styan (1974)) and (Magnus & Neudecker
(1986)), respectively.

To derive the results presented in corollary (4.1.1.1), we use the following definitions of the Moore-
Penrose inverse of a matrix (denoted by (·)+). For any matrix D and its (full) SVD, i.e., D =
UDΣDV ⊤

D ,

D+ = (D⊤D)−1D⊤, when (D⊤D)−1 exists, (25a)

D+ = D⊤(DD⊤)−1, when (DD⊤)−1 exists, (25b)

D+ = VDΣ+
DU⊤

D, (25c)

D+ = lim
ε→0

(D⊤D + ε2I)−1D⊤ = lim
ε→0

D⊤(DD⊤ + ε2I)−1, (25d)

where I is the identity matrix of compatible dimension. The proof of (25d) can be found in (Albert
(1972)).

B PROOFS

This section details the proofs for the results presented in section 4. To prove Theorem 4.1.1, we
use some well-known results, summarized as the following lemma in (Baldi & Hornik (1989)), for
linear least-squares optimization.
Lemma B.0.1. The quadratic function L(z) = ∥y −Mz∥2 = y⊤y − 2y⊤Mz + z⊤M⊤Mz is
convex, and a point z globally minimizes L if and only if ∇L(z) = 0, or equivalently, M⊤Mz =
M⊤y. Furthermore, if M⊤M ≻ 0, i.e., positive definite, then L is strictly convex and reaches its
unique minimum for z = (M⊤M)−1M⊤y.

B.1 PROOF OF THEOREM 4.1.1

Theorem 4.1.1. Consider the following objective function

Lpred(Ex,G) =
1

n

n−1∑
i=0

∥∥Exx(ti+1)−GExuω(ti)
∥∥2, (8)

where G = [AR BR] ∈ Rrx×(rx+du),Exu =

[
Ex 0
0 Idu

]
∈ R(rx+du)×(dx+du), Idu being the

identity matrix of order du. For any fixed matrix Ex, the objective function Lpred is convex in the
coefficients of G and attains its minimum for any G satisfying

GExuΩΩ⊤E⊤
xu = ExY Ω⊤E⊤

xu, (9)

where Y and Ω are the data matrices as defined in section (3.2). If Ex has full rank rx, and ΩΩ⊤

is non-singular, then Lpred is strictly convex and has a unique minimum for

G = [AR BR] = ExY Ω⊤E⊤
xu(ExuΩΩ⊤E⊤

xu)
−1. (10)

Proof. We can write Lpred(Ex,G) as follows,

Lpred(Ex,G) =
1

n

n−1∑
i=0

∥∥Exx(ti+1)−GExuω(ti)
∥∥2

=
∥∥vec(ExY)− vec(GExuΩ)

∥∥2
=

∥∥vec(ExY)− (Ω⊤E⊤
xu ⊗ Irx)vec(G)

∥∥2. (26)

15

Under review as a conference paper at ICLR 2024

The third equality is obtained using (24a). For fixed Ex, we can apply Lemma B.0.1 to (26): (26) is
convex in coefficient of G, and G corresponds to a global minimum of Lpred if and only if

(Ω⊤E⊤
xu ⊗ Irx)

⊤(Ω⊤E⊤
xu ⊗ Irx)vec(G) = (Ω⊤E⊤

xu ⊗ Irx)
⊤vec(ExY). (27)

Using (24b) and (24c), we can write (27) as

(ExuΩΩ⊤E⊤
xu ⊗ Irx)vec(G) = (ExuΩ ⊗ Irx)vec(ExY). (28)

Applying (24a) on (28), we get GExuΩΩ⊤E⊤
xu = ExY Ω⊤E⊤

xu, i.e., (9).

If Ex has full rank rx, then Exu =

[
Ex 0
0 Idu

]
∈ R(rx+du)×(dx+du) has full rank (rx + du). If

ΩΩ⊤ ∈ R(dx+du)×(dx+du) is non-singular, then Ω has full row-rank (dx + du). Consequently,
using (23a) and (23b), we have

rank(ExuΩΩ⊤E⊤
xu) = rank(ExuΩ) = rank(Exu) = rx + du. (29)

Hence the symmetric positive semidefinite matrix ExuΩΩ⊤E⊤
xu has full rank and therefore posi-

tive definite. Using (24b), (24c), and (24d), we can see that (Ω⊤E⊤
xu ⊗ Irx)

⊤(Ω⊤E⊤
xu ⊗ Irx) =

(ExuΩΩ⊤E⊤
xu ⊗ Irx) is positive definite as well. Therefore, by Lemma B.0.1, (26) is strictly

convex in the coefficients of G and has a unique minimum. Since ExuΩΩ⊤E⊤
xu ≻ 0, it is

invertible. Hence, from (9), we can say that the unique minimum of (26) is reached at G =
ExY Ω⊤E⊤

xu(ExuΩΩ⊤E⊤
xu)

−1, i.e., (10). ■

B.2 AN ALTERNATIVE REPRESENTATION OF (10)

Here we provide a possible alternative representation of (10) required to prove corollary 4.1.1.1.

Lemma B.2.1. Consider the (full) SVD of the data matrix Ω given by Ω = UΩΣΩV
⊤
Ω , where

UΩ ∈ R(dx+du)×(dx+du),ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n. (10) can be expressed as

G = lim
ε→0

ExY VΩ (Σ
⊤
ΩU

⊤
ΩE⊤

xuExuUΩΣΩ + ε2In)
−1Σ⊤

ΩU
⊤
ΩE⊤

xu. (30)

Proof. Replacing Ω with its SVD in (10) we get,

G = ExY VΩΣ
⊤
ΩU

⊤
ΩE⊤

xu(ExuUΩΣΩV
⊤
Ω VΩΣ

⊤
ΩU

⊤
ΩE⊤

xu)
−1

= ExY VΩΣ
⊤
ΩU

⊤
ΩE⊤

xu(ExuUΩΣΩΣ
⊤
ΩU

⊤
ΩE⊤

xu)
−1

= ExY VΩ (ExuUΩΣΩ)
+ (31)

The second equality is due to the orthogonality of VΩ . The third equality is obtained using (25b).
Substituting (ExuUΩΣΩ)

+ with the limit definition (25d) of the Moore-Penrose inverse, we get

G = lim
ε→0

ExY VΩ (Σ
⊤
ΩU

⊤
ΩE⊤

xuExuUΩΣΩ + ε2In)
−1Σ⊤

ΩU
⊤
ΩE⊤

xu. (32)

■

B.3 PROOF OF COROLLARY 4.1.1.1

Corollary 4.1.1.1. Consider the (full) SVD of the data matrix Ω given by Ω = UΩΣΩV
⊤
Ω , where

UΩ ∈ R(dx+du)×(dx+du),ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n. If Ex = Û⊤
Y and ΩΩ⊤ is non-

singular, then the solution for G = [AR BR] corresponding to the unique minimum of Lpred can be
expressed as

AR = Û⊤
Y Y VΩΣ

∗U⊤
Ω,1ÛY , and BR = Û⊤

Y Y VΩΣ
∗U⊤

Ω,2, (11)

where [U⊤
Ω,1 U⊤

Ω,2] = U⊤
Ω with UΩ,1 ∈ Rdx×(dx+du),UΩ,2 ∈ Rdu×(dx+du), and

Σ∗ = limε→0(Σ
⊤
ΩU

⊤
Ω,1ÛY Û⊤

Y UΩ,1ΣΩ +Σ⊤
ΩU

⊤
Ω,2UΩ,2ΣΩ + ε2In)

−1Σ⊤
Ω .

16

Under review as a conference paper at ICLR 2024

Proof. By the definition of truncated SVD, the columns of ÛY are orthonormal. Therefore, Û⊤
Y

has full row-rank rx. Hence, by theorem 4.1.1 and lemma B.2.1, if Ex = Û⊤
Y , and ΩΩ⊤ is

non-singular, then the unique minimum of Lpred, is reached when

G = Û⊤
Y Y VΩ (ExuUΩΣΩ)

+ = lim
ε→0

Û⊤
Y Y VΩ (Σ

⊤
ΩU

⊤
ΩE⊤

xuExuUΩΣΩ + ε2In)
−1Σ⊤

ΩU
⊤
ΩE⊤

xu.

(33)

Now, substituting Ex = Û⊤
Y in Exu, and using the partition U⊤

Ω = [U⊤
Ω,1 U⊤

Ω,2], where UΩ,1 ∈
Rdx×(dx+du),UΩ,2 ∈ Rdu×(dx+du), we get

ExuUΩ =

[
Û⊤

Y 0
0 Idu

] [
UΩ,1

UΩ,2

]
=

[
Û⊤

Y UΩ,1

UΩ,2

]
, (34)

and

U⊤
ΩE⊤

xuExuUΩ =
[
U⊤

Ω,1ÛY U⊤
Ω,2

] [
Û⊤

Y UΩ,1

UΩ,2

]
= U⊤

Ω,1ÛY Û⊤
Y UΩ,1 +U⊤

Ω,2UΩ,2. (35)

Plugging (34) and (35) into (33) leads to

G = lim
ε→0

Û⊤
Y Y VΩ (Σ

⊤
ΩU

⊤
Ω,1ÛY Û⊤

Y UΩ,1ΣΩ+Σ⊤
ΩU

⊤
Ω,2UΩ,2ΣΩ+ε2In)

−1Σ⊤
Ω

[
U⊤

Ω,1ÛY U⊤
Ω,2

]
.

(36)
Defining Σ∗ ∆

= limε→0(Σ
⊤
ΩU

⊤
Ω,1ÛY Û⊤

Y UΩ,1ΣΩ + Σ⊤
ΩU

⊤
Ω,2UΩ,2ΣΩ + ε2In)

−1Σ⊤
Ω , we can

split (36) into

AR = Û⊤
Y Y VΩΣ

∗U⊤
Ω,1ÛY , and BR = Û⊤

Y Y VΩΣ
∗U⊤

Ω,2,

which is (11). ■

B.4 THE CASE WHEN ΩΩ⊤NOT INVERTIBLE

When the covariance matrix ΩΩ⊤ is not invertible, which is always true if n < dx+du, the matrix
ExuΩΩ⊤E⊤

xu is not guaranteed to be invertible. In that case, the minimum of Lpred corresponds
to infinitely many solutions for G. However, minimizing Lpred with added ℓ2 regularization, i.e.,
Lpred,reg(Ex,G) = Lpred(Ex,G) + β∥vec(G)∥2 provides a unique solution for G, for a fixed Ex.
We have the following result.

Theorem B.4.1. For any fixed matrix Ex and β > 0, the objective function Lpred,reg(Ex,G) =
Lpred(Ex,G) + β∥vec(G)∥2 is strictly convex in the coefficients of G, and the global minimum of
Lpred,reg corresponds to the unique solution for G, given by

G = ExY Ω⊤E⊤
xu(ExuΩΩ⊤E⊤

xu + βIrx+du)
−1. (37)

Proof. Lpred,reg(Ex,G) can be written as, using (24a-c),

Lpred,reg(Ex,G) =
∥∥vec(ExY)− (Ω⊤E⊤

xu ⊗ Irx)vec(G)
∥∥2 + β∥vec(G)∥2

= vec(ExY)⊤vec(ExY)− 2vec(ExY)⊤(Ω⊤E⊤
xu ⊗ Irx)vec(G)

+ vec(G)⊤(ExuΩΩ⊤E⊤
xu ⊗ Irx + βIrx(rx+du))vec(G)

ExuΩΩ⊤E⊤
xu is a symmetric positive semidefinite matrix, irrespective of whether it has full rank

or not. Hence, by (24d), ExuΩΩ⊤E⊤
xu ⊗ Irx is symmetric positive semidefinite. Consequently,

for any β > 0, ExuΩΩ⊤E⊤
xu ⊗ Irx + βIrx(rx+du) is positive definite. According to lemma

B.0.1, Lpred,reg is therefore strictly convex in the coefficients of G and globally minimized when
∇Lpred,reg = 0. The unique solution of (37) can be derived in the same manner as theorem 4.1.1. ■

Remark. Replacing Ω with its SVD in (37) we get,

G = ExY VΩΣ
⊤
ΩU

⊤
ΩE⊤

xu(ExuUΩΣΩΣ
⊤
ΩU

⊤
ΩE⊤

xu + βIrx+du)
−1. (38)

In the limit β → 0+, (38) converges to (31).

17

Under review as a conference paper at ICLR 2024

B.5 DMDC THROUGH A LINEAR AUTOENCODING STRUCTURE

Here we present a linear autoencoding structure that leads to a linear ROM exactly resembling the
DMDc solution when Ex = Û⊤

Y . However, its DNN-based nonlinear counterpart does not actually
offer dimensionality reduction.

Theorem B.5.1. Consider the following objective function

Lpred,alt(Ex, G̃) =
1

n

n−1∑
i=0

∥∥Exx(ti+1)− G̃ω(ti)
∥∥2, (39)

where G̃ ∈ Rrx×(dx+du). For any fixed matrix Ex, the objective function Lpred,alt is convex in the
coefficients of G̃ and attains its minimum for any G̃ satisfying

G̃ΩΩ⊤ = ExY Ω⊤, (40)

where Y and Ω are the data matrices as defined in section (3.2). If ΩΩ⊤ is non-singular, then
Lpred,alt is strictly convex and has a unique minimum for

G̃ = ExY Ω⊤(ΩΩ⊤)−1. (41)

Proof. The proof is very similar to the proof of theorem 4.1.1. Using (24a), we can write
Lpred,alt(Ex, G̃) as follows,

Lpred,alt(Ex, G̃) =
1

n

n−1∑
i=0

∥∥Exx(ti+1)− G̃ω(ti)
∥∥2

=
∥∥vec(ExY)− vec(G̃Ω)

∥∥2
=

∥∥vec(ExY)− (Ω⊤ ⊗ Irx)vec(G̃)
∥∥2. (42)

For fixed Ex, applying Lemma B.0.1 to (42), we can say Lpred,alt is convex in the coefficients of G̃,
and G̃ corresponds to a global minimum of Lpred,alt if and only if

(Ω⊤ ⊗ Irx)
⊤(Ω⊤ ⊗ Irx)vec(G̃) = (Ω⊤ ⊗ Irx)

⊤vec(ExY). (43)

Using (24a-c), we can write (43) as G̃ΩΩ⊤ = ExY Ω⊤, which is (40).

If ΩΩ⊤ is non-singular, then it is symmetric positive definite. Using (24b-d), we can see that
(Ω⊤ ⊗ Irx)

⊤(Ω⊤ ⊗ Irx) = (ΩΩ⊤ ⊗ Irx) is positive definite as well. Therefore, by Lemma
B.0.1, (42) is strictly convex in coefficient in G̃ and has a unique minimum. In that case, from (40),
we can say that the unique minimum of (42) is reached at G̃ = ExY Ω⊤(ΩΩ⊤)−1, i.e., (41). ■

Corollary B.5.1.1. Consider the (full) SVD of the data matrix Ω given by Ω = UΩΣΩV
⊤
Ω , where

UΩ ∈ R(dx+du)×(dx+du),ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n. If Ex = Û⊤
Y and ΩΩ⊤ is non-

singular, then the solution for G̃ corresponding to the unique minimum of Lpred,alt can be expressed
as

G̃ = Û⊤
Y Y VΩΣ

+
ΩU

⊤
Ω . (44)

Proof. By theorem B.5.1, if Ex = Û⊤
Y , and ΩΩ⊤ is non-singular, then the unique minimum of

Lpred,alt is reached when

G̃ = Û⊤
Y Y Ω⊤(ΩΩ⊤)−1 = Û⊤

Y Y Ω+ (45)

The second equality is due to (25b). Substituting Ω+ with its SVD definition (25c) into (45), we get
Û⊤

Y Y VΩΣ
+
ΩU

⊤
Ω , which is (44). ■

18

Under review as a conference paper at ICLR 2024

Remark. From (39), it can be seen that G̃ maps the concatenated vector, ω(ti), of full state and ac-
tuation to the next reduce state xR(ti+1). We can partition (44) as G̃ = Û⊤

Y Y VΩΣ
+
Ω [U

⊤
Ω,1 U⊤

Ω,2] =

[Ã B̃] to separate out the blocks corresponding to state and actuation. Here, UΩ,1,UΩ,2 are the
same as defined in corollary 4.1.1.1, and Ã ∈ Rrx×dx , B̃ ∈ Rrx×du . Now, if we post-multiply Ã

with E⊤
x = ÛY ∈ Rdx×rx , we get a ROM

ÃR = ÃÛY = Û⊤
Y Y VΩΣ

+
ΩU

⊤
Ω,1ÛY , B̃R = B̃ = Û⊤

Y Y VΩΣ
+
ΩU

⊤
Ω,2, (46)

which maps the current reduced state xR(ti) and actuation u(ti) to the next reduced state xR(ti+1).
It can be verified easily that if we use the truncated SVD (as defined by 5), instead of the full SVD,
for Ω in (45) and follow the similar steps afterward, we get an approximation of (46):

ÂR = Û⊤
Y Y V̂Ω Σ̂

−1
Ω Û⊤

Ω,1ÛY = AR,DMDc; B̂R = Û⊤
Y Y V̂Ω Σ̂

−1
Ω Û⊤

Ω,2 = BR,DMDc.

In summary, the aforementioned method can be carried out using gradient descent-based optimiza-
tion and leads to the same ROM as DMDc, when Ex = Û⊤

Y . However, in this method, the benefit
of dimensionality reduction is realized only when linear networks are used. A nonlinear counterpart
(a DNN in the context of this paper) of ÃR, i.e., a nonlinear mapping from Rrx to Rrx , cannot be
pre-computed from a nonlinear counterpart of G̃, unlike the linear case (46). Consequently, we lose
the benefit of dimensionality reduction when nonlinear networks are used.

C DETAILS ON REACTION–DIFFUSION SYSTEM EXPERIMENT

C.1 SYSTEM DEFINITION

The Newell–Whitehead–Segel reaction-diffusion equation with the Neumann boundary condition is
defined by

∂q

∂t
= σ∇2q + q(1− q2) + 1Ww in I× R+,

∇q(ζl, t) = ∇q(ζr, t) = 0, t ∈ R+. (47)

In (47), q(ζ, t) ∈ R denotes the measurement variable such as concentration or temperature at
location ζ ∈ I ⊂ R and time t; σ denotes the diffusion coefficient; w(t) ∈ R is the actuation at time
t and 1W(ζ) is the indicator function with W ⊂ I; ζl and ζr denote the boundary points of I. We use
I = (−1, 1),W = (−0.2, 0.2), and σ = 0.2.

C.2 DATASET

We use FEniCS (Logg et al. (2012)), an open-source computing platform for solving PDEs using
the finite element method, with Python interface to generate the dataset. For the reaction-diffusion
system of (47), we generate 100 training sequences of length 50 with time step size 0.01 and 256
nodes in I. The initial conditions and actuations of these sequences are given by

q(ζ, 0) = |a|
4∑

k=0

bkTk(ζ), ζ ∈ I, (48)

and
w(ti) = 10gi max

ζ
|q(ζ, ti−1)|, i = 1, 2, · · · , 49, (49)

where Tk denotes the kth Chebyshev polynomial of the first kind, and a ∼ N (0, 1), bk, gi ∼
U(−1, 1) are chosen randomly. Similarly, 100 sequences are generated for the test set to evalu-
ate the prediction performance.

C.3 DNN ARCHITECTURES

Figure 4 shows the DNN architectures used for different modules in the reaction–diffusion exper-
iment. The state encoder comprises 1D convolutional layers, followed by fully connected lay-
ers. The state decoder has the reversed order with convolutional layers replaced by transposed

19

Under review as a conference paper at ICLR 2024

C
o

n
v-

1
D

, k
:3

, n
:3

2
, s

:2

R
eL

U

C
o

n
v-

1
D

, k
:3

, n
:2

, s
:2

FC
, n

:6
4

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

FC
, n

:6
4

C
o

n
vT

-1
D

, k
:3

, n
:3

2
, s

:2

C
o

n
vT

-1
D

, k
:3

, n
:1

, s
:2

FC
, n

:1
2

8

R
eL

U

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x

C
o

n
ca

t

C
o

n
ca

t

Copy

+

+

+

−ze
ro

s

ac
tu

at
io

n

fu
ll

st
at

e

re
d

u
ce

d

st
at

e

State Encoder State Decoder

ROM

ℰ𝒙 𝒟𝒙

ℱ

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

re
d

u
ce

d
 s

ta
te

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:1

re
d

u
ce

d
 s

ta
te

ta
rg

et
 t

im
e

d
er

iv
at

iv
e

ac
tu

at
io

n

Controller Π

St
ab

ili
ty

 C
ri

te
ri

o
n

Target Dynamics ℱ𝑠

In
te

gr
at

o
r

Conv-1D : 1D convolution
ConvT-1D : 1D transposed convolution
FC: fully connected
k : kernel size
n : # features (for FC) or feature maps (for Conv)
s : stride

1
×
𝑟 𝑥

1
×
𝑟 𝑥

1
×
𝑟 𝑥

1
×
1

1
×
1

1
×
1

1
×
2
5
6

1
×
2
5
6

n
ex

t
fu

ll
st

at
e

1
×
𝑟 𝑥

ℱforced

ℱforced

ℱauto

Figure 4: Architectures for all the DNN modules used in the reaction–diffusion experiment. The
‘Copy’ operation denotes the reuse of the same DNN block for zero and nonzero actuation. The
‘Concat’ operator concatenates the input features along the last dimension. Zeros are concatenated to
the reduced state to evaluate the component Fforced

(
xR,0

)
. The ‘Integrator’ performs the numerical

integration to get the next state as mentioned in 4.1.3. The ‘Stability Criterion’ block implements
(17).

convolutional layers. The ROM is designed by breaking the function F into two components:
F
(
xR,uR

)
= Fauto

(
xR

)
+ Fforced

(
xR,uR

)
− Fforced

(
xR,0

)
. Fauto represents the autonomous

dynamics that does not depend on the actuation, whereas Fforced is responsible for the impact of
actuation on dynamics. The composition Fforced

(
xR,uR

)
− Fforced

(
xR,0

)
ensures that the compo-

nent responsible for learning the impact of actuation on the dynamics provides nonzero output only
when the actuation is nonzero. Two multilayer perceptions (MLPs) are used to implement Fauto and
Fforced. This specific structure of the ROM is not crucial and a single neural network representing
F
(
xR,uR

)
works as well. However, we observe better performance in experiments when the afore-

mentioned structure is used. The output of the ROM is integrated using a numerical integrator to get
the next state. The controller is implemented using an MLP. The target dynamics is implemented
using another MLP, followed by a stability criterion in the form of (17).

C.4 TRAINING SETTINGS

We use rx = 5 in the prediction task and rx = 2 in the control task for all the methods. All modules
are implemented in PyTorch. In both of the learning phases, learning ROM and learning controller,
we use the Adam optimizer with an initial learning rate of 0.001 and apply an exponential scheduler
with a decay of 0.99. Modules are trained for 100 epochs in mini-batches of size 32. 10% of the
training data is used for validation to choose the best set of models. For DeepROM training, we use
β2 = 1 in (14). For learning control, we use β3 = 0.2 in (16), α = 0.2 in (17), and K = 0.5Irx
in (18). Since the learned ROMs from one training instance to another can vary, the hyperparameter
pair (α, β3) may require re-tuning accordingly.

20

Under review as a conference paper at ICLR 2024

DMDc prediction

(Proctor et al. (2016))

DeepROM predictionPDE solution

Deep Koopman prediction

(Morton et al. (2018))

Figure 5: Qualitative comparison of prediction performance for DMDc, Deep Koopman, and Deep-
ROM in the reaction–diffusion example using one example sequence.

C.5 ADDITIONAL RESULTS

Figure 5 shows the visual comparison of the recursive multi-step predictions obtained using DMDc,
Deep Koopman model, and DeepROM. The color maps are shown for one example sequence with
one training instance.

Figure 6 visually compares the uncontrolled solution and the controlled solutions obtained using
the three methods. When uncontrolled, the system reaches the stable equilibrium at 1, whereas the
feedback-controlled system is stabilized at the desired state 0 in all cases.

Figure 7 compares the prediction and control performance of PCOL (Hwang et al. (2022)) and Deep-
ROC. The surrogate model for PCOL shares a similar architecture as DeepROM except the latent
dynamic model uses a discrete-time formulation. Also, the model is trained with the loss functions
as proposed by Hwang et al. (2022). PCOL optimizes the control input of the trained model through
backpropagation. Such optimization technique is computationally expensive for time-dependent
PDEs, particularly when a long trajectory is needed to be rolled out. We observed that we can op-
timize the control input only up to a certain time step. Though the system state reaches the target
within this timeframe, it fails to stay stable since the target is an unstable equilibrium and the control
input is no longer effective.

D DETAILS ON VORTEX SHEDDING SUPPRESSION EXPERIMENT

D.1 SYSTEM DEFINITION

The dynamics is governed by the incompressible Navier-Stokes equations given by

∂v

∂t
− ν∇2v + (v · ∇)v = −1

ρ
∇p+ 1Ww, ∇ · v = 0 in I× R+, (50)

where v(ζ, t) ∈ R2 denotes the flow velocity at location ζ ∈ I ⊂ R2 and time t, p(ζ, t) ∈ R denotes
the pressure, ν denotes the kinematic viscosity and ρ denotes the density of the fluid. w(ζ, t) is the
actuation/force applied to the system and 1W(ζ) is the indicator function with W ⊂ I. We use

21

Under review as a conference paper at ICLR 2024

Uncontrolled solution
DeepROC

controlled solution

DMDc + LQR

(Proctor et al. (2016))

controlled solution

Deep Koopman + LQR

(Morton et al. (2018))

controlled solution

Figure 6: Visual comparison of the uncontrolled solution and the controlled solutions of the reac-
tion–diffusion system using DeepROC, Deep Koopman + LQR, and DMDc + LQR.

Error with respect to desired profile Actuation magnitudePrediction error

(a) (b) (c)

Figure 7: (a): Prediction performance of PCOL (Hwang et al. (2022)) and DeepROM in the
reaction–diffusion example. (b,c): Control performance of PCOL and DeepROC in the reac-
tion–diffusion example.

I = (0, 2.2) × (0, 0.41) and W = (0.11, 0.77) × (0, 0.41). We use the domain W for observation
and distributed actuation. The Stokes flow is used as the desired state for the control task.

D.2 DATASET

For the flow past a circular cylinder problem, the geometry and physical parameters of the system
are taken from the DFG 2D-2 benchmark (Schäfer et al. (1996)). The geometry is shown in Figure 8.
We use the blue-shaded region for observation and actuation. Following the DFG 2D-2 benchmark,
we use the no-slip boundary condition of zero velocity for the walls and the cylinder boundary, zero
outlet pressure, and the inflow velocity profile (at the inlet) as

v(ζ, t) =

(
1.5

4ζ2(0.41− ζ2)

0.412
, 0

)
, (51)

22

Under review as a conference paper at ICLR 2024

where ζ1 and ζ2 denote the horizontal and vertical coordinates, respectively, of ζ. We use kinematic
viscosity ν = 0.002 and density ρ = 1 leading to the Reynolds number Re = 50. The training
sequence of length 5000 is generated in FEniCS with a time step size 0.001 and applying actuations

w(ζ, t) = a

4∑
k=0

[sin(kπ(ζ1 − 0.11)/0.66) sin(kπζ2/0.41)]

[
bk,1,1 bk,2,1
bk,1,2 bk,2,2

]
, ζ ∈ W, (52)

where a ∼ U(0, 1) and bk,i,j ∼ U(−1, 1), i, j = 1, 2 are chosen randomly. Similarly, a test sequence
is generated to evaluate the prediction performance. For learning control, we use the Stokes flow or
creeping flow as the desired state, which can be obtained by solving the Stokes equations

ν∇2v − 1

ρ
∇p = 0, ∇ · v = 0 in I× R+. (53)

For training, the flow velocity data from the observation region (blue shaded in Figure 8) are inter-
polated onto a rectangular uniform grid of size 32× 48 so that it can be used in standard CNNs.

2.2

0.41

0.2

0.2

0.11 0.66

0.1

in
le
t

o
u
tl
et

wall

wall

Figure 8: Geometry of the flow past a circular cylinder set-up.

D.3 DNN ARCHITECTURES

Figure 9 shows the DNN architectures used for different modules in the vortex shedding control
experiment. The architectures for the ROM and target dynamics are the same as in the previous
example. Moreover, the state encoder and decoder have similar architectures as the previous ex-
ample except for the 1D convolutions and transposed convolutions are replaced by their 2D coun-
terparts. Here, an additional module is used: the control encoder for encoding the distributed con-
trol/actuation. It has the same architecture as the state encoder. To learn the distributed actuation,
we design the controller as a linear combination of space-dependent polynomial basis functions.
One MLP is used to learn these space-dependent polynomial basis functions given the locations of
the actuation nodes and another MLP is used to learn the corresponding coefficients. The actuation
is computed as the dot product of the polynomial basis terms and the coefficient vector. We use
this architecture instead of a standard convolutional one because the PDE solver takes the actuation
input in a triangular mesh, not in a uniform rectangular grid. The polynomial basis architecture can
be used to compute actuation in both uniform rectangular grid during training and triangular mesh
during evaluation.

D.4 TRAINING SETTINGS

We use rx = 5 in both the prediction task and control task for all the methods. All modules are
implemented in PyTorch. In both of the learning phases, learning ROM and learning controller, we
use the Adam optimizer with an initial learning rate of 0.001 and apply an exponential scheduler
with a decay of 0.99. Modules are trained for 100 epochs in mini-batches of size 32. 10% of the
training data is used for validation to choose the best set of models. For DeepROM training, we use
β2 = 1 in (14). For learning control, we use β3 = 2 in (16), α = 0.1 in (17), and K = 0.5Irx in
(18). Since the learned ROMs from one training instance to another can vary, the hyperparameter
pair (α, β3) may require re-tuning accordingly.

D.5 ADDITIONAL RESULTS

Figure 10 shows the visual comparison of the recursive multi-step predictions obtained using DMDc,
Deep Koopman model, and DeepROM. Unlike DeepROM, DMDc and Deep Koopman model are

23

Under review as a conference paper at ICLR 2024

C
o

n
v-

2
D

, k
:3

, n
:3

2
, s

:2

R
eL

U

C
o

n
v-

2
D

, k
:3

, n
:2

, s
:1

FC
, n

:6
4

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

FC
, n

:6
4

C
o

n
vT

-2
D

, k
:3

, n
:3

2
, s

:2

C
o

n
vT

-2
D

, k
:3

, n
:2

, s
:2

FC
, n

:1
9

2

R
eL

U

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x

C
o

n
ca

t

Copy

+

+

+

−

re
d

u
ce

d

st
at

e

State Encoder State Decoderℰ𝒙 𝒟𝒙

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

re
d

u
ce

d
 s

ta
te

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
u

re
d

u
ce

d
 s

ta
te

ta
rg

et
 t

im
e

d
er

iv
at

iv
e

co
ef

s

Controller Π

St
ab

ili
ty

 C
ri

te
ri

o
n

Target Dynamics ℱ𝑠

In
te

gr
at

o
r

C
o

n
v-

2
D

, k
:3

, n
:3

2
, s

:2

R
eL

U

C
o

n
vT

-2
D

, k
:3

, n
:3

2
, s

:1

R
eL

U

C
o

n
v-

2
D

, k
:3

, n
:3

2
, s

:2

R
eL

U

C
o

n
v-

2
D

, k
:3

, n
:2

, s
:1

FC
, n

:6
4

R
eL

U

FC
, n

:r
u
, n

o
 b

ia
s

fu
ll

ac
tu

at
io

n

Control Encoder ℰ𝒖

C
o

n
v-

2
D

, k
:3

, n
:3

2
, s

:2

R
eL

U re
d

u
ce

d

ac
tu

at
io

n

C
o

n
ca

t

ze
ro

s

re
d

u
ce

d

st
at

e
ROMℱ

FC
, n

:6
4

R
eL

U

FC
, n

:6
4

R
eL

U

FC
, n

:2
r u

Sp
lit

⊙

⊙

fu
ll

ac
tu

at
io

n

co
ef

s

C
o

n
ca

t

ac
tu

at
io

n
 n

o
d

es

Conv-2D : 2D convolution
ConvT-2D : 2D transposed convolution
FC: fully connected
k : kernel size
n : # features (for FC) or feature maps (for Conv)
s : stride
N : # actuation nodes

: dot product⊙

2
×
3
2
×
4
8

fu
ll

st
at

e
2
×
3
2
×
4
8

2
×
3
2
×
4
8

2
×
3
2
×
4
8

n
ex

t
fu

ll
st

at
e

1
×
𝑟 𝑥

1
×
𝑟 𝑥

1
×
𝑟 𝑥

1
×
𝑟 𝑢

1
×
𝑟 𝑥1
×
𝑟 𝑢

𝑁
×
2

1
×
𝑟 𝑥

ℱforced

ℱauto

ℱforced

Figure 9: Architectures for all the DNN modules used in the fluid flow experiment. The ‘Split’ oper-
ator splits the input features into two vectors, along the last dimension. These split vectors represent
the space-dependent polynomial basis associated with the horizontal and vertical components of the
actuation.

PDE solution at step 2500

DMDc (Proctor et al. (2016))

prediction at step 2500

DeepROM prediction at step 2500

Deep Koopman (Morton et al. (2018))

prediction at step 2500

Figure 10: Qualitative comparison of prediction performance for DMDc, Deep Koopman, and Deep-
ROM in the fluid flow example. Predictions at time step 2500 for the test sequence are visually
compared with the solution from a PDE solver. vm denotes the velocity magnitude.

unable to capture the shedding pattern in multi-step prediction as shown in the contour plots of the
velocity magnitude.

24

Under review as a conference paper at ICLR 2024

𝑡
=
0
.5

𝑡
=
1
.0

𝑡
=
6
.0

𝑡
=
0
.0

DeepROC
DMDc + LQR

(Proctor et al. (2016))

Deep Koopman + LQR

(Morton et al. (2018))

Figure 11: Visual comparison of the velocity magnitude of the flow over time subjected to the
controllers obtained using DeepROC, Deep Koopman + LQR, and DMDc + LQR.

Error with respect to desired profile Actuation magnitudePrediction error

(a) (b) (c)

Figure 12: (a): Prediction performance of FOM and DeepROM in the fluid flow example. (b, c):
Control performance of FOM + NI4C (Saha et al. (2021)) and DeepROC in the vortex shedding
suppression task.

Figure 11 shows the velocity magnitude of the controlled flow for DeepROC, Deep Koopman +
LQR, and DMDc+LQR at different times, starting from a von Kármán vortex street pattern. All
methods accomplish a similar steady-state flow pattern where vortex shedding has been suppressed.

Figure 12 shows the performance comparison with full-order model-based prediction and control.
The full-order model (FOM) removes the bottleneck FC layers from the encoder and decoder and
uses CNNs for the dynamic model instead of MLPs.

Table 1: Computational costs of FOM and DeepROM

Model #Params #FLOPs NFE* #E-FLOPs**
FOM 76.93K 22.34M 42.83 956.80M

DeepROM
Encoder 23.11K 1.17M N/A

ROM 22.91K 34.00K 13.13 6.11M
Decoder 23.11K 4.49M N/A

* NFE: Avg. number of function evaluations by the numerical integrator
** #E-FLOPs(FOM) = #FLOPs(FOM) × NFE(FOM)

#E-FLOPs(DeepROM) = #FLOPs(Enc) + #FLOPs(Dec) + #FLOPs(ROM) × NFE(ROM)

Figure 13 shows the prediction performance comparison with VideoGPT (VQ-VAE + Transformer)
for an unforced system. VideoGPT generates accurate predictions for the time window it is trained
with. However, as seen from Figure 13, prediction accuracy drops sharply after each recursive
prediction window.

25

Under review as a conference paper at ICLR 2024

st
ep

 1
5

st
ep

 1
5
0

Figure 13: Prediction performance of VideoGPT and DeepROM for unforced fluid flow.

E EMPIRICAL SIMILARITY BETWEEN DMDC AND LAROM

Lrecon, as defined in 4.1.2, is minimized for any invertible matrix C, Dx = ÛY C, and Ex =

C−1Û⊤
Y . When optimized using gradient descent, it is highly unlikely to get C as the identity

matrix like DMDc. Rather, we expect a random C. Therefore, we need additional constraints to
demonstrate empirical similarity with DMDc. For this purpose, we tie the matrices Ex and Dx to
be the transpose of each other and add a semi-orthogonality constraint β4∥ExE

⊤
x − Irx∥, β4 > 0

to the optimization objective of (13).

The dynamic modes for LAROM are computed as φi = Dxzi, where zi is the ith eigenvector of
AR. Similarly, the dynamic modes for DMDc are computed as φi,DMDc = DDMDczi,DMDc, where
zi,DMDc is the ith eigenvector of AR,DMDc. Note, these dynamic modes are similar to the ones used in
the original DMD algorithm Schmid (2010), not the exact modes obtained in Proctor et al. (2016).
Exact modes cannot be computed for LAROM since it does not involve SVD. Modes defined by
φi,DMDc = DDMDczi,DMDc = ÛY zi,DMDc are the orthogonal projection of the exact modes onto the
range of Y (Theorem 3, Tu et al. (2014)).

Figure 14 compares the dynamic modes of the reaction-diffusion system, obtained using DMDc
and LAROM for the case when the dimension of the ROMs is 3. It is important to note that the
numbering of the modes is arbitrary as the optimal ranking of DMDc modes is not trivial. The
correspondence between the DMDc modes and LAROM modes are determined by comparing the
eigenvalues of AR,DMDc and AR. Dynamic modes of both methods are similar except for the different
signs of the first two modes.

Figure 15 compares the first two oscillatory dynamic modes obtained using DMDc and LAROM
for the fluid system. Only the streamwise components are shown for brevity. Also, complex modes
occur in conjugate pairs and only one from each pair is shown. The correspondence between the
DMDc modes and LAROM modes are determined by comparing the eigenvalues of AR,DMDc and
AR. Dynamic modes identified by LAROM are similar to the ones obtained from DMDc, except the
real and imaginary components of the first mode are swapped.

26

Under review as a conference paper at ICLR 2024

DMDc dynamic modes LAROM dynamic modes

Figure 14: The first three dynamic modes of the reaction–diffusion system, obtained using DMDc
and LAROM.

DMDc mode 1 LAROM mode 1 DMDc mode 2 LAROM mode 2

R
e
a
l

Im
a
g
in

a
ry

Figure 15: The first two dynamic modes obtained using DMDc and LAROM for the flow past a
cylinder system.

F ARCHITECTURE AND TRAINING DETAILS FOR THE DEEP KOOPMAN
MODEL

For the encoder and decoder of the Deep Koopman model, we use the same architectures as our
state encoder and state decoder. As mentioned in section 5.1, we consider both the system and
input matrices of the ROM to be fixed during operation, in contrast to the original method proposed
by Morton et al. (2018). Therefore, during training, these matrices are treated as trainable global
parameters. Similar to Morton et al. (2018), the input matrix is optimized by gradient descent
during training along with the encoder-decoder parameters, whereas the system matrix is obtained
using linear least-squares regression. The datasets are divided into staggered 32-step sequences for
training, and the model is trained by generating recursive predictions over 32 steps following Morton
et al. (2018). We train the model using the Adam optimizer with an initial learning rate of 0.001 and
an exponential decay of 0.99 for 200 epochs in mini-batches of size 8. 10% of the training data is
used for validation to choose the best set of models.

As mentioned in 5.3, we utilize a low-dimensional representation of the distributed actuation for
Deep Koopman + LQR, instead of directly estimating the high-dimensional actuation. The dis-
tributed actuation is represented as a linear combination of the same space-dependent sinusoidal
basis functions used for dataset generation, which are given by (52). The controller is designed to
estimate the coefficients bk,i,j ; i, j = 1, 2; 0 ≤ k ≤ 4.

27

	Introduction
	Related Work
	Problem and Preliminaries
	Problem statement
	Dynamic mode decomposition with control

	Method
	Learning a reduced order model
	Analysis of the linear reduced-order model for a fixed encoder
	The connection between the solutions of the linear autoencoding model and DMDc
	Extending the linear model to a deep model

	Learning control

	Empirical Results
	Baselines
	Reaction–diffusion system stabilization
	Vortex shedding suppression in fluid

	Conclusion
	Additional Preliminaries
	Stabilization of controlled systems
	Some properties of matrices used for proofs

	Proofs
	Proof of theorem 4.1.1
	An alternative representation of (10)
	Proof of Corollary 4.1.1.1
	The case when mathexpnot invertible
	DMDc through a linear autoencoding structure

	Details on reaction–diffusion system experiment
	System definition
	Dataset
	DNN architectures
	Training settings
	Additional results

	Details on vortex shedding suppression experiment
	System definition
	Dataset
	DNN architectures
	Training settings
	Additional results

	Empirical similarity between DMDc and LAROM
	Architecture and training details for the Deep Koopman model

