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ABSTRACT

Scaling large language models (LLMs) with the Mixture-of-Experts (MoE) ar-
chitecture has emerged as a powerful alternative to dense models. However,
fine-tuning MoE models for domain- or task-specific adaptation remains chal-
lenging: full-model tuning is prohibitively expensive, while existing parameter-
efficient fine-tuning (PEFT) methods, mostly adapted from dense models, suffer
from unstable optimization due to MoE’s sparse expert activation. In this work,
we conduct an empirical study on the fine-tuning dynamics of MoE models. We
first introduce the Domain Advantage Score (DAS), a simple yet effective metric
for identifying domain-relevant experts. Our findings uncover an expert concen-
tration phenomenon: during domain-specific fine-tuning, the overall DAS of the
top experts consistently increases, indicating a progressive enhancement of do-
main concentration. Building on this, we propose a lightweight two-stage PEFT
framework: (1) fine-tuning only the attention and router layers to sharpen expert
specialization, and (2) selectively fine-tuning parameters on the identified experts.
This approach updates only a small fraction of parameters while achieving per-
formance on par with full fine-tuning, and it effectively preserves the model’s
general capabilities. Experiments on nine benchmarks show the effectiveness and
efficiency of our method. Our code and data will be publicly released.

1 INTRODUCTION

Scaling laws demonstrate that model performance improves predictably with increasing parameters,
making parameter scaling a central driver of progress in large language models. While dense archi-
tectures have delivered strong results, their computational and memory demands grow prohibitively
at large scales. To address this, the Mixture-of-Experts (MoE) architecture (Shazeer et al., 2017;
Zhou et al., 2022; Dai et al., 2024) has become a dominant paradigm for scaling beyond dense mod-
els. MoE organizes the model into a large pool of experts but activates only a small subset of them
for each token during inference, enabling sparse activation that dramatically improves efficiency
while retaining capacity. This design allows MoE models to reach billions of parameters without
linearly increasing inference cost, and they have already achieved remarkable performance across a
range of tasks, establishing MoE as a cornerstone architecture for next-generation LLMs.

Fine-tuning or continual pre-training Mixture-of-Experts (MoE) models on specific domains or tasks
is crucial for adapting to real-world applications. However, the massive parameters of MoE models
makes full-model tuning prohibitively expensive. To mitigate this, researchers have attempted to
transfer parameter-efficient fine-tuning (PEFT) techniques originally developed for dense models
(e.g., adapters (Houlsby et al., 2019) and LoRA (Hu et al., 2022)) to the MoE setting (Zadouri
et al., 2024; Dou et al., 2024; Liu et al., 2024b). Despite the reduced cost, they often struggle
to match the effectiveness achieved in dense models, because MoE’s sparse activation introduces
unique challenges. Specifically, only a small subset of experts is activated for each token, which
leads to unstable gradient flow and hampers optimization during fine-tuning (Guo et al., 2025).

To better understand how to perform parameter-efficient fine-tuning (PEFT) for Mixture-of-Experts
(MoE) models, we first study the fine-tuning dynamics. We introduce the Domain Advantage Score
(DAS), defined as the difference between an expert’s selection frequency on the target domain and
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its frequency on a general dataset, to quantify the affinity of an expert to a specific domain. Our
analysis reveals a phenomenon of expert concentration: when an MoE is fine-tuned on domain- or
task-specific data, the cumulative DAS of top-ranked experts increases, indicating domain-specific
experts more distinct and easier to identify. Building on this finding, we propose a simple metric
to identify task- or domain-relevant experts before fine-tuning. By restricting fine-tuning to these
selected experts, we achieve performance comparable to full expert tuning, while also reducing
catastrophic forgetting and better preserving general capabilities.

Building on the observed phenomenon of expert concentration, we propose a lightweight two-stage
tuning framework for MoE models that further reduces the number of trainable parameters. In the
first stage, we perform Attention and Router Tuning, updating only the attention and router layers
(around 2.5% of total parameters) while keeping all experts frozen. This stage exploits the natural
increase in routing scores during fine-tuning, which sharpens the concentration of experts and makes
domain-relevant ones more distinguishable. In the second stage, we apply our proposed metric to
identify the most specialized experts and only require to fine-tune these experts. This design achieves
efficient adaptation to new domains by combining routing-driven concentration with selective expert
tuning, reaching performance comparable to full fine-tuning, by training totally 8% parameters.

We evaluate our method on multiple math and coding benchmarks and demonstrate its superior-
ity than other parameter-efficient fine-tuning methods. Besides, the stable performance on general
benchmarks also indicates the effectiveness of our method on resisting catastrophe forgetting.

The main contributions of this work are as follows:

• We uncover an expert concentration phenomenon in MoE fine-tuning, indicating stronger domain
alignment and clearer separation between domain-aligned and general experts.

• Based on this finding, we design a simple metric to identify task-relevant experts, enabling selec-
tive fine-tuning that matches full-model performance while reducing catastrophic forgetting.

• Building on this, we propose a lightweight two-stage PEFT framework that first tunes attention
and routers, then selectively fine-tunes expert modules, achieving near full-tuning accuracy with
only a small fraction of parameters.

• Extensive experiments on specific domain data and general benchmarks have shown the effective-
ness of our methods in achieving good performance and resisting catastrophe forgetting.

2 EMPIRICAL STUDY

To design effective parameter-efficient fine-tuning strategies for Mixture-of-Experts (MoE) mod-
els, it is crucial to first understand their fine-tuning dynamics. In this section, we empirically an-
alyze how expert routing distributions evolve during domain adaptation and investigate whether
fine-tuning needs to involve all experts or only a subset.

2.1 EXPERT CONCENTRATION PHENOMENON

We first investigate the dynamics of domain expert routing during fine-tuning. To quantify the
affinity of experts to a specific domain, we introduce the Domain Advantage Score (DAS), a metric
designed to measure how strongly each expert specializes in a target domain. For an expert, its DAS
for the domain-specific data Dd and general data Dg is computed as

DAS(Dd,Dg) =
1

|Dd|
∑
t∈Dd

gt −
1

|Dg|
∑
t∈Dg

gt, (1)

where gt is the routing score of the expert for token t. A larger DAS indicates stronger domain affin-
ity, distinguishing domain-specific experts from others. Besides, to quantify how strongly domain
advantage concentrates on head experts, we use Top-k Cumulative Domain Advantage (C-DAS@k):

C-DAS@k =

L∑
i=1

∑
j∈Ti

max(DASij , 0)∑N
j=1 max(DASij , 0)

(2)
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Figure 1: Results from the empirical study: (a) the curve of increasing Top-k Cumulative Domain
Advantage (C-DAS@6) with respect to the training steps during fine-tuning; (b) performance com-
parison of fine-tuning different subsets of experts.

where DASij denotes the DAS of the j-th expert in the i-th layer. Ti denotes the indices of the
Top-k experts at layer i ranked by C-DAS@k. A higher C-DAS@k indicates a more pronounced and
specialized functionality of the expert for the given special domain data.

Experimental Setup. We fine-tune MoE language models DeepSeek-V2-Lite (DeepSeek-AI
et al., 2024) on two domain datasets, i.e., mathematics and programming code. Concretely, we
select MATH500 (Hendrycks et al., 2021b) and GSM8K (Cobbe et al., 2021) to assess mathemat-
ical reasoning, while HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) are selected
to measure coding ability. To better analyze how the routing scores changed, we freeze the expert
feed-forward blocks and update only the attention and router layers. During training, we track the
evolution of the Cumulative DAS for the top-6 experts(10% of the total experts) to examine how
domain advantage concentrates among the top experts.

Finding-1: Fine-tuning concentrates domain advantage into a small head set of experts. As
shown in Figure 1a, the model’s C-DAS@6 steadily increases over training, indicating the con-
centrated domain advantage on top experts. In effect, routing becomes more selective, and tokens
from the target domain are progressively steered toward a few experts whose domain affinity grows,
sharpening the separation between domain-aligned and generalist experts. We also observe that the
top-k ranking stabilizes early, meaning the same small subset repeatedly captures most of the posi-
tive DAS. These findings support two conclusions: (i) fine-tuning primarily strengthens the already
relevant experts instead of uplifting all experts uniformly, and (ii) a small, stable set of high-DAS ex-
perts suffices for adaptation. This directly motivates our PEFT design: first use Attention and Router
updates to expose domain-aligned experts, then selectively fine-tune only the identified high-DAS
experts to capture most of the in-domain gains while minimizing interference and forgetting.

2.2 CONCENTRATED EXPERT FINE-TUNING

Building on DAS, we empirically explore the impact of fine-tuning different types of experts for
domain-specific tasks, we construct three distinct expert subsets for fine-tuning:

• Domain Experts: the experts with the highest DAS values, reflecting strong domain specialization.

• Random Experts: experts sampled uniformly at random, serving as a baseline.

• Unrelated Experts: those with the lowest DAS values, least aligned with the target domain.

This formulation ensures that expert selection is based on true domain preference learned from
training, enabling us to test whether focusing on specialized experts suffices for effective fine-tuning.

Finding-2: fine-tuning head experts lead to better performance in domain and general tasks.
As shown in Figure 1b, fine-tuning Domain Experts consistently outperforms the other two subsets,
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Random Experts yield moderate gains, and Irrelevant Experts result in worse performance. DAS-
ranked Domain Experts already attract in-domain routing traffic, so their updates align with the
dominant gradient signal, improving sample efficiency and accelerating convergence. By contrast,
updating Irrelevant Experts diverts capacity away from the active pathways, and injects gradient
noise into experts that see little in-domain usage, which degrades the target-domain accuracy. Be-
sides, DAS-selected top experts preserves general capabilities better than full or random fine-tuning,
because it minimizes interference on non-specialized experts. Together, these findings confirm that
MoE models can be efficiently adapted by focusing updates on a small DAS-identified expert subset
while reducing compute and mitigating catastrophic forgetting.

3 METHOD

Motivated by the observation of the expert concentration phenomenon, we aim to propose a more
efficient fine-tuning method for MoE LLMs. Since domain-specific fine-tuning naturally concen-
trates on a small set of experts (Dong et al., 2025), we first frozen all the experts and only fine-tune
the attention and routing layers until convergence, to help identify the concentrated experts. Then,
we fine-tune only the parameters in the concentrated few experts identified by the DAS. The whole
process totally fine-tunes average 8% parameters, and the two-stage localized training paradigm can
alleviate the unstable optimization and catastrophe forgetting issues.

3.1 PRELIMINARIES: MIXTURE-OF-EXPERTS

The Mixture-of-Experts (MoE) framework (Jacobs et al., 1991; Jordan & Jacobs, 1994) scales model
capacity by partitioning computation across multiple experts. An MoE layer consists of N experts
{Ei}Ni=1 and a router R. Given an input token x(l) at layer l, the router computes a routing value
vector g, and only top-k experts with the highest routing values are aggregated to the hidden state:

g = softmax(R(x(l), θR)); h
(l) =

∑
i∈top-k(g)

gi · Ei(x
(l)). (3)

This sparse activation enables MoE models to scale to billions of parameters with sublinear inference
cost. However, the same sparsity complicates fine-tuning, as only a small subset of experts are
consistently updated, leading to instability and inefficiency.

3.2 PARAMETER-EFFICIENT MOE FINE-TUNING

Router
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Figure 2: Overview of our DAS-guided two-stage fine-
tuning framework. Stage 1 tunes attention and router
modules, while stage 2 ranks experts by DAS and fine-
tunes only on the top-ranked experts.

Our proposed efficient MoE fine-tuning
strategy consists of two stages, i.e., at-
tention and router fine-tuning and DAS-
guided experts fine-tuning. The overall
framework is illustrated in Figure 2.

Stage 1: Attention and Router Fine-
tuning. In the first stage, we freeze all
expert feed-forward networks (FFNs) and
embedding layer, and update only the at-
tention layers and router modules. These
components account for roughly 2.5% of
the total parameters, making this stage
lightweight yet highly effective. Since the
attention layer and router determine expert
assignment and token routing traffic, ac-
cording to Finding-1 in Section 2.1, tuning
them allows the model to gradually con-
centrate routing probabilities on a small
subset of domain-relevant experts. This
sharpening process not only clarifies which experts specialize in the target domain but also avoids
the instability that arises when all experts are updated simultaneously. By the end of Stage 1, the
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model develops a clearer separation between domain-specialized experts and general-purpose ones,
which can be systematically quantified through our Domain Advantage Score (DAS).

Stage 2: DAS-guided Expert Fine-tuning. After stage-1, the trained router and attention layers
can make the domain-relevant experts more outstanding, which are easy to be identified by our
proposed DAS values. Specifically, we compute DAS values across all experts to rank their domain
affinity and retain only the top k experts. Then, we move to the second stage, which only requires to
train the parameters within the top-ranked experts. Here, we can choose to train all the parameters
of these experts (about 8% parameters) or the LoRA adapters on them (about 1% parameters). As
we keep the majority of the network frozen, both settings ensure efficient adaptation and lower
training cost. Crucially, because the router distribution has already been aligned in stage-1, these
selected experts now capture domain knowledge more effectively, mitigating catastrophic forgetting
and preserving general abilities on out-of-domain tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

MoE Models. We evaluate our approach on three widely used opensource MoE-based LLMs for
evaluation: DeepSeek-V2-Lite (DeepSeek-AI et al., 2024), DeepSeek-MoE-Base (Dai et al., 2024)
and Qwen1.5-MoE-A2.7B (Yang et al., 2025). These models provide complementary architectures
to assess the robustness and generality of our method. To ensure comparability, all experiments are
conducted using greedy decoding, which yields consistent and deterministic outputs across models.

Dataset. We conduct evaluations on three categories of benchmarks designed to assess mathemat-
ical, coding and general abilities. To ensure alignment between supervision stage and downstream
evaluation, the training and test sets are organized according to related domains.

• Mathmatical reasoning ability: we regenerate solutions for MetaMathQA (Yu et al., 2024) and
retain only verified-correct chain-of-thought traces as supervision, and report evaluation results on
GSM8K (Cobbe et al., 2021) and MATH-500 (Hendrycks et al., 2021b);

• Coding ability: we fine-tune on a filtered subset of the OpenCoder corpus (Huang et al., 2025)
and evaluate performance on HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021).

• General ability: To gauge trade-offs in general capability after domain-targeted finetuning, we
evaluate on CommonsenseQA (Talmor et al., 2019), ARC-Challenge (Clark et al., 2018),Strat-
egyQA (Geva et al., 2021), CEval (Huang et al., 2023) and MMLU (Hendrycks et al., 2021a),
covering natural-language understanding and commonsense QA beyond the training domains.

Baseline Methods. We compare our method with four MoE fine-tuning strategies: Fully Fine-
Tuning (FFT), LoRA (Hu et al., 2022) and Expert-Specialized(ESFT) (Wang et al., 2024). ESFT
leverages expert specialization by updating only a pre-selected subset of experts for a target task,
while leaving the router frozen. As the subset is identified from the router’s routing distribution,
MoE load-balancing constraints may bias selection toward capacity considerations rather than task
alignment, potentially yielding suboptimal expert choices.

Implementation Details. All experiments use a batch size of 8 and a sequence length of 1,024.
For each task, training is capped at 1,000 steps with evaluation every 50 steps. we set learning
rate1e-4 for LoRA and 5e-5 for all other methods based on a hyperparameter search in {1e-5, 2e-5,
5e-5, 1e-4}. LoRA uses rank 16 with lora alpha = 32.

4.2 MAIN RESULTS

Table 1 summarizes the experimental results. Under the same training budget, our method achieves
the best accuracy across all evaluated reasoning benchmarks and for each of the three MoE back-
bones. The improvements are consistent, not tied to a particular architecture or dataset, which
suggests that the proposed adaptation pathway generalizes well. We attribute these gains to the
two-stage design: (i) first aligning routing so tokens of different types are dispatched to the most
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Model Method Para. GSM8K MATH MBPP Humaneval Avg.

Deepseek-V2-Lite

- 43.38 10.80 40.80 30.48 35.45
FFT 100% 55.34 15.00 42.60 34.15 43.25
LoRA 2% 51.10 13.00 39.40 29.87 39.66
ESFT 8% 52.46 13.20 39.00 32.92 40.55
DAS-Tune 8% 54.73 13.40 42.60 34.75 42.64
DAS-LoRA ≤ 1% 52.00 13.00 39.40 29.87 40.14

Deepseek-MoE-Base

- 18.80 3.80 39.20 26.21 20.37
FFT 100% 37.90 7.20 42.60 33.54 32.37
LoRA 2% 27.44 6.00 38.80 28.04 25.44
ESFT 8% 32.14 5.20 39.20 28.65 27.90
DAS-Tune 8% 33.81 5.40 40.40 29.87 29.15
DAS-LoRA ≤ 1% 31.61 5.00 39.20 29.87 27.66

Qwen-MoE-A2.7B

- 61.33 15.20 42.8 34.20 46.52
FFT 100% 67.43 19.15 44.00 38.54 51.08
LoRA 2% 65.13 15.50 42.00 36.50 48.58
ESFT 8% 65.13 16.20 43.20 36.80 48.98
DAS-Tune 8% 65.57 17.20 43.60 37.15 49.52
DAS-LoRA ≤ 1% 64.37 16.00 42.40 36.80 48.38

Table 1: Experimental results across different fine-tuning methods and tasks on three MoE back-
bones. Para. denotes the trainable parameter percentage in the model. Avg. is the average value of 

all categories. The best results among all non-FFT methods are denoted in bold.

CSQA ARC-C StrategyQA CEval MMLU Avg.
DeepSeek-V2-Lite 61.34 63.37 55.74 59.82 57.50 60.36
+LoRA 60.94 61.26 55.26 58.20 56.42 59.26
+FFT 58.61 59.47 56.04 57.92 55.50 57.96
+ESFT 61.26 63.97 53.65 60.05 57.00 60.08
+Ours 61.99 62.97 54.89 60.05 57.30 60.27

Table 2: Experimental results on general tasks to test the general ability degradation after fine-
tuning. We add the backbone performance as reference, and the best methods are denoted in bold.

suitable experts, and (ii) then refining only the small expert subset most relevant to the target tasks.
This sequence reduces gradient interference, sharpens domain specialization, and yields stronger
task alignment without inflating the update cost.

In terms of efficiency, our approach updates roughly 8% of parameters while reaching performance
close to full fine-tuning (FFT), amounting to an 12× reduction in the number of trainable weights.
Within a fixed step and data budget, this produces near-FFT accuracy at a fraction of the compute
and memory footprint, highlighting a practical route to adapt large MoE models when resources
are constrained. Although vanilla LoRA provides the smallest storage overhead, its downstream
performance trails other methods in the sparse MoE setting, indicating that minimizing parameter
count alone is insufficient when expert routing and specialization dynamics are central to transfer.

Table 2 reports general-ability evaluations. Our method exhibits the smallest degradation relative
to all baselines, indicating better retention of pre-existing capabilities after domain adaptation. We
believe this stability stems from avoiding indiscriminate updates: full or broadly targeted expert
tuning can erode established specializations and perturb load balancing, whereas our DAS-guided
selection confines updates to the experts already aligned with the target domain. As a result, the
adapted models maintain broader competency while still delivering strong, domain-specific gains.

4.3 FURTHER ANALYSIS

Following our main experiments, we conduct detailed analysis experiments to demonstrate the ef-
fectiveness of our method and to explore the characteristics of identified domain experts. Unless
specified, all analysis results are based on the DeepSeek-V2-Lite model.
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Task Before After RPR

GSM8K 54.73 53.53 0.978
MATH 13.40 13.00 0.970

Avg. 43.36 42.38 0.977

(a) Phase-1 Math ⇒ Phase-2 Code

Task Before After RPR

HumanEval 34.75 34.14 0.982
MBPP 42.60 42.20 0.990

Avg. 40.66 40.21 0.988

(b) Phase-1 Code ⇒ Phase-2 Math

Table 3: Ability retention study for continual training MoE using our method on new domains. We
report the retained performance ratio RPR = After/Before.

GSM8K MATH500 MBPP humaneval Avg.
Ours 54.73 13.40 42.60 34.75 42.64
- Attention Tuning Only 53.37 12.80 41.00 33.53 41.39
- FFN Tuning Only 51.48 10.80 39.6 32.31 39.62
Backbone 43.38 10.80 40.80 30.48 35.45

Table 4: Ablation Study Results on DeepSeek-V2-Lite. All experiments were run for the same total
training steps to ensure a fair comparison. The best results are denoted in bold.

Continual Learning Study. To investigate whether our method causes catastrophic forgetting, we
designed a simple but revealing continued fine-tuning experiment. Specifically, for a model that has
been fine-tuned on a coding dataset, we apply our two-stage method to fine-tune it on a mathematics
dataset for an equal number of steps. We perform the same experiment in reverse, fine-tuning a math-
trained model on a coding dataset. By measuring the model’s performance on its original domain
before and after the secondary fine-tuning, we can assess the extent of knowledge degradation. As
shown in Table 3, our method effectively preserves the model’s original knowledge. Despite contin-
ued fine-tuning on a different domain, the model’s performance on its original task remains largely
stable, with only a negligible drop. This demonstrates that our approach, by selectively updating
only the most domain-relevant parameters, avoids damaging the model’s foundational knowledge.

Ablation Study. To validate the efficacy of our proposed two-stage fine-tuning approach, we con-
duct an ablation study comparing it against two single-stage baselines, all with an identical total
number of training steps (1000 steps) to ensures a fair comparison of their respective strategies.
The baselines are: 1) Attention-Tuning Only, where we exclusively fine-tune the Attention and
Router modules for all 1000 steps; and 2) FFN-Tuning Only, where we fine-tune the expert FFNs
for all 1000 steps, with the expert subset selected based on their pre-tuning DAS. As shown in Ta-
ble 4, our two-stage method consistently achieves the best average performance across all datasets.
We attribute this superior performance to the unique synergy between the two stages. The initial
Attention-Tuning phase dynamically refines the expert distribution, acting as a powerful pre-selector
that optimizes the expert subset for the subsequent stage. This allows the second FFN-Tuning phase
to apply computational resources precisely to the most relevant and specialized experts, leading to a
more substantial performance gain. This result demonstrates that simply training a specific compo-
nent or a pre-selected expert group is suboptimal, and that the two-stage adaptive process is crucial
for achieving peak performance with MoE fine-tuning.

Variation Study of Expert Identification Method. To validate the effectiveness of the Domain
Advantage Score (DAS), we conduct an ablation study comparing it against several alternative strate-
gies for identifying domain-relevant experts. We evaluate each method by using its top-ranked ex-
perts for fine-tuning and measuring the resulting performance on a target domain. The alternative
methods explored are: (1) Direct Routing Score: The average gate score of an expert on the domain
dataset; (2) Expert Output Norm: The average L2 norm of an expert’s output on the domain dataset;
(3) Expert Contribution: The contribution of an expert to the change in the hidden state, reflecting
its impact on the model’s output; (4) Product of Score and Norm: The average product of an expert’s
gate score and its output norm. As shown in Table 5, expert selection guided by the Domain Ad-
vantage Score (DAS) consistently outperforms all alternative methods on the downstream task. We
attribute this to DAS’s relative nature: by contrasting domain and general routing mass, it focuses
updates on experts whose activations are selectively elevated by the target domain.
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GSM8K MATH500 MBPP humaneval Avg.
Ours (using DAS) 54.73 13.40 42.80 34.75 42.69
- Score 52.46 13.40 42.80 34.14 41.43
- ExpLen 52.91 12.40 42.20 34.75 41.39
- EC 53.52 13.00 41.80 33.53 41.68
- PSN 54.05 13.60 42.80 34.14 42.32
Backbone 43.38 10.80 40.80 30.48 35.45

Table 5: Impact of Expert Identification Methods on Fine-Tuning Performance. ExpLen, EC, PSN
and DAS denote Average Expert Output Norm, Expert Contribution, Product of Score and Norm
and Domain Advantage Score. The best results are denoted in bold.
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Figure 3: Comparison of our method with varying numbers of trainable experts (N) against the Base
model and Full Fine-Tuning (FFT) results.
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Figure 4: Distribution of domain experts across layers identified by DAS.

Effect of Trainable Expert Count. To quantify the effect of expert subset size on performance,
we vary the number of fine-tuned experts identified by our first-stage, attention-guided procedure
from 78—approximately 4% of total parameters—up to 234—approximately 12%—under a fixed
compute budget with identical tokens, steps, and optimizer settings. We compare these variants
against greedy decoding without fine-tuning as well as full fine-tuning. As shown in Figure 3,
accuracy rises as the subset grows from very small budgets to about 10% of parameters, after which
additional experts deliver diminishing returns within the same training horizon. Beyond this knee
point, the gap to full fine-tuning narrows only slightly, indicating that most task-relevant routing
mass has already been captured and that enlarging the updated subset disperses gradients over low-
traffic experts, thereby reducing update efficiency. Overall, a compact expert set around 8–10% of
parameters recovers the majority of attainable gains under limited steps, and coordinated, router-
aware selection proves more consequential than indiscriminately expanding the fine-tuned subset.

Domain-Specific Expert Distribution. Furthermore, we analyze the distribution of domain-
specific experts identified by our method and report counts per layer for two MoE backbones in
Figure 4a and Figure 4b. Across domains, the selected experts concentrate toward the final layers,
while the middle portion of the network contains fewer domain experts. This profile indicates that
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middle layers exhibit higher selectivity and lower coverage, consistent with a more peaked rout-
ing pattern that relies on a small set of broadly useful experts, whereas deeper layers host a richer
pool of domain-specialized experts. These observations suggest a depth-progressive organization of
knowledge: early and middle layers prioritize generic transformations that transfer across domains,
and deeper layers encode domain-specific mechanisms that benefit most from targeted adaptation.

5 RELATED WORK

Parameter-efficient Fine-tuning for Transformers. As Transformer models continue to grow in
scale, full fine-tuning (Qiu et al., 2020) has become increasingly impractical. parameter-efficient
fine-tuning (PEFT) mitigates this by updating a small subset or a low-rank reparameterization of
weights. Representative families include adapter tuning (Houlsby et al., 2019; Sung et al., 2022),
prompt tuning (Lester et al., 2021), and reparameterized low-rank updates such as LoRA (Hu et al.,
2022) and its variants (e.g., DoRA (Liu et al., 2024a)) that improve stability or capacity. Notably,
all these methods primarily focus on adapting dense models, leaving the application of PEFT to in-
herently sparse Mixture-of-Experts (MoE) models comparatively underexplored. While parameter-
efficient fine-tuning PEFT has matured for dense Transformers, its application to inherently MoE ar-
chitectures remains comparatively underexplored. One line of MoE-tuning work integrates adapter-
style or low-rank updates directly into MoE components and coordinates them with the router so
that adaptation follows the model’s sparse computation (Liu et al., 2024c). Another leverages expert
specialization by selectively fine-tuning a small, task-relevant subset of experts while freezing the
rest (Wang et al., 2024). In both cases, parameter updates are confined to lightweight subblocks, e.g.,
the feed-forward (FFN) or attention modules, treating attention and experts in isolation or relying
on static expert selection, which can misalign routing context with expert updates.

Sparsity and Specialization in MoE Architectures. Unlike dense models where all parameters
are activated for every token, MoE (Shazeer et al., 2017; Zhou et al., 2022) routes tokens to a
small subset of ”expert” sub-networks. This sparse activation mechanism allows for a significant
increase in model size without a proportional increase in computational cost during inference. Re-
cent advances in Mixture-of-Experts architectures have explored both coarse-grained (Jiang et al.,
2024) and fine-grained expert paradigms (Dai et al., 2024; Yang et al., 2025). In early models,
the number of experts was often limited, with coarse-grained routing activating a small, fixed sub-
set. More recent research, however, has increasingly focused on fine-grained MoE designs where a
much larger pool of experts is available, but only a few are sparsely activated per token. Empirical
studies consistently show that fine-grained configurations exhibit a high degree of expert specializa-
tion (DeepSeek-AI et al., 2024; Lu et al., 2024): domain traffic concentrates on a compact subset
of experts (Dong et al., 2025). As a result, identifying non-domain experts via domain data and
pruning or masking them tends to have minor impact on downstream domain performance (Muzio
et al., 2024; Xie et al., 2024; He et al., 2024), indicating a structured, overcomplete form of special-
ization in sparse MoE. This inherent specialization provides a pathway for efficient fine-tuning. By
identifying and selecting a small subset of task-relevant experts, the computational cost of adapting
a massive MoE model to a new task can be significantly reduced.

6 CONCLUSION

In this paper, we investigated the fine-tuning dynamics of Mixture-of-Experts (MoE) models and
revealed the expert concentration phenomenon, where experts’ relative domain specialization is
progressively amplified during domain-specific adaptation. This finding indicates that full-model
fine-tuning is not only costly but also unnecessary, since a few domain-relevant experts capture
the majority of task knowledge. To systematically identify these experts, we introduced the Do-
main Advantage Score (DAS), which quantifies domain affinity by contrasting expert routing behav-
iors on domain versus general data. Building on this insight, we proposed a lightweight two-stage
parameter-efficient tuning framework: first aligning routing signals through attention and router tun-
ing, and then selectively fine-tuning parameters of DAS-identified experts. Extensive experiments
on math and coding benchmarks demonstrate that our approach achieves performance comparable to
full fine-tuning while updating only a small fraction of parameters, and it also mitigates catastrophic
forgetting on general benchmarks.
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Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts. CoRR, abs/2401.04088, 2024.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Comput., 6(2):181–214, 1994.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 3045–
3059. Association for Computational Linguistics, 2021.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024b.

Yilun Liu, Yunpu Ma, Shuo Chen, Zifeng Ding, Bailan He, Zhen Han, and Volker Tresp. PERFT:
parameter-efficient routed fine-tuning for mixture-of-expert model. CoRR, abs/2411.08212,
2024c.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 6159–6172. Association for
Computational Linguistics, 2024.

Alexandre Muzio, Alex Sun, and Churan He. Seer-moe: Sparse expert efficiency through regular-
ization for mixture-of-experts. CoRR, abs/2404.05089, 2024. doi: 10.48550/ARXIV.2404.05089.
URL https://doi.org/10.48550/arXiv.2404.05089.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. CoRR, abs/2003.08271, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. LST: ladder side-tuning for parameter and memory ef-
ficient transfer learning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4149–4158.
Association for Computational Linguistics, 2019.

Zihan Wang, Deli Chen, Damai Dai, Runxin Xu, Zhuoshu Li, and Yu Wu. Let the expert stick to
his last: Expert-specialized fine-tuning for sparse architectural large language models. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November
12-16, 2024, pp. 784–801. Association for Computational Linguistics, 2024.

Yanyue Xie, Zhi Zhang, Ding Zhou, Cong Xie, Ziang Song, Xin Liu, Yanzhi Wang, Xue Lin, and
An Xu. Moe-pruner: Pruning mixture-of-experts large language model using the hints from its
router. CoRR, abs/2410.12013, 2024.

12

https://doi.org/10.48550/arXiv.2404.05089


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jian Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
Qwen3 technical report. CoRR, abs/2505.09388, 2025.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
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USE OF LARGE LANGUAGE MODELS

This manuscript used large language models in a narrowly circumscribed role: copy-editing for
grammar and readability and occasional, non-substantive debugging hints. No model contributed
to conceptual design, algorithmic choices, experiment execution, analysis, or claims. All technical
content was authored, verified, and is fully owned by the authors.

A EFFECT OF COMPONENT TUNING ON MOE EXPERT ROUTING DYNAMICS

To quantify how much the average routing distribution shifts from the pre-tuning to the post-tuning
model on domain data, we propose a metric called Routing Consistency(RC). For each expert, let
g
(1)
ij be the average routing score of the j-th expert in the i-th layer before fine-tuning, and g

(2)
ij be

the average routing score after fine-tuning. The shift for each expert is calculated as the squared
L2-norm of the difference:

shiftij = ||g(2)ij − g
(1)
ij ||2 (4)

The overall Distribution Shift for the entire model is defined as the average shift across all layers
and all experts:

RC =
1

L×N

L∑
i=1

N∑
j=1

shiftij (5)

A lower Distribution Shift value indicates that the routing distribution has undergone minimal
change.
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Figure 5: The Dynamics of RC.

We begin by computing the initial Domain Advantage
Score (DAS) to identify domain-related experts, and then
design two controlled interventions to disentangle how
different modules affect routing. In the first interven-
tion we fine-tune only the expert blocks while freez-
ing attention and the router, in the second we fine-tune
only the attention and router while freezing all experts.
As shown in Figure 5, the Routing Consistency (RC)
remains near its pre-tuning level under FFN-only up-
dates, whereas RC shift significantly when updating at-
tention&router.This indicates that FFN updates primarily
change what an expert computes, leaving token-to-expert
assignment largely intact, while attention&router directly reshape how token-level evidence is ag-
gregated and converted into routing logits, thereby realigning the allocation of domain traffic across
experts.

B IMPACT OF ATTENTION&ROUTER-TUNING STEPS ON PERFORMANCE

To determine the optimal duration of our first-stage fine-tuning, we conducted an analysis on how
the number of Attention-Tuning steps affects overall performance. By keeping all other variables
constant, we varied the number of steps in the first stage from 100 to 500 and observed the impact
on the downstream task.

As shown in Table 6, we found that increasing the number of attention-tuning steps generally im-
proves performance. However, the performance gains exhibit diminishing returns after a certain
point. This suggests that a limited number of steps in the first stage is sufficient to effectively steer
the router and amplify the specialization of domain-relevant experts. Beyond this, additional steps
do not yield a proportional increase in performance.
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Tuning Steps GSM8K MATH500 MBPP humaneval Avg.
100 53.37 12.00 39.80 29.87 40.75
200 53.52 12.80 41.40 31.10 41.39
300 53.98 13.40 41.20 32.92 41.84
400 54.73 13.80 42.20 32.31 42.48
500 54.73 13.40 42.60 34.75 42.64
Backbone 43.38 10.80 40.80 30.48 35.45

Table 6: Impact of Attention-Tuning Steps on Two-Stage Performance.
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