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Abstract

Formal/symbolic semantics can provide canon-001
ical, rigid controllability and interpretability to002
sentence representations due to their localisa-003
tion or composition property. How can we de-004
liver such property to the current distributional005
sentence representations to control and inter-006
pret the generation of language models (LMs)?007
In this work, we theoretically frame the sen-008
tence semantics as the composition of semantic009
role - word content features and propose the for-010
mal semantic geometry. To inject such geom-011
etry into Transformer-based LMs (i.e. GPT2),012
we deploy a Transformer-based Variational Au-013
toEncoder with a supervision approach, where014
the sentence generation can be manipulated and015
explained over low-dimensional latent Gaus-016
sian space. In addition, we propose a new017
probing algorithm to guide the movement of018
sentence vectors over such geometry. Experi-019
mental results reveal that the formal semantic020
geometry can potentially deliver better control021
and interpretation to sentence generation.022

1 Introduction023

Language Models (LMs) have provided a flexible024

scaling-up foundation for addressing a diverse spec-025

trum of tasks (Touvron et al., 2023). Nonetheless,026

the question remains: can we develop language rep-027

resentations/models that offer more granular levels028

of control and interpretation from the perspective029

of “formal/structural” semantics? Addressing this030

question will enable us to enhance the controllabil-031

ity, interpretability, and safety of LMs.032

Formal semantics, which provides a canonical,033

granular, and rigid representation, have been inves-034

tigated for thousands of years, such as Montague035

Semantics (Dowty et al., 2012), Davidsonian Se-036

mantics (Davidson, 1967), Abstract Meaning Rep-037

resentation Banarescu et al. (2013), Semantic Role038

Labelling Palmer et al. (2010), and Argument Struc-039

ture Theory (AST, Jackendoff (1992)). One typical040

characteristic of such formal semantics is the local-041
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Figure 1: Overview: latent sentence semantics can be
decomposed into semantic role- word content features.

isation or composition property. For example, in 042

the sentence: animals require oxygen for survival, 043

the words are functionally combined into sentence 044

semantics: λx(animals(x)→ require(x, oxygen)) 045

where x is the variable of any entity within a log- 046

ical structure. In this case, we can localise the 047

sentence semantics by replacing x with birds, etc. 048

This localised process indicates the interpretation in 049

Cognitive Science (Smolensky, 2006; Lees, 1957). 050

However, such localisation is precisely what cur- 051

rent distributional semantics lack, thereby limiting 052

their controllability and interpretability. 053

Disentanglement (Bengio, 2013), which refers 054

to the feature-dimension alignment (i.e., privileged 055

basis Elhage et al. (2022)), can potentially provide 056

such localisation, which has been widely inves- 057

tigated to localise image features, such as nose 058

in facial images (Esser et al., 2020; Jeon et al., 059

2019; Liu et al., 2021). In Transformers (Vaswani 060

et al., 2017), however, token embeddings, resid- 061

ual stream, and attention are non-privileged, mean- 062

ing that multiple dimensions contribute to a fea- 063

ture. Although some prior studies explored the 064

possibility of language disentanglement, most are 065

focused on coarse-grained/task-specific semantic 066

features, such as sentiment, within the context of 067

style-transfer tasks (John et al., 2019; Bao et al., 068

2019; Hu and Li, 2021; Vasilakes et al., 2022; Gu 069
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et al., 2022; Liu et al., 2023a; Gu et al., 2023).070

In this work, we focus on the localisation of071

general semantic features of sentences over dis-072

tributional space to shorten the gap between deep073

latent semantics and formal linguistic representa-074

tions (Gildea and Jurafsky, 2000; Banarescu et al.,075

2013; Mitchell, 2023), integrating the flexibility of076

distributional-neural models with the properties of077

linguistically grounded representations, facilitating078

both interpretability and generative control from079

the perspective of formal semantics. We specifi-080

cally choose the conceptual dense explanatory sen-081

tences from WorldTree (Jansen et al., 2018) due to082

their clear formal semantic representation designed083

in the Explanatory Reasoning task.084

In the NLP domain, Variational AutoEncoders085

(VAEs, Kingma and Welling (2013)) have been rec-086

ognized as a prominent foundation for investigating087

generation control and interpretation through the088

observable low-dimensional smooth and regular la-089

tent spaces (e.g., std Gaussian space) (John et al.,090

2019; Li et al., 2022b; Bao et al., 2019; Mercatali091

and Freitas, 2021; Felhi et al., 2022; Vasilakes et al.,092

2022). Therefore, we probe the localisation prop-093

erty of formal semantics over latent sentence spaces094

under VAE architecture. Specifically:095

(1) We first propose a geometrical framework to096

present the formal semantic features of sentences097

as semantic role - word content pairs (denoted as098

role-content) from the perspective of AST (Jack-099

endoff, 1992) within the compositional distribu-100

tional model (Clark et al., 2008). Subsequently, (2)101

we introduce a supervised approach for learning the102

role-content features of explanatory sentences in la-103

tent spaces. (3) Additionally, we propose a method104

to control sentence generation by navigating the105

sentence vectors across different role-content fea-106

tures within our geometric framework. (4) Our107

findings reveal that the role-content features are en-108

coded as a convex cone in the latent sentence space109

(Figure 1). This semantic geometry facilitates the110

localisation of sentence generation by enabling the111

manipulation of sentence vectors through traversal112

and arithmetic operations within the latent space.113

The full dataset and experimental pipelines are go-114

ing to be publicly released1.115

2 Related work116

Formal-distributional semantics. Integrating dis-117

tributional semantics with formal / symbolic se-118

1https://github.com/<anonymized>

mantics is challenging in the field of artificial in- 119

telligence. In the Reasoning domain, for exam- 120

ple, existing approaches usually perform symbolic 121

behaviour via explicitly symbolic representation 122

injection, including graph (Khashabi et al., 2018; 123

Khot et al., 2017; Jansen et al., 2017; Thayaparan 124

et al., 2021), linear programming (Valentino et al., 125

2022b; Thayaparan et al., 2024), adopting iterative 126

methods, using sparse or dense encoding mech- 127

anisms (Valentino et al., 2020; Lin et al., 2020; 128

Valentino et al., 2022a; Bostrom et al., 2021), or 129

synthetic natural language expression (Clark et al., 130

2020; Yanaka et al., 2021; Fu and Frank, 2024), 131

among others. Comparatively, we explore the for- 132

mal semantic property over distributional seman- 133

tics via latent sentence geometry, which can poten- 134

tially deliver better interpretation to current LMs. 135

Language geometry. There is a line of work that 136

studies the geometry of word and sentence repre- 137

sentations (Arora et al., 2016; Mimno and Thomp- 138

son, 2017; Ethayarajh, 2019; Reif et al., 2019; 139

Li et al., 2020a; Chang et al., 2022; Jiang et al., 140

2024a). E.g., king − man + woman = queen, 141

which the word vectors can be manipulated with 142

geometric algebra. This phenomenon indicates 143

the linear subspaces in language representations, 144

similar features are encoded as a close direction 145

in latent space, which has been widely explored 146

ranging from word (Mikolov et al., 2013a) to sen- 147

tences (Ushio et al., 2021), Transformer-based LMs 148

(Merullo et al., 2023; Hernandez et al., 2023), and 149

multi-modal models (Trager et al., 2023; Huh et al., 150

2024). Under the linear subspace hypotheses, a 151

significant work explored the interpretability (Li 152

et al., 2022a; Geva et al., 2022; Nanda et al., 2023) 153

and controllability (Trager et al., 2023; Merullo 154

et al., 2023; Turner et al., 2023) of neural networks. 155

In this work, we emphasise the formal semantic 156

geometry for bridging the distributional and formal 157

semantics, which is currently under-explored. 158

Language disentanglement. Disentanglement, 159

refers to separating features along dimensions (Ben- 160

gio, 2013), leading to clear geometric and linear 161

representations. In the NLP domain, many stud- 162

ies explored the disentanglement between specific 163

linguistic perspectives, such as sentiment-content 164

(John et al., 2019), semantic-syntax (Bao et al., 165

2019), and negation-uncertainty (Vasilakes et al., 166

2022), or syntactic-level disentanglement (Mer- 167

catali and Freitas, 2021; Felhi et al., 2022). How- 168

ever, a fundamental issue has been overlooked: the 169
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definition of disentanglement in the image domain170

(Esser et al., 2020) cannot be directly applied to the171

context of computational linguistics due to the vari-172

ability and complexity of language expression and173

high entanglement after current Transformer-based174

encoders. Therefore, we contribute to a new lens175

on the disentanglement (separation) of sentence176

features from the perspective of formal semantics.177

3 Formal Semantic Geometry178

In this section, we first define the sentence semantic179

features as semantic role - word content from the180

perspective of formal semantics. Then, we link the181

semantic features with distributional vector spaces182

in which each semantic role - word content is en-183

coded as a convex cone, as shown in Figure 1.184

Formal semantic features. For formal / structural185

semantics, Argument Structure Theory (AST) (Jack-186

endoff, 1992; Levin, 1993; Rappaport Hovav and187

Levin, 2008) provides a model for representing sen-188

tence structure and meaning of sentences in terms189

of the interface between the their syntactic struc-190

ture and the associated semantic roles of the argu-191

ments within those sentences. It delineates how192

verbs define the organisation of their associated ar-193

guments and the reflection of this organisation in a194

sentence’s syntactic realisation. AST abstracts sen-195

tences as predicate-argument structures, where the196

predicate p (associated with the verb) has a set of197

associated arguments argi, where each argument198

has an associated positional component i and a the-199

matic/semantic roles ri, the latter categorising the200

semantic functions of arguments in relation to the201

verb (e.g. agent, patient, theme, instrument). In the202

context of this work, the AST predicate-argument203

representation is associated with a lexical-semantic204

representation of the content ci of the term ti.205

In this work, we simplify and particularise the
relationship between the argument structure and
the distributional lexical semantic representation as
a role-content relation, where the structural syntac-
tic/semantic relationship is defined by its shallow
semantics, i.e. as the composition of the content of
the terms, their position in the predicate-argument
(PArg) structure (argi) and their semantic roles
(SRs) (ri: pred, arg), as described below:

animals︸ ︷︷ ︸
ARG0

require︸ ︷︷ ︸
PRED

oxygen︸ ︷︷ ︸
ARG1

for survival︸ ︷︷ ︸
ARGM−PRP

Therefore, we define the semantics of sen-206

tences, sem(s), as the compositions between207

role-content, which can be described as follows: 208

sem(s) = t1(c1, r1)︸ ︷︷ ︸
i.e.,ARG0−animals

⊕ · · · ⊕ ti(ci, ri)︸ ︷︷ ︸
PRP−survival

209

Where ti(ci, ri) = ci ⊗ ri represents the seman- 210

tics of term ti with content ci (i.e., animals) and 211

SRL ri (i.e., ARG0) in context s. ⊗: connects 212

the meanings of words with their roles, using the 213

compositional-distributional semantics notation of 214

(Smolensky and Legendre, 2006; Clark and Pul- 215

man, 2007; Clark et al., 2008). ⊕: connects the 216

lexical semantics (word content + structural role) 217

to form the sentence semantics. To deliver the lo- 218

calisation or composition property, the sentence 219

semantics should be able to present separation or 220

disentanglement under connector ⊕. E.g., replac- 221

ing ARG0-animals with ARG0-fishes. 222

Formal semantic features in vector space. Af- 223

ter defining the semantic features of sentences, we 224

propose the concept of a convex cone of seman- 225

tic feature. In linear algebra, a cone refers to 226

a subset of a vector space that is convex if any 227

α−→vi + β−→vj if any −→vi and −→vj belong to it. α and 228

β are positive scalars. Formally, the definition of 229

convex cone, C, is described as a set of vectors: 230

C = {x ∈ V |x =
∑n

i=1 αivi, αi ≥ 0, vi ∈ R} 231

where x is an element vector in vector space R, vi 232

are the basis vectors. αi are non-negative scalars. 233

In this context, we consider each role-content fea- 234

ture as a convex cone, C, corresponding to a hyper- 235

plane in high-dimensional vector space: Cci,ri = 236

{t(ci, ri)|t(ci, ri) ∈ sem(s), s ∈ corpus} where 237

t(ci, ri) represents the basis vector in Cci,ri (Fig- 238

ure 2). According to set theory, we can define the 239

formal semantic space as follows: 240

Assumption1: The sentence semantic space is
the union of all unique Cci,ri convex cones:

Cc1,r1 ∪ Cc2,r2 ∪ · · · ∪ Cc
V (c) ,rV (r)

V is the vocabulary of a corpus. Based on Assump- 241

tion1, we can establish: 242

Proposition1: The geometrical location of sen- 243

tence semantic vectors, sem(s), can be determined 244

by the intersection of different Cci,ri: 245

sem(s) = t1(c1, r1)⊕ · · · ⊕ ti(ci, ri)

= {t1(c1, r1)} ⊕ · · · ⊕ {ti(ci, ri)}
= Cc1,r1 ∩ Cc2,r2 ∩ · · · ∩ Cci,ri

246

4 Geometrical Formal Semantic Control 247

In this section, we first show that our formal se- 248

mantic geometry can interpret sentence generation, 249
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such as arithmetic (Shen et al., 2020), and extend250

the “Linear Representation Hypothesis”. Then, we251

propose a new semantic control approach, which252

recursively traverses the latent dimensions to probe253

the semantic geometry over latent spaces.254

Geometrical algebra interpretability. Arithmetic255

has been considered a common way to control word256

or sentence semantics over latent spaces (Mikolov257

et al., 2013b). E.g., the addition operation can258

steer the sentence semantics (Shen et al., 2020;259

Mercatali and Freitas, 2021; Liu et al., 2023b), or260

linear interpolation can generate smooth intermedi-261

ate sentences (Hu et al., 2022). However, they lack262

an explanation for these phenomena. We show that263

our geometrical framework can provide an intuitive264

explanation for these phenomena.265

For linear interpolation, for example, it takes two266

sentences x1 and x2 and obtains latent vectors z1267

and z2, respectively. It interpolates a path zt =268

z1 · (1− t) + z2 · t with t increased from 0 to 1 by269

a step size of 0.1. Given two sentences with one270

role-content set overlap, Ccj ,rj . We can describe:271

sem(s1) ∩ sem(s2)

= {Cs1
c1,r1 ∩ · · · ∩ Cs1

ci,ri} ∩ {C
s2
c1,r1 ∩ · · · ∩ Cs2

ci,ri}

= {Cs1
c1,r1 ∩ · · · ∩ Cs2

ci,ri} ∩ C
s1(2)
cj ,rj

272

According to the definition of convex cone, if z1273

and z2 are left in C
s1(2)
cj ,rj , the weighted sum vector,274

zt, is also in C
s1(2)
cj ,rj . Therefore, the intermediate275

sentence semantics can be described as:276

sem(st1→2)

= (1− t)× sem(s1) + t× sem(s2)

= {{z1 · (1− t) + z2 · t}, . . . {. . . }} ∩ C
s1(2)
cj ,rj

277

That is, the intermediate sentences will hold the278

{cj , rj} information during interpolation.279

Linear representation hypothesis. “Linear repre-280

sentation hypothesis” refers to high-level concepts281

being represented linearly as directions in repre-282

sentation space, which has been widely evaluated283

to interpret Large LMs’ mechanism (Marks and284

Tegmark, 2023; Xie et al., 2021; Wang et al., 2024;285

Jiang et al., 2024b; Park et al., 2023, 2024). How-286

ever, a main challenge for this hypothesis is that287

it’s not clear what constitutes a high-level concept.288

Our geometrical framework can further support289

and extend this hypothesis by answering the ques-290

tions: What and how are they “linearly” encoded?291

For example, given a set of N atomic sentences: si:292

dimension

basis vector

traversal path

hyperplane

Figure 2: Algorithm 1: by modifying the latent dimen-
sions, we can control the movement of latent vectors
over latent space.

bird is a kind of living thing varying the content of 293

arg1. Their semantics can be described below: 294

sem(s) = {Csi
ci,arg1

, . . . } ∩ · · · ∩ Clivingthing,arg2

,where ci ∈ {tiger, bird, . . . }
295

In this case, the concept living thing is encoded as a 296

convex cone where all different Csi
ci,arg1

contribute 297

to its boundary, leading to a direction. The hierar- 298

chical relations between living thing and bird, etc. 299

are determined by the convex cones is a kind of. 300

Guided traversal. Since we describe different sen- 301

tence semantic features, {ci, ri}, as distinct con- 302

vex cones, Cci,ri , within a N -dimensional vector 303

space, V ∈ RN , we can linearly divide each basis 304

dimension, i ∈ {1, . . . , N}, into different value 305

regions, [a, b](i), based on minimal information en- 306

tropy. Consequently, there is a sequence of dimen- 307

sional subspaces for each semantic feature. Thus, 308

movement between different Cci,ri regions can be 309

achieved by moving out the dimensional regions 310

within this sequence. This process can be imple- 311

mented via a decision tree. In figure 3, for exam- 312

ple, we can move the sentence from Cpred,causes to 313

Cpred,means by modifying the values started from 314

dim 21 ≤ −0.035, ..., ending at dim 10 ≤ −1.11. 315

By traversing the tree path, we can control the sen- 316

tence generation by moving between convex cones, 317

detailed in Algorithm 1. 318

Based on our algorithm, we can use classification 319

metrics as proxy metrics to evaluate latent space 320

geometry. E.g., accuracy and recall for measuring 321

feature separability and density. 322

5 SRL-Conditional VAE 323

In this section, we investigate the architecture of 324

VAE to integrate the latent sentence space with 325
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Algorithm 1 Guided latent space traversal

1: Datasets: D = {s1, . . . , sn}
2: Labels: Y = {y1, . . . , yn}, yi ∈ {0, 1}
3: # 0:pred-causes, 1:pred-means
4: Seed: s = fire causes chemical change
5: for si ∈ D do
6: zi ← Encoder(si)
7: end for
8: X ← {z1, . . . , zn}
9: tree← DecisionTreeClassifier(X,Y )

10: path← filter(tree) # choose the shortest path
between C0 and C1

11: z ← Encoder(s)
12: for node ∈ path do
13: (dim, range, yes/no)← node
14: if in current branch do
15: z[dim]← v /∈ range if yes else v ∈ range
16: else do
17: z[dim]← v ∈ range if yes else v /∈ range
18: end for
19: s← Decoder(z) # fire means chemical change

Dim 17 ≤ −0.117

Dim 0 ≤ −0.089

Dim 21 ≤ −0.035

Cpred,causes

...

Dim 0 ≤ 1.07

... Dim 10 ≤ −1.11

Cpred,means

yes

yes

no

no

no

yes

Figure 3: Traversal between different role-content sets
by moving along the tree path.

LMs and propose a supervision approach to learn326

defined semantic features (i.e., role-content).327

Model architecture. We consider Optimus (Li328

et al., 2020b) as the foundation which used BERT329

and GPT2 as Encoder and Decoder, respectively.330

In detail, the sentence representation, Embed(x),331

encoded from BERT[cls] will first transform into a332

Gaussian space by learning the parameters µ and333

σ through multilayer perceptions Wµ, Wσ. The334

final latent sentence representations can be ob-335

tained via: z = Wµ × Embed(x) + Wσ, which,336

as an additional Key and Value, is concatenated337

into the original Key and Value weights of GPT2,338

which can be described as: Attention(Q,K, V ) =339

softmax(Q[z;K]T√
d

)[z;V ] where Q has the shape340

Rseq×64, K,V has the shape R(seq+1)×64 (64 is di-341

mension of GPT2 attention, seq is sequence length).342

Since Q represents the target, K and V represent343

the latent representations. By intervening the KV344

with z, we can learn the transformation between 345

latent space and observation distribution. 346

Optimisation. It can be trained via the evidence
lower bound (ELBO) on the log-likelihood of the
data x (Kingma and Welling, 2014). To bind the
word content and semantic role information in la-
tent space, we conditionally inject the semantic
role sequence into latent spaces where the latent
space z and semantic role r are dependent. The
joint distribution can be described as:

Pθ(x, y, z) = Pθ(x|z, r)︸ ︷︷ ︸
likelihood

×Pθ(z|r)︸ ︷︷ ︸
prior

×P (r)

Specifically, we use an encoder (i.e., Bert) to learn

Z

X

pθ(x|z)

RZ

X

pθ(z|r)

pθ(x|z, r)

Figure 4: Computational graph of generation stage,
where left: standard VAE, right: Conditional VAE.

347
the approximate posterior based on semantic roles 348

and tokens. Additionally, we inject the semantic 349

roles into the encoder to learn the prior distribu- 350

tion. Both semantic roles and latent variables are 351

injected into the decoder to auto-encode the tokens. 352

The CVAE is trained to maximize the conditional 353

log-likelihood of x given r, which involves an in- 354

tractable marginalization over the latent variable 355

z. Moreover, to avoid the KL vanishing problem, 356

which refers to the Kullback-Leibler (KL) diver- 357

gence term in the ELBO becomes very small or ap- 358

proaches zero, we select the cyclical schedule to in- 359

crease weights of KL β from 0 to 1 (Fu et al., 2019) 360

and a KL thresholding scheme (Li et al., 2019) that 361

chooses the maximum between KL and threshold 362

λ. The final objective function can be described as 363

follows: LCVAE = −Eqϕ(z|r,x)

[
log pθ(x|z, r)

]
+ 364

β
∑

imax [λ,KLqϕ(zi|x, r)||p(zi|r)] where qϕ 365

represents the approximated posterior (i.e., en- 366

coder). i is the i-th latent dimension. 367

6 Empirical analysis 368

In the experiment, we quantitatively and quali- 369

tatively evaluate the latent space geometry via 370

1.traversal, 2.arithmetic, and 3.guided traversal. All 371

experimental details are provided in Appendix A. 372
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6.1 Latent Traversal373

Qualitative evaluation. Traversal refers to the ran-374

dom walk over latent space. It can be done by375

decoding the latent vector in which each dimension376

is resampled and other dimensions are fixed (Hig-377

gins et al., 2017; Kim and Mnih, 2018; Carvalho378

et al., 2023). Given a latent vector from a “seed”379

sentence, we can traverse its neighbours to evaluate380

the geometry. As illustrated in Table 1, those tra-381

versed sentences can hold the same content under382

different semantic roles as the input, such as au-383

tomobile in ARG1, indicating role-content feature384

separation in latent spaces.385

an automobile is a kind of vehicle

an automobile is a kind of moving object
an automobile is a kind of object

an airplane is a kind of vehicle
a car is a kind of vehicle

Table 1: Traversal showing held semantic factors in
explanations corpus.

Quantitative evaluation. Next, we employ t-SNE386

(Van der Maaten and Hinton, 2008) to examine387

role-content features cluster and separation over la-388

tent space (i.e., natural clustering property (Bengio,389

2013)). In the corpus, however, due to the small390

number of data points within each role-content clus-391

ter, t-SNE cannot capture the differences between392

clusters well, resulting in the visualized latent space393

not displaying good role-content separability (top394

in figure 5). Therefore, we increase the number395

of data points in different role-content clusters by396

traversing each and keeping those resulting data397

points with the same role-content. Then, we visu-398

alise the role-content cluster at the bottom of figure399

5. We can find that the features are clustered and400

separated over the latent space. If this was not the401

case, after traversing the resulting vectors from the402

same role-content cluster, the visualization should403

show the same entanglement as the original data-404

points distribution.405

6.2 Latent Arithmetic406

Qualitative evaluation. In addition, we demon-407

strate the geometric properties via interpolation in408

Table 2. For the top-most one, we can observe409

that sentences are smoothly moved from source410

to target (e.g., from beach ball to atom connected411

by ballon, magnet, neutron, and proton) where the412

same role-content (i.e., pred-is) unchanged. In con-413

trast, the second case doesn’t display the smooth414

Figure 5: t-SNE plot of role-content distribution before
and after traversal. From left to right are ARG0-(animal,
human, plant, and something), ARG1-(food, oxygen,
sun, and water), and predicate-(are, cause, is, require)
(top: original role-cluster distribution, bottom: distribu-
tion after traversal). PCA plots are in Figure 9.

a beach ball is a kind of container
1. a pool table is a kind of object
2. a balloon is a kind of object
3. a magnet is a kind of object
4. a neutron is a kind of particle
5. a proton is a kind of particle
an atom is a kind of particle

protons are found in the nucleus of an atom
1. protons are found in the nucleus of an atom
2. 1 atom is positive 1 in electric charge
3. 1 in 6000 is equal to 27 in 10 years
4. if protons and neutrons have the same number
of neutrons then those two particles are physically
closer than one another
5. if a neutron has a negative -10 electric charge then
the atom will not be able to move
6. if a neutron has a negative -10 electric charge then
the neutron will not have a positive electric charge
if a neutral atom loses an electron then an atom with
a positive charge will be formed

Table 2: Interpolation examples (top: interpolation be-
tween sentences with similar semantic information, bot-
tom: interpolation between sentences with different se-
mantic information). Only unique sentences shown.

interpolation path. E.g., the third sentence con- 415

necting different semantic structures is unrelated 416

to both source and target due to a discontinuous 417

space gap between different clusters. Both indicate 418

that the explanatory sentences might be clustered 419

according to different semantic role structures. 420

Following the definition of convex cone, we next 421

traverse the resulting sentence after adding or sub- 422

tracting two sentences with the same role-content 423

feature. As illustrated in Table 3, the adding op- 424

eration tends to hold the same role-content (e.g., 425

ARG0-Animals) as inputs. In contrast, the subtrac- 426

tion loses such control, e.g., from ARG1-water to 427
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s1: animals require food for survival
s2: animals require warmth for survival
animals eat plants
animals produce milk
animals usually eat plants
animals eat berries ; plants
animals require food to survive
animals require shelter to survive

s1: water vapor is invisible
s2: the water is warm
igneous rocks are found under the soil
quartz is usually very small in size
quartz is formed by magma cooling
quartz is made of iron and zinc
silica is made of argon and argon
sedimentary is formed by lithosphere collapsing

Table 3: s1 ± s2 (top: addition, bottom: subtraction).

ARG1-quartz. More similar observations are in428

Table 11. These results corroborate our geometry.429

Quantitative evaluation. Next, we quantitatively430

assess our geometry framework by calculating the431

ratio of the same role-content results from the vec-432

tor addition and subtraction for all sentence pairs433

with a matching role. As illustrated in Figure 6,434

the ADDed results (dark blue) can greatly hold the435

same token-level semantics (role-content) as inputs,436

indicating our geometrical framework. In contrast,437

the SUBed results (shallow blue) suffer from se-438

mantic shift. Similar observations for VERB and439

ARG1 can be found in Figure 11 and 12. Besides,

Figure 6: Arithmetic, s1 ± s2, for ARG0 with contents
(dark blue: addition, shallow blue: subtraction, orange:
element-wise production).

440
we can quantify each role-content cluster’s geo-441

metrical area by calculating the cosine similarity442

between randomly selected sentence pairs in this443

cluster. We report the maximal and minimal dis-444

tance in Figure 7. Similar observations for VERB445

and ARG1 can be found in Figure 13 and 14.446

Figure 7: Evaluating the geometrical size of role-content
clusters (blue: max, orange: min).

6.3 Guided Latent Traversal 447

Finally, we examine the latent space geometry with 448

our algorithm 1. The categories mentioned next 449

are chosen based on their frequencies to ensure the 450

balance during the classifier’s training. 451

Qualitative evaluation. Firstly, we evaluate the 452

traversal between different semantic role struc- 453

tures, e.g, conditional and atomic sentences. Ta- 454

ble 4 shows that the cluster of the generated sen- 455

tence changes as the values of different dimen- 456

sions change sequentially (e.g., the first three sen- 457

tences hold the same characteristic if ... then ... 458

as the input. The remaining sentences gradually 459

move closer to the target characteristics, such as 460

is). Meanwhile, the sentences can hold the subject, 461

something, during the movement, corroborating 462

our geometry framework. Next, we evaluate the

if something receives sunlight it will absorb the sun-
light
Dim27: if a thing absorbs sunlight then that thing is
warmer
Dim12: if something is eaten then that something
produces heat
Dim08: if something gets too hot in sunlight then
that something is less able to survive
Dim03: something contains physical and chemical
energy
Dim21: something contains sunlight
Dim10: some things are made of matter
Dim00: something is made of atoms
Dim17: a forest contains life
Dim00: something that is cold has a lower tempera-
ture
Dim21: something rises in temperature
Dim00: something is formed from things dissolved
in water
Dim30: something that is cold has fewer nutrients
Dim21: something that is not moved is dead

Table 4: Movement from conditional to atomic sen-
tences.

463
traversal between predicates. Table 5 shows the 464

7



movement between verbs (cause and mean). We465

can observe that the predicate is modified from466

causes to mean. In the traversal process, some sen-467

tences fall into the V-is region. The reason is that468

the V-is cluster is widely scattered in latent space469

(shown in Figure 5), which leads to a big overlap470

between V-is and V-mean. Moreover, we calculate471

the ratio of the generated sentences that hold the472

expected predicate, mean, from 100 sentences with473

predicate cause. The ratio is 0.71, which indicates474

that the decision tree is a reliable way to navigate475

the movement of sentences. Finally, we evaluate

fire causes chemical change
Dim06: fire causes chemical changes
Dim22: fire causes chemical reactions
Dim02: fire can cause harm to plants
Dim27: smoke can cause harm to organisms
Dim14: fire causes physical harm to objects
Dim24: fire can cause chemical changes
Dim08: fire destroys material
Dim01: fire means chemical change
Dim14: waste means igneous metal
Dim06: combustion means burning
Dim00: combustion means chemical changes
Dim21: combustion means burning
Dim00: fire is formed by thermal expansion
Dim18: fire chemical means chemical energy
Dim03: fire is corrosive

winter means cold environmental temperature
Dim03: winter means cold - weather
Dim18: winter means cold weather
Dim00: winter means weathering
Dim21: drought means high temperatures / low pre-
cipitation
Dim00: winter means high amounts of precipitation
Dim06: drought causes natural disasters
Dim14: drought has a negative impact on crops
Dim01: drought has a negative impact on animals
Dim08: drought causes animal populations to de-
crease
Dim24: drought causes ecosystem loss
Dim14: drought causes animals to have lower natural
temperature
Dim27: cold climates causes wildfires
Dim02: climate change can cause low rainfall
Dim22: global warming causes droughts
Dim06: winter causes weather patterns

Table 5: Movement between cause and mean.
476

the traversal between arguments. Table 6 shows477

the movement from argument water to something.478

Similarly, the ARG1 can be modified from water479

to something following its path. Besides, the final480

generated explanation still holds a similar semantic481

structure, is a kind of, compared with input.482

Quantitative evaluation. Finally, we use classifica-483

tion metrics, including accuracy (separability) and484

recall (density), as proxy metrics to assess latent485

water is a kind of substance
Dim12: water is a kind of substance
Dim00: water is a kind of liquid
Dim23: liquid is a kind of material
Dim29: water has a positive impact on a process
Dim17: absorbing water is similar to settling
Dim06: absorbing is similar to reducing
Dim21: absorbing something is similar to absorbing
something
Dim04: storing something means being protected
Dim06: producing something is a kind of process
Dim04: storing something is similar to recycling
Dim21: absorbing something is a kind of process
Dim01: absorbing something can mean having that
something
Dim22: folding something is similar to combining
something
Dim07: improving something is a kind of transfor-
mation
Dim11: absorbing something is a kind of method
Dim07: absorbing something is a kind of process

Table 6: Movement from water to something.

space geometry. As shown in Table 7, all features 486

show higher separation where argument1 leads to 487

the highest separation, indicating better latent space 488

geometry. 489

Formal semantic features separation↑ density↑
predicate (causes, means) 0.87 0.92
argument1 (water, something) 0.95 0.48
structure (condition, atomic) 0.58 0.55

Table 7: Proxy metrics for latent space geometry.

7 Conclusion and Future Work 490

In this study, we investigate the localisation of gen- 491

eral semantic features to enhance the controllability 492

and explainability of distributional space from the 493

perspective of formal semantics, which is currently 494

under-explored in the NLP domain. We first pro- 495

pose the formal semantic features as role-content 496

and define the corresponding geometrical frame- 497

work. Then, we propose a supervision approach 498

to bind the semantic role and word content. In 499

addition, we propose a novel traversal probing ap- 500

proach to assess the latent space geometry based on 501

information set and entropy. We extensively evalu- 502

ate the latent space geometry through geometrical 503

operations, such as traversal, arithmetic, and our 504

guided traversal. Experimental results indicate the 505

existence of formal semantic geometry. 506

Since recent theoretical works reveal that the 507

LLMs can encode linear symbolic concepts (Jiang 508

et al., 2024b), in the future, we will explore their In- 509

context-learning of compositional semantics based 510

on our formal semantic geometry framework. 511
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8 Limitations512

1. Limitation of data source: this work only focused513

on explanatory sentences, such as atomic sentences514

since they are significant to human understanding.515

Whether the semantic separability of other corpora516

emerges over latent space is not explored. 2. Role-517

content clusters overlapping: the geometric analy-518

sis indicates that the role-content regions still have519

significant overlapping over distributional spaces.520

Therefore, a new potential task can be how we521

can better separate/disentangle the semantic fea-522

tures (role-content) to provide better localisation or523

composition behaviour over distributional semantic524

spaces in the Computational Linguistics domain,525

further assisting downstream tasks, such as Natural526

Language Reasoning, Compositional Generalisa-527

tion, etc.528
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A Experiment Setting919

Dataset. Table 8 displays the statistical informa-920

tion of the datasets used in the experiment. The921

data of the two datasets partially overlap, so only922

the unique explanations are selected as the exper-923

imental data. The rationale for choosing explana-924

tory sentences is that they are designed for for-925

mal/localised/symbolic semantic inference task in926

natural language form, which provides a semanti-927

cally complex and yet controlled experimental set-928

ting, containing a both well-scoped and diverse set929

of target “concepts” and sentence structures, pro-930

viding a semantically challenging yet sufficiently931

well-scoped scenario to evaluate the syntactic and932

semantic organisation of the space. Besides, those933

concepts mentioned in the corpus, such as animal934

is a kind of living thing, are fundamental to human935

semantic understanding.

Corpus Num data. Avg. length
WorldTree (Jansen et al., 2018) 11430 8.65

EntailmentBank (Dalvi et al., 2021) 5134 10.35

Table 8: Statistics from explanations datasets.
936

Table 9 illustrates the semantic, structure, and937

topic information of explanatory sentences over938

the latent space. The explanatory sentences are939

automatically annotated using the semantic role la-940

belling (SRL) tool, which can be implemented via941

AllenNLP library (Gardner et al., 2017). We report942

in Table 10 the semantic roles from the explana-943

tions corpus.944

Architecture. Figure 8 provides a visual represen-945

tation of the connection between BERT and GPT2946

within the AutoEncoder architecture.

Figure 8: Latent sentence injection.

947

To train the CVAE, we use a new embedding948

layer for semantic roles and separate MLP layers949

W srl
µ and W srl

σ to learn prior distribution.950

Hyperparameters. The training process of the de- 951

cision tree binary classifier can be implemented 952

via scikit-learn packages with default hyperparam- 953

eters. As for Optimus, the latent space size is 32 in 954

the experiment. The training details are following 955

the original experiment from Optimus (Li et al., 956

2020b). 957

B Further Experimental Results 958

Traversal visualisation. PCA plots for ARG0, 959

ARG1, and PRED are provided in Figure 9.

Figure 9: PCA visualisation.

960
In addition, we also provide the visualisation of 961

word content animal with different semantic roles: 962

ARG0, ARG1, ARG2, in Figure 10. From it, we 963

can observe that the same content with different 964

semantic roles can also be clustered and separated 965

in latent space.

Figure 10: Visualisation for animal-ARG0,1,2.

966

Qualitative evaluation for arithmetic. Table 11 967

lists the traversed explanations after addition (blue) 968

and subtraction (red) on different semantic role 969

information. We can observe that the resulting 970

sentences after addition can hold the same role- 971

content as inputs, revealing latent space geometry. 972

Quantitative evaluation for arithmetic. Quantita- 973

tive evaluation for our hypotheses via latent arith- 974

metic. Both VERB and Object can perform high 975

ratio after addition, indicating role-content separa- 976

bility. 977
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Cluster Theme and Pattern
0 Theme: physics and chemistry. Pattern: if then and as. E.g., if a substance is mixed with another substance then

those substances will undergo physical change.
1 Theme: country, astronomy, and weather. E.g., new york state is on earth
2 Theme: physics and chemistry. Pattern: is a kind of. E.g., light is a kind of wave.
3 Theme: biology. E.g., a mother births offspring.
4 Theme: synonym for verb. Pattern: means and is similar to. E.g., to report means to show.
5 Theme: astronomy. E.g., the solar system contains asteroids.
6 Theme: animal/plant. Pattern: is a kind of. E.g., a seed is a part of a plant.
7 Theme: item. E.g., a telephone is a kind of electrical device for communication.
8 Theme: synonym for life. Pattern: means and is similar to. E.g., shape is a kind of characteristic.
9 Theme: geography. Pattern: is a kind of. E.g., a mountain is a kind of environment.
10 Theme: animal and plant. Pattern: if then and as. E.g., if a habitat is removed then that habitat is destroyed.
11 Theme: scientific knowledge. Pattern: (;), number and /. E.g., freezing point is a property of a ( substance ;

material ).
12 Theme: item. Pattern: is a kind of object. E.g., a paper is a kind of object.
13 Theme: chemistry and astronomy. E.g., oxygen gas is made of only oxygen element.
14 Theme: general about science. Pattern: (;). E.g., seed dispersal has a positive impact on ( a plant ; a plant ’s

reproduction).
15 Theme: item. Pattern: is a kind of. E.g., fertilizer is a kind of substance.
16 Theme: physics and chemistry. Pattern: (;). E.g., the melting point of oxygen is -3618f ; -2188c ; 544k.
17 Theme: animal. E.g., squirrels live in forests.
18 Theme: nature. E.g., warm ocean currents move to cooler ocean regions by convection.
19 Theme: life. E.g., pond water contains microscopic living organisms.

Table 9: Cluster Information.

Semantic Tags Prop. % Description and Example
ARGM-DIR 0.80 Directionals. E.g. all waves transmit energy from one place to another
ARGM-PNC 0.08 Purpose. E.g. many animals blend in with their environment to not be seen by predators
ARGM-CAU 0.05 Cause. E.g. cold environments sometimes are white in color from being covered in

snow
ARGM-PRP 1.30 Purpose. E.g. a pot is made of metal for cooking
ARGM-EXT 0.04 Extent. E.g. as the amount of oxygen exposed to a fire increases the fire will burn longer
ARGM-LOC 4.50 Location. E.g. a solute can be dissolved in a solvent when they are combined
ARGM-MNR 2.00 Manner. E.g. fast means quickly
ARGM-MOD 9.80 Modal verbs. E.g. atom can not be divided into smaller substances
ARGM-DIS 0.07 Discourse. E.g. if something required by an organism is depleted then that organism

must replenish that something
ARGM-GOL 0.20 Goal. E.g. We flew to Chicago
ARGM-NEG 1.20 Negation. E.g. cactus wrens building nests in cholla cacti does not harm the cholla cacti
ARGM-ADV 6.70 Adverbials
ARGM-PRD 0.20 Markers of secondary predication. E.g.
ARGM-TMP 7.00 Temporals. E.g. a predator usually kills its prey to eat it
O - Empty tag.
V 100 Verb.
ARG0 32.0 Agent or Causer. E.g. rabbits eat plants
ARG1 98.5 Patient or Theme. E.g. rabbits eat plants
ARG2 60.9 indirect object / beneficiary / instrument / attribute / end state. E.g. animals are organisms
ARG3 0.60 start point / beneficiary / instrument / attribute. E.g. sleeping bags are designed to keep

people warm
ARG4 0.10 end point. E.g. when water falls from the sky that water usually returns to the soil

Table 10: Semantic Role Labels that appears in explanations corpus.
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ADD and SUB arithmetic

ARGUMENT1:
a needle is a kind of object
a tire is a kind of object

a wire is a kind of object
a stick is a kind of object
a ball is a kind of object

a serotype is similar to intersex egg
a zygote contains many cell types
an xylem is made of two clumps

VERB:
chromosomes are located in the cells
Australia is located in the southern hemisphere

stars are located in the solar system
Jupiter is located in the milky way galaxy
aurora is located in the constellation of Leo

a crystal is made of metal
an alloy is made of iron and zinc
an aluminum plug is nonmagnetic

LOCATION:
volcanoes are often found under oceans
mosquitos can sense carbon dioxide in the air

polar ice sheets are located along rivers
hurricanes occur frequently along the coast in Africa
tide waves cause flooding in coastal waters

valley is a kind of location
shape is a property of rocks
desert is a kind of place

TEMPORAL:
as the population of prey decreases competition between predators will increase
as competition for resources decreases the ability to compete for resources will increase

as the population of an environment decreases ecosystem function will decrease
as the spread of available air mass increases the population will increase
as the number of heavy traffic required increases the traffic cycle will decrease

some types of lizards live in water
a rose is rich in potassium
a fern grass roots foot trait means a fern grass

NEGATION:
pluto has not cleared its orbit
sound can not travel through a vacuum

radio waves don’t have electric charge
electromagnetic radiation does not have a neutral electric charge
electromagnetic radiation contains no electric charge

Mars is a kind of moon / planet
Anothermic rock is a kind of metamorphic rock
Anal Cetus’s skeleton is a kind of fossil

Table 11: Latent sapce arithmetic for five semantic tags (blue: addition, red: subtraction).
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Figure 11: Predicate (VERB). The content is shows the high ratio after subtraction, indicating that the V-is is widely
distributed over the latent space.

Figure 12: Object (ARG1).
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Figure 13: Cosine distance of sentence pairs in VERB-content clusters.

Figure 14: Cosine distance of sentence pairs in ARG1-content clusters.
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