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ABSTRACT

Real-world traffic data exhibit intricate, intertwined spatial and temporal dynam-
ics, significantly complicating accurate forecasting. Recent decomposition-based
approaches aim to disentangle these complex dynamics into separate spatial and
temporal components, facilitating clearer and more effective modeling. However,
varying information densities between spatial structures and temporal patterns re-
main a substantial challenge, potentially leading to inaccurate feature interactions
and subsequently degraded forecast performance. To address these challenges,
inspired by Kolmogorov–Arnold Networks (KANs), we propose a novel Spatio-
Temporal Decomposition Learning architecture (STKAN). The STKAN frame-
work explicitly separates and individually models spatial and temporal depen-
dencies using specialized multi-order KAN modules. It encodes complex input
series into spatio-temporal embeddings through an adaptive node–group assign-
ment mechanism. Dedicated spatial and temporal KAN modules independently
and robustly capture inter-node relationships and temporal dynamics at multi-
ple orders, thereby modeling distinct underlying patterns more effectively. Ex-
tensive experimental evaluations on widely recognized benchmark datasets con-
vincingly demonstrate that STKAN achieves state-of-the-art forecasting accuracy,
while maintaining scalability and robustness across diverse traffic scenarios. In
particular, STKAN consistently adapts to networks of varying sizes and traffic
regimes without the need for architecture-specific tuning. Moreover, its decompo-
sition design provides a principled way to balance model complexity with learning
stability, making it well-suited for real-world deployment. Code will be released
upon notification.

1 INTRODUCTION

In recent years, traffic time series data collected from road sensors have emerged as a crucial re-
search focus in the field of intelligent transportation Chen et al. (2018); Wang et al. (2022); Lin
et al. (2022a). Predicting future road traffic conditions based on historical data plays a vital role in
many real-world intelligent transportation applications Wang et al. (2020); Deng et al. (2024). Ac-
curate traffic forecasting is particularly valuable for alleviating urban congestion, reducing carbon
emissions, and improving road safety Han et al. (2022); Lin et al. (2022b). However, traffic data
inherently exhibit strong temporal autocorrelations and spatial interdependencies, which makes it
highly challenging to effectively capture such complex spatio-temporal relationships.

Figure 1: Illustration of interpretability mechanisms in different spatio-temporal forecasting models.
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To disentangle the intertwined spatial and temporal dependencies in traffic data, recent approaches
often adopt decomposition strategies that convert raw signals into spatial and temporal components
for clearer modeling. Hierarchical methods such as STGCN Han et al. (2020) alternate temporal
convolutions with graph convolutions, progressively isolating temporal dynamics from spatial in-
teractions at each layer. Dynamic topology learning models, including Graph WaveNet Wu et al.
(2019), DGCRN Li et al. (2023), and MegaCRN Jiang et al. (2023), leverage hypernetworks to
adaptively generate adjacency matrices, dynamically conditioning spatial structures within tempo-
ral contexts. Multiscale spectral decomposition techniques, such as StemGNN Cao et al. (2020)
and STWave Fang et al. (2023), apply Fourier or wavelet transforms to split traffic signals into
frequency-based subseries, enabling independent modeling of short-term fluctuations and long-term
trends. Representation-level frameworks, such as STID Shao et al. (2022), introduce identity-based
embeddings that explicitly factorize node-specific spatial characteristics from shared temporal pat-
terns. Collectively, these decomposition-based methods aim to obtain latent spatio-temporal repre-
sentations that support more accurate predictions.

Nevertheless, simply concatenating spatial and temporal features, or fusing them with fixed nonlin-
earities, often fails to reconcile the different information densities and statistical properties of the two
dimensions. This limitation reduces representational capacity and leads to suboptimal optimization.
Existing MLP-based models are particularly constrained, as they rely on fixed activation functions
whose forms remain unchanged during training. Such rigidity prevents them from fully capturing
the diverse and complex nonlinear spatio-temporal dependencies present in real traffic data. By
contrast, GNN-based methods perform spatio-temporal forecasting by assuming a predefined or dy-
namically learned graph structure to capture spatial correlations among nodes. Transformer-based
methods, on the other hand, split fused spatio-temporal sequences into tokens and apply attention to
model dependencies across them, as illustrated in Figure 1.

However, the complex structures of existing spatio-temporal networks still make it difficult to ex-
plicitly disentangle spatial and temporal dependencies. Most models process spatio-temporal signals
in a unified manner, without a clear mechanism to extract and separate spatial and temporal features.
This often leads to mixed representations where spatial interactions and temporal dynamics are not
explicitly distinguished. Therefore, a critical question arises: can we design a framework that de-
composes and models spatial and temporal patterns separately, thereby improving representation
quality and predictive performance? Recently proposed Kolmogorov–Arnold Networks (KANs)
provide a promising direction, as they support flexible kernel choices and adjustable orders, allow-
ing adaptive representation of spatial and temporal dependencies at different levels.

Motivated by these limitations, we propose STKAN, a Kolmogorov–Arnold Network (KAN)-based
architecture that explicitly decomposes and models spatial and temporal dependencies. STKAN
introduces adaptive node–group assignments to form spatio-temporal embeddings, followed by spe-
cialized spatial and temporal multi-order KAN modules that independently capture inter-node corre-
lations and temporal dynamics. The resulting representations are then fused for accurate forecasting.
This explicit decomposition enables the model to avoid the entanglement of heterogeneous pat-
terns that often occurs in existing architectures. In addition, the flexibility of KAN allows STKAN
to adaptively balance modeling capacity and optimization stability, making it effective for spatio-
temporal forecasting.

Our contributions are summarized as follows:

• We revisit spatio-temporal forecasting by introducing STKAN, a decomposition-based framework
that separates and then fuses spatial and temporal components, enabling clearer representations
and more accurate modeling.

• We design dedicated spatial and temporal KAN blocks, where node–group assignments high-
light spatial interactions and multi-order expansions capture temporal dynamics across scales,
improving adaptability and stability.

• We validate STKAN on benchmark traffic datasets, showing consistent gains in prediction ac-
curacy, scalability, and robustness over state-of-the-art methods, without requiring task-specific
architectural customization.
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2 RELATED WORK

2.1 SPATIO-TEMPORAL FORECASTING

Spatial-temporal forecasting extends traditional time-series forecasting by incorporating both tem-
poral dynamics and spatial dependencies, such as in traffic management, where multiple traffic
sensors’ data is used to predict future conditions. Early deep learning approaches combined Con-
volutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to capture spatial and
temporal dependencies Shi et al. (2015); Yao et al. (2018); Lai et al. (2018). However, grid-based
CNNs may not effectively handle non-Euclidean spatial relationships, leading to the development of
Graph Convolutional Networks (GCNs) Defferrard et al. (2016); Kipf & Welling (2016) and Spatial-
Temporal Graph Neural Networks (STGNNs) Li et al. (2017); Yu et al. (2017). These models, such
as DCRNN Li et al. (2017), ST-MetaNet Pan et al. (2019), and DGCRN Li et al. (2023), integrate
GCNs with RNNs Cho et al. (2014), while others like Graph WaveNet Wu et al. (2019) and STGCN
Yu et al. (2017) combine GCNs with gated Temporal Convolutional Networks (TCNs). Attention
mechanisms have also been widely adopted in STGNNs Zheng et al. (2020). Despite their success,
some studies criticize the reliance on pre-defined graphs, suggesting alternatives like AGCRN Bai
et al. (2020) and MTGNN Wu et al. (2020), which learn latent graph structures. However, both prior
and latent graph-based STGNNs often involve high computational complexity. Recent research has
proposed more efficient non-GCN solutions, such as STNorm Deng et al. (2021) and STID Shao
et al. (2022), which achieve similar performance with greater efficiency, highlighting the need for a
better understanding of spatial dependencies in forecasting tasks.

2.2 KOLMOGOROV-ARNOLD NETWORK

KANs leverage the Kolmogorov–Arnold theorem Liu et al. (2024), decomposing complex multi-
variate functions into combinations of simpler univariate functions, enhancing nonlinear modeling
capabilities. Recent advancements include Multi-layer Mixture-of-Experts KAN Han et al. (2024),
which adaptively selects optimal expert functions, such as wavelet-based WavKAN Bozorgasl &
Chen, Taylor polynomial-based TaylorKAN Yu et al. (2025), and Jacobi polynomial-based Jaco-
biKAN Aghaei (2025), significantly improving performance and interpretability for multivariate
time series prediction. FastKAN further boosts computational efficiency through Gaussian radial
basis functions Li (2024). KANs have seen growing use in time series prediction, with methods like
T-KAN and MT-KAN using symbolic regression for interpreting nonlinear temporal patterns Xu
et al. (2024). iTFKAN employs collaborative time-frequency learning for robust decision-making
Liang et al. (2025), while TimeKAN incorporates cascaded frequency decomposition and higher-
order KAN representations to capture complex frequency dynamics effectively Huang et al. (2025).
However, the application of KANs to spatio-temporal prediction remains unexplored. This study
introduces STKAN, a framework leveraging refined spatio-temporal decoupling to efficiently and
interpretably forecast complex spatio-temporal systems using KAN’s nonlinear modeling strengths.

3 PRELIMINARY

Spatio-temporal forecasting is a specialized multivariate time–series forecasting problem. Given the
multivariate time series Xt−(T−1):t from the past T time steps, our goal is to predict the next T time
steps: [

Xt−(T+1), . . . , Xt

]
−→

[
Ŷt+1, . . . , Ŷt+T

]
where Xi ∈ RN×C denotes the observation at the i-th time step, N is the number of spatial nodes,
and C is the number of information channels

4 METHODOLOGY

In this paper, we propose STKAN to effectively capture both symbolic spatial dependencies among
nodes and temporal dependencies across time steps. The overall architecture of STKAN is shown in
Figure 2.
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Figure 2: Overview of our proposed STKAN framework.

4.1 EMBEDDING LAYERS

To capture the complex spatio-temporal dependencies in traffic sequences, we utilize a fully con-
nected layer to embed the raw data into a high-dimensional feature representation. Given a historical
input sequence Xt−L+1:t ∈ RL×N×C , where L is the sequence length, N is the number of nodes,
and C is the number of features, we generate the feature embedding Ef ∈ RL×N×df through
Ef = FC(Xt−T+1:t), with df representing the embedding dimension and FC(·) denoting the
fully connected layer. We denote a learnable spatial embedding tensor Es ∈ RL×N×ds to capture
static spatial characteristics among nodes, shared across all timesteps. Furthermore, to incorporate
temporal periodicity, we design two embedding dictionaries: one for time-of-day with embeddings
Ed ∈ RTd×dd and another for day-of-week with embeddings Ew ∈ RTw×dw , where Td = 7 and
Tw = 288 are the number of intervals per day and week, respectively. We obtain the temporal
embedding Et ∈ RL×N×dt , where dt = dd + dw.

4.2 TEMPORAL CONVOLUTION BLOCKS

All embeddings are concatenated along the feature dimension to form the final spatio-temporal rep-
resentation X ∈ RL×N×dh , defined as

X = Ef ∥ Es ∥ Et, (1)

where the hidden dimension satisfies dh = df + ds + dt.

To capture local temporal context while shortening the sequence, we define a patch-extraction op-
erator PatchConv( · ; w,S) that applies a 1 × w convolution along the time axis with stride S:

Xp = Conv
(
X;w, S

)
, (2)

where Xp ∈ Rl×N×dh , this produces a patch-level representation and the resulting length is l =⌊
(L− w)/S

⌋
+ 1.

Thus, Xp serves as a down-sampled spatio-temporal feature map that preserves salient temporal
patterns while reducing computational cost in subsequent mixer or attention blocks.
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4.3 SPATIO-TEMPORAL KAN BLOCKS

To effectively extract information from the hidden spatio-temporal representations generated by the
embedding module, we propose the STKAN blocks, which systematically integrates spatial and
temporal information to capture the intricate dynamics of spatio-temporal data.

Specifically, STKAN first employs a learnable group matrix to aggregate raw spatial nodes into
higher-level spatial representations, enabling the model to capture more coarse-grained spatial pat-
terns. The aggregated representations are then fed into the Spatial KAN (SKAN) blocks, which is
designed to model the complex interactions among spatial groups. After spatial refinement, a resid-
ual fusion mechanism integrates the spatial outputs with the original input, preserving both global
and local information. Finally, the fused representations are passed to the Temporal KAN (TKAN)
blocks, which focuses on learning dynamic temporal patterns and dependencies across time steps,
enabling a comprehensive understanding of the evolving spatio-temporal processes.

Learnable Spatial Grouping. To transform the original spatial nodes into macro-level spatial to-
kens and to expose how each node contributes to every group for later interpretability, we introduce
a learnable spatial adaptive group matrix. Let the node-level feature tensor be X ∈ Rl×N×d. A
matrix of learnable parameters is normalized in rows by the softmax function to produce a group
assignment matrix G ∈ RN×g . The resulting group-level representation X̃ ∈ Rl×g×d is obtained

X̃l,g,d =

N∑
n=1

GN,g Xl,N,d, (3)

where g denotes the number of spatial groups.

Spatial KAN Block. Comprehensively modeling spatial dependencies across nodes is inherently
challenging due to their complex interrelationships. To address this difficulty, we adopt a mixer-
based architecture that enables flexible interactions among spatial tokens. Conventional mixer ar-
chitectures typically rely on standard MLPs to facilitate token mixing. Such MLPs apply fixed non-
linear activation functions at each node, and once determined, these functions remain unchanged
throughout the network. Although this approach has proven effective for numerous tasks, employ-
ing fixed nonlinearities may constrain the model’s ability to capture highly intricate, nonstandard, or
task-specific patterns in the data.

In contrast, the recently proposed Kolmogorov–Arnold Networks (KANs) offer a more flexible alter-
native. The core idea of KAN is to place learnable activation functions on the edges of the network,
rather than using fixed activations at the nodes as in MLPs. This enables each neuron to connect to
neurons in the previous layer via a learnable univariate function ϕ, allowing the network to adapt its
nonlinear transformations based on data. The transmission from the j-th neuron in layer l + 1 to all
neurons in layer l is formulated as:

zl+1,j =

nl∑
i=1

ϕl,j,i(zl,i), (4)

where zl,i is the i-th neuron in layer l, and nl is the number of neurons in that layer. Here, ϕl,j,i(·) is
a learnable univariate mapping, enabling expressive nonlinear modeling with fewer parameters and
improved interpretability.

In our model, we instantiate ϕ using the TaylorKANLayer, which leverages a Taylor series ex-
pansion to parameterize the learnable edge activations. Benefiting from its intrinsic sensitivity to
short-term changes, this layer naturally captures local variations, making it particularly suitable for
modeling fine-grained spatial dependencies among nodes.

Specifically, ϕ(x) is approximated by a k-th order Taylor series:

Tk(x) =

k∑
i=0

f (i)(0)

i!
xi, (5)

where f (i)(0) denotes the i-th derivative evaluated at zero. In TaylorKANLayer, instead of fixed
derivatives, the coefficients are learned from data, allowing flexible adaptation. A 1-layer Tay-
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lorKAN applied to a multi-dimensional input is expressed as:

ϕq(x) =

C∑
p=1

k∑
i=0

Θq,p,i(xp)
i + bq, (6)

KAN(x) =


ϕ1(x)

...
ϕC(x)

 , (7)

where x ∈ RC , Θ ∈ RC×C×(k+1) are learnable coefficients, and bq is a bias term. This formulation
allows the TaylorKANLayer in the SKAN to capture adaptive and nonlinear interactions across the
spatial dimension. Specifically, it approximates the relationships between nodes and their corre-
sponding groups by adaptively combining multiple polynomial terms derived from the Taylor series
expansion, enabling precise modeling of complex spatial dependencies. Therefore, the token-mixing
stage is formulated as:

St = X̃⊤ +TaylorKANk(X̃
⊤; Θ), (8)

where, St ∈ Rl×d×g

Following the token mixing, the module proceeds to the channel-mixing stage, where a standard
MLP is applied independently at each spatial group to capture intra-feature interactions. The channel
mixer is formulated as:

Sc = S⊤
t +W2 σ

(
W1 LayerNorm(S⊤

t ) + b1
)
+ b2, (9)

where σ denotes the GELU activation, and W1, W2, b1, b2 are learnable parameters. The final output
of SKAN is the sum of the outputs from the token-mixer and channel-mixer.

S = (St + Sc)G
⊤, (10)

Temporal KAN Blocks. Similar to the SKAN blocks, the core operations of the TKAN focus on
the temporal dimension, aiming to capture the dynamic evolution patterns and long-range depen-
dencies inherent in time series data. Unlike spatial mixing, temporal mixing directly operates on the
individual time steps of a time series, where each time step itself serves as a temporal token.

Tt = S⊤ +TaylorKANk(S
⊤; Θ), (11)

Tc = T⊤
t +W4 σ

(
W3 LayerNorm(T⊤

t ) + b3
)
+ b4, (12)

where W3, W4, b3, b4 are learnable parameters. The final output of TKAN is the sum of the outputs
from the token-mixer and channel-mixer.

T = Tt + Tc, (13)

4.4 SPATIO-TEMPORAL FUSION BLOCKS

To complement the local sensitivity of TaylorKAN, we introduce Transformer layers along both
spatial and temporal axes. Given a hidden representation Z ∈ RL×N×dh (with L time steps and N
spatial nodes), we project it into query, key, and value matrices:

Q = ZWQ, K = ZWK , V = ZWV , (14)

where WQ,WK ,WV ∈ Rdh×dh are learnable parameters. The standard scaled dot-product attention
is then applied as

Attn(a) = Softmax

(
Q(a)K(a)⊤

√
dh

)
, Z(a) = Attn(a)V (a), (15)

with a ∈ {s, t} denoting the spatial or temporal mode.

Specifically, spatial attention is computed independently at each time step across nodes, yielding
Attn(s) ∈ RT×N×N . Temporal attention is computed independently at each node across time,
yielding Attn(t) ∈ RN×L×L. This design enables the model to capture both inter-node spatial
dependencies and intra-node temporal dynamics, providing a multi-scale fusion of traffic patterns.
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4.5 PREDICTION HEAD

After feature extraction and fusion via STKAN blocks, the prediction head aggregates temporal
information across compressed time steps for each node and applies a linear projection to generate
multi-step forecasts. The resulting tensor is then reshaped to match task-specific output dimensions,
formally expressed as:

Ŷt:t+L = FCregression(Z
i
t), (16)

where Zi
t denotes the spatio-temporal feature vector of node i at time t, and FCregression is a linear

regression layer that maps the encoded features to the predicted values over the future horizon L.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our model on five traffic forecasting datasets, including PEMS04, PEMS07,
PEMS08, PEMS-BAY and METR-LA. Following previous work, we divide the PEMS04, PEMS07
and PEMS08 dataset into training, validation, and testsets in a ratio of 6:2:2. For the remaining
datasets, we adopt a split ratio of 7:1:2. Detailed statistics of these datasets are shown in A.1.1.

Baseline. We compare 11 representative baselines with our proposed STKAN. (i) Non-spatial
modeling-based: STID Shao et al. (2022), which adopts identity spatio-temporal embeddings and
avoids explicit spatial dependency modeling. (ii) Static spatial-based methods: STGCN Han et al.
(2020), GWNet Wu et al. (2019), AGCRN Bai et al. (2020), GMAN Zheng et al. (2020), MT-
GNN Wu et al. (2020) and STDN Cao et al. (2025) combine pre-defined or learned static graph struc-
tures with temporal modeling modules. (iii) Dynamic spatial-based methods: STAEformer Liu
et al. (2023) and STWave Fang et al. (2023) capture time-varying spatial dependencies through adap-
tive or attention-based mechanisms. (iv) Spatio-temporal decomposition-based: StemGNN Cao
et al. (2020) and STNorm Deng et al. (2021) decompose spatio-temporal series into separate com-
ponents for modeling, focusing on disentangling spatial and temporal patterns.

Evaluation Metrics. To provide a thorough comparison, we evaluate both the predictive accuracy
and computational efficiency of all models. For performance evaluation, we adopt three widely used
metrics to quantify the accuracy of traffic forecasting results: Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).

5.2 PERFORMANCE COMPARISONS

The comprehensive forecasting results are reported in Table 1, where the best outcomes are high-
lighted in bold and the second-best are underlined. Overall, STKAN consistently achieves supe-
rior performance across the five benchmark datasets and three evaluation metrics, with particu-
larly strong advantages on long-term prediction horizons. On flow datasets such as PEMS04 and
PEMS08, STKAN yields notable reductions in MAE and RMSE compared to state-of-the-art base-
lines, demonstrating the effectiveness of its group-wise spatial decomposition and multi-order tem-
poral modeling. On the PEMS-BAY dataset, which is characterized by higher temporal fluctuations,
STKAN also shows clear improvements over dynamic attention-based models, confirming its robust-
ness in handling non-stationary traffic dynamics. In contrast, on the more challenging METR-LA
dataset, STKAN performs comparably to leading baselines, with narrower margins of improvement
due to the highly dynamic and sparse nature of traffic speed signals.

Importantly, beyond accuracy, STKAN provides interpretable spatio-temporal decomposition and
kernel-based approximations, offering transparency into spatial group interactions and temporal in-
fluence patterns. This interpretability ensures that even when accuracy gains are modest, STKAN
delivers unique explanatory power, a quality that is especially valuable in safety-critical applications
such as traffic management.

5.3 ABLATION STUDY

7
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Table 1: Performance comparisons on normal datasets. We bold the best results and underline the
suboptimal results.

Dataset PEMS04 PEMS07 PEMS08 PEMS-BAY METR-LA

Method Metric @3 @6 @12 Avg. @3 @6 @12 Avg. @3 @6 @12 Avg. @3 @6 @12 Avg. @3 @6 @12 Avg.

GWNet (2019)
MAE 17.89 18.80 20.35 18.81 18.71 20.14 22.35 20.10 13.67 14.59 15.99 14.58 1.31 1.65 1.99 1.59 2.69 3.08 3.52 3.04

RMSE 28.81 30.40 32.66 30.38 30.70 33.20 36.58 33.11 21.65 23.54 25.82 23.46 2.76 3.74 4.54 3.66 5.17 6.20 7.28 6.15
MAPE 12.23% 12.99% 14.24% 12.97% 8.04% 8.50% 9.73% 8.59% 9.20% 9.69% 10.41% 9.69% 2.77% 3.80% 4.84% 3.66% 6.93% 8.33% 9.84% 8.15%

STGCN (2020)
MAE 19.09 19.98 21.74 20.03 20.67 22.23 25.04 22.28 15.97 16.86 18.64 16.96 1.41 1.75 2.08 1.70 2.76 3.15 3.63 3.12

RMSE 30.1 31.57 34.07 31.63 32.76 35.71 40.4 35.83 24.56 26.29 29.00 26.38 2.93 3.89 4.69 3.81 5.30 6.32 7.47 6.29
MAPE 12.95% 13.44% 14.73% 13.73% 8.97% 9.53% 10.71% 9.59% 10.91% 11.56% 12.58% 11.50% 3.06% 3.98% 4.85% 3.84% 7.11% 8.61% 10.40% 8.49%

AGCRN (2020)
MAE 18.55 19.50 20.77 19.45 19.29 20.82 22.81 20.74 14.78 15.96 17.63 15.91 1.35 1.67 1.96 1.61 2.87 3.24 3.63 3.19

RMSE 29.86 31.60 33.51 31.46 31.64 34.64 38.05 34.50 22.98 25.01 27.79 25.03 2.85 3.80 4.54 3.69 5.61 6.66 7.58 6.52
MAPE 12.88% 13.44% 14.18% 13.40% 8.15% 8.70% 9.70% 8.83% 9.53% 11.72% 12.17% 10.86% 2.93% 3.84% 4.68% 3.69% 7.74% 9.03% 10.30% 8.85%

StemGNN (2020)
MAE 19.14 20.82 24.05 21.00 20.78 23.25 27.91 23.41 14.63 16.05 18.76 16.20 1.39 1.78 2.20 1.73 2.97 3.50 4.24 3.49

RMSE 30.38 32.78 37.09 33.06 32.78 36.56 43.05 36.89 22.98 25.42 29.45 25.62 2.92 3.95 4.94 3.90 5.82 7.04 8.59 7.06
MAPE 13.68% 14.82% 17.44% 15.05% 9.29% 10.21% 12.45% 10.39% 9.28% 10.50% 12.26% 10.55% 2.94% 4.09% 5.32% 3.97% 7.97% 10.06% 13.01% 10.04%

GMAN (2020)
MAE 18.23 18.78 20.12 18.81 19.31 20.41 22.20 20.48 13.76 14.59 15.83 14.81 1.35 1.66 1.93 1.58 2.81 3.15 3.49 3.07

RMSE 29.38 30.91 31.25 30.99 31.25 33.32 36.51 33.40 22.78 24.15 26.49 24.23 2.92 3.84 4.51 3.69 5.56 6.50 7.36 6.43
MAPE 12.71% 13.27% 13.41% 13.22% 8.22% 8.71% 9.44% 8.65% 9.40% 9.53% 10.56% 9.71% 2.88% 3.75% 4.54% 3.69% 7.42% 8.75% 10.11% 8.65%

MTGNN (2020)
MAE 18.29 19.12 20.57 19.12 19.52 21.11 23.87 21.16 14.23 15.30 16.97 15.31 1.32 1.65 1.95 1.59 2.70 3.07 3.53 3.04

RMSE 29.82 31.34 33.57 31.28 31.37 34.19 38.46 34.26 22.38 24.33 26.78 24.25 2.78 3.73 4.50 3.65 5.21 6.17 7.24 6.14
MAPE 12.62% 13.09% 14.31% 13.14% 8.77% 9.10% 10.34% 9.27% 9.42% 10.57% 12.17% 10.60% 2.75% 3.68% 4.55% 3.53% 6.85% 8.17% 9.81% 8.08%

STNorm (2021)
MAE 18.30 19.12 20.27 19.05 19.21 20.57 22.66 20.51 14.48 15.45 17.03 15.45 1.33 1.66 1.97 1.58 2.80 3.18 3.56 3.12

RMSE 29.82 31.52 33.22 31.28 31.65 34.66 38.30 34.48 23.05 25.38 27.93 25.22 2.85 3.81 4.56 3.67 5.49 6.52 7.47 6.41
MAPE 12.32% 12.83% 13.69% 12.81% 8.29% 8.69% 9.61% 8.70% 9.27% 9.79% 10.90% 9.88% 2.85% 3.77% 4.63% 3.59% 7.44% 8.89% 10.26% 8.65%

STID (2022)
MAE 17.62 18.40 19.72 18.41 18.40 19.66 21.54 19.62 13.29 14.22 15.55 14.20 1.31 1.64 1.91 1.56 2.79 3.17 3.54 3.11

RMSE 28.61 29.95 31.93 29.93 30.45 32.82 36.04 32.75 21.53 23.40 25.72 23.34 2.77 3.73 4.40 3.60 5.52 6.57 7.53 6.47
MAPE 11.95% 12.42% 13.50% 12.51% 7.77% 8.28% 9.22% 8.31% 8.65% 9.29% 10.32% 9.31% 2.77% 3.73% 4.52% 3.55% 7.66% 9.27% 10.77% 9.01%

STAEformer (2023)
MAE 17.48 18.24 19.30 18.19 18.00 19.40 21.42 19.33 12.71 13.55 14.84 13.55 1.30 1.61 1.87 1.54 2.65 2.96 3.33 2.93

RMSE 28.89 30.31 31.99 30.18 30.42 33.30 37.02 33.21 21.63 23.48 25.80 23.44 2.77 3.68 4.34 3.57 5.11 6.01 7.02 5.98
MAPE 11.78% 12.21% 13.00% 12.25% 7.61% 8.19% 9.03% 8.14% 8.33% 8.92% 9.85% 8.90% 2.74% 3.63% 4.41% 3.46% 6.90% 8.20% 9.77% 8.10%

STWave (2023)
MAE 17.57 18.17 19.42 18.25 18.57 19.91 21.75 19.93 12.78 13.76 14.86 13.69 1.32 1.63 1.89 1.56 2.83 3.22 3.58 3.15

RMSE 28.88 29.95 31.78 29.99 31.59 34.36 37.35 34.09 21.59 23.79 25.77 23.57 2.80 3.71 4.35 3.59 5.63 6.71 7.60 6.56
MAPE 11.65% 12.02% 13.13% 12.16% 7.63% 8.17% 9.07% 8.20% 8.63% 9.16% 10.03% 9.10% 2.76% 3.66% 4.44% 3.50% 7.72% 9.49% 11.03% 9.20%

STDN (2025)
MAE 18.15 18.89 20.14 18.92 19.92 21.16 23.51 21.29 13.85 14.43 15.71 14.53 1.38 1.66 1.93 1.61 2.79 3.15 3.53 3.10

RMSE 33.14 34.64 35.85 34.33 33.56 35.88 39.61 36.02 22.31 23.90 26.21 23.96 2.95 3.83 4.47 3.66 5.59 6.61 7.56 6.51
MAPE 19.34% 19.24% 19.80% 19.22% 12.73% 12.12% 14.78% 12.85% 12.45% 11.64% 10.92% 11.43% 3.03% 3.81% 4.47% 3.66% 7.61% 9.08% 10.73% 8.93%

STKAN(Ours)
MAE 17.40 18.13 19.15 18.09 17.94 19.27 20.97 19.16 12.62 13.48 14.80 13.45 1.29 1.61 1.87 1.54 2.69 2.99 3.39 2.97

RMSE 28.63 30.00 31.59 29.87 30.13 32.96 36.12 32.74 21.25 23.24 25.56 23.17 2.73 3.68 4.33 3.56 5.13 6.08 7.14 6.06
MAPE 11.78% 12.24% 12.95% 12.23% 7.60% 8.05% 8.93% 8.07% 8.28% 8.90% 9.84% 8.88% 2.70% 3.62% 4.35% 3.44% 6.98% 8.25% 9.71% 8.11%

Figure 3: KAN modules ablation on PEMS04 and
PEMS08.

Effectiveness of KAN Modules. To system-
atically evaluate the role of KAN components
within STKAN, we design three model vari-
ants: a) MLPs: replacing all KAN modules with
standard MLP layers to examine the benefit of
functional approximation; b) w/o SKAN: remov-
ing the spatial block while retaining TKAN to
test the importance of inter-node mixing; c) w/o
TKAN: removing the temporal block while pre-
serving spatial modeling to assess the role of
temporal dynamics. As shown in Fig. 3, the full
STKAN consistently achieves the best perfor-
mance across both PEMS04 and PEMS08. Re-
placing KAN modules with MLPs causes the
most significant degradation, confirming that the
functional representation capacity of KANs is
critical for capturing complex spatio-temporal patterns. Removing either SKAN or TKAN also
results in noticeable performance drops, illustrating their complementary roles in modeling spa-
tial and temporal dependencies. Interestingly, the degree of degradation differs across datasets: in
PEMS04, removing SKAN or TKAN yields comparable losses due to its dense spatial structure,
while in PEMS08, the absence of TKAN has a stronger impact, reflecting the dominance of tempo-
ral patterns in simpler networks.

Table 2: Ablation study of the attention block.

Dataset PEMS04 PEMS08

Metric MAE RMSE MAPE MAE RMSE MAPE

w/o S-Attention 18.24 30.13 12.43% 13.70 23.68 9.06%
w/o T-Attention 18.28 30.27 12.40% 13.84 23.39 9.20%

w/o ST-Attention 18.31 30.05 12.52% 13.57 23.30 8.99%
STKAN 18.09 29.87 12.23% 13.45 23.17 8.88%

Effectiveness of Attention Mechanisms. To
evaluate the role of attention in STKAN, we con-
duct ablation studies on PEMS04 and PEMS08
with the following variants: (1) w/o S-Attention:
disabling spatial attention while preserving tem-
poral modeling; (2) w/o T-Attention: removing
temporal attention while keeping spatial model-
ing; (3) w/o ST-Attention: removing both atten-
tion modules, leaving only KAN-based token and channel mixing. As shown in Table 2, removing
both modules leads to the largest degradation, underscoring the necessity of jointly modeling spa-
tial and temporal dependencies. Removing only one branch causes moderate drops, reflecting their
complementary contributions. Although simple MLP replacements reduce complexity, they fail to
capture long-range and dynamic interactions. These findings confirm that attention introduces es-
sential inductive biases for handling heterogeneous spatio-temporal patterns and that both spatial
and temporal cues are indispensable for accurate forecasting.
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5.4 HYPER-PARAMETER STUDY

The effect of varying the group number G on the performance of STKAN is analyzed for both the
PEMS04 and PEMS07 datasets in Table 3. We find that the number of groups G plays a crucial
role in model performance. Too few groups limit spatial abstraction and fail to capture meaningful
patterns, while too many cause oversmoothing and loss of local details. Optimal performance is
achieved with a moderate G, which balances expressiveness and efficiency. Moreover, the appropri-
ate choice of G generally grows with the dataset size and node density, though not in a strictly linear
manner, indicating that group-based modeling should adapt to the underlying spatial scale.

Table 3: Performance under varying G values on PEMS04 and PEMS07 datasets.

Dataset PEMS04 PEMS07

G 8 12 16 20 24 12 16 20 24 28

MAE 18.28 18.20 18.09 18.20 18.25 19.41 19.18 19.16 19.26 19.24
RMSE 30.76 30.16 29.87 30.00 30.25 33.18 32.77 32.74 32.86 32.93
MAPE 12.55% 12.40% 12.23% 12.44% 12.61% 8.19% 8.10% 8.08% 8.17% 8.13%

5.5 CASE STUDY

We examine the interpretability of the learned spatial structure on the PEMS-BAY network with
325 monitoring nodes. Figure 4 juxtaposes two views: the left panel shows the soft node-to-group
assignment matrix, and the right panel overlays the corresponding hard assignments on a light road
basemap. Clear banded patterns emerge in the matrix, indicating confident memberships for a subset
of groups. In particular, groups such as G8 and G11 display concentrated activations over contigu-
ous columns, while several smaller groups maintain near-uniform probabilities. The map reveals
that these dominant groups align with corridor-shaped regions of the freeway network: sensors po-
sitioned along the same arterial tend to share the same label (circled areas), whereas junctions and
boundary segments exhibit mixed or lower-confidence assignments. Taken together, the two views
show that the model organizes nodes into semantically coherent subregions—large groups capture
major traffic corridors, smaller groups specialize in localized areas—and provides a transparent ac-
count of how spatial information is shared across nodes during forecasting.

Figure 4: Adaptive grouping matrices visualization on PEMS-BAY.

6 CONCLUSION

In this paper, we introduced STKAN, a novel interpretable decomposition learning framework
for spatio-temporal forecasting. Motivated by the complex nature of real-world traffic dynamics,
STKAN employs KANs to disentangle and model spatial and temporal dependencies. Through
specialized multi-order modules and an adaptive node-group assignment mechanism, STKAN ef-
fectively balances information densities between spatial structures and temporal patterns, reducing
inaccuracies in feature interactions. Extensive experiments on benchmark datasets demonstrate that
STKAN surpasses state-of-the-art methods in accuracy, interpretability, and scalability. By explic-
itly modeling critical spatial groupings and temporal patterns, STKAN provides clearer insights into
spatio-temporal dynamics, supporting intelligent transportation applications. Future work will focus
on refining modeling techniques and enhancing adaptive mechanisms for optimal feature selection,
further advancing forecasting in complex spatio-temporal environments.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

This section provides a comprehensive overview of the implementation setup, including datasets,
evaluation metrics, hyperparameters and implementation details.

A.1.1 DATASETS

As shown in Table 4, PEMS-BAY is collected by Caltrans’ Performance Measurement System
(PeMS), whereas METR-LA contains speed readings from loop detectors on Los Angeles County
freeways and was curated with the DCRNN release Li et al. (2017). The PEMS04/07/08 datasets
are PeMS-based traffic flow benchmarks with 5-minute aggregation.

Table 4: Summary of Five Spatio-temporal Benchmarks

Dataset Category Sensors Time Steps Time Interval Time Span (Y/M/D)
PEMS04 Traffic flow 307 16992 5 min 2018/01/01 – 2018/02/28
PEMS07 Traffic flow 883 28224 5 min 2017/05/01 – 2017/08/31
PEMS08 Traffic flow 170 17856 5 min 2016/07/01 – 2016/08/31

PEMS-BAY Traffic speed 325 52116 5 min 2017/01/01 – 2017/06/30
METR-LA Traffic speed 207 34272 5 min 2012/03/01 – 2012/06/27

A.1.2 MODEL ARCHITECTURE

In the experiments, we use the traffic flow of the last 12 time steps to predict the traffic flow of the
next 12 time steps, and record the prediction performance of the 3rd, 6th, 12th steps and the average.
The dimension of hidden representations in our model is set as 128 and the dimension of embedding
layer is set as 32. We set the Adam optimizer with an initial learning rate of 0.002, where the
learning rate follows a step-wise decay strategy, and the batch size is set as 64. During the training
phase, we employ the early stopping strategy with tolerance 30 for 200 epochs. All experiments are
conducted using PyTorch on NVIDIA RTX H100 GPU with 60GB of memory.

A.2 EVALUATION METRICS

We adopt three commonly used regression metrics, namely Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), to evaluate the prediction
performance. Suppose the ground truth spatio-temporal data is denoted as Y = {y1, y2, . . . , yN},
and the corresponding predicted values are Ŷ = {ŷ1, ŷ2, . . . , ŷN}, where N is the number of total
testing samples. The three metrics can be formulated as follows:
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MAE =
1

N

N∑
i=1

|yi − ŷi| (17)

MAE measures the average absolute difference between the predicted values and the actual values.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (18)

RMSE penalizes larger errors more heavily, making it more sensitive to outliers.

MAPE =
100%

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (19)

MAPE expresses the prediction error as a percentage, which provides an intuitive measure of pre-
diction accuracy.

A.3 BASELINE

The following spatio-temporal models are implemented using the BasicTS framework (https://
github.com/GestaltCogTeam/BasicTS) to ensure consistency in preprocessing, training,
and evaluation:

Graph WaveNet Wu et al. (2019): A graph neural network that adaptively learns spatial dependen-
cies and captures long-range temporal patterns with dilated convolutions.

STGCN Han et al. (2020): A graph convolutional network that efficiently captures spatio-temporal
correlations in traffic data.

AGCRN Bai et al. (2020): A recurrent graph model with adaptive modules that learns node-specific
patterns and infers spatial dependencies without pre-defined graphs.

StemGNN Cao et al. (2020): A spectral-domain model that jointly captures inter-series and temporal
dependencies using Graph and Discrete Fourier Transforms.

GMAN Zheng et al. (2020): An encoder–decoder model with spatio-temporal and transform atten-
tion to capture relations between historical and future traffic states.

MTGNN Wu et al. (2020): A graph neural network with adaptive graph learning and mix-hop
propagation to capture latent spatial and temporal dependencies in multivariate time series.

STNorm Deng et al. (2021): A normalization-based approach that refines temporal and spatial
components to improve multivariate time series forecasting.

STID Shao et al. (2022): A simple MLP-based model that incorporates spatial and temporal identity
information to improve efficiency and accuracy in multivariate time series forecasting.

STAEformer Liu et al. (2023): A transformer-based model with spatio-temporal adaptive embed-
ding to effectively capture intrinsic traffic patterns.

STWave Fang et al. (2023): A disentangle-fusion framework that decouples traffic data into trends
and events, modeling them with dual spatio-temporal networks to handle distribution shifts.

STDN Cao et al. (2025): A dynamic graph model with spatio-temporal embeddings and
trend–seasonality decomposition to capture complex traffic dynamics.

A.4 VISUALIZATION

To further examine the interpretability of KAN in the group space, we analyze several representa-
tive output groups. Figure 5 plots, over the standardized input domain, each group’s final response
(black solid curve) together with a linear reconstruction using a small number of KAN basis func-
tions weighted by their learned coefficients (colored dashed curves). The visualization reveals clear

13

https://github.com/GestaltCogTeam/BasicTS
https://github.com/GestaltCogTeam/BasicTS


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

functional specialization across groups. Low-variation groups (e.g., Group 15, Group 4, Group 2)
exhibit near-linear or weak-curvature monotonic mappings whose final curves are well explained by
only two to three basis functions, indicating that these groups primarily implement smoothing/low-
pass behavior suitable for corridors or peripheral subnetworks with modest fluctuations. In contrast,
complex nonlinear groups (e.g., Group 14) display pronounced asymmetric curvature and strong
nonlinearity, requiring multiple basis functions to capture their shape, suggesting that the model
concentrates nonlinear capacity on traffic regions with complex dynamics such as junctions or bot-
tlenecks. This “few atoms explain the final function” view both exposes a functional prototype for
each output group (low-pass, monotone, or strongly nonlinear) and demonstrates that KAN achieves
task-aligned, interpretable capacity allocation in group space: simple regions are handled by simple
functions, whereas complex regions are assigned richer nonlinear function families.

Figure 5: Symbolization of the group function.

B USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we used a Large Language Model (LLM) solely for lan-
guage polishing purposes. Specifically, the LLM was applied to improve grammar, clarity, and
readability of sentences drafted by the authors. No part of the research ideation, experiment design,
data analysis, or substantive content generation was conducted by the LLM. The scientific contri-
butions, arguments, and conclusions presented in this paper are entirely the work and responsibility
of the authors. The authors take full responsibility for all contents of the paper, including sections
where the LLM-assisted refinements were applied.
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