Exploring the Impact of Negative Samples of Contrastive Learning:
A Case Study of Sentence Embedding

Anonymous ACL submission

Abstract

Contrastive learning is emerging as a pow-
erful self-supervised technique for extracting
knowledge from unlabeled image and text data.
This technique requires a balanced mixture of
two ingredients: positive (similar) and neg-
ative (dissimilar) samples. This is typically
achieved by maintaining a queue of negative
samples during training. Prior works in the
area typically uses a fixed-length negative sam-
ple queue, but how the negative sample size af-
fects the model performance remains unclear.
The opaque impact of the number of negative
samples on performance when employing con-
trastive learning aroused our in-depth explo-
ration. This paper presents a momentum con-
trastive learning model with negative sample
queue for sentence embedding, namely Mo-
CoSE. We add the prediction layer to the on-
line branch to make the model asymmetric and
together with EMA update mechanism of the
target branch to prevent model from collapsing.
We define a maximum traceable distance met-
ric, through which we learn to what extent the
text contrastive learning benefits from the his-
torical information of negative samples. Our
experiments find that the best results are ob-
tained when the maximum traceable distance
is at a certain range, demonstrating that there is
an optimal range of historical information for
a negative sample queue. We evaluate the pro-
posed unsupervised MoCoSE on the semantic
text similarity (STS) task and obtain an aver-
age Spearman’s correlation of 77.27%. Source
code is available here.

1 Introduction

In recent years, unsupervised learning has been
brought to the fore in deep learning due to its
ability to leverage large-scale unlabeled data. In
computer vision, various unsupervised contrastive
learning models have emerged, narrowing down the

gap between supervised and unsupervised learning.

Most contrastive models require negative samples

to avoid model collapsing, i.e., to prevent the model
from converging to a constant solve so that all sam-
ples are mapped to one point in the feature space.

There are several ways to obtain negative sam-
ples in contrastive learning. In computer vision,
SimCLR series from Chen(Chen et al., 2020) and
MoCo series from He(He et al., 2020) is known for
using negative samples and get the leading perfor-
mance in the contrastive learning. SimCLR uses
different data augmentation (e.g., rotation, mask-
ing, etc.) on the same image to construct positive
samples, and negative samples are from the rest of
images in the same batch. MoCo goes a step fur-
ther by randomly select the data in entire unlabeled
training set to stack up a first-in-first-out negative
sample queue.

Recently in natural language processing, con-
trastive learning has been widely used in the task
of sentence embedding. The current state-of-the-art
unsupervised method is SimCSE(Gao et al., 2021).
Similar to image contrastive learning, the core idea
of SimCSE is to make similar sentences in the
embedding space closer while keeping dissimilar
away from each other. SImCSE uses dropout mask
as augmentation to construct positive text sample
pairs, and negative samples are picked from the rest
of sentences in the same batch. The dropout mask
adopted from the standard Transformer makes good
use of the minimal form of data augmentation
brought by the dropout mechanism. Dropout re-
sults in a minimal difference without changing the
semantics, reducing the negative noise introduced
by data augmentation. However, the negative sam-
ples in SimCSE are selected from the same training
batch with a limited batch size. Further experi-
ments show that SimCSE does not obtain improve-
ment as the batch size increases, which arouses our
interest in using the negative sample queue.

We design a text contrastive learning model
consisting of a two-branch structure and a nega-
tive sample queue, namely MoCoSE (Momentum

https://anonymous.4open.science/r/mocose-3E3C

Contrastive Sentence Embedding with negative
sample queue). We also introduce the idea of asym-
metric structure from BYOL(Grill et al., 2020) by
adding a prediction layer to the upper branch (i.e.,
the online branch). The lower branch (i.e., the tar-
get branch) is updated with exponential moving
average (EMA) method during training. We set a
negative sample queue and update it using the out-
put of target branch. Unlike the negative queue in
MoCo, we set an initialization process with a much
smaller negative queue, and then filling the entire
queue through training process, and then update
normally. For text data augments, we test methods
mentioned in ConSERT(Yan et al., 2021), includ-
ing token shuffle, cut off, dropout and FGSM (Fast
Gradient Sign Method).

Using the proposed MoCoSE model, we design
a series of experiments to explore the contrastive
learning for sentence embedding. We test the in-
fluence of prediction layer in the online branch
with different mapping dimensions. We also test
the effect of different text augmentation algorithms
in MoCoSE. Result shows that FGSM can signif-
icantly bring the improvement, while token drop
hurts the results substantially. In order to test how
much text contrastive learning benefit from histori-
cal information of the model, we proposed a maxi-
mum traceable distance metric. The metric calcu-
lates how many update steps before the negative
samples in the queue are pushed in, and thus mea-
sures the historical information contained in the
negative sample queue. We find that the best results
can be achieved when the maximum traceable dis-
tance is within a certain range, which means there
is an optimal interval for the length of negative
sample queue in text contrastive learning model.

Our main contributions are as follows:

1.We build a new text contrastive learning model.
The model combines several advantages of the im-
age contrastive learning framework, using asym-
metric branching, EMA, and negative queues.
These structures enable the model to achieve better
results.

2.We evaluate the role of negative queues length
and the historical information that queue contains
in text contrastive learning. We define a metric
named maximum traceable distance, and use it to
assist in analyzing the effect of negative queue size,
and also can be used to compute optimal negative
queue length for a given batch size.

3.We study the influence of different text aug-

mentation in text contrastive learning. Including to-
ken shuffle, cut off, token dropout, feature dropout,
and FGSM. We carry out extensive experiments
on the choice of specific optimal parameters for
each augmentation method and verify that for text
comparison learning, using FGSM and dropout as
data augmentation can bring the most benefit.

2 Related Work

Contrastive Learning in CV

Contrast learning is a trending and effective un-
supervised learning framework that was first ap-
plied to the computer vision(Hadsell et al., 2006).
The core idea is to make the features of images
within the same category closer and the features
in different categories farther apart. Most of the
current work are using two-branch structure(Chen
et al., 2021). While influential works like SimCLR
and MoCo using positive and negative sample pairs,
BYOL(Grill et al., 2020)and SimSiam(Chen and
He, 2021) can achieve the same great results with
only positive samples. BYOL finds that by adding
a prediction layer to the online branch to form an
asymmetric structure and using momentum mov-
ing average to update the target branch, can train
the model using only positive samples and avoid
model collapsing. SimSiam explores the possibil-
ity of asymmetric structures likewise. Therefore,
our work introduces this asymmetric idea to the
text contrastive learning to prevent model collapse.
In addition to the asymmetric structure and the
EMA mechanism to avoid model collapse, some
works consider merging the constraint into the loss
function, like Barlow Twins(Zbontar et al., 2021),
W-MSE(Ermolov et al., 2021), and ProtoNCE(Li
et al., 2021).

Contrastive Learning in NLP

Since BERT(Devlin et al., 2018) redefined state-
of-the-art in NLP, leveraging the BERT model to
obtain better sentence representation has become
a common task in NLP. A straightforward way to
get sentence embedding is by the [C'LS] token due
to the Next Sentence Prediction task of BERT. But
the [C'LS] embedding is non-smooth anisotropic
in semantic space, which is not conducive to STS
tasks, this is known as the representation degra-
dation problem(Gao et al., 2019). BERT-Flow(Li
et al., 2020) and BERT-whitening(Su et al., 2021)
solve the degradation problem by post-processing
the output of BERT. SimCSE proposes supervised
and unsupervised contrastive learning method to

alleviate this problem.

Data augmentation is crucial for contrastive
learning. In CLEAR(Wu et al., 2020), word and
phrase deletion, phrase order switching, synonym
substitution is served as augmentation. CERT(Fang
and Xie, 2020) mainly using back-and-forth transla-
tion, and CLINE(Wang et al., 2021) proposed syn-
onym substitution as positive samples and antonym
substitution as negative samples, and then min-
imize the triplet loss between positive, negative
cases as well as the original text. ConSERT(Yan
et al., 2021) uses adversarial attack, token shuf-
fling, cutoff, and dropout as data augmentation.
CLAE(Ho and Nvasconcelos, 2020) also intro-
duces Fast Gradient Sign Method, an adversarial
attack method, as text data augmentation. Several
of these augmentations are also introduced in our
work. The purpose of data augmentation is to cre-
ate enough distinguishable positive and negative
samples to allow contrastive loss to learn the na-
ture of same data after different changes. Works
like (Mitrovic et al., 2020) points out that longer
negative sample queues do not always give the
best performance. This also interests us how the
negative queue length affects the text contrastive
learning.

3 Method

Figure 1 depicts the architecture of proposed
MoCoSE. In the embedding layer, two versions of
the sentence embedding are generated through data
augmentation (dropout = 0.1 + fgsm = 5e — 9).
The resulting two slightly different embeddings
then go through the online and target branch to ob-
tain the query and key vectors respectively. The
structure of encoder, pooler and projection of on-
line and target branch is identical. We add predic-
tion layer to the online branch to make asymmetry
between online and target branch. The pooler, pro-
jection and prediction layers are all composed of
several fully connected layers.

Finally, model calculates contrastive loss be-
tween query with keys and queue to update of the
online branch, where keys served as positive sam-
ples with respect to the query vector, while the
queue served as negative samples to the query. The
target branch truncates the gradient and is updated
with the EMA mechanism. The queue is a first-in-
first-out collection of negative samples with size K
which means it sequentially stores the keys vectors
generated from the last few training steps.

The PyTorch style pseudo-code for training Mo-
CoSE with the negative sample queue is shown in
Algorithm 1 in Appendix A.2.

Data Augmentation Compared to SimCSE, we
consider some additional data augmentation mech-
anisms mentioned in ConSERT, but experiments
show that only adversarial attacks and dropout have
improved the results. We use FGSM(Goodfellow
et al., 2015) (Fast Gradient Sign Method) as adver-
sarial attack. In a white-box environment, FGSM
first calculates the derivative of model with respect
to the input, and use a sign function to obtain its
specific gradient direction. Then after multiply-
ing it by a step size, the resulting ’perturbation’ is
added to the original input to obtain the sample
under the FGSM attack. The FGSM is expressed
as follows:

¥ =z +e-sign(V.L(z,0)) (1)

Where z is the input to the embedding layer, 6 is
the online branch of the model, and £(-) is the
contrastive loss computed by the query, keys and
negative sample queue. V, is the gradient com-
puted through the network for input z, sign() is
the sign function, and ¢ is the perturbation parame-
ter.

EMA and Asymmetric Branches Our model
uses EMA mechanism to update the target branch.
Formally, denoting the parameters of online and
target branch as 6, and 6;, EMA decay weight as
7, we update 6; by:

0 < nby + (1 —n)0, 2)

Experiments demonstrate that not using EMA leads
to model collapsing, which means the model did
not converge during training and did not obtain
good results. We also add prediction layer to the
online branch to make two branches asymmetric
to further prevent model collapse. For more ex-
periment details about symmetric model structure
without EMA mechanism, please refer to Appendix
Al

Negative Sample Queue Theoretically, if the
negative samples are removed, the model will sim-
ply map all representations to the same point, thus
satisfying the goal of narrowing the distance be-
tween positive pairs. This means the model will
soon converge to a trivial solution, causing a model
collapse problem. Therefore, with the use of dou-
ble branching, we add a negative sample queue to

online

I ® I
| = 2 2 |
vy} o @ o @
| @ o = = o |
| = | 218 3 g |
Embedded m) 4 Z Z. o |
sample 1 3 - = S) 5 H
3 ® o < |
g | s = & & I
=T & E E |
(%) I'sl'l g & |
@ = . . . |
z gl »| ——————-- e — e ——— +—— - ———
8 S . . ! (T
3 g |8 Exponentidl Moving Average # Contrastive Loss
=] c| 2| ____ 1 _______ L__L_ i
T T T
3
)
7 = 2 I3 3
vy) o @ o | €
g 8 3 5 ;2
Embedded) & 2 X ®
sample 2 S c| 3 S| s Queue
I p 3 5 2 =l 2 |!s
| S || B e) (=
= = S s | &
I = 2 2
| Q@ | @
I I
farget

Figure 1: The model structure of MoCoSE. The embedding layer consists of a Bert embedding layer with additional
data augmentation. The pooler, projection, and predictor layers all keep the same dimensions with the encoder layer.
The MoCoSE minimizes contrastive loss between query, queue and keys (i.e. InfoNCE loss).

increase the negative sample number and increase
the performance of the model.

Contrastive Loss Similar to MoCo, we also use
InfoNCE(Oord et al., 2018) as contrastive loss, as
shown in eq.(3).

exp(q-k/T)
exp(q-k/T)+> exp(q-1/7)

Where, g refers to the query vectors obtained
by the online branch; & refers to the key vectors
obtained by the target branch; and [is the negative
samples in the queue; 7 is the temperature parame-
ter.

L=—log 3)

4 Experiments

4.1 Settings

We train with a randomly selected corpus of
1 million sentences from the English Wikipedia,
and we conduct experiments on seven standard
semantic text similarity (STS) tasks, including STS
2012—2016(Agirre et al., 2012, 2013, 2014, 2015,
2016), STSBenchmark(Cer et al., 2017) and SICK-
Relatedness(Wijnholds and Moortgat, 2021). The
SentEval toolbox is used to evaluate our model, and
we use the Spearman’s correlation to measure the
performance. We start our training by loading pre-
trained Bert checkpoints! and use the [C'LS] token
embedding of the model output as the sentence
embedding. In addition to the semantic similarity

"https://huggingface.co/models

task, we also evaluate on seven transfer learning
tasks to test the generalization performance of the
model.

Training Details We train our MoCoSE model
using NVIDIA RTX3090 GPUs. We use Python
3.8 and PyTorch version v1.8. We use Trans-
formers 4.4.2(Wolf et al., 2020) and Datasets
1.8.0(Lhoest et al., 2021) from Huggingface.

The learning rate of MoCoSE-BERT-base is set
to 3e-5, and for MoCoSE-BERT-large is 1e-5. With
a weight decay of 1e-6, the batch size of the base
model is 64, and the batch size of the large model
is 32. We validate the model every 100 step and
train for one epoch. The EMA decay weight 7 is
incremented from 0.85 to 1.0 by the cosine func-
tion.

4.2 Main Results

We compare the proposed MoCoSE with sev-
eral commonly used methods and the current state-
of-the-art contrastive learning method on the text
semantic similarity (STS) task, including average
GloVe embeddings(Pennington et al., 2014), aver-
age BERT or ROBERTa embeddings, BERT-flow,
BERT-whitening, ISBERT(Zhang et al., 2020), De-
CLUTR(Giorgi et al., 2021), CT-BERT(Carlsson
et al., 2021) and SimCSE.

As shown in Table 1, the average Spearman’s
correlation of our best model is 77.27%, outper-
forming unsupervised SimCSE with BERT-base.
Our model outperforms SimCSE significantly on

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Unsupervised Models (Base)
GloVe (avg.) 55.14 70.66 59.73 6825 63.66 58.02 53.76 61.32
BERT (first-last avg.) 3970 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT-flow 5840 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-whitening 57.83 6690 6090 7508 71.31 6824 63.73 66.28
IS-BERT 56.77 6924 61.21 7523 70.16 69.21 64.25 66.58
CT-BERT 61.63 76.80 6847 7750 7648 7431 69.19 72.05
RoBERTa (first-last avg.) 40.88 58.74 49.07 65.63 6148 58.55 61.63 56.57
RoBERTa-whitening 4699 6324 5723 7136 6899 61.36 6291 61.73
DeCLUTR-RoBERT 5241 75.19 6552 77.12 78.63 7241 68.62 69.99
SimCSE 6840 8241 7438 8091 7856 76.85 72.23 76.25
MoCoSE 7148 8140 7447 8345 7899 78.68 72.44 77.27
Unsupervised Models (Large)
SimCSE-RoBERTa 72.86 8399 7562 8477 81.80 8198 71.26 78.90
SimCSE-BERT 70.88 84.16 7643 8450 79.76 79.26 73.88 78.41
MoCoSE-BERT 7450 84.54 7732 84.11 79.67 80.53 73.26 79.13

Table 1: Spearman correlation of MoCoSE on seven semantic text similarity tasks. We compared with the state-
of-the-art method SimCSE. MoCoSE achieves the best results with both BERT-base and BERT-large pre-trained

models.

Model MR CR SUBJ MPQA SST TREC MRPC Avg.
Unsupervised Model (Base)

GloVe (avg.) 7725 78.30 91.17 87.85 80.18 83.00 72.87 81.52

Skip-thought 76.50 80.10 93.60 87.10 82.00 9220 73.00 83.50

Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.54 8494

BERT-[CLS]embedding 78.68 84.85 94.21 88.23 84.13 9140 71.13 84.66

SimCSE-RoBERTa 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84

SimCSE-BERT 81.18 86.46 9445 88.88 85.50 89.80 7443 85.81

MoCoSE 81.07 86.43 94.76 89.70 86.35 84.06 7586 85.46
Unsupervised Model (Large)

SimCSE-RoBERTa 82.74 87.87 93.66 88.22 88.58 92.00 69.68 86.11

MoCoSE-BERT 83.71 89.07 95.58 90.26 8796 8492 7681 86.90

Table 2: Performance of MoCoSE on the seven transfer tasks. We compare the performance of MoCoSE and other
models on the seven transfer tasks evaluated by SentEval, and MoCoSE remains at a comparable level with the

SimCSE.

STS2012, STS2015, and STS-B, and SimCSE per-
form better on the STS2013 task. Our MoCoSE-
BERT-large model outperforms SimCSE-BERT-
Large by about 0.7 on average, mainly on STS12,
STS13, and STS 14 tasks, and maintains a similar
level on other tasks.

Furthermore, we also evaluate the performance
of MoCoSE on the seven transfer tasks provided by
SentEval. As shown in Table 2, MoCoSE-BERT-
base outperforms most of the previous unsuper-
vised method, and is on par with SimCSE-BERT-
base.

S Empirical Study

We build the MoCoSE with common and ef-
fective structures from image contrastive learning,

such as the negative queue, initialization of the
queue, data augmentation of text, etc. Therefore,
we need to measure how much influence each of
them brings. Thus, we set up the following ablation
experiments.

5.1 EMA Decay Weight

We use EMA to update the model parameters for
the target branch and find that EMA decay weight
affects the performance of the model. The EMA de-
cay weight affects the update process of the model,
which further affects the vectors involved in the
contrastive learning process. Therefore, we set dif-
ferent values of EMA decay weight and train the
model with other hyperparameters held constant.
As shown in Table 3 and Appendix A.4, the best

result is obtained when the decay weight of EMA is
set to 0.85. Compared to the choice of EMA decay

EMA 05 0.8 085 09 095 099

Avg.

75.76 75.19 7649 76.05 76.08 75.12

Table 3: Effect of EMA decay weight on model per-
formance. The best results are obtained with the EMA
decay weight at 0.85

weight in CV (generally larger than 0.99), the value
of 0.85 in our model is smaller, which means that
the model is updated faster. We speculate that this
is because the NLP model is more sensitive in the
fine-tuning phase and the model weights change
more after each step of the gradient, so a faster
update speed is needed.

5.2 Projection and Prediction

Several papers have shown (e.g. Section F.1
in BYOL(Grill et al., 2020)) that the structure of
projection and prediction layers in a contrastive
learning framework affects the performance of the
model. We combine the structure of projection and
prediction with different configurations and train
them with the same hyperparameters. As shown
in Table 4, the best results are obtained when the
projection is 1 layer and the prediction has 2 layers.
The experiments also show that the removal of
projection layers degrades the performance of the
model.

Proj. Pred. Corr. Proj. Pred. Corr.
1 60.46 1 66.96

0 2 62.67 2 2 66.29
3 63.62 3 61.57
1 76.74 1 31.51

1 2 76.89 3 2 43.97
3 76.24 3 39.13

Table 4: The impact of different combinations of pro-
jection and predictor on the model.

5.3 Data Augmentation

We investigate the effect of some widely-used
data augmentation methods (token shuffle, cut off,
dropout, and adversarial attack) on the model per-
formance. As shown in Table 5, the experiments
show that cut off and token shuffle do not improve,
even slightly hurt the model’s performance. Only
the adversarial attack (we use FGSM) has slight
improvement on the model. Therefore, in our ex-
periments, we added FGSM as a data augmentation

of our model in addition to dropout. Please refer to
Appendix A.6 for more FGSM parameters results.

Augmentation Methods Avg.

Dropout only 76.76
+ FGSM 77.04
+ Position_shuffle (True) 73.80
+ Token drop (prob=0.1) 41.32
+ Feature drop (prob=0.01) 76.33
+ Feature drop (prob=0.1) 71.62

Table 5: The effect of different data augmentation meth-
ods.

We speculate that the reason token cut off is detri-
mental to the model results is that the cut off per-
turbs too much the vector formed by the sentences
passing through the embedding layer. Removing
one word from the text may have a significant im-
pact on the semantics. We tried two parameters 0.1
and 0.01 for the feature cut off, and with these two
parameters, the results of using the feature cut off
is at most the same as without using feature the cut
off, so we discard the feature cut off method. More
results can be found in Appendix A.S5.

The token shuffle is slightly, but not significantly,
detrimental to the results of the model. This may
be due to that BERT is not sensitive to the position
of token. We did not add token shuffle to the final
data augmentation.

Among the data augmentation methods, only
FGSM together with dropout improves the results,
which may due to the adversarial attack slightly en-
hances the difference between the two samples and
therefore enables the model to learn a better repre-
sentation in more difficult contrastive samples.

5.4 Predictor Mapping Dimension

The predictor maps the representation to a fea-
ture space of a certain dimension. We investigate
the effect of the predictor mapping dimension on
the model performance. Table 6.a shows that the
predictor mapping dimension can seriously impair
the performance of the model when it is small, and
when the dimension rises to a suitable range or
larger, it no longer has a significant impact on the
model. This may be related to the intrinsic dimen-
sion of the representation, which leads to the loss
of semantic information in the representation when
the predictor dimension is smaller than the intrinsic
dimension of the feature, compromising the model
performance. We keep the dimension of the predic-
tor consistent with the encoder in our experiments.

More results can be found in Appendix A.7.

Dim Avg. —
—_— SIZC AV .
256 73.91 _oize AvE.

32 73.86
512 76.07

64 7125
768 77.04

128 7678
1024 77.02 56 766
2048 77.03 =0 Bhe

b
@ (b)

Table 6: (a) Impact of prediction dimension on model
performance. (b) Impact of batch size on the model
with fixed queue size.

5.5 Batch Size

With a fixed queue size, we investigated the ef-
fect of batch size on model performance, the results
in Table 6.b, and the model achieves the best per-
formance when the batch size is 64. Surprisingly
the model performance does not improve with in-
creasing batch size, which contradicts the general
experience in image contrastive learning. This is
one of our motivations for further exploring the
effect of the number of negative samples on the
model.

5.6 Size of Negative Sample Queue

The queue length determines the number of neg-
ative samples, which direct influence performance
of the model. Thus, we study in detail on how
the length of the negative sample queue affect the
model. We first test the initialization of negative
sample queue with different initial size, and not
surprisingly to find the impact on the final perfor-
mance. We suppose this may be due to the random
interference introduced to the training by filling the
initial negative sample queue. This interference
causes a degradation of the model’s performance
when the initial negative sample queue becomes
longer. To reduce the drawbacks carried out by
this randomness, we changed the way the negative
queue is initialized. We initialize a smaller negative
queue, then fill the queue to its set length in the first
few updates, and then update normally. According
to experiments, the model achieves the highest re-
sults when the negative queue size set to 512 and
the smaller initial queue size set to 128.

According to the experiments of MoCo, the in-
crease of queue length improves the model perfor-
mance. However, as shown in Table 7, increasing
the queue length with a fixed batch size decreases
our model performance, which is not consistent

with the observation in MoCo. We speculate that
this may be due to that NLP models updating faster,
and thus larger queue lengths store too much out-
dated feature information, which is detrimental to
the performance of the model. Combined with the
observed effect of batch size, we further conjec-
ture that the effect of the negative sample queue
on model performance is controlled by the model
history information contained in the negative sam-
ple in the queue. See Appendix A.8 and A.9 for
more results of the effect of randomization size and
queue length.

Queue Initial Queue Initial

Size Size V& Size Size V&
1 76.40 l 76.63
U N A X 128 54.15
64 7616 1024 256 76.20
128 76.87 512 76.57
1 76.19 1024 76.45
bsg 64 7634] 50.17
128 7639 128 49.13
256 7581 4096 1024 50.42
I 7538 2048 38.74
sy 128 7730 4096 45.80
256 76.94
512 76.29

Table 7: Impact of queue length on model performance
with fixed batch size.

In our experiments, we found that simply in-
creasing the batch size does not improve the model
performance, while adding a negative queue can
give us better results. We speculate that the neg-
ative queue contains not only a larger number of
negative samples, but also contains information
about the history of the model, which makes harder
negative samples, thus improving the performance
of the model. To test this hypothesis, we train a
new model with the same structure as our model,
but with different ways of updating the negative
sample queue.

We propose two comparison models. The first
model maintains a queue of sentence samples,
which is also updated at each training step using
a first-in-first-out approach. At each step, the cur-
rent target network is used to generate the latest
sentence embedding to fill the negative sample
queue, and then the model is updated using the
same loss function. The comparison model uses
the current target model to obtain the negative sam-
ple queue, thus reducing the historical informa-
tion in the queue. Another comparison model uses

latest oldest
76.65 76.04

normal
77.30

Corr.
Avg.

Table 8: Impact of changing the update strategy of the
queue on the model with fixed batch size and queue
length.

samples from older queue as negative samples. It
maintains a negative sample queue of length 1024,
but use only the 512 negative samples queued first,
thus using older negative samples for contrastive
learning.

The results of these two comparison models are
shown in the Table 8, and they both reduce the
model performance. So we find that the increase
in queue length affects the model performance not
only because of the increased number of negative
samples, but more because it provides historical
information within a certain range.

5.7 Maximum Traceable Distance Metric

In order to explore more secrets of negative
queue, we define the Maximum Traceable Distance
Metric as eq.4.

1 queue_size
L=mn

4

d =
trace batch_size

The 7 refers to the decay weight of EMA. The
dirace calculates the update steps between the cur-
rent online branch and the oldest negative samples
in the queue. The first term of the formula rep-
resents the traceable distance between target and
online branch due to the EMA update mechanism.
The second term represents the traceable distance
between the negative samples in the queue and the
current target branch due to the queue’s first-in-
first-out mechanism. The longer traceable distance,
the wider the temporal range of the historical in-
formation contained in the queue. We obtained
different value of traceable distance by jointly ad-
just the decay weight, queue size, and batch size.
As shown in Figure 2 and Figure 3, the best result
of BERT base is obtained with d;,4ce 1S set around
14.67. The best result of Bert large shows the sim-
ilar phenomenon, see Appendix A.10 for details.
This further demonstrates that in text contrastive
learning, the historical information used should be
not too old and not too new, and the appropriate
traceable distance between branches is also impor-
tant. Some derivations about eq.4 can be found in
Appendix A.11.

—— MoCoSE

>8imCSE-unsup-bert-base

Correlation
~
o
»

5 10 15 20
Maximum Traceable Distance

Figure 2: The relationship between traceable distance
and model correlation.

77.5

Correlation

6 8 10 12 14 16 18 20
Maximum Traceable Distance

Figure 3: The batch size does not invalidate the trace-
able distance. The traceable distance needs to be main-
tained within a reasonable range even for different
batch sizes. This explains why increasing the batch
size only does not improve the performance, because
increasing the batch size only can cause the distance
changes into unsuitable regions.

6 Conclusion

In this work, we propose MoCoSE, a new nega-
tive sample queue based text contrastive learning
framework that surpasses the current SOTA model.
We further delve into the application of the nega-
tive sample queue to text contrastive learning and
propose maximum traceable distance metric to ex-
plain the relation between the queue size and model
performance. We also investigate the application
of multiple text augmentation methods in our pro-
posed contrastive learning model.

In addition, we observe that the performance
of negative queue in MoCoSE is quite different
from the performance of different image constra-
tive learning models (e.g., MoCo, MoCoV3), and
therefore, further experiments are needed to inves-
tigate in depth why negative queue mechanisms
between modalities exhibit such differences, which
will be our future work.

References

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. Semeval-2015 task 2: Semantic tex-
tual similarity, english, spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252-263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 81-91.

Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T.
Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, Ger-
man Rigau, and Janyce Wiebe. 2016. Semeval-
2016 task 1: Semantic textual similarity, monolin-
gual and cross-lingual evaluation. In Proceedings of
the 10th International Workshop on Semantic Evalu-
ation (SemEval-2016), pages 497-511.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics — Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), volume 1,
pages 385-393.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *sem 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity, volume 1, pages 32-43.

Fredrik Carlsson, Magnus Sahlgren, Evangelia
Gogoulou, Amaru Cuba Gyllensten, and Erik Ylipdi
Hellqvist. 2021. Semantic re-tuning with contrastive
tension. In ICLR 2021: The Ninth International
Conference on Learning Representations.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iiigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilingual
and crosslingual focused evaluation. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1-14.

Pengguang Chen, Shu Liu, and Jiaya Jia. 2021. Jig-
saw clustering for unsupervised visual representa-
tion learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-

tion, pages 11526-11535.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages

1597-1607. PMLR.

Xinlei Chen and Kaiming He. 2021. Exploring simple
siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15750-15758.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina N. Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver
Sangineto, and Nicu Sebe. 2021. Whitening for self-
supervised representation learning. In ICML 2021:
38th International Conference on Machine Learning,

pages 3015-3024.

Hongchao Fang and Pengtao Xie. 2020. Cert: Con-
trastive self-supervised learning for language under-
standing. arXiv preprint arXiv:2005.12766.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-
Yan Liu. 2019. Representation degeneration prob-
lem in training natural language generation models.
arXiv preprint arXiv:1907.12009.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader.
2021. DeCLUTR: Deep contrastive learning for
unsupervised textual representations. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 879-895,
Online. Association for Computational Linguistics.

Tan J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In ICLR 2015 : International Confer-
ence on Learning Representations 2015.

Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and
Michal Valko. 2020. Bootstrap your own latent: A
new approach to self-supervised learning. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 21271-21284.

https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimen-
sionality reduction by learning an invariant map-
ping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition

(CVPR’06), volume 2, pages 1735-1742.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9729-9738.

Chih-Hui Ho and Nuno Nvasconcelos. 2020. Con-
trastive learning with adversarial examples. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 17081-17093.

Quentin Lhoest, Albert Villanova del Moral, Patrick
von Platen, Thomas Wolf, Yacine Jernite, Abhishek
Thakur, Lewis Tunstall, Suraj Patil, Mariama Drame,
Julien Chaumond, Julien Plu, Joe Davison, Simon
Brandeis, Victor Sanh, Teven Le Scao, Kevin Can-
wen Xu, Nicolas Patry, Steven Liu, Angelina
McMillan-Major, Philipp Schmid, Sylvain Gug-
ger, Nathan Raw, Sylvain Lesage, Anton Lozhkov,
Matthew Carrigan, Théo Matussiere, Leandro von
Werra, Lysandre Debut, Stas Bekman, and Clément
Delangue. 2021. huggingface/datasets: 1.13.2.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119-9130.

Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi.
2021. Prototypical contrastive learning of unsuper-
vised representations. In /CLR 2021: The Ninth
International Conference on Learning Representa-
tions.

Jovana Mitrovic, Brian McWilliams, and Melanie Rey.
2020. Less can be more in contrastive learning. 1
Can’t Believe It’s Not Better!” NeurIPS 2020 work-
shop.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding. arXiv preprint arXiv:1807.03748.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532-1543, Doha,
Qatar. Association for Computational Linguistics.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou.
2021. Whitening sentence representations for bet-
ter semantics and faster retrieval. arXiv preprint
arXiv:2103.15316.

Dong Wang, Ning Ding, Piji Li, and Haitao Zheng.
2021. Cline: Contrastive learning with semantic

10

negative examples for natural language understand-
ing. In ACL 2021: 59th annual meeting of the Asso-
ciation for Computational Linguistics, pages 2332—
2342.

Gijs Wijnholds and Michael Moortgat. 2021. Sick-nl:
A dataset for dutch natural language inference. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1474—1479.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian
Khabsa, Fei Sun, and Hao Ma. 2020. Clear: Con-
trastive learning for sentence representation. arXiv
preprint arXiv:2012.15466.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. Consert: A con-
trastive framework for self-supervised sentence rep-
resentation transfer. In ACL 2021: 59th annual
meeting of the Association for Computational Lin-
guistics, pages 5065-5075.

Jure Zbontar, Li Jing, Ishan Misra, yann lecun,
and Stephane Deny. 2021. Barlow twins: Self-
supervised learning via redundancy reduction. In
ICML 2021: 38th International Conference on Ma-
chine Learning, pages 12310-12320.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim,
and Lidong Bing. 2020. An unsupervised sentence
embedding method by mutual information maxi-
mization. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing
(EMNLP), pages 1601-1610.

https://doi.org/10.5281/zenodo.5570305
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A Appendix

A.1 Symmetric Two-branch Structure

We remove the online branch predictor and set
the EMA decay weight to 0, i.e., make the struc-
ture and weights of the two branches identical. As
shown in Figure 4, it is clear that the model is col-
lapsing at this point. And we find that the model
always works best at the very beginning, i.e., train-
ing instead hurts the performance of the model. In
addition, as the training proceeds, the correlation
coefficient of the model approaches 0, i.e., the pre-
diction results have no correlation with the actual
labeling. At this point, it is clear that a collapse of
the model is observed. We observed such a result
for several runs, so we adopted a strategy of dou-
ble branching with different structures plus EMA
momentum updates in our design. Subsequent ex-
periments demonstrated that this allowed the model
to avoid from collapsing.

—— Symmetrical
30

Correlation
- - N N
(4] o (4] o (42

o

0 2000 4000 6000 8000 10000 12000 14000

Training Step

Figure 4: Experiment on a symmetric two-branch struc-
ture with EMA decay weight set to 0.

25 —— with predictor

20

@

Correlation
3

0 2000 4000 6000 8000 10000 12000 14000 16000

Training Step
Figure 5: Experiment after adding predictor on the on-

line branch with EMA decay weight set to 0.

We add predictor to the online branch and set the
EMA decay weight to 0. We find that the model

also appears to collapse and has a dramatic oscilla-
tion in the late stage of training, as shown in Figure
5.

A.2 Pseudo-Code for Training MoCoSE

The PyTorch style pseudo-code for training Mo-
CoSE with the negative sample queue is shown in
Algorithm 1.

A.3 Distribution of Singular Values

Similar to SimCSE, we plot the distribution of
singular values of MoCoSE sentence embeddings
with SimCSE and Bert for comparison. As illus-
trated in Figure 6, our method is able to alleviate
the rapid decline of singular values compared to
other methods, making the curve smoother, i.e.,
our model is able to make the sentence embedding
more isotropic.

MoCoSE
— SimCSE
—— BERT-base

Singular Values
- s o W ow
s 2 2 2 g 2
=] = =3 = (=3 (=}

%3
S

=

100 200 300 400 500 600 700 800
index

=}

Figure 6: Singular value distributions of sentence em-
bedding matrix from sentences in STS-B.

A.4 Experiment Details of EMA
Hyperparameters

The details of the impact caused by the EMA
parameter are shown in the Figure 7. We perform
this experiment with all parameters held constant
except for the EMA decay weight.

77.0

Correlation
~ ~
(¢ [$]
(=} o

\‘
»
3

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
EMA decay

Figure 7: Effect of EMA decay weight on model per-
formance.

Algorithm 1: Momentum Contrastive Sentence Embedding

Input:

D : Training data set ;

Q : Negative Sample Queue;

E, : Embedding with random data augmentation;

0,, 0, : weights of online branch and target branch;

Optimizer : Adam optimizer

K, K;: Queue size, Queue size at initialisation;

7 : ema decay ema and ema scheduling strategy;

7 Temperature parameters

Output: MoCoSE model 6,
1 Initializing the queue Q with size Kj;
2 foreach 5 € D do
3 Vo, V¢ <— Eq (B),E, (B) // Using data Augmentation to generate
different views
4 2o 0o (vo) // (N,d), N is batch size, d is dimension of sentence
embedding
5 2t Gt ('l)t)

exp (202t /T)

exp (202t /T)+_pc o XP (20%/T)
using InFoNCE
7 optimizer(l,, », 0,6,) // Update only the parameters of the online
branch according to the loss gradient;
8 Oy < nx0;+(1—n)*x0, // Update the parameters of the target
branch using EMA
9 enqueue(Q,v;) // Update the negative sample queue Q
10 dequeue(Q)

6 lz, 2,0 < —log // compute contrastive loss

11 return 6,

12

A.5 Details of Different Data Augmentations

We use only dropout as a baseline for the results
of data augmentations. Then, we combine dropout
with other data augmentation methods and study
their effects on model performance. The results are
shown in Figure 8.

———

764 = T
.5 74 | %
©
9]
=
5 72
O

704

68 T T T T

o S N N
o & o ©F o
& N 2 Q) (o
o o &° o
& B\ \e® 2
x© P

Augmentation

Figure 8: Impact of four additional data enhancements
with dropout combinations on the model.

A.6 Experiment Details of FGSM

We test the effect of the intensity of FGSM on
the model performance. We keep the other hyper-
parameters fixed, vary the FGSM parameters (1e-9,
5e-9, 1e-8, 5e-8). As seen in Table 9, the average
results of the model are optimal when the FGSM
parameter is 5e-9.

Epsilon 1e-9 S5e-9 1e-8 5e-8 No

Avg. 75.61 76.64 7539 76.62 76.26

Table 9: Different parameters of FGSM in data aug-
mentation affect the model results.

A.7 Dimension of Sentence Embedding

In both BERT-whitening (Su et al., 2021) and
MoCo (He et al., 2020), it is mentioned that the
dimension of embedding can have some impact on
the performance of the model. Therefore, we also
changed the dimension of sentence embedding in
MoCoSE and trained the model several times to
observe the impact of the embedding dimension.
Because of the queue structure of MoCoSE, we
need to keep the dimension of negative examples
consistent while changing the dimension of sen-
tence embedding. As shown in the Figure 9, when
the dimension of Embedding is low, this causes con-
siderable damage to the performance of the model;

13

while when the dimension rises to certain range,
the performance of the model stays steady.

== === D

_\ = V=

774

76+

Correlation

1

256

512 768 1024 2048

Dimension of Embedding

Figure 9: Impact of dimensions of the sentence embed-
ding.

A.8 Details of Random Initial Queue Size

We test the influence of random initialization
size of the negative queue on the model perfor-
mance when queue length and batch size are fixed.
As seen in Figure 10, random initialization does
have some impact on the model performance.

775

Correlation

1 16 32 64 128 256 512

Initial Size

Figure 10: The effect of the initial queue size on the
model results when the queue length is 512 and the
batch size is 64.

A.9 Queue Size and Initial Size

We explored the effect of different combinations
of initial queue sizes and queue length on the model
performance. The detailed experiment results are
shown in Figure 11. It can be found that model
performance rely deeply on initialization queue
size. Yet, too large queue size will make the model
extremely unstable. This is quite different from
the observation of negative sample queue in image
contrastive learning.

= -—? & o R
c 70
begi iz
77.54 S | =25
é w© 601 == =2
T I 64
77.0 é o .
é O 907 == 25
76.54 O 512
5 2 w2
'-% 76.07 iﬁ @ = 4096
© 7551 128 /256 512 1024 4096
— .
o begin_size Queue S|Ze
O 75.09 mm +
32
7454 = %
256
74.0- =23 512
3 1024
128 256 512 1024
Queue Size

Figure 11: The impact of different initial negative sample queue sizes for different initial sizes on model perfor-
mance. (left):Zoomed view. (right):Overview with different negative queue size. Results of different initial size

under same queue size.

A.10 Maximum Traceable Distance in
Bert-large

We also train mocose with different batch size
and queue size on Bert-large. As shown in Fig-
ure 12, we observe the best model performance in
MoCoSE-BERT-large within the appropriate Maxi-
mum Traceable Distance range (around 22). Once
again, this suggests that even on BERT-large, the
longer queue sizes do not improve the model per-
formance indefinitely. Which also implies that the
history information contained in the negative sam-
ple queue needs to be kept within a certain range
on BERT-large as well.

79.0

N NN
N o ®
o o o

-
N

Correlation
o

~
2
o

\‘
o
)

15 20 25 30 35 40 45

Maximum Traceable Distance

5 10

Figure 12: The relationship between mtd and correla-
tion of MoCoSE-BERT-large. It can be seen that even
at large model, peaks occur within a certain mtd range.

A.11 Proof of Maximum Traceable Distance

Here, we prove the first term of the formula for
Maximum Traceable Distance. Due to the EMA
update mechanism, the weight of target branch is a

14

weighted sum of the online weight in update history.
The first term of Maximum Traceable Distance
calculate the weighted sum of the historical update
steps given a certain EMA decay weight 1. From
the principle of EMA mechanism, we can get the
following equation.

k
Sp=> (1—n)-n'-(i+1))
i=0
S, represents the update steps between online and
target branch due to the EMA mechanism. Since
EMA represents the weighted sum, we need to ask
for S, to get the weighted sum.

We can calculate S,, as:

1— nk+1>
—Dsnftl s (k+1 —(7
((k+1) =1
(6)
As k tends to infinity, the limit for S,, can be calcu-
lated as following:

Sn

lim S, = lim |(=1)* s (k+1) -

k—o0 k—o0

(N
It is obvious to see that the limit of the equation 7
consists of two parts, so we calculate the limit of
these two parts first.

lim (—1) " s (k+1) "= 0

k—o00

(®)

The limit of the first part can be calculated as 0.

Next, we calculate the limit of the second part.

1— k+1 1
i (L7777 e 9)
k—oo (n—1) 1—n

We calculate the limit of the second part as ﬁ

Since the limits of both parts exist, we can obtain
the limit of S,, by the law of limit operations.

k+1 (L—n*)
li p = li -1 k+1)—
k1—>n<}08 e (D™ s (k+1) (n—1)
1_nk+1)
= 1i -1 ktl 1) — i (7
g (L (e) = i T
1
-1

(10)

15

