
Exploring the Impact of Negative Samples of Contrastive Learning:
A Case Study of Sentence Embedding

Anonymous ACL submission

Abstract

Contrastive learning is emerging as a pow-001
erful self-supervised technique for extracting002
knowledge from unlabeled image and text data.003
This technique requires a balanced mixture of004
two ingredients: positive (similar) and neg-005
ative (dissimilar) samples. This is typically006
achieved by maintaining a queue of negative007
samples during training. Prior works in the008
area typically uses a fixed-length negative sam-009
ple queue, but how the negative sample size af-010
fects the model performance remains unclear.011
The opaque impact of the number of negative012
samples on performance when employing con-013
trastive learning aroused our in-depth explo-014
ration. This paper presents a momentum con-015
trastive learning model with negative sample016
queue for sentence embedding, namely Mo-017
CoSE. We add the prediction layer to the on-018
line branch to make the model asymmetric and019
together with EMA update mechanism of the020
target branch to prevent model from collapsing.021
We define a maximum traceable distance met-022
ric, through which we learn to what extent the023
text contrastive learning benefits from the his-024
torical information of negative samples. Our025
experiments find that the best results are ob-026
tained when the maximum traceable distance027
is at a certain range, demonstrating that there is028
an optimal range of historical information for029
a negative sample queue. We evaluate the pro-030
posed unsupervised MoCoSE on the semantic031
text similarity (STS) task and obtain an aver-032
age Spearman’s correlation of 77.27%. Source033
code is available here.034

1 Introduction035

In recent years, unsupervised learning has been036

brought to the fore in deep learning due to its037

ability to leverage large-scale unlabeled data. In038

computer vision, various unsupervised contrastive039

learning models have emerged, narrowing down the040

gap between supervised and unsupervised learning.041

Most contrastive models require negative samples042

to avoid model collapsing, i.e., to prevent the model 043

from converging to a constant solve so that all sam- 044

ples are mapped to one point in the feature space. 045

There are several ways to obtain negative sam- 046

ples in contrastive learning. In computer vision, 047

SimCLR series from Chen(Chen et al., 2020) and 048

MoCo series from He(He et al., 2020) is known for 049

using negative samples and get the leading perfor- 050

mance in the contrastive learning. SimCLR uses 051

different data augmentation (e.g., rotation, mask- 052

ing, etc.) on the same image to construct positive 053

samples, and negative samples are from the rest of 054

images in the same batch. MoCo goes a step fur- 055

ther by randomly select the data in entire unlabeled 056

training set to stack up a first-in-first-out negative 057

sample queue. 058

Recently in natural language processing, con- 059

trastive learning has been widely used in the task 060

of sentence embedding. The current state-of-the-art 061

unsupervised method is SimCSE(Gao et al., 2021). 062

Similar to image contrastive learning, the core idea 063

of SimCSE is to make similar sentences in the 064

embedding space closer while keeping dissimilar 065

away from each other. SimCSE uses dropout mask 066

as augmentation to construct positive text sample 067

pairs, and negative samples are picked from the rest 068

of sentences in the same batch. The dropout mask 069

adopted from the standard Transformer makes good 070

use of the minimal form of data augmentation 071

brought by the dropout mechanism. Dropout re- 072

sults in a minimal difference without changing the 073

semantics, reducing the negative noise introduced 074

by data augmentation. However, the negative sam- 075

ples in SimCSE are selected from the same training 076

batch with a limited batch size. Further experi- 077

ments show that SimCSE does not obtain improve- 078

ment as the batch size increases, which arouses our 079

interest in using the negative sample queue. 080

We design a text contrastive learning model 081

consisting of a two-branch structure and a nega- 082

tive sample queue, namely MoCoSE (Momentum 083

1

https://anonymous.4open.science/r/mocose-3E3C


Contrastive Sentence Embedding with negative084

sample queue). We also introduce the idea of asym-085

metric structure from BYOL(Grill et al., 2020) by086

adding a prediction layer to the upper branch (i.e.,087

the online branch). The lower branch (i.e., the tar-088

get branch) is updated with exponential moving089

average (EMA) method during training. We set a090

negative sample queue and update it using the out-091

put of target branch. Unlike the negative queue in092

MoCo, we set an initialization process with a much093

smaller negative queue, and then filling the entire094

queue through training process, and then update095

normally. For text data augments, we test methods096

mentioned in ConSERT(Yan et al., 2021), includ-097

ing token shuffle, cut off, dropout and FGSM (Fast098

Gradient Sign Method).099

Using the proposed MoCoSE model, we design100

a series of experiments to explore the contrastive101

learning for sentence embedding. We test the in-102

fluence of prediction layer in the online branch103

with different mapping dimensions. We also test104

the effect of different text augmentation algorithms105

in MoCoSE. Result shows that FGSM can signif-106

icantly bring the improvement, while token drop107

hurts the results substantially. In order to test how108

much text contrastive learning benefit from histori-109

cal information of the model, we proposed a maxi-110

mum traceable distance metric. The metric calcu-111

lates how many update steps before the negative112

samples in the queue are pushed in, and thus mea-113

sures the historical information contained in the114

negative sample queue. We find that the best results115

can be achieved when the maximum traceable dis-116

tance is within a certain range, which means there117

is an optimal interval for the length of negative118

sample queue in text contrastive learning model.119

Our main contributions are as follows:120

1.We build a new text contrastive learning model.121

The model combines several advantages of the im-122

age contrastive learning framework, using asym-123

metric branching, EMA, and negative queues.124

These structures enable the model to achieve better125

results.126

2.We evaluate the role of negative queues length127

and the historical information that queue contains128

in text contrastive learning. We define a metric129

named maximum traceable distance, and use it to130

assist in analyzing the effect of negative queue size,131

and also can be used to compute optimal negative132

queue length for a given batch size.133

3.We study the influence of different text aug-134

mentation in text contrastive learning. Including to- 135

ken shuffle, cut off, token dropout, feature dropout, 136

and FGSM. We carry out extensive experiments 137

on the choice of specific optimal parameters for 138

each augmentation method and verify that for text 139

comparison learning, using FGSM and dropout as 140

data augmentation can bring the most benefit. 141

2 Related Work 142

Contrastive Learning in CV 143

Contrast learning is a trending and effective un- 144

supervised learning framework that was first ap- 145

plied to the computer vision(Hadsell et al., 2006). 146

The core idea is to make the features of images 147

within the same category closer and the features 148

in different categories farther apart. Most of the 149

current work are using two-branch structure(Chen 150

et al., 2021). While influential works like SimCLR 151

and MoCo using positive and negative sample pairs, 152

BYOL(Grill et al., 2020)and SimSiam(Chen and 153

He, 2021) can achieve the same great results with 154

only positive samples. BYOL finds that by adding 155

a prediction layer to the online branch to form an 156

asymmetric structure and using momentum mov- 157

ing average to update the target branch, can train 158

the model using only positive samples and avoid 159

model collapsing. SimSiam explores the possibil- 160

ity of asymmetric structures likewise. Therefore, 161

our work introduces this asymmetric idea to the 162

text contrastive learning to prevent model collapse. 163

In addition to the asymmetric structure and the 164

EMA mechanism to avoid model collapse, some 165

works consider merging the constraint into the loss 166

function, like Barlow Twins(Zbontar et al., 2021), 167

W-MSE(Ermolov et al., 2021), and ProtoNCE(Li 168

et al., 2021). 169

Contrastive Learning in NLP 170

Since BERT(Devlin et al., 2018) redefined state- 171

of-the-art in NLP, leveraging the BERT model to 172

obtain better sentence representation has become 173

a common task in NLP. A straightforward way to 174

get sentence embedding is by the [CLS] token due 175

to the Next Sentence Prediction task of BERT. But 176

the [CLS] embedding is non-smooth anisotropic 177

in semantic space, which is not conducive to STS 178

tasks, this is known as the representation degra- 179

dation problem(Gao et al., 2019). BERT-Flow(Li 180

et al., 2020) and BERT-whitening(Su et al., 2021) 181

solve the degradation problem by post-processing 182

the output of BERT. SimCSE proposes supervised 183

and unsupervised contrastive learning method to 184

2



alleviate this problem.185

Data augmentation is crucial for contrastive186

learning. In CLEAR(Wu et al., 2020), word and187

phrase deletion, phrase order switching, synonym188

substitution is served as augmentation. CERT(Fang189

and Xie, 2020) mainly using back-and-forth transla-190

tion, and CLINE(Wang et al., 2021) proposed syn-191

onym substitution as positive samples and antonym192

substitution as negative samples, and then min-193

imize the triplet loss between positive, negative194

cases as well as the original text. ConSERT(Yan195

et al., 2021) uses adversarial attack, token shuf-196

fling, cutoff, and dropout as data augmentation.197

CLAE(Ho and Nvasconcelos, 2020) also intro-198

duces Fast Gradient Sign Method, an adversarial199

attack method, as text data augmentation. Several200

of these augmentations are also introduced in our201

work. The purpose of data augmentation is to cre-202

ate enough distinguishable positive and negative203

samples to allow contrastive loss to learn the na-204

ture of same data after different changes. Works205

like (Mitrovic et al., 2020) points out that longer206

negative sample queues do not always give the207

best performance. This also interests us how the208

negative queue length affects the text contrastive209

learning.210

3 Method211

Figure 1 depicts the architecture of proposed212

MoCoSE. In the embedding layer, two versions of213

the sentence embedding are generated through data214

augmentation (dropout = 0.1 + fgsm = 5e− 9).215

The resulting two slightly different embeddings216

then go through the online and target branch to ob-217

tain the query and key vectors respectively. The218

structure of encoder, pooler and projection of on-219

line and target branch is identical. We add predic-220

tion layer to the online branch to make asymmetry221

between online and target branch. The pooler, pro-222

jection and prediction layers are all composed of223

several fully connected layers.224

Finally, model calculates contrastive loss be-225

tween query with keys and queue to update of the226

online branch, where keys served as positive sam-227

ples with respect to the query vector, while the228

queue served as negative samples to the query. The229

target branch truncates the gradient and is updated230

with the EMA mechanism. The queue is a first-in-231

first-out collection of negative samples with size K232

which means it sequentially stores the keys vectors233

generated from the last few training steps.234

The PyTorch style pseudo-code for training Mo- 235

CoSE with the negative sample queue is shown in 236

Algorithm 1 in Appendix A.2. 237

Data Augmentation Compared to SimCSE, we 238

consider some additional data augmentation mech- 239

anisms mentioned in ConSERT, but experiments 240

show that only adversarial attacks and dropout have 241

improved the results. We use FGSM(Goodfellow 242

et al., 2015) (Fast Gradient Sign Method) as adver- 243

sarial attack. In a white-box environment, FGSM 244

first calculates the derivative of model with respect 245

to the input, and use a sign function to obtain its 246

specific gradient direction. Then after multiply- 247

ing it by a step size, the resulting ’perturbation’ is 248

added to the original input to obtain the sample 249

under the FGSM attack. The FGSM is expressed 250

as follows: 251

x′ = x+ ε · sign (∇xL (x, θ)) (1) 252

Where x is the input to the embedding layer, θ is 253

the online branch of the model, and L(·) is the 254

contrastive loss computed by the query, keys and 255

negative sample queue. ∇x is the gradient com- 256

puted through the network for input x, sign() is 257

the sign function, and ε is the perturbation parame- 258

ter. 259

EMA and Asymmetric Branches Our model 260

uses EMA mechanism to update the target branch. 261

Formally, denoting the parameters of online and 262

target branch as θo and θt, EMA decay weight as 263

η, we update θt by: 264

θt ← ηθt + (1− η)θo (2) 265

Experiments demonstrate that not using EMA leads 266

to model collapsing, which means the model did 267

not converge during training and did not obtain 268

good results. We also add prediction layer to the 269

online branch to make two branches asymmetric 270

to further prevent model collapse. For more ex- 271

periment details about symmetric model structure 272

without EMA mechanism, please refer to Appendix 273

A.1. 274

Negative Sample Queue Theoretically, if the 275

negative samples are removed, the model will sim- 276

ply map all representations to the same point, thus 277

satisfying the goal of narrowing the distance be- 278

tween positive pairs. This means the model will 279

soon converge to a trivial solution, causing a model 280

collapse problem. Therefore, with the use of dou- 281

ble branching, we add a negative sample queue to 282

3



Exponential Moving Average

E
m

b
ed

d
in

g
 L

ay
er

B
ert E

n
co

d
er

B
ert E

n
co

d
er

D
ata A

u
g
m

en
tatio

n

S
en

ten
ce E

m
b
ed

d
in

g

Embedded 

sample 1

Queue

P
o
o
ler L

ay
er

P
o
o
ler L

ay
er

S
en

ten
ce E

m
b
ed

d
in

g

P
ro

jectio
n
 L

ay
er

P
ro

jectio
n
 L

ay
er

P
ro

jectio
n
 E

m
b
ed

d
in

g
K

ey
s

P
red

ictio
n
 L

ay
er

Q
u
ery

Contrastive Loss

S
en

ten
ce In

p
u
ts

Embedded 

sample 2

//

//

D
eq

u
eu

e &
 en

q
u
eu

e

online

target

Figure 1: The model structure of MoCoSE. The embedding layer consists of a Bert embedding layer with additional
data augmentation. The pooler, projection, and predictor layers all keep the same dimensions with the encoder layer.
The MoCoSE minimizes contrastive loss between query, queue and keys (i.e. InfoNCE loss).

increase the negative sample number and increase283

the performance of the model.284

Contrastive Loss Similar to MoCo, we also use285

InfoNCE(Oord et al., 2018) as contrastive loss, as286

shown in eq.(3).287

L = − log
exp (q · k/τ)

exp (q · k/τ) +
∑

l exp (q · l/τ)
(3)288

Where, q refers to the query vectors obtained289

by the online branch; k refers to the key vectors290

obtained by the target branch; and l is the negative291

samples in the queue; τ is the temperature parame-292

ter.293

4 Experiments294

4.1 Settings295

We train with a randomly selected corpus of296

1 million sentences from the English Wikipedia,297

and we conduct experiments on seven standard298

semantic text similarity (STS) tasks, including STS299

2012—2016(Agirre et al., 2012, 2013, 2014, 2015,300

2016), STSBenchmark(Cer et al., 2017) and SICK-301

Relatedness(Wijnholds and Moortgat, 2021). The302

SentEval toolbox is used to evaluate our model, and303

we use the Spearman’s correlation to measure the304

performance. We start our training by loading pre-305

trained Bert checkpoints1 and use the [CLS] token306

embedding of the model output as the sentence307

embedding. In addition to the semantic similarity308

1https://huggingface.co/models

task, we also evaluate on seven transfer learning 309

tasks to test the generalization performance of the 310

model. 311

Training Details We train our MoCoSE model 312

using NVIDIA RTX3090 GPUs. We use Python 313

3.8 and PyTorch version v1.8. We use Trans- 314

formers 4.4.2(Wolf et al., 2020) and Datasets 315

1.8.0(Lhoest et al., 2021) from Huggingface. 316

The learning rate of MoCoSE-BERT-base is set 317

to 3e-5, and for MoCoSE-BERT-large is 1e-5. With 318

a weight decay of 1e-6, the batch size of the base 319

model is 64, and the batch size of the large model 320

is 32. We validate the model every 100 step and 321

train for one epoch. The EMA decay weight η is 322

incremented from 0.85 to 1.0 by the cosine func- 323

tion. 324

4.2 Main Results 325

We compare the proposed MoCoSE with sev- 326

eral commonly used methods and the current state- 327

of-the-art contrastive learning method on the text 328

semantic similarity (STS) task, including average 329

GloVe embeddings(Pennington et al., 2014), aver- 330

age BERT or RoBERTa embeddings, BERT-flow, 331

BERT-whitening, ISBERT(Zhang et al., 2020), De- 332

CLUTR(Giorgi et al., 2021), CT-BERT(Carlsson 333

et al., 2021) and SimCSE. 334

As shown in Table 1, the average Spearman’s 335

correlation of our best model is 77.27%, outper- 336

forming unsupervised SimCSE with BERT-base. 337

Our model outperforms SimCSE significantly on 338

4



Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Unsupervised Models (Base)

GloVe (avg.) 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERT (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT-flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERT 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERT 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
RoBERTa (first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTa-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERT 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
MoCoSE 71.48 81.40 74.47 83.45 78.99 78.68 72.44 77.27

Unsupervised Models (Large)
SimCSE-RoBERTa 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
SimCSE-BERT 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
MoCoSE-BERT 74.50 84.54 77.32 84.11 79.67 80.53 73.26 79.13

Table 1: Spearman correlation of MoCoSE on seven semantic text similarity tasks. We compared with the state-
of-the-art method SimCSE. MoCoSE achieves the best results with both BERT-base and BERT-large pre-trained
models.

Model MR CR SUBJ MPQA SST TREC MRPC Avg.
Unsupervised Model (Base)

GloVe (avg.) 77.25 78.30 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought 76.50 80.10 93.60 87.10 82.00 92.20 73.00 83.50
Avg. BERT embeddings 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-[CLS]embedding 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
SimCSE-RoBERTa 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84
SimCSE-BERT 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
MoCoSE 81.07 86.43 94.76 89.70 86.35 84.06 75.86 85.46

Unsupervised Model (Large)
SimCSE-RoBERTa 82.74 87.87 93.66 88.22 88.58 92.00 69.68 86.11
MoCoSE-BERT 83.71 89.07 95.58 90.26 87.96 84.92 76.81 86.90

Table 2: Performance of MoCoSE on the seven transfer tasks. We compare the performance of MoCoSE and other
models on the seven transfer tasks evaluated by SentEval, and MoCoSE remains at a comparable level with the
SimCSE.

STS2012, STS2015, and STS-B, and SimCSE per-339

form better on the STS2013 task. Our MoCoSE-340

BERT-large model outperforms SimCSE-BERT-341

Large by about 0.7 on average, mainly on STS12,342

STS13, and STS14 tasks, and maintains a similar343

level on other tasks.344

Furthermore, we also evaluate the performance345

of MoCoSE on the seven transfer tasks provided by346

SentEval. As shown in Table 2, MoCoSE-BERT-347

base outperforms most of the previous unsuper-348

vised method, and is on par with SimCSE-BERT-349

base.350

5 Empirical Study351

We build the MoCoSE with common and ef-352

fective structures from image contrastive learning,353

such as the negative queue, initialization of the 354

queue, data augmentation of text, etc. Therefore, 355

we need to measure how much influence each of 356

them brings. Thus, we set up the following ablation 357

experiments. 358

5.1 EMA Decay Weight 359

We use EMA to update the model parameters for 360

the target branch and find that EMA decay weight 361

affects the performance of the model. The EMA de- 362

cay weight affects the update process of the model, 363

which further affects the vectors involved in the 364

contrastive learning process. Therefore, we set dif- 365

ferent values of EMA decay weight and train the 366

model with other hyperparameters held constant. 367

As shown in Table 3 and Appendix A.4, the best 368

5



result is obtained when the decay weight of EMA is369

set to 0.85. Compared to the choice of EMA decay

EMA 0.5 0.8 0.85 0.9 0.95 0.99
Avg. 75.76 75.19 76.49 76.05 76.08 75.12

Table 3: Effect of EMA decay weight on model per-
formance. The best results are obtained with the EMA
decay weight at 0.85

370
weight in CV (generally larger than 0.99), the value371

of 0.85 in our model is smaller, which means that372

the model is updated faster. We speculate that this373

is because the NLP model is more sensitive in the374

fine-tuning phase and the model weights change375

more after each step of the gradient, so a faster376

update speed is needed.377

5.2 Projection and Prediction378

Several papers have shown (e.g. Section F.1379

in BYOL(Grill et al., 2020)) that the structure of380

projection and prediction layers in a contrastive381

learning framework affects the performance of the382

model. We combine the structure of projection and383

prediction with different configurations and train384

them with the same hyperparameters. As shown385

in Table 4, the best results are obtained when the386

projection is 1 layer and the prediction has 2 layers.387

The experiments also show that the removal of388

projection layers degrades the performance of the389

model.390

Proj. Pred. Corr. Proj. Pred. Corr.
1 60.46 1 66.96

0 2 62.67 2 2 66.29
3 63.62 3 61.57
1 76.74 1 31.51

1 2 76.89 3 2 43.97
3 76.24 3 39.13

Table 4: The impact of different combinations of pro-
jection and predictor on the model.

5.3 Data Augmentation391

We investigate the effect of some widely-used392

data augmentation methods (token shuffle, cut off,393

dropout, and adversarial attack) on the model per-394

formance. As shown in Table 5, the experiments395

show that cut off and token shuffle do not improve,396

even slightly hurt the model’s performance. Only397

the adversarial attack (we use FGSM) has slight398

improvement on the model. Therefore, in our ex-399

periments, we added FGSM as a data augmentation400

of our model in addition to dropout. Please refer to 401

Appendix A.6 for more FGSM parameters results.

Augmentation Methods Avg.
Dropout only 76.76
+ FGSM 77.04
+ Position_shuffle (True) 73.80
+ Token drop (prob=0.1) 41.32
+ Feature drop (prob=0.01) 76.33
+ Feature drop (prob=0.1) 71.62

Table 5: The effect of different data augmentation meth-
ods.

402
We speculate that the reason token cut off is detri- 403

mental to the model results is that the cut off per- 404

turbs too much the vector formed by the sentences 405

passing through the embedding layer. Removing 406

one word from the text may have a significant im- 407

pact on the semantics. We tried two parameters 0.1 408

and 0.01 for the feature cut off, and with these two 409

parameters, the results of using the feature cut off 410

is at most the same as without using feature the cut 411

off, so we discard the feature cut off method. More 412

results can be found in Appendix A.5. 413

The token shuffle is slightly, but not significantly, 414

detrimental to the results of the model. This may 415

be due to that BERT is not sensitive to the position 416

of token. We did not add token shuffle to the final 417

data augmentation. 418

Among the data augmentation methods, only 419

FGSM together with dropout improves the results, 420

which may due to the adversarial attack slightly en- 421

hances the difference between the two samples and 422

therefore enables the model to learn a better repre- 423

sentation in more difficult contrastive samples. 424

5.4 Predictor Mapping Dimension 425

The predictor maps the representation to a fea- 426

ture space of a certain dimension. We investigate 427

the effect of the predictor mapping dimension on 428

the model performance. Table 6.a shows that the 429

predictor mapping dimension can seriously impair 430

the performance of the model when it is small, and 431

when the dimension rises to a suitable range or 432

larger, it no longer has a significant impact on the 433

model. This may be related to the intrinsic dimen- 434

sion of the representation, which leads to the loss 435

of semantic information in the representation when 436

the predictor dimension is smaller than the intrinsic 437

dimension of the feature, compromising the model 438

performance. We keep the dimension of the predic- 439

tor consistent with the encoder in our experiments. 440

6



More results can be found in Appendix A.7.

Dim Avg.
256 73.91
512 76.07
768 77.04
1024 77.02
2048 77.03

(a)

Size Avg.
32 73.86
64 77.25
128 76.78
256 76.62

(b)

Table 6: (a) Impact of prediction dimension on model
performance. (b) Impact of batch size on the model
with fixed queue size.

441

5.5 Batch Size442

With a fixed queue size, we investigated the ef-443

fect of batch size on model performance, the results444

in Table 6.b, and the model achieves the best per-445

formance when the batch size is 64. Surprisingly446

the model performance does not improve with in-447

creasing batch size, which contradicts the general448

experience in image contrastive learning. This is449

one of our motivations for further exploring the450

effect of the number of negative samples on the451

model.452

5.6 Size of Negative Sample Queue453

The queue length determines the number of neg-454

ative samples, which direct influence performance455

of the model. Thus, we study in detail on how456

the length of the negative sample queue affect the457

model. We first test the initialization of negative458

sample queue with different initial size, and not459

surprisingly to find the impact on the final perfor-460

mance. We suppose this may be due to the random461

interference introduced to the training by filling the462

initial negative sample queue. This interference463

causes a degradation of the model’s performance464

when the initial negative sample queue becomes465

longer. To reduce the drawbacks carried out by466

this randomness, we changed the way the negative467

queue is initialized. We initialize a smaller negative468

queue, then fill the queue to its set length in the first469

few updates, and then update normally. According470

to experiments, the model achieves the highest re-471

sults when the negative queue size set to 512 and472

the smaller initial queue size set to 128.473

According to the experiments of MoCo, the in-474

crease of queue length improves the model perfor-475

mance. However, as shown in Table 7, increasing476

the queue length with a fixed batch size decreases477

our model performance, which is not consistent478

with the observation in MoCo. We speculate that 479

this may be due to that NLP models updating faster, 480

and thus larger queue lengths store too much out- 481

dated feature information, which is detrimental to 482

the performance of the model. Combined with the 483

observed effect of batch size, we further conjec- 484

ture that the effect of the negative sample queue 485

on model performance is controlled by the model 486

history information contained in the negative sam- 487

ple in the queue. See Appendix A.8 and A.9 for 488

more results of the effect of randomization size and 489

queue length. 490

Queue
Size

Initial
Size

Avg.
Queue
Size

Initial
Size

Avg.

128

1 76.40

1024

1 76.63
32 75.92 128 54.15
64 76.16 256 76.20
128 76.87 512 76.57

256

1 76.19 1024 76.45
64 76.34

4096

1 50.17
128 76.39 128 49.13
256 75.81 1024 50.42

512

1 75.38 2048 38.74
128 77.30 4096 45.80
256 76.94
512 76.29

Table 7: Impact of queue length on model performance
with fixed batch size.

In our experiments, we found that simply in- 491

creasing the batch size does not improve the model 492

performance, while adding a negative queue can 493

give us better results. We speculate that the neg- 494

ative queue contains not only a larger number of 495

negative samples, but also contains information 496

about the history of the model, which makes harder 497

negative samples, thus improving the performance 498

of the model. To test this hypothesis, we train a 499

new model with the same structure as our model, 500

but with different ways of updating the negative 501

sample queue. 502

We propose two comparison models. The first 503

model maintains a queue of sentence samples, 504

which is also updated at each training step using 505

a first-in-first-out approach. At each step, the cur- 506

rent target network is used to generate the latest 507

sentence embedding to fill the negative sample 508

queue, and then the model is updated using the 509

same loss function. The comparison model uses 510

the current target model to obtain the negative sam- 511

ple queue, thus reducing the historical informa- 512

tion in the queue. Another comparison model uses 513

7



Corr. normal latest oldest
Avg. 77.30 76.65 76.04

Table 8: Impact of changing the update strategy of the
queue on the model with fixed batch size and queue
length.

samples from older queue as negative samples. It514

maintains a negative sample queue of length 1024,515

but use only the 512 negative samples queued first,516

thus using older negative samples for contrastive517

learning.518

The results of these two comparison models are519

shown in the Table 8, and they both reduce the520

model performance. So we find that the increase521

in queue length affects the model performance not522

only because of the increased number of negative523

samples, but more because it provides historical524

information within a certain range.525

5.7 Maximum Traceable Distance Metric526

In order to explore more secrets of negative527

queue, we define the Maximum Traceable Distance528

Metric as eq.4.529

dtrace =
1

1− η
+
queue_size
batch_size

(4)530

The η refers to the decay weight of EMA. The531

dtrace calculates the update steps between the cur-532

rent online branch and the oldest negative samples533

in the queue. The first term of the formula rep-534

resents the traceable distance between target and535

online branch due to the EMA update mechanism.536

The second term represents the traceable distance537

between the negative samples in the queue and the538

current target branch due to the queue’s first-in-539

first-out mechanism. The longer traceable distance,540

the wider the temporal range of the historical in-541

formation contained in the queue. We obtained542

different value of traceable distance by jointly ad-543

just the decay weight, queue size, and batch size.544

As shown in Figure 2 and Figure 3, the best result545

of BERT base is obtained with dtrace is set around546

14.67. The best result of Bert large shows the sim-547

ilar phenomenon, see Appendix A.10 for details.548

This further demonstrates that in text contrastive549

learning, the historical information used should be550

not too old and not too new, and the appropriate551

traceable distance between branches is also impor-552

tant. Some derivations about eq.4 can be found in553

Appendix A.11.554

0 5 10 15 20
Maximum Traceable Distance

75.8

76.0

76.2

76.4

76.6

76.8

77.0

C
or

re
la

tio
n

SimCSE-unsup-bert-base

MoCoSE

Figure 2: The relationship between traceable distance
and model correlation.

6 8 10 12 14 16 18 20
Maximum Traceable Distance

75.5

76.0

76.5

77.0

77.5

C
or

re
la

tio
n

64
128
256

Figure 3: The batch size does not invalidate the trace-
able distance. The traceable distance needs to be main-
tained within a reasonable range even for different
batch sizes. This explains why increasing the batch
size only does not improve the performance, because
increasing the batch size only can cause the distance
changes into unsuitable regions.

6 Conclusion 555

In this work, we propose MoCoSE, a new nega- 556

tive sample queue based text contrastive learning 557

framework that surpasses the current SOTA model. 558

We further delve into the application of the nega- 559

tive sample queue to text contrastive learning and 560

propose maximum traceable distance metric to ex- 561

plain the relation between the queue size and model 562

performance. We also investigate the application 563

of multiple text augmentation methods in our pro- 564

posed contrastive learning model. 565

In addition, we observe that the performance 566

of negative queue in MoCoSE is quite different 567

from the performance of different image constra- 568

tive learning models (e.g., MoCo, MoCoV3), and 569

therefore, further experiments are needed to inves- 570

tigate in depth why negative queue mechanisms 571

between modalities exhibit such differences, which 572

will be our future work. 573

8



References574

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel575
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei576
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada577
Mihalcea, German Rigau, Larraitz Uria, and Janyce578
Wiebe. 2015. Semeval-2015 task 2: Semantic tex-579
tual similarity, english, spanish and pilot on inter-580
pretability. In Proceedings of the 9th International581
Workshop on Semantic Evaluation (SemEval 2015),582
pages 252–263.583

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel584
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei585
Guo, Rada Mihalcea, German Rigau, and Janyce586
Wiebe. 2014. Semeval-2014 task 10: Multilingual587
semantic textual similarity. In Proceedings of the588
8th International Workshop on Semantic Evaluation589
(SemEval 2014), pages 81–91.590

Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T.591
Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, Ger-592
man Rigau, and Janyce Wiebe. 2016. Semeval-593
2016 task 1: Semantic textual similarity, monolin-594
gual and cross-lingual evaluation. In Proceedings of595
the 10th International Workshop on Semantic Evalu-596
ation (SemEval-2016), pages 497–511.597

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor598
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-599
lot on semantic textual similarity. In *SEM 2012:600
The First Joint Conference on Lexical and Compu-601
tational Semantics – Volume 1: Proceedings of the602
main conference and the shared task, and Volume603
2: Proceedings of the Sixth International Workshop604
on Semantic Evaluation (SemEval 2012), volume 1,605
pages 385–393.606

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-607
Agirre, and Weiwei Guo. 2013. *sem 2013 shared608
task: Semantic textual similarity. In Second Joint609
Conference on Lexical and Computational Seman-610
tics (*SEM), Volume 1: Proceedings of the Main611
Conference and the Shared Task: Semantic Textual612
Similarity, volume 1, pages 32–43.613

Fredrik Carlsson, Magnus Sahlgren, Evangelia614
Gogoulou, Amaru Cuba Gyllensten, and Erik Ylipää615
Hellqvist. 2021. Semantic re-tuning with contrastive616
tension. In ICLR 2021: The Ninth International617
Conference on Learning Representations.618

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo619
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-620
2017 task 1: Semantic textual similarity multilingual621
and crosslingual focused evaluation. In Proceed-622
ings of the 11th International Workshop on Semantic623
Evaluation (SemEval-2017), pages 1–14.624

Pengguang Chen, Shu Liu, and Jiaya Jia. 2021. Jig-625
saw clustering for unsupervised visual representa-626
tion learning. In Proceedings of the IEEE/CVF Con-627
ference on Computer Vision and Pattern Recogni-628
tion, pages 11526–11535.629

Ting Chen, Simon Kornblith, Mohammad Norouzi, 630
and Geoffrey Hinton. 2020. A simple framework for 631
contrastive learning of visual representations. In In- 632
ternational conference on machine learning, pages 633
1597–1607. PMLR. 634

Xinlei Chen and Kaiming He. 2021. Exploring simple 635
siamese representation learning. In Proceedings of 636
the IEEE/CVF Conference on Computer Vision and 637
Pattern Recognition, pages 15750–15758. 638

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 639
Kristina N. Toutanova. 2018. Bert: Pre-training of 640
deep bidirectional transformers for language under- 641
standing. In Proceedings of the 2019 Conference of 642
the North American Chapter of the Association for 643
Computational Linguistics: Human Language Tech- 644
nologies, Volume 1 (Long and Short Papers), pages 645
4171–4186. 646

Aleksandr Ermolov, Aliaksandr Siarohin, Enver 647
Sangineto, and Nicu Sebe. 2021. Whitening for self- 648
supervised representation learning. In ICML 2021: 649
38th International Conference on Machine Learning, 650
pages 3015–3024. 651

Hongchao Fang and Pengtao Xie. 2020. Cert: Con- 652
trastive self-supervised learning for language under- 653
standing. arXiv preprint arXiv:2005.12766. 654

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie- 655
Yan Liu. 2019. Representation degeneration prob- 656
lem in training natural language generation models. 657
arXiv preprint arXiv:1907.12009. 658

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 659
Simcse: Simple contrastive learning of sentence em- 660
beddings. arXiv preprint arXiv:2104.08821. 661

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader. 662
2021. DeCLUTR: Deep contrastive learning for 663
unsupervised textual representations. In Proceed- 664
ings of the 59th Annual Meeting of the Association 665
for Computational Linguistics and the 11th Interna- 666
tional Joint Conference on Natural Language Pro- 667
cessing (Volume 1: Long Papers), pages 879–895, 668
Online. Association for Computational Linguistics. 669

Ian J. Goodfellow, Jonathon Shlens, and Christian 670
Szegedy. 2015. Explaining and harnessing adversar- 671
ial examples. In ICLR 2015 : International Confer- 672
ence on Learning Representations 2015. 673

Jean-Bastien Grill, Florian Strub, Florent Altché, 674
Corentin Tallec, Pierre H. Richemond, Elena 675
Buchatskaya, Carl Doersch, Bernardo Avila Pires, 676
Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, 677
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and 678
Michal Valko. 2020. Bootstrap your own latent: A 679
new approach to self-supervised learning. In Ad- 680
vances in Neural Information Processing Systems, 681
volume 33, pages 21271–21284. 682

9

https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72


R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimen-683
sionality reduction by learning an invariant map-684
ping. In 2006 IEEE Computer Society Confer-685
ence on Computer Vision and Pattern Recognition686
(CVPR’06), volume 2, pages 1735–1742.687

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and688
Ross Girshick. 2020. Momentum contrast for unsu-689
pervised visual representation learning. In Proceed-690
ings of the IEEE/CVF Conference on Computer Vi-691
sion and Pattern Recognition, pages 9729–9738.692

Chih-Hui Ho and Nuno Nvasconcelos. 2020. Con-693
trastive learning with adversarial examples. In Ad-694
vances in Neural Information Processing Systems,695
volume 33, pages 17081–17093.696

Quentin Lhoest, Albert Villanova del Moral, Patrick697
von Platen, Thomas Wolf, Yacine Jernite, Abhishek698
Thakur, Lewis Tunstall, Suraj Patil, Mariama Drame,699
Julien Chaumond, Julien Plu, Joe Davison, Simon700
Brandeis, Victor Sanh, Teven Le Scao, Kevin Can-701
wen Xu, Nicolas Patry, Steven Liu, Angelina702
McMillan-Major, Philipp Schmid, Sylvain Gug-703
ger, Nathan Raw, Sylvain Lesage, Anton Lozhkov,704
Matthew Carrigan, Théo Matussière, Leandro von705
Werra, Lysandre Debut, Stas Bekman, and Clément706
Delangue. 2021. huggingface/datasets: 1.13.2.707

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,708
Yiming Yang, and Lei Li. 2020. On the sentence709
embeddings from pre-trained language models. In710
Proceedings of the 2020 Conference on Empirical711
Methods in Natural Language Processing (EMNLP),712
pages 9119–9130.713

Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi.714
2021. Prototypical contrastive learning of unsuper-715
vised representations. In ICLR 2021: The Ninth716
International Conference on Learning Representa-717
tions.718

Jovana Mitrovic, Brian McWilliams, and Melanie Rey.719
2020. Less can be more in contrastive learning. ”I720
Can’t Believe It’s Not Better!” NeurIPS 2020 work-721
shop.722

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.723
2018. Representation learning with contrastive pre-724
dictive coding. arXiv preprint arXiv:1807.03748.725

Jeffrey Pennington, Richard Socher, and Christopher726
Manning. 2014. GloVe: Global vectors for word727
representation. In Proceedings of the 2014 Confer-728
ence on Empirical Methods in Natural Language729
Processing (EMNLP), pages 1532–1543, Doha,730
Qatar. Association for Computational Linguistics.731

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou.732
2021. Whitening sentence representations for bet-733
ter semantics and faster retrieval. arXiv preprint734
arXiv:2103.15316.735

Dong Wang, Ning Ding, Piji Li, and Haitao Zheng.736
2021. Cline: Contrastive learning with semantic737

negative examples for natural language understand- 738
ing. In ACL 2021: 59th annual meeting of the Asso- 739
ciation for Computational Linguistics, pages 2332– 740
2342. 741

Gijs Wijnholds and Michael Moortgat. 2021. Sick-nl: 742
A dataset for dutch natural language inference. In 743
Proceedings of the 16th Conference of the European 744
Chapter of the Association for Computational Lin- 745
guistics: Main Volume, pages 1474–1479. 746

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 747
Chaumond, Clement Delangue, Anthony Moi, Pier- 748
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- 749
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 750
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 751
Teven Le Scao, Sylvain Gugger, Mariama Drame, 752
Quentin Lhoest, and Alexander M. Rush. 2020. 753
Transformers: State-of-the-art natural language pro- 754
cessing. In Proceedings of the 2020 Conference on 755
Empirical Methods in Natural Language Processing: 756
System Demonstrations, pages 38–45, Online. Asso- 757
ciation for Computational Linguistics. 758

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian 759
Khabsa, Fei Sun, and Hao Ma. 2020. Clear: Con- 760
trastive learning for sentence representation. arXiv 761
preprint arXiv:2012.15466. 762

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, 763
Wei Wu, and Weiran Xu. 2021. Consert: A con- 764
trastive framework for self-supervised sentence rep- 765
resentation transfer. In ACL 2021: 59th annual 766
meeting of the Association for Computational Lin- 767
guistics, pages 5065–5075. 768

Jure Zbontar, Li Jing, Ishan Misra, yann lecun, 769
and Stephane Deny. 2021. Barlow twins: Self- 770
supervised learning via redundancy reduction. In 771
ICML 2021: 38th International Conference on Ma- 772
chine Learning, pages 12310–12320. 773

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim, 774
and Lidong Bing. 2020. An unsupervised sentence 775
embedding method by mutual information maxi- 776
mization. In Proceedings of the 2020 Conference on 777
Empirical Methods in Natural Language Processing 778
(EMNLP), pages 1601–1610. 779

10

https://doi.org/10.5281/zenodo.5570305
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


A Appendix780

A.1 Symmetric Two-branch Structure781

We remove the online branch predictor and set782

the EMA decay weight to 0, i.e., make the struc-783

ture and weights of the two branches identical. As784

shown in Figure 4, it is clear that the model is col-785

lapsing at this point. And we find that the model786

always works best at the very beginning, i.e., train-787

ing instead hurts the performance of the model. In788

addition, as the training proceeds, the correlation789

coefficient of the model approaches 0, i.e., the pre-790

diction results have no correlation with the actual791

labeling. At this point, it is clear that a collapse of792

the model is observed. We observed such a result793

for several runs, so we adopted a strategy of dou-794

ble branching with different structures plus EMA795

momentum updates in our design. Subsequent ex-796

periments demonstrated that this allowed the model797

to avoid from collapsing.

0 2000 4000 6000 8000 10000 12000 14000
Training Step

0

5

10

15

20

25

30

C
or

re
la

tio
n

Symmetrical

Figure 4: Experiment on a symmetric two-branch struc-
ture with EMA decay weight set to 0.

798

0 2000 4000 6000 8000 10000 12000 14000 16000
Training Step

0

5

10

15

20

25

C
or

re
la

tio
n

with predictor

Figure 5: Experiment after adding predictor on the on-
line branch with EMA decay weight set to 0.

We add predictor to the online branch and set the799

EMA decay weight to 0. We find that the model800

also appears to collapse and has a dramatic oscilla- 801

tion in the late stage of training, as shown in Figure 802

5. 803

A.2 Pseudo-Code for Training MoCoSE 804

The PyTorch style pseudo-code for training Mo- 805

CoSE with the negative sample queue is shown in 806

Algorithm 1. 807

A.3 Distribution of Singular Values 808

Similar to SimCSE, we plot the distribution of 809

singular values of MoCoSE sentence embeddings 810

with SimCSE and Bert for comparison. As illus- 811

trated in Figure 6, our method is able to alleviate 812

the rapid decline of singular values compared to 813

other methods, making the curve smoother, i.e., 814

our model is able to make the sentence embedding 815

more isotropic.

0 100 200 300 400 500 600 700 800
index

0

50

100

150

200

250

300

350

Si
ng

ul
ar

 V
al

ue
s

MoCoSE
SimCSE
BERT-base

Figure 6: Singular value distributions of sentence em-
bedding matrix from sentences in STS-B.

816

A.4 Experiment Details of EMA 817

Hyperparameters 818

The details of the impact caused by the EMA 819

parameter are shown in the Figure 7. We perform 820

this experiment with all parameters held constant 821

except for the EMA decay weight.

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
EMA decay

74.5

75.0

75.5

76.0

76.5

77.0

C
or

re
la

tio
n

Figure 7: Effect of EMA decay weight on model per-
formance.

822

11



Algorithm 1: Momentum Contrastive Sentence Embedding
Input:
D : Training data set ;
Q : Negative Sample Queue;
Ea : Embedding with random data augmentation;
θo, θt : weights of online branch and target branch;
Optimizer : Adam optimizer
K,Ks: Queue size, Queue size at initialisation;
η : ema decay ema and ema scheduling strategy;
τ Temperature parameters
Output: MoCoSE model θo

1 Initializing the queue Q with size Ks;
2 foreach B ∈ D do
3 vo, vt ← Ea (B) , Ea (B) // Using data Augmentation to generate

different views
4 zo ← θo (vo) // (N, d), N is batch size, d is dimension of sentence

embedding
5 zt ← θt (vt)

6 lzo,zt,Q ← − log exp (zo·zt/τ)
exp (zo·zt/τ)+

∑
x∈Q exp (zo·x/τ) // compute contrastive loss

using InFoNCE
7 optimizer(lzo,zt,Q, θo) // Update only the parameters of the online

branch according to the loss gradient;
8 θt ← η ∗ θt + (1− η) ∗ θo // Update the parameters of the target

branch using EMA
9 enqueue(Q, vt) // Update the negative sample queue Q

10 dequeue(Q)
11 return θo

12



A.5 Details of Different Data Augmentations823

We use only dropout as a baseline for the results824

of data augmentations. Then, we combine dropout825

with other data augmentation methods and study826

their effects on model performance. The results are827

shown in Figure 8.828

dropout

+FGSM(5e-9)

Position_shuffle

+Token drop(0.01)

+Feature drop(0.1)

Augmentation

68

70

72

74

76

C
or

re
la

tio
n

Figure 8: Impact of four additional data enhancements
with dropout combinations on the model.

A.6 Experiment Details of FGSM829

We test the effect of the intensity of FGSM on830

the model performance. We keep the other hyper-831

parameters fixed, vary the FGSM parameters (1e-9,832

5e-9, 1e-8, 5e-8). As seen in Table 9, the average833

results of the model are optimal when the FGSM834

parameter is 5e-9.835

Epsilon 1e-9 5e-9 1e-8 5e-8 No
Avg. 75.61 76.64 75.39 76.62 76.26

Table 9: Different parameters of FGSM in data aug-
mentation affect the model results.

A.7 Dimension of Sentence Embedding836

In both BERT-whitening (Su et al., 2021) and837

MoCo (He et al., 2020), it is mentioned that the838

dimension of embedding can have some impact on839

the performance of the model. Therefore, we also840

changed the dimension of sentence embedding in841

MoCoSE and trained the model several times to842

observe the impact of the embedding dimension.843

Because of the queue structure of MoCoSE, we844

need to keep the dimension of negative examples845

consistent while changing the dimension of sen-846

tence embedding. As shown in the Figure 9, when847

the dimension of Embedding is low, this causes con-848

siderable damage to the performance of the model;849

while when the dimension rises to certain range, 850

the performance of the model stays steady. 851

256 512 768 1024 2048
Dimension of Embedding

73

74

75

76

77

C
or

re
la

tio
n

Figure 9: Impact of dimensions of the sentence embed-
ding.

A.8 Details of Random Initial Queue Size 852

We test the influence of random initialization 853

size of the negative queue on the model perfor- 854

mance when queue length and batch size are fixed. 855

As seen in Figure 10, random initialization does 856

have some impact on the model performance. 857

1 16 32 64 128 256 512
Initial Size

75.0

75.5

76.0

76.5

77.0

77.5

C
or

re
la

tio
n

Figure 10: The effect of the initial queue size on the
model results when the queue length is 512 and the
batch size is 64.

A.9 Queue Size and Initial Size 858

We explored the effect of different combinations 859

of initial queue sizes and queue length on the model 860

performance. The detailed experiment results are 861

shown in Figure 11. It can be found that model 862

performance rely deeply on initialization queue 863

size. Yet, too large queue size will make the model 864

extremely unstable. This is quite different from 865

the observation of negative sample queue in image 866

contrastive learning. 867

13



128 256 512 1024 4096
Queue Size

40

50

60

70

C
or

re
la

tio
n

128 256 512 1024
Queue Size

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5
C

or
re

la
tio

n

begin_size
1
32
64
128
256
512
1024

begin_size
1
32
64
128
256
512
1024
2048
4096

Figure 11: The impact of different initial negative sample queue sizes for different initial sizes on model perfor-
mance. (left):Zoomed view. (right):Overview with different negative queue size. Results of different initial size
under same queue size.

A.10 Maximum Traceable Distance in868

Bert-large869

We also train mocose with different batch size870

and queue size on Bert-large. As shown in Fig-871

ure 12, we observe the best model performance in872

MoCoSE-BERT-large within the appropriate Maxi-873

mum Traceable Distance range (around 22). Once874

again, this suggests that even on BERT-large, the875

longer queue sizes do not improve the model per-876

formance indefinitely. Which also implies that the877

history information contained in the negative sam-878

ple queue needs to be kept within a certain range879

on BERT-large as well.880

5 10 15 20 25 30 35 40 45
Maximum Traceable Distance

76.0

76.5

77.0

77.5

78.0

78.5

79.0

C
or

re
la

tio
n

Figure 12: The relationship between mtd and correla-
tion of MoCoSE-BERT-large. It can be seen that even
at large model, peaks occur within a certain mtd range.

A.11 Proof of Maximum Traceable Distance881

Here, we prove the first term of the formula for882

Maximum Traceable Distance. Due to the EMA883

update mechanism, the weight of target branch is a884

weighted sum of the online weight in update history. 885

The first term of Maximum Traceable Distance 886

calculate the weighted sum of the historical update 887

steps given a certain EMA decay weight η. From 888

the principle of EMA mechanism, we can get the 889

following equation. 890

Sn =

k∑
i=0

(1− η) · ηi · (i+ 1) (5) 891

Sn represents the update steps between online and 892

target branch due to the EMA mechanism. Since 893

EMA represents the weighted sum, we need to ask 894

for Sn to get the weighted sum. 895

896

We can calculate Sn as: 897

Sn = (−1) ∗ ηk+1 ∗ (k + 1)−
(
1− ηk+1

)
(η − 1)

(6) 898

As k tends to infinity, the limit for Sn can be calcu- 899

lated as following: 900

lim
k→∞

Sn = lim
k→∞

[
(−1) ∗ ηk+1 ∗ (k + 1)−

(
1− ηk+1

)
(η − 1)

]
(7) 901

It is obvious to see that the limit of the equation 7 902

consists of two parts, so we calculate the limit of 903

these two parts first. 904

lim
k→∞

(−1) ∗ ηk+1 ∗ (k + 1)
η<1
= 0 (8) 905

The limit of the first part can be calculated as 0. 906

14



Next, we calculate the limit of the second part.907

lim
k→∞

(
1− ηk+1

)
(η − 1)

η<1
=

1

1− η
(9)908

We calculate the limit of the second part as 1
1−η .909

Since the limits of both parts exist, we can obtain910

the limit of Sn by the law of limit operations.911

lim
k→∞

Sn = lim
k→∞

[
(−1) ∗ ηk+1 ∗ (k + 1)−

(
1− ηk+1

)
(η − 1)

]

= lim
k→∞

(−1) ∗ ηk+1 ∗ (k + 1)− lim
k→∞

(
1− ηk+1

)
(η − 1)

=
1

1− η
(10)912

15


