MuTIS: Enhancing Reasoning Efficiency through Multi-Turn Intervention
Sampling in Reinforcement Learning

Anonymous EMNLP submission

Abstract

Long chain-of-thought (CoT) reasoning have
recently attracted significant attention, with
models such as DeepSeek-R1 achieving re-
markable performance across various reasoning
benchmarks. However, a common challenge
to these models is the "overthinking" problem,
leading to excessive intermediate steps and di-
minished inference efficiency. While numer-
ous efforts have targeted reduction in generated
tokens, these frequently encounter an inher-
ent trade-off: enhancements in efficiency often
come at the cost of degradation in performance.
To overcome such challenges, we introduce the
Multi-Turn Intervention Sampling Framework
(MUTIS). Our framework leverages multi-turn
interventions within rollouts to produce high-
quality, concise reasoning chains. It fine-tunes
reasoning models through reinforcement learn-
ing, demonstrably surpassing the previously de-
scribed accuracy-efficiency trade-off. Through
extensive experiments on challenging mathe-
matical reasoning benchmarks, our approach
achieves a substantial 11.3% improvement in
accuracy while concurrently reducing token uti-
lization by an average of 60.1%. Code, data,
and models will be fully open-sourced.

1 Introduction

The advent of DeepSeek-R1 (Guo et al., 2025) in
early 2025 marked a new avenue for efficiently
training large language models (LLMs) through
reinforcement learning with verifiable rewards
(RLVR). For models with large number of param-
eters (e.g. DeepSeek-R1 671B), long chain-of-
thought (CoT) (Wei et al., 2022; Chen et al., 2025)
has proven particularly effective in enhancing rea-
soning capabilities. This improvement is attributed
to the capacity of long CoT models for deep rea-
soning, extensive exploration, self-verification and
reflection, particularly the "aha moment" described
in R1-Zero.

Accuracy (%, 1) #Token (])
Qwen2.5-Math-1.5B 22.7 659.65
R1-Distill-Qwen-1.5B 38.81 2471.431
MuTIS(Our Method) 45.11 1217.47]

Table 1: To facilitate a fair comparison of token ef-
ficiency, we selected problems that all three models
generate final answers correctly and analyzed their re-
spective token consumption. We calculated the average
accuracy across five mathematical datasets.

However, recent research indicates that long Chain-
of-Thought (CoT) does not show a clear positive
correlation with higher accuracy. ol-like models
(e.g., deepseek-rl, ol-preview) do not show any
advantage over non-o1-like models on the critique
abilities (He et al., 2025; Wu et al., 2025). Redun-
dant reflection words often do not positively con-
tribute to the correction of reasoning trajectories.
These limitations become particularly pronounced
when applying the long CoT paradigm to smaller
models (<3B parameters), a phenomenon termed
the Small Model Learnability Gap (Li et al., 2025).

We investigate this phenomenon by testing
DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025)
on five mathematical reasoning benchmarks'. Our
analysis, averaging results across five datasets, re-
vealed that in 46.6% of the cases (See Figure 4
for details), the distilled model’s outputs became
trapped in unproductive loops. In such instances,
the model typically cycled through the same rea-
soning points repeatedly, unable to generate a final
answer, thereby simultaneously wasting token re-
sources and failing to provide correct solutions.
Furthermore, as shown in Table 1, after distillation
from R1, the Qwen2.5-math base model’s token
consumption increased fourfold even on problems
it solved correctly. These observations align with
recent research (Ivgi et al., 2024; Sui et al., 2025)

"Math500, AMC23, OlympiadBench, Minerva, AIME24.
See Section 4.1 for details.

Question: If f£(x)=(3x-2)/(x-2), what is the value of f(-2)+f(-1)+£(0)? Math-500 w/o Token Limit
R1-Distill:token consumption MuTIS:token consumption 650 —
<think> Okay, so I have this function Z£(x) .. , let <think> To find the value E 3947
me think about how to approach this step by step. of £(-2)+f(-1)+f(0) for 2
First, ... Next..., , , that seems a bit the function f(x)=(3x-2)/ #
high. Let me my calculations.... (x-2), I will evaluate
ElIS‘t... , but let me think . , but... each term separately and 10083
just to make sure... then sum them up. 49.8%

ey, , another thought... but just First, I will calculate...
to make sure, let me compute each step again... Next, I will calculate... o
a0g . . Then, I will calculate... g 17%
Just to I didn't make any arithmetic errors, Finally, I will sum the S
let me add 2 + 5/3 + 1 5 results:.. </think> é
So, I think I've all my steps... </think> >

Math-500 1000 Token Limit

Figure 1: Overview of MuTIS(Our Method). 1) left: A comparative illustration of reasoning chains for the baseline
reasoning model versus MuTIS. 2) right: Performance metrics on mathematical reasoning datasets, showcasing
MuTIS’s significant reduction in token cost alongside enhancements in accuracy.

and underscore two severe drawbacks inherent in
such reasoning models:

1) Repetition. For complex tasks that reasoning
model fails to answer correctly, its output can de-
volve into unproductive, repetitive sequences.

2) Overthinking. For comparatively simpler rea-
soning tasks, these models tend to generate verbose
and redundant thinking processes, resulting in sig-
nificant computational overhead.

We ask the research question: How do we improve
the performance of reasoning models while reduc-
ing the unnecessary tokens? To this end, we intro-
duce a new framework: Multi-Turn Intervention
Sampling (MuTIS). As shown in the figure 1,
through multi-turn intervention sampling in rein-
forcement learning, we curtail the tendencies for
repetition and overthinking, thereby guiding the
model towards more concise and effective reason-
ing. Experimental evaluations demonstrate that,
our method achieves impressive performance
gains over the original model in the challenging
math reasoning datasets.

As depicted in Figure 1, a performance improve-
ment of 32.8% was observed under 1K token limits.
Furthermore, our approach enhances both accu-
racy and efficiency in evaluations conducted with-
out a token limit, translating to significant gains
in both the computational cost-effectiveness and
overall performance of reasoning models. Further-
more, our method possesses excellent scalability
and transferability, as evidenced by its superior
performance on larger-parameter models (e.g., 7B)
and in out-of-domain (OOD) tasks.

2 Related Work

Efficient Reasoning aims to optimize inference cost
for long chain-of-thought (CoT) LLMs while pre-
serving reasoning capabilities, offering practical
benefits such as reduced computational costs and
improved responsiveness for real-world applica-
tions. To address these challenges, researchers
have focused on improving token efficiency in long
CoT LLMs. TALE-EP (Han et al., 2024) use the
LLM itself to estimate a token budget and incor-
porates it into the prompt to guide more token-
efficient responses. RouteLLM (Ong et al., 2024)
trains a query router to dispatch incoming queries
to suitable LLMs based on complexity. Cheng
and Van Durme (2024), Xu et al. (2025), and
Geiping et al. (2025) compress textual reasoning
steps into fewer latent representations to shorten
response lengths. KimiTeam et al. (2025), Sheng
et al. (2024), Yeo et al. (2025), and (Aggarwal and
Welleck, 2025) integrate a length reward into RL
framework. Despite the success of approaches like
L1, current methods have yet to leverage the advan-
tages of Multi-turn intervening reasoning.

3 Method

3.1 Multi-turn Markov Decision Process

We employ the Markov Decision Process (MDP)
and construct a quadruple < S, A,P,R >
to model the multi-turn intervention process.
In contrast to a single-turn rollout, charac-
terized by a single state transition sequence
(so, a0, R1,s7), a multi-turn intervention ex-

Algorithm 1: Multi-Turn Intervention Sam-
pling (MuTIS) RL Training
Inputs: LLM policy 7y (y|x), intervention
prompt ZP, max turns 7, max
response length per turn Len, gz,
auxiliary agent Au, Initial
Reasoning Task 7
Outputs : Updated policy 7y

1 So < Iy Let Hy < SosLet Hpuu <[]
2 fort=1to7 do

3 Let current input x; <— H;_1;
4 Generate response segment 7; ;
s | Inferaction a; from 7/ ;
6 if a; = ‘provide_final_answer‘ then
7 Extract final answer Res from 7/;
8 Append 7; to H 15
9 Break For loop;
10 else if a; = ‘ask_Au’ then
11 Extract question Q; from 7/;
12 Truncate 7/ at the position of Q; to
get 7
13 Obtain answer C** from Au ;
14 Ht%Ht_l@Tt@Qt@Afu;
15 Append (1; ® Q; ® C™) to H o
16 else
17 Ty < T
18 Hi+— H_19m19I1IP;
19 | Append (e ®ZP) to Hpuuis
20 St — Ht;

21 Stinal < @segmenteru” segment;
22 Calculate reward R ¢i5q; and Lyytis(6) ;

23 0" f(0, Lauris(9), Rfinat):
24 return Ty

tends a task over a sequence of transitions:
(807 ap, R17 S1,0A1,° RT; ST)'

S: The state representation comprises: 1) Hy: The
current dialogue history. 2) Cy: Spontaneous Com-
munication content with auxiliary agents. 3) ZP:
Inter-turn prompt perturbations. Besides, H f,
denotes the aggregate of all textual components, in-
cluding model outputs, information from auxiliary
agent.

A: The set of possible actions includes: 1) Con-
tinue the thinking process and performing further
reasoning. 2) provide_final_answer: Provide a
quick response with final answer Res. 3) ask_Au:
Communicate with auxiliary agent Au.

A Training Auxiliary Agent
Example
Integrated
Is my reasoning Rollout
correct?
@2 sl I"IE
Actor
1st Turn 2nd Turn Final Turn
Warning! Invalid Action.
Please try again:
MuTIS RL
Intervention O dat t
Prompt D QLASE

Figure 2: Framework of MuTIS. 1)The LLM initiates
arollout based on the provided mathematical task. 2)If
the LLM’s response exceeds the predefined maximum
length, the rollout is truncated, and an Intervention
Prompt (IP) is inserted. 3)The truncated response,
combined with the IP, forms the input for the LLM to
continue its rollout in the subsequent turn. 4) During
iterative generation, the LLM has the option to consult
an auxiliary agent to verify its reasoning chain. 5)After
multi-turn rollout finished, all outputs from the individ-
ual turns are merged. 5) The integrated rollout is then
used to train the model via reinforcement learning.

P: In our multi-turn intervention framework, the
model’s state transition matrix P is perturbed. This
perturbation encourages the model to deviate from
its initially most probable reasoning trajectory,
thereby facilitating transitions to alternative states
in subsequent rollouts.

R: We utilize a rule-based final answer reward,
denoted as R 4., which is focused on the accuracy
of the final answer. This approach leads to a sparse
reward signal, defined as follows:

1 correct answer within limited turn,
R final = .
0 otherwise.

The sparse nature of R,.. dictates that, at any
given time t, the initial 7' — ¢ — 1 terms in the
sequence of subsequent immediate rewards (i.e.,
T4, Tt41,- - -, "T—1) are zero, assuming the final re-
ward occurs at time T

Gi=Ry1+-+~" 'Ry (R =0,i £ 7).

3.2 Reinforcement Learning with Multi-Turn
Intervention Sampling

The overall pipeline of MuTIS is illustrated in Fig-
ure 2. the core of our method is to guide the rea-
soning model to generate efficient and concise
reasoning chains for RL training.

Reinforcement Learning. We employ the Proxi-
mal Policy Optimization (PPO) algorithm for train-
ing and adopt a rule-based accuracy reward, which
is granted solely based on the correctness of the
final answer. Thus, a reward of 1 is received if the
model outputs the correct final answer within the
predefined turn limit. Conversely, the reward is 0
if the model either fails to respond within this limit
or provides an incorrect answer.

Multi-turn Rollout. To achieve concise reasoning,
we enforce a maximum response length of 2000 to-
kens for each rollout. If a model’s output surpasses
this limit, its rollout is forcibly terminated, and the
model receives the intervention prompt: '"Warn-
ing! Your previous action is invalid. Please try
again:". Following this intervention, the model is
allowed to continue its response, effectively resum-
ing from the point of interruption. This iterative
process repeats until the model provides a final
answer or the dialogue exceeds a predefined maxi-
mum number of turns.

We design a flexible multi-turn termination logic.
When the model outputs predefined terminal re-
sponse tokens, such as “final answer*,

boxed, or the <answer> tags. MuTIS promptly de-
tects these and truncates the rollout at that position,
whereupon the Multi-Turn Intervention also ceases.
This design facilitates the capture of fine-grained
model states and prevents superfluous rollout turns
after an answer has been generated.

Communication Mechanism. We supplement the
maximum response length constraint with an "Aux-
iliary Agent". When the model encounters diffi-
culties during training and requires assistance, it
can communicate with this auxiliary agent to re-
ceive guidance. We have implemented a detection
mechanism for special tokens. During a rollout, if
the LLM utilizes an <ask> tag, our system detects
this and invokes gpt-40 mini to act as an Auxil-
iary Agent. This Auxiliary Agent addresses the
specific query embedded by the LLM within the
<ask> tag and returns a corresponding answer. The
provided answer is then encapsulated in <commu-
nicate> tags and inserted into the ongoing rollout.
Moreover, inspired by the design of Search-R1 (Jin
et al., 2025), any external information, such as the
Auxiliary Agent’s response, is masked during the
loss calculation. This masking prevents interfer-
ence with the optimization of the LLM’s parame-
ters throughout the RL training phase.

Prompt design. To evaluate our experiment’s sen-
sitivity to prompt formulation, we designed and
tested five distinct prompt variants. Specific details
of the prompt designs are provided in the Appendix
B.

We introduce two variants of our method: "multi-
turn intervention with ask" (MuTIS-Ask), which
allows the model to request help from the Auxiliary
Agent, and "multi-turn intervention without ask"
(MuTIS), which does not include this feature.

4 Experiment

4.1 Experiment Setup

MuTIS is implemented using the veRL (Sheng
et al., 2024) reinforcement learning framework. For
the multi-turn generation design, we reference the
codebase from Search-R1(Jin et al., 2025).

Training Dataset. Our primary training data was
derived from the "default" partition of the OpenR1-
Math-220k (Face, 2025) dataset, which initially
comprised over 90,000 samples. We applied sev-
eral filtering criteria to refine this dataset. A de-
tailed description of the filtering process is pro-
vided in the Appendix A.

Additionally, inspired by recent studies suggesting
great benefits of smaller datasets for model train-
ing(Muennighoff et al., 2025; Ye et al., 2025). How-
ever, these researches mainly focus on Supervised
Fine-Tuning(SFT). We aimed to investigate the im-
pact of RL training across different data scales.
Therefore, we conducted a separate set of exper-
iments using 817 data points from the LIMO(Ye
et al., 2025) as training data, with 10% of these
reserved for validation. Our experiments demon-
strated that training on both datasets yielded com-
parably strong performance. However, in terms
of training dynamics, the LIMO dataset showed
a faster convergence rate than open-rl. Conse-
quently, models derived from training on each of
these datasets were selected for subsequent experi-
ments. Further experimental details are provided
in Appendix A.

Evaluation. We assessed our method and base-
line models on five math reasoning benchmarks.
To further assess model generalization, we also
included evaluations on out-of-domain multiple-
choice question datasets. The dataset versions used
were aligned with those available in the LIMO

Accuracy (%, 1) # Tokens (|)
MATHS500 AMC23 Olympiad Minerva AIME24 | MATH500 AMC23 Olympiad Minerva AIME24
DeepSeek-R1-Distill-Qwen-1.5B
R1-Distill (2025) 69.4 55.0 28.9 239 16.7 10083 15927 20686 14410 25549
Be Concise (2024) 69.8 475 322 235 16.7 8818 17773 18535 9639 26130
Fixed Budget (2024) 69.8 52.5 30.2 22.8 16.7 9753 17648 20518 13075 24376
MuTIS (Ours) 74.6 62.5 40.2 29.4 30.0 3060 5847 8248 2586 13640
MuTIS-Ask (Ours) 76.8 62.5 37.2 29.0 20.0 3947 8411 10505 1856 17429
DeepScaleR-1.5B-Preview
DeepScaleR (2025) 78.8 65.0 45.0 342 30.0 6586 9335 13015 11810 19051
Be Concise (2024) 78.4 72.5 452 30.5 26.7 5861 9183 11848 9691 17471
Fixed Budget (2024) 81.0 67.5 43.1 32.0 36.7 5351 8298 12686 10148 18898
L1-Exact (2025) 83.8 67.5 46.2 39.0 26.7 2243 2236 3162 3489 2771
MuTIS (Ours) 84.8 70.0 48.9 35.7 26.7 3564 5809 8667 5647 14892
MuTIS-Ask (Ours) 84.6 75.0 46.8 30.9 36.7 2703 6298 6280 3594 12556

Table 2: This Table provides a visual comparison of accuracy and efficiency between MuTIS and baseline methods
on mathematical reasoning benchmarks. All evaluations were conducted using an identical framework and
consistently aligned hyperparameters to ensure a fair comparison.

repository. We use greedy decoding for all evalua-
tions, which introduces no randomness in the out-
puts. Consequently, the same answer is obtained
regardless of the random seed, ensuring that all
reported data correspond to results from a single
sampling pass. Further evaluation details can be
found in Appendix A.

Our experiments are conducted on R1-Distill Mod-
els (Guo et al., 2025) and DeepScaleR-1.5B-
Preview (Luo et al., 2025).

Baseline. We compared our method against two
types of baselines: one comprising approaches
based on test-time prompt optimization, and the
other concurrent related methods.

1. Be Concise (Renze and Guven, 2024): It ap-
pends the phrase "be concise" to the base prompt.

2. Fixed Budget (Nayab et al., 2024): Prompt
the model to "limit the answer length to [SOME
NUMBER] words." We adopted a similar approach,
augmenting the base prompt by adding the follow-
ing instruction: "The final answer is output before
the maximum number of tokens (max_tokens) is
used:"

3. L1-Exact (Aggarwal and Welleck, 2025) applies
a reinforcement-learning objective that combines a
correctness reward with an exact-length penalty to
optimize both performance and efficiency.

4.2 Evaluation Results

As indicated in Table 2, MuTIS simultaneously im-
proves accuracy while significantly reducing token

T—
> N
S o°
T
® © N
S 3 o

Frequency
Frequency
a
g

IS
S
IS
S

N
S
N
S

0 0
0 1000 2000 3000 4000 5000 6000 4
Thinking Length

1000 2000 3000 4000 5000 6000
Thinking Length

(a) Original Model (b) MuTIS (Ours)

Figure 3: (a) and (b) present an analysis of "thinking
length" distributions on Math-500, specifically for cor-
rectly answered problems. (a) shows the distribution
for the R1-distill (baseline) model, while (b) depicts the
distribution for the same model after MuTIS RL training

consumption. Furthermore, when evaluated on five
mathematical reasoning datasets, the model con-
sistently exhibited performance enhancements to a
notable degree across all of them. In the Olympiad-
bench dataset, our approach achieves a substantial
11.3% improvement in accuracy while concurrently
reducing token utilization by an average of 60.1%.

Enhanced Response Succinctness for Correct
Solutions. As shown in the table 1. For prob-
lems where both the baseline and our model pro-
vided correct answers, our method demonstrated
a remarkable capability for response compression,
yielding more concise yet accurate solutions.

Refinement of Thinking Phase. Recent efforts to
enhance the efficiency of reasoning models have
largely focused on optimizing their Thinking Phase.
Muennighoff et al. (2025) employ test-time scaling
to allocate predefined token budgets, while Ma et al.
(2025) directly bypass the thinking process via sim-

Accuracy (%, T) #Token (|)
MATH500 AMC23 Olympiad | MATH500 AMC23 Olympiad

DeepSeek-R1-Distill-Qwen-7B
86.4 67.5 443 ‘ 5053 9178 12061

R1-Distill

MuTIS (Ours) 87.4 71.5 54.1 2377 3296 5966

Table 3: MuTIS demonstrates superior scalability on
7B models, with the figure presenting a comparison
of accuracy and efficiency between the DeepSeek-R1-
Distill-Qwen-7B and MuTIS.

Accuracy (%, 1) #Token ()
MMLU GPQA R-Bench | MMLU GPQA R-Bench

DeepSeek-R1-Distill-Qwen-1.5B

33.6 338 279 13895
39.2 333 29.7 13677

DeepScaleR-1.5B-Preview

48.2 36.4 30.2 12108 22922
43.7 36.9 36.6 9534 11172

RI1-Distill
MuTIS (Ours)

27880
22553

31043
28139

25653
17836

DeepScaleR
MuTIS (Ours)

Table 4: MuTIS exhibits stability when applied to both
out-of-domain (OOD) data and across diverse data for-
mats.

ple prompting. In line with these research direc-
tions, we analyzed the behavioral changes within
the thinking phase of MuTIS.

As depicted in Figure 3, MuTIS exhibits a substan-
tially reduced thinking length compared to the orig-
inal model. For 93.2% of tasks, MuTIS completes
the Thinking Phase using fewer than 1000 tokens,
achieving an accuracy of 82.4% on these tasks.
This performance strongly demonstrates MuTIS’s
capability for concise and accurate reasoning.

Strong scalability with large-parameter models.
To validate the scalability of our method, we ex-
tended the MuTIS RL Training Pipeline to larger
models(DeepSeek-R1-Distill-Qwen-7B (Guo et al.,
2025)). As presented in the table 3, the experi-
mental results demonstrate that MuTIS achieves
similarly significant improvements on these larger-
parameter models: reasoning efficiency is en-
hanced, token consumption is markedly reduced,
and dataset accuracy is increased. For instance, on
OlympiadBench, MuTIS boosted performance by
9.8% while decreasing token consumption by 50%.
These findings illustrate the superior and scalable
performance of MuTIS across models of varying
parameter sizes. For more detailed experimental
details, please refer to Appendix A

Out-of-Domain Transferability. The enhance-
ments in reasoning capabilities fostered by MuTIS
also demonstrate generalization to different task
formats and transferability to out-of-domain tasks.

~
o
L

Original Model
4 A Ours

o o
L

o o
L L

Repetition Responses (%)

2N W A~ U O
o

o
L

m?% |W

MathSOO AMC Olymplad Mlnerva AIME
Bench

o

Figure 4: This figure illustrates the frequency of the
“Repetition‘ phenomenon across various datasets. Our
method is represented by the right-hand hatched bars,
while the original reasoning model is represented by the
left-hand bars.

Despite being trained exclusively on mathemati-
cal generation tasks, models exhibited strong gen-
eralization performance on multiple-choice ques-
tion (MCQ) datasets. We test our method on
MMLUPro (Hendrycks et al.,, 2021a,b) (Math
MCQs), GPQA (Rein et al., 2023) (graduate-level
multi-disciplinary MCQs) and R-Bench (Li et al.,
2024) (graduate-level multi-disciplinary MCQs)
As shown in the table 4 This was evidenced by
sightly improvements in accuracy and reductions
in token consumption on these out of domain and
format tasks. Moreover, its training regimen, pri-
marily focused on mathematical reasoning tasks,
does not significantly compromise performance on
other tasks and, in some instances, even enhances
it. It indicates a more efficient and fundamentally
improved reasoning process that transcends the spe-
cific training task format.

4.3 Reasoning Under Token Constraints

We conducted evaluations under varying maxi-
mum generation token constraints, forcing the
model to complete its reasoning and generate a re-
sponse within the token limit. As shown in Figure
5, comparative analysis across multiple datasets
reveals that MuTIS significantly outperforms the
original reasoning model.

The original model’s accuracy typically com-
mences its improvement only after the token ex-
ceeds approximately 500. This behavior suggests
the existence of a significant “Effective Token
Threshold”— a point that must be reached for
the model to complete its reasoning process and
generate an answer. Consequently, most tasks re-
quire a substantial token budget, often considerably
surpassing this 500-token baseline, for successful

Math500 AMC23 Olympiad Bench Minerva
0.6 0.40 4 0.30 4
0.7
054 0359
0.25
0.6 0.304
= > 0.44 |
B gos 0.25 0204
a 5o4d 0.3 0.20
4 S
.15 1
e <03 0.24 0.1 0.1
0.104
0.2 J
0.1 0.054 0.10
o1 ‘ ‘ : : 0.0 ; ; ; ; 0.00 ‘ : ‘ ‘ ‘ . ; ;
0.35
0.8 0.7
0.44 J
071 064 0.30
o« .
% 3 0.6 0.5 034 0.251
@ g 057 041 0.20
o o 4 4
o 9oa4A 0.3 0.2 01
g < 0.2
[=] 4 -2
03 0.1 0.10 1
024 0.1
. 0.05
0.04

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Token Limit Token Limit

0.0 . - - . - - - -
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Token Limit Token Limit

l—O— Original Model

MuTIS (Ours)

—&— MuTIS-Ask (Ours) l

Figure 5: The figure compares the accuracy of MuTIS with two baseline models: R1-Distill (first row) and
DeepscaleR (second row). All evaluations presented were conducted under identical token limit settings.

execution. In stark contrast, MuTIS demonstrates
significant performance gains even with highly re-
stricted token budgets. For instance, on the Math-
500 dataset, MuTIS achieves over 40% accuracy
using only 800 tokens.

4.4 Mitigation of Repetition Issues

As shown in the Figure 4, MuTIS substantially
mitigates the incidence of "ineffective loops"—a
phenomenon where models generate excessively
long, non-productive responses when failing to
solve a problem. Consequently, the proportion of
responses truncated due to exceeding the default
maximum token limit (typically 32,768 tokens in
standard evaluations) was markedly reduced from
46.6% to 16.1 %. This provides strong evidence
that our method effectively mitigates the "Repeti-
tion" problem across most scenarios. Further de-
tails regarding the evolution of response length
after MuTIS training are provided in the Appendix.

4.5 Ablation Study

Pivotal Role of Multi-turn. Our method’s core
philosophy is to utilize Multi-Turn Interven-
tions to influence the model’s reasoning trajectory,
thereby steering reinforcement learning (RL) opti-
mization towards more effective and efficient pol-
icy space regions.

To assess the specific contribution of our method’s
multi-turn interaction, we conducted a controlled

Accuracy (%, 1) #Tokens ()
MATH . MATH .
500 AMC23 Olympiad 500 AMC23 Olympiad
RI1-Distill 69.4 55.0 28.9 10083 15927 20686
Single-turn 67.0 523 30.2 1483 4072 4688
3-turn (Ours) | 76.8 62.5 37.2 3947 8411 10505
5-turn 67.8 45.0 32.0 665 1580 2096

Table 5: Our ablation studies ensured a consistent total
length across varied experimental configurations, fix-
ing the overall token limit at 6000. This was achieved
through setups such as 3 turns with a 2000-token limit
each (3x2000), a single 6000-token turn (1x6000), and
5 turns with a 1200-token limit each (5x1200)

ablation study. To ensure fairness and isolate the
iterative impact, the single-turn baseline also re-
ceived an Intervention Prompt (IP) post-interaction.
This design enables precise analysis of the multi-
turn engagement’s pivotal role in the observed per-
formance benefits.

As shown in the Figure 5, While a single-turn set-
ting significantly reduces token consumption, it
sightly reduces accuracy. A 3-turn setup sub-
stantially boosts accuracy compared to the single-
turn approach, though token consumption increases.
Conversely, further increasing the number of turns
to five can again lower token consumption, but this
often leads to a decline in accuracy. Our analysis
indicates that with a 5-turn setup constrained by
a tight 1200-token per-turn limit, the model expe-
riences excessive intervention, which adversely
impacts its performance.

This ablation study across different turn configura-

Keyword Original Model MuTIS MuTIS-Ask
wait 8.73 0.97 3.15
hold on 0.18 0.00 0.01
but 10.92 3.63 5.00
not sure 0.21 0.06 0.46
maybe 3.51 0.71 1.43
double-check 0.07 0.10 0.10
think again 0.09 0.01 0.17
alternatively 2.03 0.84 1.08
another idea 0.11 0.02 0.08
another approach 0.04 0.03 0.04

Table 6: This table illustrates the difference in the fre-
quencies of the reflection words between the original
R1-Distill-1.5B model and the two variants of MuTIS.
The frequencies are counted as the average times of
occurrence every 1000 tokens in responses.

tions demonstrates that the 3-turn design ultimately
chosen for MuTIS achieves an optimal balance
between accuracy and token consumption. It ap-
pears to exert an "appropriate level of intervention"
on the model’s rollouts, thereby fostering both ef-
fective and efficient reasoning.

5 Discussion

5.1 Reflection Words in Reasoning models

Do small inference models really need tons of re-
flection words?

Research on DeepSeek-R1-Zero (Guo et al., 2025)
have shown that reflection words like "Wait" are
important markers of self-verification in reasoning
models. However, as shown in Table 6, our exper-
imental results on smaller models show that such
self-reflection words, including “Wait*“, decrease
significantly during the MuTIS training process.
Concurrently, the model’s reasoning becomes more
concise, and its performance under limited token
conditions improves. This suggests that these re-
flection words are substantially redundant. While
existing research has documented "Superficial Re-
flection" behavior(Liu et al., 2025) in base models
like Qwen2.5-Instruct, our experiments reveal that
reasoning models exhibit a form of self-verification
that can be characterized as “Ineffective Noise.*

5.2 Behavior Analysis in the Reinforcement
Learning Process

After MuTIS intervenes to guide models toward
generating concise reasoning chains, it primar-
ily employs RL to optimize LLM parameters.

5000 A
Average Response Length |

Average Turns
4000 A F2.25

3000 A
r1.75

suin| abesany

2000 r1.s0

Average Response Length

r1.25

1000

0 100 200 300 400
Training Step

Figure 6: This figure illustrates the progression of both
response length and the number of response turns for
the deepscaler-1.5B model during MuTIS RL training

Consequently, we further analyzed the behavioral
changes exhibited by the models during this RL
process. As depicted in figure 6, the average re-
sponse length of models undergoing MuTIS’s RL
process steadily decreases, from an initial 5000 to-
kens to approximately 1500 tokens. Concurrently,
the average number of multi-turn iterations drops
from an original 2.5 to around 1.25. This indicates
that while original models struggle under strict to-
ken constraints, models trained with MuTIS learn
to provide concise answers within a minimal num-
ber of turns.

A recent study posited that RL does not fundamen-
tally expand a model’s capability boundaries (Yue
et al., 2025) but rather increases the probability
of accessing pre-existing correct states within its
search space. This implies that RL predominantly
helps models solidify their conviction in effective
reasoning paths. Our experimental findings with
MuTIS support this perspective: RL’s role in mak-
ing responses increasingly concise demonstrates
its efficacy in enabling rapid convergence within
the model’s search space. This process embodies
the model shifting from self-doubt to firm con-
viction.

6 Conclusion

We introduce a novel Multi-Turn Intervention Sam-
pling (MuTIS) approach for RL training. This
method innovatively employs multi-turn rollouts
and incorporates dual guidance — from an Inter-
vention Prompt and an Auxiliary Agent — to steer
models toward generating high-quality, concise
reasoning chains. Our experiments indicate si-
multaneous improvements in both accuracy and
efficiency.

Limitations

We demonstrate that training small reasoning mod-
els with multi-turn intervening sampling achieves
effective reasoning. While computational con-
straints prevented us from exploring the full po-
tential of the method on larger models (e.g., 32B
models), future work will focus on extending our
approach for enhanced generalization and wider
applicability.

During training, our method’s response length can
significantly fluctuate before ultimately stabiliz-
ing. This suggests that effective KL divergence
constraints could be important for achieving more
stable training dynamics in our Multi-turn Interven-
tion process.

References

Pranjal Aggarwal and Sean Welleck. 2025. L1: Control-
ling how long a reasoning model thinks with reinforce-
ment learning. arXiv preprint arXiv:2503.04697.

AMC. American Mathematics Competitions. 2025a.
American Invitational Mathematics Examination
(AIME)). https://artofproblemsolving.com/wi
ki/index.php/American_Invitational_Mathema
tics_Examination. Accessed: 2025-05-19.

AMC. American Mathematics Competitions. 2025b.
American Mathematics Competitions (AMC). https:
//maa.org/student-programs/amc/. Accessed:
2025-05-19.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng,
Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang
Zhou, Te Gao, and Wanxiang Che. 2025. Towards
reasoning era: A survey of long chain-of-thought
for reasoning large language models. arXiv preprint
arXiv:2503.09567.

Jeffrey Cheng and Benjamin Van Durme. 2024.
Compressed chain of thought: Efficient reason-
ing through dense representations. arXiv preprint
arXiv:2412.13171.

Hugging Face. 2025. Open rl: A fully open reproduc-
tion of deepseek-r1.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya
Skowron, Lintang Sutawika, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2024. The
language model evaluation harness.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchen-
bauer, Siddharth Singh, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, and Tom Goldstein.
2025. Scaling up test-time compute with latent rea-
soning: A recurrent depth approach. arXiv preprint
arXiv:2502.05171.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948.

Tingxu Han, Zhenting Wang, Chunrong Fang,
Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. 2024.
Token-budget-aware 1lm reasoning. arXiv preprint
arXiv:2412.18547.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. arXiv preprint arXiv:2402.14008.

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang,
Xingyuan Bu, Ge Zhang, Zhongyuan Peng, Zhaoxiang
Zhang, Zhicheng Zheng, Wenbo Su, and Bo Zheng.
2025. Can large language models detect errors in long
chain-of-thought reasoning?

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2021a. Aligning ai with shared human values. Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021b. Measuring massive multitask language under-
standing. Proceedings of the International Conference
on Learning Representations (ICLR).

Maor Ivgi, Ori Yoran, Jonathan Berant, and Mor Geva.
2024. From loops to oops: Fallback behaviors of
language models under uncertainty. arXiv preprint
arXiv:2407.06071.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025. Search-rl: Training llms to reason and
leverage search engines with reinforcement learning.
arXiv preprint arXiv:2503.09516.

KimiTeam, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. 2025. Kimi
k1. 5: Scaling reinforcement learning with llms. arXiv
preprint arXiv:2501.12599.

https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
http://arxiv.org/abs/2502.19361
http://arxiv.org/abs/2502.19361
http://arxiv.org/abs/2502.19361

Chunyi Li, Jianbo Zhang, Zicheng Zhang, Haoning Wu,
Yuan Tian, Wei Sun, Guo Lu, Xiaohong Liu, Xiongkuo
Min, Weisi Lin, et al. 2024. R-bench: Are your large
multimodal model robust to real-world corruptions?
arXiv preprint arXiv:2410.05474.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang,
Luyao Niu, Bill Yuchen Lin, Bhaskar Ramasubrama-
nian, and Radha Poovendran. 2025. Small models
struggle to learn from strong reasoners. arXiv preprint
arXiv:2502.12143.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Har-
rison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. 2023.
Let’s verify step by step. In The Twelfth International
Conference on Learning Representations.

Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang,
Chao Du, and Min Lin. 2025. There may not be aha
moment in r1-zero-like training — a pilot study. https:
//oatllm.notion.site/oat-zero. Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Tang, Manan Roongta, Colin Cai, Jeffrey Luo,
Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion
Stoica. 2025. Deepscaler: Surpassing ol-preview with
a 1.5b model by scaling rl. https://pretty-radio-b
75.notion.site/DeepScaleR-Surpassing-01-Pre
view-with-a-1-5B-Model-by-Scaling-RL-19681
902c1468005bed8ca303013a4e2. Notion Blog.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs,
Sewon Min, and Matei Zaharia. 2025. Reasoning mod-
els can be effective without thinking.

math-ai. 2025. Minervamath dataset. https://hu
ggingface.co/datasets/math-ai/minervamath.
Accessed: 2025-05-19.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tat-
sunori Hashimoto. 2025. s1: Simple test-time scaling.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea
Saracino, Giorgio Buttazzo, Nicolamaria Manes, and
Fabrizio Giacomelli. 2024. Concise thoughts: Impact of
output length on llm reasoning and cost. arXiv preprint
arXiv:2407.19825.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin
Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed
Kadous, and Ion Stoica. 2024. Routellm: Learning
to route llms from preference data. In The Thirteenth
International Conference on Learning Representations.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan
Yuan, Hao Peng, and Alane Suhr. 2025. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero. Accessed:
2025-01-24.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R. Bowman. 2023. Gpqa: A
graduate-level google-proof q&a benchmark.

10

Matthew Renze and Erhan Guven. 2024. The benefits of
a concise chain of thought on problem-solving in large
language models. In 2024 2nd International Conference
on Foundation and Large Language Models (FLLM),
pages 476—483. IEEE.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-
Wei Hong, Zhenfang Chen, Wei Lu, Gregory Wornell,
Subhro Das, David Cox, and Chuang Gan. 2025. Satori:
Reinforcement learning with chain-of-action-thought
enhances llm reasoning via autoregressive search. arXiv
preprint arXiv:2502.02508.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin,
and Chuan Wu. 2024. Hybridflow: A flexible and effi-
cient rlhf framework. arXiv preprint arXiv:2409.19256.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew
Wen, Shaochen Zhong, Hanjie Chen, et al. 2025. Stop
overthinking: A survey on efficient reasoning for large
language models. arXiv preprint arXiv:2503.16419.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
2022. Chain-of-thought prompting elicits reasoning in
large language models. Advances in neural information
processing systems, 35:24824-24837.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka,
and Yisen Wang. 2025. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint
arXiv:2502.07266.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao.
2025. Softcot: Soft chain-of-thought for efficient rea-
soning with 1lms. arXiv preprint arXiv:2502.12134.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham
Neubig, and Xiang Yue. 2025. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint
arXiv:2502.03373.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole
Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mo-
fan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze
Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan
Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao,
Yonghui Wu, and Mingxuan Wang. 2025. Dapo: An
open-source llm reinforcement learning system at scale.

https://oatllm.notion.site/oat-zero
https://oatllm.notion.site/oat-zero
https://oatllm.notion.site/oat-zero
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
http://arxiv.org/abs/2504.09858
http://arxiv.org/abs/2504.09858
http://arxiv.org/abs/2504.09858
https://huggingface.co/datasets/math-ai/minervamath
https://huggingface.co/datasets/math-ai/minervamath
https://huggingface.co/datasets/math-ai/minervamath
http://arxiv.org/abs/2501.19393
http://arxiv.org/abs/2311.12022
http://arxiv.org/abs/2311.12022
http://arxiv.org/abs/2311.12022
http://arxiv.org/abs/2503.14476
http://arxiv.org/abs/2503.14476
http://arxiv.org/abs/2503.14476

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai
Wang, Yang Yue, Shiji Song, and Gao Huang. 2025.
Does reinforcement learning really incentivize reason-
ing capacity in llms beyond the base model?

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-
zoo: Investigating and taming zero reinforcement learn-
ing for open base models in the wild.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou,
Jungi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian, Biqging Qi,
Xiu Li, and Bowen Zhou. 2025. Genprm: Scaling test-
time compute of process reward models via generative
reasoning.

Appendix
A Experiment Details

A.1 Dataset filtering details

* Remove multiple-choice questions (MCQs). To
focus on the model’s ability to generate answers
rather than merely select them, thereby provid-
ing a more rigorous assessment of its reasoning
capabilities, all MCQs were excluded.

* Remove questions with overly long (>55 tokens)
answers. We observed that some answers in the
original dataset had non-standard formatting or
contained excessive descriptive language. Such
answers are challenging to evaluate accurately
using a rule-based reward system.

* Remove questions with multiple answers or in-
volving multiple variables. the presence of mul-
tiple valid answers complicates the extraction
and comparison process during evaluation, poten-
tially leading to mismatches that can negatively
impact training.

Following these filtering steps, our final training
dataset consisted of over 60,000 samples. From
this, 0.5% was allocated as a dedicated validation
set to monitor model performance throughout the
training process.

A.2 Evaluation Details

We assessed our method and baseline models on the
following five math reasoning benchmarks:Math-
500 (Lightman et al., 2023), AIME 2024 (AMC.
American Mathematics Competitions, 2025a),
AMC23 (AMC. American Mathematics Compe-
titions, 2025b), Olympiadbench (He et al., 2024),
Minerva (math-ai, 2025)

11

The dataset versions used were aligned with those
available in the LIMO repository. We use greedy
decoding for all evaluations, which introduces no
randomness in the outputs. Consequently, the same
answer is obtained regardless of the random seed,
ensuring that all reported data correspond to results
from a single sampling pass.

Our mathematical reasoning evaluation also
leveraged LIMO’s evaluation framework, whose
methodology is primarily derived from Qwen?2.5-
Math. This framework employs a rule-based as-
sessment to determine answer correctness, without
relying on model-based judgments.

For MCQ tasks, we predominantly utilized the Im-
eval (Gao et al., 2024) framework, as LIMO’s eval-
uation framework offers limited support for these
types of evaluations.

A.3 Experiment Model

Our experiments are conducted on DeepSeek-R1-
Distill-Qwen-1.5B (Guo et al., 2025), DeepScaleR-
1.5B-Preview (Luo et al., 2025), and DeepSeek-R1-
Distill-Qwen-7B (Guo et al., 2025). Given the orig-
inal reasoning model’s already strong mathematical
problem-solving capabilities, coupled with our re-
search emphasis on efficiency, we also included it
as a key baseline for performance comparison.

A.4 Analysis of Responses Length

Figure 7 shows the generation length histogram
of MuTIS and the original DeepSeek-R1-Distill-
Qwen-1.5B model on Math500 dataset. It demon-
strates that MuTIS evidently mitigates the over-
thinking problems (shown by the overall distribu-
tion) and the repetition issues (shown by the red
part of the rightmost bar).

A.5 Detailed Results on Large-Parameter
Models

Figure 8 shows the comparison of accuracy under
token limits between the original DeepSeek-R1-
Distill-Qwen-7B and our MuTIS.

A.6 further discussion on Reflection Word

The advent of sophisticated reasoning models, ex-
emplified by OpenAl ol (Jaech et al., 2024) and
DeepSeek-R1 (Guo et al., 2025), has catalyzed
a research emphasis on long Chain-of-Thought

http://arxiv.org/abs/2504.13837
http://arxiv.org/abs/2504.13837
http://arxiv.org/abs/2504.13837
http://arxiv.org/abs/2503.18892
http://arxiv.org/abs/2503.18892
http://arxiv.org/abs/2503.18892
http://arxiv.org/abs/2503.18892
http://arxiv.org/abs/2503.18892
http://arxiv.org/abs/2504.00891
http://arxiv.org/abs/2504.00891
http://arxiv.org/abs/2504.00891
http://arxiv.org/abs/2504.00891
http://arxiv.org/abs/2504.00891

BN correct responses
N wrong responses

BN correct responses
= wrong responses

Frequency
Frequency

0 0
0 5000 10000 15000 20000 25000 30000 0
Token Length

5000 10000 15000 20000 25000 30000
Token Length

(a) Original Model Math500

20

(b) MuTIS Math500

20

BN correct responses
= wrong responses

N correct responses
= wrong responses

-
o

15

Frequency
-

s
Frequency
=
s

«
«

0 0
0 5000 1000015000 20000 25000 30000 0
Token Length

5000 10000 15000 20000 25000 30000
Token Length

(c) Original Model AMC23 (d) MuTIS AMC23

400 | ‘mmm correct responses
mm wrong responses

EEE correct responses
= wrong responses

Frequency
Frequency

[0
0 5000 10000 15000 20000 25000 30000 0
Token Length

5000 10000 15000 20000 25000 30000
Token Length

(e) Original Model Olympiad
Bench

(f) MuTIS Olympiad Bench

N correct responses
W wrong responses

W correct responses
= wrong responses

125

Frequency
Frequency

N
5000 10000 15000 20000 25000 30000
Token Length

[0
0 5000 10000 15000 20000 25000 30000 0
Token Length

(g) Original Model Minerva (h) MuTIS Minerva

Figure 7: Generation Length

(CoT) methodologies as a primary target for op-
timizing model training. Nevertheless, contempo-
rary studies indicate a prevalent "OverThinking"
phenomenon within these models, characterized by
excessive or non-productive cognitive steps.

Table 1 illustrates that original reasoning models
often introduce significant redundancy. In con-
trast, our optimization (MuTIS) not only further
improves accuracy but also concurrently reduces
token consumption. This demonstrates that the
Chain-of-Thought (CoT) in such reasoning models
contains many unnecessary steps. Indeed, analysis
of MuTIS’s post-training reasoning CoT, reveals a
significant reduction in "reflection words"—terms
frequently occurring in standard distilled models.

12

R1-Distill-7B Math500 R1-Distill-7B AMC

Accuracy

—e— Original Model
MuTIS

2000 3000
Token Limit

—e— Original Model
MuTIS

2000 3000
Token Limit

0 1000 4000 1000 4000

R1-Distill-7B Olympiad Bench R1-Distill-7B Minerva

Accuracy
Accuracy

—e— Original Model
MuTIS

2000 3000 4000 0
Token Limit

—e— Original Model
MuTIS

2000 3000 4000
Token Limit

0 1000 1000

Figure 8: Accuracy vs Token Limits on 7B models. The
original model is DeepSeek-R1-Distill-Qwen-7B and
the MuTIS is trained on it.

B Prompt Design

B.1 Chat Template Design

We employed a system prompt inspired by
DeepSeek-R1 Zero. For our two model versions,
MuTIS and MuTIS-Ask, distinct chat templates
were developed. Within the system role specified
in these templates, we outlined the specific interac-
tion workflow to guide the LLM.

role: ’system’,content: The user asks a ques-
tion, and the Assistant solves it. The assis-
tant first thinks about the reasoning process in
the mind and then provides the user with the
answer. The answer is enclosed within <an-
swer> </answer> tags. i.e., <answer> answer
here </answer>. During the assistant’s reason-
ing process, if he realizes that his reasoning
may be problematic or wrong, he can ask other
agents for help. The query is inclosed within
<ask> </ask> Tags. i.e., <ask> put confused
point here </ask>. It will return the advice from
other agent within <communicate> </commu-
nicate>. The assistant can ask other agents for
help multiple times. If the assistant understand
the question and find no further other agents’
advice needed, the assistant can directly pro-
vide the answer inside <answer> </answer>.

IS C Additional Cases

role: ’system’,content: The user asks a ques-
tion, and the Assistant solves it. The assistant
first thinks about the reasoning process in the
mind and then provides the user with the an-
swer. The answer is enclosed within <answer>
</answer> tags. i.e., <answer> answer here
</answer>. If the assistant understand the ques-
tion, he can directly provide the answer inside
<answer> </answer>.

B.2 Intervention Prompt Design

Warning! My previous action is invalid. If I
want to ask other agents for help, I should put
the query between <ask> and </ask>. If I want
to give the final answer, I should put the answer
between <answer> and </answer>. Let me try
again:

Warning! My previous action is invalid. If I
want to give the final answer, I should put the
answer between <answer> and </answer>. Let
me try again:

B.3 Analysis of Prompt Sensitivity and
Generalization

To ensure that our experimental design was not
overly sensitive to prompt hyperparameter selec-
tion, we analyzed the experimental results and train-
ing processes associated with different variants of
the ’Intervention Prompt.” The specific prompts
used are as follows:

* Alert: The action you just performed was not
valid. Please attempt it again.

* Notice: Your last move was unsuccessful. Kindly
try once more.

* Error: The preceding operation failed. Please
redo the action.

 Caution: That last input was not accepted. Please
have another go.

* Unsuccessful Action: Your prior step could not
be processed. Please try again.

13

C.1 MuTIS Inference Case

Figure 9 shows the inference outputs of MuTIS and
the original model on the same question.

C.2 MuTIS Trajectory in Training Phase

Figure 10 shows an example of MuTIS training tra-
jectory. This example demonstrates how MuTIS’s
design substantially enriches the LLM’s reasoning
chain, resulting in higher-quality trajectories for
training.

D Additional Related Work

Reinforcement Learning for LLM Reasoning.
As advancements in Large Language Model (LLM)
research encounter the challenges of escalating data
scales, performance bottlenecks are becoming in-
creasingly apparent. This issue is particularly acute
for Supervised Fine-tuning (SFT), which critically
depends on high-quality, novel datasets. Conse-
quently, there is a growing research focus on Re-
inforcement Learning, especially techniques uti-
lizing rule-based rewards (Zeng et al., 2025; Pan
et al., 2025; Face, 2025; Liu et al., 2025), which
have shown considerable potential in enhancing
model performance. "Learning from reward" is
thus emerging as a new training paradigm.

RL algorithms such as GRPO (Shao et al., 2024)
and DAPO (Yu et al., 2025) leverage rewards dur-
ing the training phase to optimize model parame-
ters. Concurrently, sampling methodologies like
Best of N employ rewards at the sampling stage
to improve response accuracy. Furthermore, Zhao
et al. (2025) rewards reasoning trajectories using
a Process Reward Model (PRM), while Shen et al.
(2025) rewards them using an Outcome Reward
Model (ORM). Both advocate for the use of high-
quality reasoning trajectories to augment model rea-
soning capabilities. However, these approaches are
fundamentally model-based reward designs, and
the potential of rule-based rewards within such
frameworks remains largely unexplored.

Question: If f(z) = what is the value of f(—2) + f(—1) + f(0) ? Express your answer as a common fraction..

zz’

MuTIS(Ours): token consumption 650 Distill Model(Origin): token consumption 2753
Q: If f(z) = 22 what is the value of f(—2) + Okay, so I have this function f(x) which is equal to (3z — 2) divided by (z — 2). I need to find the value of f(-2) +
f(=1) + f(0)? mpress your answer as a common f(=1) + f(0). Hmm, let me think about how to approach this step by step. First, I should probably figure out what
fraction. each of these function values is individually. That is, I need to compute f(—2), f(—1), and f(0) separately and then
A: jthink; To find the vdlue- ()f f(=2)+ f(=1)+ f(0) add them together. Sounds straightforward, but I want to make sure I do each step correctly. Starting with f(—2). The
for the function f(z) = I will evaluate each function f(z) is (3z — 2)/(z — 2). So, substituting = with —2, I get: f(—2) = (3% (—2) —2)/(—2 — 2) Let me compute
term separately and then sum them up. the numerator and the denominator separately. The numerator is 3 (—2) which is —6, and then subtract 2, so that’s
First, I will calculate f(—2): —6 — 2 = —8. The denominator is —2 — 2, which is —4. So, f(—2) is —8 divided by —4. Hmm, dividing two negatives
gives a positive, so that’s 2. Okay, so f(—2) is 2. Next, let’s compute f(—1). Again, substituting z with —1 in the
f(=2) = 3(-2)-2 _ —6-2 _ -8 —9 function: f(—1) = (3% (—1) —2)/(—1 —2) Calculating the numerator: 3 % (—1) is —3, minus 2 is —5. The denominator

-2-2 —4 —4 is —1 — 2, which is —3. So, f(—1) is —5 divided by —3. Again, dividing two negatives gives a positive, so that’s 5/3.
[. So, f(—1)is 5/3. Now, moving on to f(0). Substituting = with 0: f(0) = (3%0—2)/(0—2) Calculating the numerator:
Next, I will calculate f(~1): 30 is 0, minus 2 is —2. The denominator is 0 — 2, which is —2. So, f(0) is —2 divided by —2, which is 1. So, f(0) is

3(~1) -2 5 5 1. Alright, so now I have all three function values: f(—2)is 2, f(—1) is 5/3, and f(0) is 1. Now, I need to add them
f(=1)= 12 ~ 373 together. So, adding them up: 2+5/3+ 1. Let me convert all these to fractions with a common denominator to make it
casier. 2 is the same as 6/3, and 1 is the same as 3/3. So, adding them together: 6/3+5/3+3/3 = (6+5+3)/3 = 14/3.
Then, I will calculate f(0): ‘Wait, hold on, that seems a bit high. Let me double-check my calculations. First, f(—2): 3% (—2) is —6, minus 2
. is —8. Denominator: —2 — 2 is —4. So, —8/ — 4 is 2. That seems correct. f(—1): 3 (—1) is —3, minus 2 is —5.
7(0) = 30002 _ _1 Denominator: —1 —2is —3. So, =5/ — 3 is 5/3. That also seems correct. f(0): 3%0 is 0, minus 2 is —2. Denominator:
0-2 0—2is —2. So, =2/ — 2 is 1. That’s correct too. Adding them: 2+ 5/3 + 1. Let me convert 2 and 1 to thirds: 2 is
S . e 6/3, 11is 3/3. So, 6/3+5/3 + 3/3 is indeed 14/3. Hmm, 14/3 is equal to 4 and 2/3, which is approximately 4.666...
Finally, [will sum the results: ‘Wait, but let me think again. Is there a possibility that I made a mistake in substituting the values? Let me check
5 6 5 3 14 each substitution again. For f(—2): (3 (-2) —2)/(-2—2) = (-6 — 2)/(—4) = (-8)/(—4) = 2. Correct. For f(—1):
DD =243+l =gHg4g =5 (3% (1) = 2)/(=1 - 2) = (=3 - 2)/(~3) = (=5)/(~3) = 5/3. Correct. For f(0): (30— 2)/(0—2) = (=2)/(~2) = 1.
Correct. So, adding them: 2+ 5/3 + 1. Let me add 2 and 1 first: 2+ 1 is 3. Then, 3+ 5/3. 3 is 9/3, s0 9/3 +5/3 is

i/ think;, _ 14/3. So, 14/3 is the correct sum.
To find the value of f(=2) + f(=1) + f(0) for the ‘Wait, but 14/3 is an improper fraction, and the question says to express the answer as a common fraction. So, 14/3
function f(z) = %’ we will evaluate each term is already a common fraction, so that should be the answer. But just to make sure, let me think if there’s another way
separately and then sum them up. to approach this problem, maybe simplifying the function first before plugging in the values. Sometimes, simplifying
1. Calculate f(-2): can make the calculations easier or reveal any potential issues. Looking at f(z) = (3z —2)/(x — 2). Hmm, can I factor
3(-2)—2 anything here? Let me see. The numerator is 3z — 2, which doesn’t factor nicely with the denominator = — 2. So, I
f(=2)=——= don’t think there’s a way to simplify this function further. So, I think my initial approach is correct. Alternatively,
—2-2 maybe I can perform polynomial division or something, but since it’s a linear over linear function, it’s just a straight

2. Calculate f(—1): division.

‘Wait, another thought: maybe I can write f(z) as 3 + something. Let me try that. Let me rewrite f(x) as (3z—2)/(z—
f-1) = 'i(1) _=5_5 2). Let me perform the division: Divide 3z —2 by —2. So, how many times does z —2 go into 3z —2? Well, z goes into
2 - T3 3 3z three times. So, 3%(2—2) is 3z—6. Subtract that from 3z—2: (3z—2)—(3x—6) = 0x+4. So, the division gives 3 with
a remainder of 4. Therefore, f(z) can be written as 3+4/(x—2). So, f(x) = 3+4/(x—2). Hmm, that might be helpful
3. Calculate f(0): for checking the valucs Let me computc f(—2) using this expression: 34+4/(—-2—2) = 3+4/(—4) = 3—1 = 2. Correct,
30)—2 0-2 -2 same as before. f(—1): 3+4/(—-1-2) = 34+4/(-3) = 3—-4/3 = 5/3. Correct. f(0): 34+4/(0-2) = 3+4/(-2) =3-2=1.
f)=———=—-=—=1 Correct. So, that’s another way to wnhrm the values. So, adding them together: 2 +5/3 +1 = 14/3. Wait but just
0-2 -2 —2 to make sure, let me compute each step again: f(—2): 3% (—2) = —6, —6 — 2 = —8. Denominator: —2 — 2 = —4. So,
4. Sum the results: —8/ —4=2. Correct. f(—1): 3%(—1) = —3, =3 —2 = —5. Denominator: —1 —2 = —3. So, —5/ — 3 = 5/3. Correct.

. f(0): 3%0=0,0—2= —2. Denominator: 0 —2 = —2. So, —2/ —2 = 1. Correct. Adding them: 2 +5/3 + 1. Let
n 3_1 me convert 2 and 1 to thirds: 2 is 6/3, 1 is 3/3. So, 6/3+5/3 +3/3 = (6 + 5+ 3)/3 = 14/3. So, 14/3 is the sum.
3 3 ‘Wait, 14/3 is an improper fraction, but the question says to express the answer as a common fraction. 14/3 is already
a common fraction, so that’s fine. Alternatively, if I wanted to write it as a mixed number, it would be 4 and 2/3,
but since the question specifies a common fraction, 14/3 is the appropriate answer. Just to make sure I didn’t make
any arithmetic errors, let me add 2+ 5/3 41 again: 2+ 1 is 3, and 34 5/3 is 3+ 1 and 2/3, which is 4 and 2/3, which
is 14/3. Yep, that’s correct. So, I think I've double-checked all my steps, and everything seems consistent. Therefore,
the value of f(=2) + f(—1) + f(0) is 14/3.

F(=2)+ F(=1)+ £(0) :2+§+1 - g+

wl o

Final Answer The value of f(—2) + f(—1) + f(0) i

To find the value of f(—2) + f(—1) + f(0) for the function f(z) e 22, we need to evaluate the function at each
)2

of these points and then sum the results. First, we compute f(— f(2) = = 2 Next, we
compute f(—1): f(-1) = % =322 = = 5 Then, we compute f(0): f(0) 073 = 73 =1 Adding
these values together: f(—2)+ f(—1)+ f(0) = 2 + + 1 Converting 2 and 1 to fractions with a common denominator:

2=2% and 1=3 Adding the fractions: § + 2 + 3 = &2 = 14 Thus, the value of f(—2) + f(—1) + £(0) i

Figure 9: Inference case. The left side is the original DeepSeek-R1-Distill-Qwen-1.5B model, and the right side is
our MuTIS model.

14

Question: If f(z) =

1:22, what is the value of f(—2) + f(—1) + f(0) ? Express your answer as a common fraction..

<think> Okay, so I need to figure out how many segments joining the vertices of this
convex polyhedron lie entirely inside the polyhedron, not along an edge or a face. Let
me first jot down all the given information to organize my thoughts.

The polyhedron has: - 12 squares, - 8 regular hexagons, - 6 regular octagons as its faces.
Each vertex is where one square, one hexagon, and one octagon meet. That means the
configuration at each vertex is a 3-face meeting: 1 square, 1 hexagon, and 1 octagon. I
remember that in polyhedrons, the number of edges can be calculated using the formula:

3F =2F
where F is the total number of faces and E is the number of edges.
Let me calculate the total number of faces first. The polyhedron has 12 squares, 8
hexagons, and 6 octagons, so:

F=12+8+6=26

So, plugging into the formula:

3x26=2F
78 =2F
E =39

Alright, so there are 39 edges in total.

Next, I think about the number of vertices. I remember another formula related to the
vertices. Since each face is a polygon and each vertex is where three faces meet, maybe
I can use a similar approach as with edges to find vertices.

For polyhedrons, there’s Euler’s formula:

V-E+F=2
We know F' = 26 and E = 39, so plugging into Euler’s formula:
V-39+26=2

V-13=2
V=15

So, there are 15 vertices in total.

Now, the question is about the number of segments joining the vertices that lie in the
interior of the polyhedron rather than along an edge or a face. These are the space
diagonals.

Wait, now I'm confused. Maybe the total number of face diagonals is 216, but
we have only 105 segments, so actually, the face diagonals that we have calculated are
the ones that cross through the interior, so those are in the space, so the actual space
diagonals would be fewer.

‘Wait, no, perhaps the face diagonals are the ones that are not space diagon

My previous action is invalid If I want to ask other agents for help, I
should put the query between <ask> and </ask>. If I want to give the final
answer, I should put the answer between <answer> and </answer>. Let me
try again:

Total number of segments: 105.

Edges: 39.

Face diagonals: 216.

‘Wait, this is not possible because 216 is larger than 105.

Therefore, my mistake is in calculating the face diagonals. Because the face diagonals
can’t exceed the number of vertex segments, since each face diagonal is a unique segment
between two vertices.

Wait, but in reality, each face diagonal is only one segment, not multiple.

Wait, but if each face has n(n - 3)/2 diagonals, and for the polyhedron, the number of
such segments is:

For a square face: 2 diagonals.

But in reality, all the face diagonals belong to some face. So, in this polyhedron, each
face diagonal is a vertex segment.

Total number of vertex pairs: C = 15%¥14/2 = 105.

Number of edges: E = 39.

Number of face diagonals: for each face, diagonals are unique to that face. So, for each
face, if it’s a square, it has 2 face diagonals; hexagon, 9; octagon,20.

So, face diagonals count is:

Squares:12 faces * 2 diagonals =24

Hexagons:8 *9=72

Octagons:6*20=120

My previous action is invalid If I want to ask other agents for help, I
should put the query between <ask> and </ask>. If I want to give the final
answer, I should put the answer between <answer> and </answer>. Let me
try again:

<ask> A convex polyhedron has for its faces 12 squares, 8 regular hexagons, and 6
regular octagons. At each vertex of the polyhedron one square, one hexagon, and one
octagon meet. How many segments joining vertices of the polyhedron lie in the interior
of the polyhedron rather than along an edge or a face? </ask>

<communicate> Another Agent’s Response To find the number of segments joining the
vertices of the polyhedron that lie in the interior, we can follow these steps:

1. **Calculate the total number of vertices (V)**: Using Euler’s formula V — E+F = 2,
we first need to find the number of edges (E) and faces (F).

2. **Calculate the total number of faces (F)**:

F =12 (squares) + 8 (hexagons) + 6 (octagons) = 26

3. **Calculate the number of edges (E)**: Each edge is shared between two faces. The
total number of edges can be calculated as:
1 1 144
E:§(12xv1+8><6+6xs):5(48+48+48):7:72
4. **Use Euler’s formula to find the number of vertices (V)**:

V-T2+26=2 = V-46=2 = V =48

5. **Calculate the total number of segments joining the vertices**: The total number
of segments (C) joining the vertices is given by:

v 48 x 47
0 = = —F— =112
c-(3)-%5 s
6. **Subtract the number of edges (E)**:

Remaining segments = 1128 — 72 = 1056

7. **Calculate the number of face diagonals**: - For squares: #
per square, total 12 x 2 = 24 - For hexagons: —=) =9 diagonals per hexagon, total

= 2 diagonals

8 x 9 = 72 - For octagons: @ = 20 diagonals per octagon, total 6 x 20 = 120
Total face diagonals:
24+ 72+ 120 = 216

8. **Calculate the number of space diagonals**: Now, subtract the face diagonals from
the remaining segments:

Space diagonals = 1056 — 216 = 840

Thus, the number of segments joining the vertices of the polyhedron that lie in the
interior is **840**. < /communicate>

<answer> To find the number of segments joining the vertices of the polyhedron that
lie in the interior, we can follow these steps:

1. **Calculate the total number of vertices (V)**: Using Euler’s formula V — E+F = 2,
we first need to find the number of edges (E) and faces (F).

2. **Calculate the total number of faces (F)**:

F =12 (squares) + 8 (hexagons) + 6 (octagons) = 26

3. **Calculate the number of edges (E)**: Each edge is shared between two faces. The
total number of edges can be calculated as:

1 144
(12x44+8x6+6x8)=—=

E==
2 2

72
4. **Use Euler’s formula to find the number of vertices (V)**:

V-T2+26=2 = V-46=2 = V =48

5. **Calculate the total number of segments joining the vertices**: The total number
of segments (C) joining the vertices is given by:

V\ 48 x 47
C*(z)*iz =1128

6. **Subtract the number of edges (E)**:
Remaining segments = 1128 — 72 = 1056

7. **Calculate the number of face diagonals**: - For squares: @ =2

6(6-3)
2

diagonals
per square, total 12 x 2 = 24 - For hexagons:

8(8;3> = 20 diagonals per octagon, total 6 x 20 = 120

= 9 diagonals per hexagon, total

8 x 9 =72 - For octagons:
Total face diagonals:
24+ 72 +120 = 216

8. **Calculate the number of space diagonals**: Now, subtract the face diagonals from
the remaining segments:

Space diagonals = 1056 — 216 = 840

Thus, the number of segments joining the vertices of the polyhedron that lie in the

interior is . </answer>

Figure 10: The figure presents an example of a model rollout within the multi-turn intervention process. In this
illustration, red segments indicate the Intervention Prompt (IP) introduced when the model’s response surpasses the
predefined response limit; blue tags represent the model’s autonomous actions during the rollout.

15

