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Abstract

Long chain-of-thought (CoT) reasoning have001
recently attracted significant attention, with002
models such as DeepSeek-R1 achieving re-003
markable performance across various reasoning004
benchmarks. However, a common challenge005
to these models is the "overthinking" problem,006
leading to excessive intermediate steps and di-007
minished inference efficiency. While numer-008
ous efforts have targeted reduction in generated009
tokens, these frequently encounter an inher-010
ent trade-off: enhancements in efficiency often011
come at the cost of degradation in performance.012
To overcome such challenges, we introduce the013
Multi-Turn Intervention Sampling Framework014
(MuTIS). Our framework leverages multi-turn015
interventions within rollouts to produce high-016
quality, concise reasoning chains. It fine-tunes017
reasoning models through reinforcement learn-018
ing, demonstrably surpassing the previously de-019
scribed accuracy-efficiency trade-off. Through020
extensive experiments on challenging mathe-021
matical reasoning benchmarks, our approach022
achieves a substantial 11.3% improvement in023
accuracy while concurrently reducing token uti-024
lization by an average of 60.1%. Code, data,025
and models will be fully open-sourced.026

1 Introduction027

The advent of DeepSeek-R1 (Guo et al., 2025) in028

early 2025 marked a new avenue for efficiently029

training large language models (LLMs) through030

reinforcement learning with verifiable rewards031

(RLVR). For models with large number of param-032

eters (e.g. DeepSeek-R1 671B), long chain-of-033

thought (CoT) (Wei et al., 2022; Chen et al., 2025)034

has proven particularly effective in enhancing rea-035

soning capabilities. This improvement is attributed036

to the capacity of long CoT models for deep rea-037

soning, extensive exploration, self-verification and038

reflection, particularly the "aha moment" described039

in R1-Zero.040

Accuracy (%, ↑) #Token (↓)

Qwen2.5-Math-1.5B 22.7 659.65
R1-Distill-Qwen-1.5B 38.8↑ 2471.43↑
MuTIS(Our Method) 45.1↑ 1217.47↓

Table 1: To facilitate a fair comparison of token ef-
ficiency, we selected problems that all three models
generate final answers correctly and analyzed their re-
spective token consumption. We calculated the average
accuracy across five mathematical datasets.

However, recent research indicates that long Chain- 041

of-Thought (CoT) does not show a clear positive 042

correlation with higher accuracy. o1-like models 043

(e.g., deepseek-r1, o1-preview) do not show any 044

advantage over non-o1-like models on the critique 045

abilities (He et al., 2025; Wu et al., 2025). Redun- 046

dant reflection words often do not positively con- 047

tribute to the correction of reasoning trajectories. 048

These limitations become particularly pronounced 049

when applying the long CoT paradigm to smaller 050

models (≤3B parameters), a phenomenon termed 051

the Small Model Learnability Gap (Li et al., 2025). 052

We investigate this phenomenon by testing 053

DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) 054

on five mathematical reasoning benchmarks1. Our 055

analysis, averaging results across five datasets, re- 056

vealed that in 46.6% of the cases (See Figure 4 057

for details), the distilled model’s outputs became 058

trapped in unproductive loops. In such instances, 059

the model typically cycled through the same rea- 060

soning points repeatedly, unable to generate a final 061

answer, thereby simultaneously wasting token re- 062

sources and failing to provide correct solutions. 063

Furthermore, as shown in Table 1, after distillation 064

from R1, the Qwen2.5-math base model’s token 065

consumption increased fourfold even on problems 066

it solved correctly. These observations align with 067

recent research (Ivgi et al., 2024; Sui et al., 2025) 068

1Math500, AMC23, OlympiadBench, Minerva, AIME24.
See Section 4.1 for details.
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3947<think> Okay, so I have this function  f(x) … , let 
me think about how to approach this step by step.

First, ... Next..., , , that seems a bit 
high. Let me  my calculations.... 
First... , but let me think . , but...   
just to make sure... ...


..., , another thought...  but just 
to make sure, let me compute each step again...


... ...,

Just to  I didn't make any arithmetic errors, 
let me add 2 + 5/3 + 1 ...

So, I think I've  all my steps... </think>

Hmm

Wait hold on
double-check

Wait again Wait But
Hmm

Alternatively Wait

Wait Alternatively
make sure

again
double-checked

Wait

<think> To find the value 
of f(-2)+f(-1)+f(0) for 
the function f(x)=(3x-2)/
(x-2), I will evaluate 
each term separately and 
then sum them up.


:… </think>

First, I will calculate...

Next, I will calculate...

Then, I will calculate...

Finally, I will sum the 
results  

 Question: If f(x)=(3x-2)/(x-2), what is the value of f(-2)+f(-1)+f(0)?
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Figure 1: Overview of MuTIS(Our Method). 1) left: A comparative illustration of reasoning chains for the baseline
reasoning model versus MuTIS. 2) right: Performance metrics on mathematical reasoning datasets, showcasing
MuTIS’s significant reduction in token cost alongside enhancements in accuracy.

and underscore two severe drawbacks inherent in069

such reasoning models:070

1) Repetition. For complex tasks that reasoning071

model fails to answer correctly, its output can de-072

volve into unproductive, repetitive sequences.073

2) Overthinking. For comparatively simpler rea-074

soning tasks, these models tend to generate verbose075

and redundant thinking processes, resulting in sig-076

nificant computational overhead.077

We ask the research question: How do we improve078

the performance of reasoning models while reduc-079

ing the unnecessary tokens? To this end, we intro-080

duce a new framework: Multi-Turn Intervention081

Sampling (MuTIS). As shown in the figure 1,082

through multi-turn intervention sampling in rein-083

forcement learning, we curtail the tendencies for084

repetition and overthinking, thereby guiding the085

model towards more concise and effective reason-086

ing. Experimental evaluations demonstrate that,087

our method achieves impressive performance088

gains over the original model in the challenging089

math reasoning datasets.090

As depicted in Figure 1, a performance improve-091

ment of 32.8% was observed under 1K token limits.092

Furthermore, our approach enhances both accu-093

racy and efficiency in evaluations conducted with-094

out a token limit, translating to significant gains095

in both the computational cost-effectiveness and096

overall performance of reasoning models. Further-097

more, our method possesses excellent scalability098

and transferability, as evidenced by its superior099

performance on larger-parameter models (e.g., 7B)100

and in out-of-domain (OOD) tasks.101

2 Related Work 102

Efficient Reasoning aims to optimize inference cost 103

for long chain-of-thought (CoT) LLMs while pre- 104

serving reasoning capabilities, offering practical 105

benefits such as reduced computational costs and 106

improved responsiveness for real-world applica- 107

tions. To address these challenges, researchers 108

have focused on improving token efficiency in long 109

CoT LLMs. TALE-EP (Han et al., 2024) use the 110

LLM itself to estimate a token budget and incor- 111

porates it into the prompt to guide more token- 112

efficient responses. RouteLLM (Ong et al., 2024) 113

trains a query router to dispatch incoming queries 114

to suitable LLMs based on complexity. Cheng 115

and Van Durme (2024), Xu et al. (2025), and 116

Geiping et al. (2025) compress textual reasoning 117

steps into fewer latent representations to shorten 118

response lengths. KimiTeam et al. (2025), Sheng 119

et al. (2024), Yeo et al. (2025), and (Aggarwal and 120

Welleck, 2025) integrate a length reward into RL 121

framework. Despite the success of approaches like 122

L1, current methods have yet to leverage the advan- 123

tages of Multi-turn intervening reasoning. 124

3 Method 125

3.1 Multi-turn Markov Decision Process 126

We employ the Markov Decision Process (MDP) 127

and construct a quadruple < S,A,P,R > 128

to model the multi-turn intervention process. 129

In contrast to a single-turn rollout, charac- 130

terized by a single state transition sequence 131

(s0, a0, R1, sT ), a multi-turn intervention ex- 132
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Algorithm 1: Multi-Turn Intervention Sam-
pling (MuTIS) RL Training
Inputs: LLM policy πθ(y|x), intervention

prompt IP , max turns T , max
response length per turn Lenmax,
auxiliary agent Au, Initial
Reasoning Task I

Outputs :Updated policy πθ′

1 S0 ← I; Let H0 ← S0;LetHfull ← [] ;
2 for t = 1 to T do
3 Let current input xt ← Ht−1;
4 Generate response segment τ ′t ;
5 Infer action at from τ ′t ;
6 if at = ‘provide_final_answer‘ then
7 Extract final answer Res from τ ′t ;
8 Append τt toHfull;
9 Break For loop;

10 else if at = ‘ask_Au‘ then
11 Extract question Qt from τ ′t ;
12 Truncate τ ′t at the position of Qt to

get τt;
13 Obtain answer CAu

t from Au ;
14 Ht ← Ht−1 ⊕ τt ⊕Qt ⊕AAu

t ;
15 Append (τt ⊕Qt ⊕ CAu

t ) toHfull;
16 else
17 τt ← τ ′t ;
18 Ht ← Ht−1 ⊕ τt ⊕ IP;
19 Append (τt ⊕ IP) toHfull;

20 St ← Ht;

21 Sfinal ←
⊕

segment∈Hfull
segment;

22 Calculate reward Rfinal and LMuTIS(θ) ;
23 θ′ ← f(θ,LMuTIS(θ), Rfinal);
24 return πθ′

tends a task over a sequence of transitions:133

(s0, a0, R1, s1, a1, · · ·RT , sT ).134

S: The state representation comprises: 1) Ht: The135

current dialogue history. 2) Ct: Spontaneous Com-136

munication content with auxiliary agents. 3) IP:137

Inter-turn prompt perturbations. Besides, Hfull138

denotes the aggregate of all textual components, in-139

cluding model outputs, information from auxiliary140

agent.141

A: The set of possible actions includes: 1) Con-142

tinue the thinking process and performing further143

reasoning. 2) provide_final_answer: Provide a144

quick response with final answer Res. 3) ask_Au:145

Communicate with auxiliary agent Au.146

Auxiliary Agent

Actor

A Training 
Example

1st Turn 2nd Turn Final Turn

Warning! Invalid Action.

Please try again:

Intervention

Prompt

Integrated 

RolloutIs my reasoning 

correct?

MuTIS RL 
dataset

Figure 2: Framework of MuTIS. 1)The LLM initiates
a rollout based on the provided mathematical task. 2)If
the LLM’s response exceeds the predefined maximum
length, the rollout is truncated, and an Intervention
Prompt (IP) is inserted. 3)The truncated response,
combined with the IP, forms the input for the LLM to
continue its rollout in the subsequent turn. 4) During
iterative generation, the LLM has the option to consult
an auxiliary agent to verify its reasoning chain. 5)After
multi-turn rollout finished, all outputs from the individ-
ual turns are merged. 5) The integrated rollout is then
used to train the model via reinforcement learning.

P: In our multi-turn intervention framework, the 147

model’s state transition matrix P is perturbed. This 148

perturbation encourages the model to deviate from 149

its initially most probable reasoning trajectory, 150

thereby facilitating transitions to alternative states 151

in subsequent rollouts. 152

R: We utilize a rule-based final answer reward,
denoted asRacc, which is focused on the accuracy
of the final answer. This approach leads to a sparse
reward signal, defined as follows:

Rfinal =

{
1 correct answer within limited turn,
0 otherwise.

The sparse nature of Racc dictates that, at any
given time t, the initial T − t − 1 terms in the
sequence of subsequent immediate rewards (i.e.,
rt, rt+1, . . . , rT−1) are zero, assuming the final re-
ward occurs at time T

Gt = Rt+1 + · · ·+ γT−t−1RT (Ri = 0, i ̸= T ).

3.2 Reinforcement Learning with Multi-Turn 153

Intervention Sampling 154

The overall pipeline of MuTIS is illustrated in Fig- 155

ure 2. the core of our method is to guide the rea- 156

soning model to generate efficient and concise 157

reasoning chains for RL training. 158
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Reinforcement Learning. We employ the Proxi-159

mal Policy Optimization (PPO) algorithm for train-160

ing and adopt a rule-based accuracy reward, which161

is granted solely based on the correctness of the162

final answer. Thus, a reward of 1 is received if the163

model outputs the correct final answer within the164

predefined turn limit. Conversely, the reward is 0165

if the model either fails to respond within this limit166

or provides an incorrect answer.167

Multi-turn Rollout. To achieve concise reasoning,168

we enforce a maximum response length of 2000 to-169

kens for each rollout. If a model’s output surpasses170

this limit, its rollout is forcibly terminated, and the171

model receives the intervention prompt: "Warn-172

ing! Your previous action is invalid. Please try173

again:". Following this intervention, the model is174

allowed to continue its response, effectively resum-175

ing from the point of interruption. This iterative176

process repeats until the model provides a final177

answer or the dialogue exceeds a predefined maxi-178

mum number of turns.179

We design a flexible multi-turn termination logic.180

When the model outputs predefined terminal re-181

sponse tokens, such as “final answer“,182

boxed, or the <answer> tags. MuTIS promptly de-183

tects these and truncates the rollout at that position,184

whereupon the Multi-Turn Intervention also ceases.185

This design facilitates the capture of fine-grained186

model states and prevents superfluous rollout turns187

after an answer has been generated.188

Communication Mechanism. We supplement the189

maximum response length constraint with an "Aux-190

iliary Agent". When the model encounters diffi-191

culties during training and requires assistance, it192

can communicate with this auxiliary agent to re-193

ceive guidance. We have implemented a detection194

mechanism for special tokens. During a rollout, if195

the LLM utilizes an <ask> tag, our system detects196

this and invokes gpt-4o mini to act as an Auxil-197

iary Agent. This Auxiliary Agent addresses the198

specific query embedded by the LLM within the199

<ask> tag and returns a corresponding answer. The200

provided answer is then encapsulated in <commu-201

nicate> tags and inserted into the ongoing rollout.202

Moreover, inspired by the design of Search-R1 (Jin203

et al., 2025), any external information, such as the204

Auxiliary Agent’s response, is masked during the205

loss calculation. This masking prevents interfer-206

ence with the optimization of the LLM’s parame-207

ters throughout the RL training phase.208

Prompt design. To evaluate our experiment’s sen- 209

sitivity to prompt formulation, we designed and 210

tested five distinct prompt variants. Specific details 211

of the prompt designs are provided in the Appendix 212

B. 213

We introduce two variants of our method: "multi- 214

turn intervention with ask" (MuTIS-Ask), which 215

allows the model to request help from the Auxiliary 216

Agent, and "multi-turn intervention without ask" 217

(MuTIS), which does not include this feature. 218

4 Experiment 219

4.1 Experiment Setup 220

MuTIS is implemented using the veRL (Sheng 221

et al., 2024) reinforcement learning framework. For 222

the multi-turn generation design, we reference the 223

codebase from Search-R1(Jin et al., 2025). 224

Training Dataset. Our primary training data was 225

derived from the "default" partition of the OpenR1- 226

Math-220k (Face, 2025) dataset, which initially 227

comprised over 90,000 samples. We applied sev- 228

eral filtering criteria to refine this dataset. A de- 229

tailed description of the filtering process is pro- 230

vided in the Appendix A. 231

Additionally, inspired by recent studies suggesting 232

great benefits of smaller datasets for model train- 233

ing(Muennighoff et al., 2025; Ye et al., 2025). How- 234

ever, these researches mainly focus on Supervised 235

Fine-Tuning(SFT). We aimed to investigate the im- 236

pact of RL training across different data scales. 237

Therefore, we conducted a separate set of exper- 238

iments using 817 data points from the LIMO(Ye 239

et al., 2025) as training data, with 10% of these 240

reserved for validation. Our experiments demon- 241

strated that training on both datasets yielded com- 242

parably strong performance. However, in terms 243

of training dynamics, the LIMO dataset showed 244

a faster convergence rate than open-r1. Conse- 245

quently, models derived from training on each of 246

these datasets were selected for subsequent experi- 247

ments. Further experimental details are provided 248

in Appendix A. 249

Evaluation. We assessed our method and base- 250

line models on five math reasoning benchmarks. 251

To further assess model generalization, we also 252

included evaluations on out-of-domain multiple- 253

choice question datasets. The dataset versions used 254

were aligned with those available in the LIMO 255
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Accuracy (%, ↑) # Tokens (↓)
MATH500 AMC23 Olympiad Minerva AIME24 MATH500 AMC23 Olympiad Minerva AIME24

DeepSeek-R1-Distill-Qwen-1.5B

R1-Distill (2025) 69.4 55.0 28.9 23.9 16.7 10083 15927 20686 14410 25549
Be Concise (2024) 69.8 47.5 32.2 23.5 16.7 8818 17773 18535 9639 26130
Fixed Budget (2024) 69.8 52.5 30.2 22.8 16.7 9753 17648 20518 13075 24376
MuTIS (Ours) 74.6 62.5 40.2 29.4 30.0 3060 5847 8248 2586 13640
MuTIS-Ask (Ours) 76.8 62.5 37.2 29.0 20.0 3947 8411 10505 1856 17429

DeepScaleR-1.5B-Preview

DeepScaleR (2025) 78.8 65.0 45.0 34.2 30.0 6586 9335 13015 11810 19051
Be Concise (2024) 78.4 72.5 45.2 30.5 26.7 5861 9183 11848 9691 17471
Fixed Budget (2024) 81.0 67.5 43.1 32.0 36.7 5351 8298 12686 10148 18898
L1-Exact (2025) 83.8 67.5 46.2 39.0 26.7 2243 2236 3162 3489 2771
MuTIS (Ours) 84.8 70.0 48.9 35.7 26.7 3564 5809 8667 5647 14892
MuTIS-Ask (Ours) 84.6 75.0 46.8 30.9 36.7 2703 6298 6280 3594 12556

Table 2: This Table provides a visual comparison of accuracy and efficiency between MuTIS and baseline methods
on mathematical reasoning benchmarks. All evaluations were conducted using an identical framework and
consistently aligned hyperparameters to ensure a fair comparison.

repository. We use greedy decoding for all evalua-256

tions, which introduces no randomness in the out-257

puts. Consequently, the same answer is obtained258

regardless of the random seed, ensuring that all259

reported data correspond to results from a single260

sampling pass. Further evaluation details can be261

found in Appendix A.262

Our experiments are conducted on R1-Distill Mod-263

els (Guo et al., 2025) and DeepScaleR-1.5B-264

Preview (Luo et al., 2025).265

Baseline. We compared our method against two266

types of baselines: one comprising approaches267

based on test-time prompt optimization, and the268

other concurrent related methods.269

1. Be Concise (Renze and Guven, 2024): It ap-270

pends the phrase "be concise" to the base prompt.271

2. Fixed Budget (Nayab et al., 2024): Prompt272

the model to "limit the answer length to [SOME273

NUMBER] words." We adopted a similar approach,274

augmenting the base prompt by adding the follow-275

ing instruction: "The final answer is output before276

the maximum number of tokens (max_tokens) is277

used:"278

3. L1-Exact (Aggarwal and Welleck, 2025) applies279

a reinforcement-learning objective that combines a280

correctness reward with an exact-length penalty to281

optimize both performance and efficiency.282

4.2 Evaluation Results283

As indicated in Table 2, MuTIS simultaneously im-284

proves accuracy while significantly reducing token285
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(a) Original Model
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(b) MuTIS (Ours)

Figure 3: (a) and (b) present an analysis of "thinking
length" distributions on Math-500, specifically for cor-
rectly answered problems. (a) shows the distribution
for the R1-distill (baseline) model, while (b) depicts the
distribution for the same model after MuTIS RL training

consumption. Furthermore, when evaluated on five 286

mathematical reasoning datasets, the model con- 287

sistently exhibited performance enhancements to a 288

notable degree across all of them. In the Olympiad- 289

bench dataset, our approach achieves a substantial 290

11.3% improvement in accuracy while concurrently 291

reducing token utilization by an average of 60.1%. 292

Enhanced Response Succinctness for Correct 293

Solutions. As shown in the table 1. For prob- 294

lems where both the baseline and our model pro- 295

vided correct answers, our method demonstrated 296

a remarkable capability for response compression, 297

yielding more concise yet accurate solutions. 298

Refinement of Thinking Phase. Recent efforts to 299

enhance the efficiency of reasoning models have 300

largely focused on optimizing their Thinking Phase. 301

Muennighoff et al. (2025) employ test-time scaling 302

to allocate predefined token budgets, while Ma et al. 303

(2025) directly bypass the thinking process via sim- 304
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Accuracy (%, ↑) #Token (↓)
MATH500 AMC23 Olympiad MATH500 AMC23 Olympiad

DeepSeek-R1-Distill-Qwen-7B

R1-Distill 86.4 67.5 44.3 5053 9178 12061
MuTIS (Ours) 87.4 77.5 54.1 2377 3296 5966

Table 3: MuTIS demonstrates superior scalability on
7B models, with the figure presenting a comparison
of accuracy and efficiency between the DeepSeek-R1-
Distill-Qwen-7B and MuTIS.

Accuracy (%, ↑) #Token (↓)
MMLU GPQA R-Bench MMLU GPQA R-Bench

DeepSeek-R1-Distill-Qwen-1.5B

R1-Distill 33.6 33.8 27.9 13895 27880 31043
MuTIS (Ours) 39.2 33.3 29.7 13677 22553 28139

DeepScaleR-1.5B-Preview

DeepScaleR 48.2 36.4 30.2 12108 22922 25653
MuTIS (Ours) 43.7 36.9 36.6 9534 11172 17836

Table 4: MuTIS exhibits stability when applied to both
out-of-domain (OOD) data and across diverse data for-
mats.

ple prompting. In line with these research direc-305

tions, we analyzed the behavioral changes within306

the thinking phase of MuTIS.307

As depicted in Figure 3, MuTIS exhibits a substan-308

tially reduced thinking length compared to the orig-309

inal model. For 93.2% of tasks, MuTIS completes310

the Thinking Phase using fewer than 1000 tokens,311

achieving an accuracy of 82.4% on these tasks.312

This performance strongly demonstrates MuTIS’s313

capability for concise and accurate reasoning.314

Strong scalability with large-parameter models.315

To validate the scalability of our method, we ex-316

tended the MuTIS RL Training Pipeline to larger317

models(DeepSeek-R1-Distill-Qwen-7B (Guo et al.,318

2025)). As presented in the table 3, the experi-319

mental results demonstrate that MuTIS achieves320

similarly significant improvements on these larger-321

parameter models: reasoning efficiency is en-322

hanced, token consumption is markedly reduced,323

and dataset accuracy is increased. For instance, on324

OlympiadBench, MuTIS boosted performance by325

9.8% while decreasing token consumption by 50%.326

These findings illustrate the superior and scalable327

performance of MuTIS across models of varying328

parameter sizes. For more detailed experimental329

details, please refer to Appendix A330

Out-of-Domain Transferability. The enhance-331

ments in reasoning capabilities fostered by MuTIS332

also demonstrate generalization to different task333

formats and transferability to out-of-domain tasks.334

Math500 AMC Olympiad
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Figure 4: This figure illustrates the frequency of the
“Repetition“ phenomenon across various datasets. Our
method is represented by the right-hand hatched bars,
while the original reasoning model is represented by the
left-hand bars.

Despite being trained exclusively on mathemati- 335

cal generation tasks, models exhibited strong gen- 336

eralization performance on multiple-choice ques- 337

tion (MCQ) datasets. We test our method on 338

MMLUPro (Hendrycks et al., 2021a,b) (Math 339

MCQs), GPQA (Rein et al., 2023) (graduate-level 340

multi-disciplinary MCQs) and R-Bench (Li et al., 341

2024) (graduate-level multi-disciplinary MCQs) 342

As shown in the table 4 This was evidenced by 343

sightly improvements in accuracy and reductions 344

in token consumption on these out of domain and 345

format tasks. Moreover, its training regimen, pri- 346

marily focused on mathematical reasoning tasks, 347

does not significantly compromise performance on 348

other tasks and, in some instances, even enhances 349

it. It indicates a more efficient and fundamentally 350

improved reasoning process that transcends the spe- 351

cific training task format. 352

4.3 Reasoning Under Token Constraints 353

We conducted evaluations under varying maxi- 354

mum generation token constraints, forcing the 355

model to complete its reasoning and generate a re- 356

sponse within the token limit. As shown in Figure 357

5, comparative analysis across multiple datasets 358

reveals that MuTIS significantly outperforms the 359

original reasoning model. 360

The original model’s accuracy typically com- 361

mences its improvement only after the token ex- 362

ceeds approximately 500. This behavior suggests 363

the existence of a significant “Effective Token 364

Threshold”— a point that must be reached for 365

the model to complete its reasoning process and 366

generate an answer. Consequently, most tasks re- 367

quire a substantial token budget, often considerably 368

surpassing this 500-token baseline, for successful 369
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Figure 5: The figure compares the accuracy of MuTIS with two baseline models: R1-Distill (first row) and
DeepscaleR (second row). All evaluations presented were conducted under identical token limit settings.

execution. In stark contrast, MuTIS demonstrates370

significant performance gains even with highly re-371

stricted token budgets. For instance, on the Math-372

500 dataset, MuTIS achieves over 40% accuracy373

using only 800 tokens.374

4.4 Mitigation of Repetition Issues375

As shown in the Figure 4, MuTIS substantially376

mitigates the incidence of "ineffective loops"—a377

phenomenon where models generate excessively378

long, non-productive responses when failing to379

solve a problem. Consequently, the proportion of380

responses truncated due to exceeding the default381

maximum token limit (typically 32,768 tokens in382

standard evaluations) was markedly reduced from383

46.6% to 16.1 %. This provides strong evidence384

that our method effectively mitigates the "Repeti-385

tion" problem across most scenarios. Further de-386

tails regarding the evolution of response length387

after MuTIS training are provided in the Appendix.388

4.5 Ablation Study389

Pivotal Role of Multi-turn. Our method’s core390

philosophy is to utilize Multi-Turn Interven-391

tions to influence the model’s reasoning trajectory,392

thereby steering reinforcement learning (RL) opti-393

mization towards more effective and efficient pol-394

icy space regions.395

To assess the specific contribution of our method’s396

multi-turn interaction, we conducted a controlled397

Accuracy (%, ↑) #Tokens (↓)
MATH

500
AMC23 Olympiad

MATH
500

AMC23 Olympiad

R1-Distill 69.4 55.0 28.9 10083 15927 20686
Single-turn 67.0 52.3 30.2 1483 4072 4688
3-turn (Ours) 76.8 62.5 37.2 3947 8411 10505
5-turn 67.8 45.0 32.0 665 1580 2096

Table 5: Our ablation studies ensured a consistent total
length across varied experimental configurations, fix-
ing the overall token limit at 6000. This was achieved
through setups such as 3 turns with a 2000-token limit
each (3×2000), a single 6000-token turn (1×6000), and
5 turns with a 1200-token limit each (5×1200)

ablation study. To ensure fairness and isolate the 398

iterative impact, the single-turn baseline also re- 399

ceived an Intervention Prompt (IP) post-interaction. 400

This design enables precise analysis of the multi- 401

turn engagement’s pivotal role in the observed per- 402

formance benefits. 403

As shown in the Figure 5, While a single-turn set- 404

ting significantly reduces token consumption, it 405

sightly reduces accuracy. A 3-turn setup sub- 406

stantially boosts accuracy compared to the single- 407

turn approach, though token consumption increases. 408

Conversely, further increasing the number of turns 409

to five can again lower token consumption, but this 410

often leads to a decline in accuracy. Our analysis 411

indicates that with a 5-turn setup constrained by 412

a tight 1200-token per-turn limit, the model expe- 413

riences excessive intervention, which adversely 414

impacts its performance. 415

This ablation study across different turn configura- 416
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Keyword Original Model MuTIS MuTIS-Ask

wait 8.73 0.97 3.15
hold on 0.18 0.00 0.01
but 10.92 3.63 5.00
not sure 0.21 0.06 0.46
maybe 3.51 0.71 1.43
double-check 0.07 0.10 0.10
think again 0.09 0.01 0.17
alternatively 2.03 0.84 1.08
another idea 0.11 0.02 0.08
another approach 0.04 0.03 0.04

Table 6: This table illustrates the difference in the fre-
quencies of the reflection words between the original
R1-Distill-1.5B model and the two variants of MuTIS.
The frequencies are counted as the average times of
occurrence every 1000 tokens in responses.

tions demonstrates that the 3-turn design ultimately417

chosen for MuTIS achieves an optimal balance418

between accuracy and token consumption. It ap-419

pears to exert an "appropriate level of intervention"420

on the model’s rollouts, thereby fostering both ef-421

fective and efficient reasoning.422

5 Discussion423

5.1 Reflection Words in Reasoning models424

Do small inference models really need tons of re-425

flection words?426

Research on DeepSeek-R1-Zero (Guo et al., 2025)427

have shown that reflection words like "Wait" are428

important markers of self-verification in reasoning429

models. However, as shown in Table 6, our exper-430

imental results on smaller models show that such431

self-reflection words, including “Wait“, decrease432

significantly during the MuTIS training process.433

Concurrently, the model’s reasoning becomes more434

concise, and its performance under limited token435

conditions improves. This suggests that these re-436

flection words are substantially redundant. While437

existing research has documented "Superficial Re-438

flection" behavior(Liu et al., 2025) in base models439

like Qwen2.5-Instruct, our experiments reveal that440

reasoning models exhibit a form of self-verification441

that can be characterized as “Ineffective Noise.“442

5.2 Behavior Analysis in the Reinforcement443

Learning Process444

After MuTIS intervenes to guide models toward445

generating concise reasoning chains, it primar-446

ily employs RL to optimize LLM parameters.447
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Figure 6: This figure illustrates the progression of both
response length and the number of response turns for
the deepscaler-1.5B model during MuTIS RL training

Consequently, we further analyzed the behavioral 448

changes exhibited by the models during this RL 449

process. As depicted in figure 6, the average re- 450

sponse length of models undergoing MuTIS’s RL 451

process steadily decreases, from an initial 5̃000 to- 452

kens to approximately 1500 tokens. Concurrently, 453

the average number of multi-turn iterations drops 454

from an original 2.5 to around 1.25. This indicates 455

that while original models struggle under strict to- 456

ken constraints, models trained with MuTIS learn 457

to provide concise answers within a minimal num- 458

ber of turns. 459

A recent study posited that RL does not fundamen- 460

tally expand a model’s capability boundaries (Yue 461

et al., 2025) but rather increases the probability 462

of accessing pre-existing correct states within its 463

search space. This implies that RL predominantly 464

helps models solidify their conviction in effective 465

reasoning paths. Our experimental findings with 466

MuTIS support this perspective: RL’s role in mak- 467

ing responses increasingly concise demonstrates 468

its efficacy in enabling rapid convergence within 469

the model’s search space. This process embodies 470

the model shifting from self-doubt to firm con- 471

viction. 472

6 Conclusion 473

We introduce a novel Multi-Turn Intervention Sam- 474

pling (MuTIS) approach for RL training. This 475

method innovatively employs multi-turn rollouts 476

and incorporates dual guidance – from an Inter- 477

vention Prompt and an Auxiliary Agent – to steer 478

models toward generating high-quality, concise 479

reasoning chains. Our experiments indicate si- 480

multaneous improvements in both accuracy and 481

efficiency. 482
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Limitations483

We demonstrate that training small reasoning mod-484

els with multi-turn intervening sampling achieves485

effective reasoning. While computational con-486

straints prevented us from exploring the full po-487

tential of the method on larger models (e.g., 32B488

models), future work will focus on extending our489

approach for enhanced generalization and wider490

applicability.491

During training, our method’s response length can492

significantly fluctuate before ultimately stabiliz-493

ing. This suggests that effective KL divergence494

constraints could be important for achieving more495

stable training dynamics in our Multi-turn Interven-496

tion process.497
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Appendix708

A Experiment Details709

A.1 Dataset filtering details710

• Remove multiple-choice questions (MCQs). To711

focus on the model’s ability to generate answers712

rather than merely select them, thereby provid-713

ing a more rigorous assessment of its reasoning714

capabilities, all MCQs were excluded.715

• Remove questions with overly long (≥55 tokens)716

answers. We observed that some answers in the717

original dataset had non-standard formatting or718

contained excessive descriptive language. Such719

answers are challenging to evaluate accurately720

using a rule-based reward system.721

• Remove questions with multiple answers or in-722

volving multiple variables. the presence of mul-723

tiple valid answers complicates the extraction724

and comparison process during evaluation, poten-725

tially leading to mismatches that can negatively726

impact training.727

Following these filtering steps, our final training728

dataset consisted of over 60,000 samples. From729

this, 0.5% was allocated as a dedicated validation730

set to monitor model performance throughout the731

training process.732

A.2 Evaluation Details733

We assessed our method and baseline models on the734

following five math reasoning benchmarks:Math-735

500 (Lightman et al., 2023), AIME 2024 (AMC.736

American Mathematics Competitions, 2025a),737

AMC23 (AMC. American Mathematics Compe-738

titions, 2025b), Olympiadbench (He et al., 2024),739

Minerva (math-ai, 2025)740

The dataset versions used were aligned with those 741

available in the LIMO repository. We use greedy 742

decoding for all evaluations, which introduces no 743

randomness in the outputs. Consequently, the same 744

answer is obtained regardless of the random seed, 745

ensuring that all reported data correspond to results 746

from a single sampling pass. 747

Our mathematical reasoning evaluation also 748

leveraged LIMO’s evaluation framework, whose 749

methodology is primarily derived from Qwen2.5- 750

Math. This framework employs a rule-based as- 751

sessment to determine answer correctness, without 752

relying on model-based judgments. 753

For MCQ tasks, we predominantly utilized the lm- 754

eval (Gao et al., 2024) framework, as LIMO’s eval- 755

uation framework offers limited support for these 756

types of evaluations. 757

A.3 Experiment Model 758

Our experiments are conducted on DeepSeek-R1- 759

Distill-Qwen-1.5B (Guo et al., 2025), DeepScaleR- 760

1.5B-Preview (Luo et al., 2025), and DeepSeek-R1- 761

Distill-Qwen-7B (Guo et al., 2025). Given the orig- 762

inal reasoning model’s already strong mathematical 763

problem-solving capabilities, coupled with our re- 764

search emphasis on efficiency, we also included it 765

as a key baseline for performance comparison. 766

A.4 Analysis of Responses Length 767

Figure 7 shows the generation length histogram 768

of MuTIS and the original DeepSeek-R1-Distill- 769

Qwen-1.5B model on Math500 dataset. It demon- 770

strates that MuTIS evidently mitigates the over- 771

thinking problems (shown by the overall distribu- 772

tion) and the repetition issues (shown by the red 773

part of the rightmost bar). 774

A.5 Detailed Results on Large-Parameter 775

Models 776

Figure 8 shows the comparison of accuracy under 777

token limits between the original DeepSeek-R1- 778

Distill-Qwen-7B and our MuTIS. 779

A.6 further discussion on Reflection Word 780

The advent of sophisticated reasoning models, ex- 781

emplified by OpenAI o1 (Jaech et al., 2024) and 782

DeepSeek-R1 (Guo et al., 2025), has catalyzed 783

a research emphasis on long Chain-of-Thought 784
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Figure 7: Generation Length

(CoT) methodologies as a primary target for op-785

timizing model training. Nevertheless, contempo-786

rary studies indicate a prevalent "OverThinking"787

phenomenon within these models, characterized by788

excessive or non-productive cognitive steps.789

Table 1 illustrates that original reasoning models790

often introduce significant redundancy. In con-791

trast, our optimization (MuTIS) not only further792

improves accuracy but also concurrently reduces793

token consumption. This demonstrates that the794

Chain-of-Thought (CoT) in such reasoning models795

contains many unnecessary steps. Indeed, analysis796

of MuTIS’s post-training reasoning CoT, reveals a797

significant reduction in "reflection words"–terms798

frequently occurring in standard distilled models.799
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Figure 8: Accuracy vs Token Limits on 7B models. The
original model is DeepSeek-R1-Distill-Qwen-7B and
the MuTIS is trained on it.

B Prompt Design 800

B.1 Chat Template Design 801

We employed a system prompt inspired by 802

DeepSeek-R1 Zero. For our two model versions, 803

MuTIS and MuTIS-Ask, distinct chat templates 804

were developed. Within the system role specified 805

in these templates, we outlined the specific interac- 806

tion workflow to guide the LLM. 807

MuTIS-Ask

role: ’system’,content: The user asks a ques-
tion, and the Assistant solves it. The assis-
tant first thinks about the reasoning process in
the mind and then provides the user with the
answer. The answer is enclosed within <an-
swer> </answer> tags. i.e., <answer> answer
here </answer>. During the assistant’s reason-
ing process, if he realizes that his reasoning
may be problematic or wrong, he can ask other
agents for help. The query is inclosed within
<ask> </ask> Tags. i.e., <ask> put confused
point here </ask>. It will return the advice from
other agent within <communicate> </commu-
nicate>. The assistant can ask other agents for
help multiple times. If the assistant understand
the question and find no further other agents’
advice needed, the assistant can directly pro-
vide the answer inside <answer> </answer>.

808
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MuTIS

role: ’system’,content: The user asks a ques-
tion, and the Assistant solves it. The assistant
first thinks about the reasoning process in the
mind and then provides the user with the an-
swer. The answer is enclosed within <answer>
</answer> tags. i.e., <answer> answer here
</answer>. If the assistant understand the ques-
tion, he can directly provide the answer inside
<answer> </answer>.

809

B.2 Intervention Prompt Design810

MuTIS-Ask

Warning! My previous action is invalid. If I
want to ask other agents for help, I should put
the query between <ask> and </ask>. If I want
to give the final answer, I should put the answer
between <answer> and </answer>. Let me try
again:

811

MuTIS

Warning! My previous action is invalid. If I
want to give the final answer, I should put the
answer between <answer> and </answer>. Let
me try again:

812

B.3 Analysis of Prompt Sensitivity and813

Generalization814

To ensure that our experimental design was not815

overly sensitive to prompt hyperparameter selec-816

tion, we analyzed the experimental results and train-817

ing processes associated with different variants of818

the ’Intervention Prompt.’ The specific prompts819

used are as follows:820

• Alert: The action you just performed was not821

valid. Please attempt it again.822

• Notice: Your last move was unsuccessful. Kindly823

try once more.824

• Error: The preceding operation failed. Please825

redo the action.826

• Caution: That last input was not accepted. Please827

have another go.828

• Unsuccessful Action: Your prior step could not829

be processed. Please try again.830

C Additional Cases 831

C.1 MuTIS Inference Case 832

Figure 9 shows the inference outputs of MuTIS and 833

the original model on the same question. 834

C.2 MuTIS Trajectory in Training Phase 835

Figure 10 shows an example of MuTIS training tra- 836

jectory. This example demonstrates how MuTIS’s 837

design substantially enriches the LLM’s reasoning 838

chain, resulting in higher-quality trajectories for 839

training. 840

D Additional Related Work 841

Reinforcement Learning for LLM Reasoning. 842

As advancements in Large Language Model (LLM) 843

research encounter the challenges of escalating data 844

scales, performance bottlenecks are becoming in- 845

creasingly apparent. This issue is particularly acute 846

for Supervised Fine-tuning (SFT), which critically 847

depends on high-quality, novel datasets. Conse- 848

quently, there is a growing research focus on Re- 849

inforcement Learning, especially techniques uti- 850

lizing rule-based rewards (Zeng et al., 2025; Pan 851

et al., 2025; Face, 2025; Liu et al., 2025), which 852

have shown considerable potential in enhancing 853

model performance. "Learning from reward" is 854

thus emerging as a new training paradigm. 855

RL algorithms such as GRPO (Shao et al., 2024) 856

and DAPO (Yu et al., 2025) leverage rewards dur- 857

ing the training phase to optimize model parame- 858

ters. Concurrently, sampling methodologies like 859

Best of N employ rewards at the sampling stage 860

to improve response accuracy. Furthermore, Zhao 861

et al. (2025) rewards reasoning trajectories using 862

a Process Reward Model (PRM), while Shen et al. 863

(2025) rewards them using an Outcome Reward 864

Model (ORM). Both advocate for the use of high- 865

quality reasoning trajectories to augment model rea- 866

soning capabilities. However, these approaches are 867

fundamentally model-based reward designs, and 868

the potential of rule-based rewards within such 869

frameworks remains largely unexplored. 870
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Question: If f(x) = 3x−2
x−2 , what is the value of f(−2) + f(−1) + f(0) ? Express your answer as a common fraction..

MuTIS(Ours): token consumption 650

Q: If f(x) = 3x−2
x−2 , what is the value of f(−2) +

f(−1) + f(0)? Express your answer as a common
fraction.
A: ¡think¿ To find the value of f(−2) + f(−1) + f(0)
for the function f(x) = 3x−2

x−2 , I will evaluate each
term separately and then sum them up.
First, I will calculate f(−2):

f(−2) = 3(−2)− 2

−2− 2
=
−6− 2

−4 =
−8
−4 = 2

Next, I will calculate f(−1):

f(−1) = 3(−1)− 2

−1− 2
=
−3− 2

−3 =
−5
−3 =

5

3

Then, I will calculate f(0):

f(0) =
3(0)− 2

0− 2
=

0− 2

−2 =
−2
−2 = 1

Finally, I will sum the results:

f(−2)+ f(−1)+ f(0) = 2+
5

3
+1 =

6

3
+

5

3
+

3

3
=

14

3

¡/think¿
To find the value of f(−2) + f(−1) + f(0) for the
function f(x) = 3x−2

x−2 , we will evaluate each term
separately and then sum them up.
1. Calculate f(−2):

f(−2) = 3(−2)− 2

−2− 2
=
−6− 2

−4 =
−8
−4 = 2

2. Calculate f(−1):

f(−1) = 3(−1)− 2

−1− 2
=
−3− 2

−3 =
−5
−3 =

5

3

3. Calculate f(0):

f(0) =
3(0)− 2

0− 2
=

0− 2

−2 =
−2
−2 = 1

4. Sum the results:

f(−2)+ f(−1)+ f(0) = 2+
5

3
+1 =

6

3
+

5

3
+

3

3
=

14

3

14

3

Distill Model(Origin): token consumption 2753

Okay, so I have this function f(x) which is equal to (3x − 2) divided by (x − 2). I need to find the value of f(−2) +
f(−1) + f(0). Hmm, let me think about how to approach this step by step. First, I should probably figure out what
each of these function values is individually. That is, I need to compute f(−2), f(−1), and f(0) separately and then
add them together. Sounds straightforward, but I want to make sure I do each step correctly. Starting with f(−2). The
function f(x) is (3x− 2)/(x− 2). So, substituting x with −2, I get: f(−2) = (3 ∗ (−2)− 2)/(−2− 2) Let me compute
the numerator and the denominator separately. The numerator is 3 ∗ (−2) which is −6, and then subtract 2, so that’s
−6− 2 = −8. The denominator is −2− 2, which is −4. So, f(−2) is −8 divided by −4. Hmm, dividing two negatives
gives a positive, so that’s 2. Okay, so f(−2) is 2. Next, let’s compute f(−1). Again, substituting x with −1 in the
function: f(−1) = (3 ∗ (−1)− 2)/(−1− 2) Calculating the numerator: 3 ∗ (−1) is −3, minus 2 is −5. The denominator
is −1 − 2, which is −3. So, f(−1) is −5 divided by −3. Again, dividing two negatives gives a positive, so that’s 5/3.
So, f(−1) is 5/3. Now, moving on to f(0). Substituting x with 0: f(0) = (3 ∗ 0− 2)/(0− 2) Calculating the numerator:
3 ∗ 0 is 0, minus 2 is −2. The denominator is 0− 2, which is −2. So, f(0) is −2 divided by −2, which is 1. So, f(0) is
1. Alright, so now I have all three function values: f(−2) is 2, f(−1) is 5/3, and f(0) is 1. Now, I need to add them
together. So, adding them up: 2+5/3+1. Let me convert all these to fractions with a common denominator to make it
easier. 2 is the same as 6/3, and 1 is the same as 3/3. So, adding them together: 6/3+5/3+3/3 = (6+5+3)/3 = 14/3.
Wait, hold on, that seems a bit high. Let me double-check my calculations. First, f(−2): 3 ∗ (−2) is −6, minus 2
is −8. Denominator: −2 − 2 is −4. So, −8/ − 4 is 2. That seems correct. f(−1): 3 ∗ (−1) is −3, minus 2 is −5.
Denominator: −1− 2 is −3. So, −5/− 3 is 5/3. That also seems correct. f(0): 3 ∗ 0 is 0, minus 2 is −2. Denominator:
0 − 2 is −2. So, −2/ − 2 is 1. That’s correct too. Adding them: 2 + 5/3 + 1. Let me convert 2 and 1 to thirds: 2 is
6/3, 1 is 3/3. So, 6/3 + 5/3 + 3/3 is indeed 14/3. Hmm, 14/3 is equal to 4 and 2/3, which is approximately 4.666...
Wait, but let me think again. Is there a possibility that I made a mistake in substituting the values? Let me check
each substitution again. For f(−2): (3 ∗ (−2) − 2)/(−2 − 2) = (−6 − 2)/(−4) = (−8)/(−4) = 2. Correct. For f(−1):
(3 ∗ (−1)− 2)/(−1− 2) = (−3− 2)/(−3) = (−5)/(−3) = 5/3. Correct. For f(0): (3 ∗ 0− 2)/(0− 2) = (−2)/(−2) = 1.
Correct. So, adding them: 2 + 5/3 + 1. Let me add 2 and 1 first: 2 + 1 is 3. Then, 3 + 5/3. 3 is 9/3, so 9/3 + 5/3 is
14/3. So, 14/3 is the correct sum.
Wait, but 14/3 is an improper fraction, and the question says to express the answer as a common fraction. So, 14/3
is already a common fraction, so that should be the answer. But just to make sure, let me think if there’s another way
to approach this problem, maybe simplifying the function first before plugging in the values. Sometimes, simplifying
can make the calculations easier or reveal any potential issues. Looking at f(x) = (3x− 2)/(x− 2). Hmm, can I factor
anything here? Let me see. The numerator is 3x − 2, which doesn’t factor nicely with the denominator x − 2. So, I
don’t think there’s a way to simplify this function further. So, I think my initial approach is correct. Alternatively,
maybe I can perform polynomial division or something, but since it’s a linear over linear function, it’s just a straight
division.
Wait, another thought: maybe I can write f(x) as 3 + something. Let me try that. Let me rewrite f(x) as (3x−2)/(x−
2). Let me perform the division: Divide 3x−2 by x−2. So, how many times does x−2 go into 3x−2? Well, x goes into
3x three times. So, 3∗(x−2) is 3x−6. Subtract that from 3x−2: (3x−2)−(3x−6) = 0x+4. So, the division gives 3 with
a remainder of 4. Therefore, f(x) can be written as 3+4/(x−2). So, f(x) = 3+4/(x−2). Hmm, that might be helpful
for checking the values. Let me compute f(−2) using this expression: 3+4/(−2−2) = 3+4/(−4) = 3−1 = 2. Correct,
same as before. f(−1): 3+4/(−1−2) = 3+4/(−3) = 3−4/3 = 5/3. Correct. f(0): 3+4/(0−2) = 3+4/(−2) = 3−2 = 1.
Correct. So, that’s another way to confirm the values. So, adding them together: 2 + 5/3 + 1 = 14/3. Wait but just
to make sure, let me compute each step again: f(−2): 3 ∗ (−2) = −6, −6− 2 = −8. Denominator: −2− 2 = −4. So,
−8/− 4 = 2. Correct. f(−1): 3 ∗ (−1) = −3, −3− 2 = −5. Denominator: −1− 2 = −3. So, −5/− 3 = 5/3. Correct.
f(0): 3 ∗ 0 = 0, 0 − 2 = −2. Denominator: 0 − 2 = −2. So, −2/ − 2 = 1. Correct. Adding them: 2 + 5/3 + 1. Let
me convert 2 and 1 to thirds: 2 is 6/3, 1 is 3/3. So, 6/3 + 5/3 + 3/3 = (6 + 5 + 3)/3 = 14/3. So, 14/3 is the sum.
Wait, 14/3 is an improper fraction, but the question says to express the answer as a common fraction. 14/3 is already
a common fraction, so that’s fine. Alternatively, if I wanted to write it as a mixed number, it would be 4 and 2/3,
but since the question specifies a common fraction, 14/3 is the appropriate answer. Just to make sure I didn’t make
any arithmetic errors, let me add 2 + 5/3 + 1 again: 2 + 1 is 3, and 3 + 5/3 is 3 + 1 and 2/3, which is 4 and 2/3, which
is 14/3. Yep, that’s correct. So, I think I’ve double-checked all my steps, and everything seems consistent. Therefore,
the value of f(−2) + f(−1) + f(0) is 14/3.

Final Answer The value of f(−2) + f(−1) + f(0) is
14

3
.

To find the value of f(−2) + f(−1) + f(0) for the function f(x) = 3x−2
x−2 , we need to evaluate the function at each

of these points and then sum the results. First, we compute f(−2): f(−2) = 3(−2)−2
−2−2 = −6−2

−4 = −8
−4 = 2 Next, we

compute f(−1): f(−1) = 3(−1)−2
−1−2 = −3−2

−3 = −5
−3 = 5

3 Then, we compute f(0): f(0) = 3(0)−2
0−2 = 0−2

−2 = −2
−2 = 1 Adding

these values together: f(−2) + f(−1) + f(0) = 2+ 5
3 + 1 Converting 2 and 1 to fractions with a common denominator:

2 = 6
3 and 1 = 3

3 Adding the fractions: 6
3 + 5

3 + 3
3 = 6+5+3

3 = 14
3 Thus, the value of f(−2) + f(−1) + f(0) is

14

3

Figure 9: Inference case. The left side is the original DeepSeek-R1-Distill-Qwen-1.5B model, and the right side is
our MuTIS model.
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Question: If f(x) = 3x−2
x−2 , what is the value of f(−2) + f(−1) + f(0) ? Express your answer as a common fraction..

<think> Okay, so I need to figure out how many segments joining the vertices of this
convex polyhedron lie entirely inside the polyhedron, not along an edge or a face. Let
me first jot down all the given information to organize my thoughts.
The polyhedron has: - 12 squares, - 8 regular hexagons, - 6 regular octagons as its faces.
Each vertex is where one square, one hexagon, and one octagon meet. That means the
configuration at each vertex is a 3-face meeting: 1 square, 1 hexagon, and 1 octagon. I
remember that in polyhedrons, the number of edges can be calculated using the formula:

3F = 2E

where F is the total number of faces and E is the number of edges.
Let me calculate the total number of faces first. The polyhedron has 12 squares, 8
hexagons, and 6 octagons, so:

F = 12 + 8 + 6 = 26

So, plugging into the formula:
3× 26 = 2E

78 = 2E

E = 39

Alright, so there are 39 edges in total.
Next, I think about the number of vertices. I remember another formula related to the
vertices. Since each face is a polygon and each vertex is where three faces meet, maybe
I can use a similar approach as with edges to find vertices.
For polyhedrons, there’s Euler’s formula:

V − E + F = 2

We know F = 26 and E = 39, so plugging into Euler’s formula:

V − 39 + 26 = 2

V − 13 = 2

V = 15

So, there are 15 vertices in total.
Now, the question is about the number of segments joining the vertices that lie in the
interior of the polyhedron rather than along an edge or a face. These are the space
diagonals.

. . .

Wait, now I’m confused. Maybe the total number of face diagonals is 216, but
we have only 105 segments, so actually, the face diagonals that we have calculated are
the ones that cross through the interior, so those are in the space, so the actual space
diagonals would be fewer.
Wait, no, perhaps the face diagonals are the ones that are not space diagon

My previous action is invalid If I want to ask other agents for help, I
should put the query between <ask> and </ask>. If I want to give the final
answer, I should put the answer between <answer> and </answer>. Let me
try again:

Total number of segments: 105.
Edges: 39.
Face diagonals: 216.
Wait, this is not possible because 216 is larger than 105.
Therefore, my mistake is in calculating the face diagonals. Because the face diagonals
can’t exceed the number of vertex segments, since each face diagonal is a unique segment
between two vertices.
Wait, but in reality, each face diagonal is only one segment, not multiple.
Wait, but if each face has n(n - 3)/2 diagonals, and for the polyhedron, the number of
such segments is:
For a square face: 2 diagonals.
But in reality, all the face diagonals belong to some face. So, in this polyhedron, each
face diagonal is a vertex segment.

. . .

Total number of vertex pairs: C = 15*14/2 = 105.
Number of edges: E = 39.
Number of face diagonals: for each face, diagonals are unique to that face. So, for each
face, if it’s a square, it has 2 face diagonals; hexagon, 9; octagon,20.
So, face diagonals count is:
Squares:12 faces * 2 diagonals =24
Hexagons:8 *9=72
Octagons:6*20=120

My previous action is invalid If I want to ask other agents for help, I
should put the query between <ask> and </ask>. If I want to give the final
answer, I should put the answer between <answer> and </answer>. Let me
try again:

<ask> A convex polyhedron has for its faces 12 squares, 8 regular hexagons, and 6
regular octagons. At each vertex of the polyhedron one square, one hexagon, and one
octagon meet. How many segments joining vertices of the polyhedron lie in the interior
of the polyhedron rather than along an edge or a face? </ask>
<communicate> Another Agent’s Response To find the number of segments joining the
vertices of the polyhedron that lie in the interior, we can follow these steps:
1. **Calculate the total number of vertices (V)**: Using Euler’s formula V −E+F = 2,
we first need to find the number of edges (E) and faces (F).
2. **Calculate the total number of faces (F)**:

F = 12 (squares) + 8 (hexagons) + 6 (octagons) = 26

3. **Calculate the number of edges (E)**: Each edge is shared between two faces. The
total number of edges can be calculated as:

E =
1

2
(12× 4 + 8× 6 + 6× 8) =

1

2
(48 + 48 + 48) =

144

2
= 72

4. **Use Euler’s formula to find the number of vertices (V)**:

V − 72 + 26 = 2 =⇒ V − 46 = 2 =⇒ V = 48

5. **Calculate the total number of segments joining the vertices**: The total number
of segments (C) joining the vertices is given by:

C =

(
V

2

)
=

48× 47

2
= 1128

6. **Subtract the number of edges (E)**:

Remaining segments = 1128− 72 = 1056

7. **Calculate the number of face diagonals**: - For squares: 4(4−3)
2 = 2 diagonals

per square, total 12 × 2 = 24 - For hexagons: 6(6−3)
2 = 9 diagonals per hexagon, total

8× 9 = 72 - For octagons: 8(8−3)
2 = 20 diagonals per octagon, total 6× 20 = 120

Total face diagonals:
24 + 72 + 120 = 216

8. **Calculate the number of space diagonals**: Now, subtract the face diagonals from
the remaining segments:

Space diagonals = 1056− 216 = 840

Thus, the number of segments joining the vertices of the polyhedron that lie in the
interior is **840**.</communicate>
<answer> To find the number of segments joining the vertices of the polyhedron that
lie in the interior, we can follow these steps:
1. **Calculate the total number of vertices (V)**: Using Euler’s formula V −E+F = 2,
we first need to find the number of edges (E) and faces (F).
2. **Calculate the total number of faces (F)**:

F = 12 (squares) + 8 (hexagons) + 6 (octagons) = 26

3. **Calculate the number of edges (E)**: Each edge is shared between two faces. The
total number of edges can be calculated as:

E =
1

2
(12× 4 + 8× 6 + 6× 8) =

144

2
= 72

4. **Use Euler’s formula to find the number of vertices (V)**:

V − 72 + 26 = 2 =⇒ V − 46 = 2 =⇒ V = 48

5. **Calculate the total number of segments joining the vertices**: The total number
of segments (C) joining the vertices is given by:

C =

(
V

2

)
=

48× 47

2
= 1128

6. **Subtract the number of edges (E)**:

Remaining segments = 1128− 72 = 1056

7. **Calculate the number of face diagonals**: - For squares: 4(4−3)
2 = 2 diagonals

per square, total 12 × 2 = 24 - For hexagons: 6(6−3)
2 = 9 diagonals per hexagon, total

8× 9 = 72 - For octagons: 8(8−3)
2 = 20 diagonals per octagon, total 6× 20 = 120

Total face diagonals:
24 + 72 + 120 = 216

8. **Calculate the number of space diagonals**: Now, subtract the face diagonals from
the remaining segments:

Space diagonals = 1056− 216 = 840

Thus, the number of segments joining the vertices of the polyhedron that lie in the
interior is 840 . </answer>

Figure 10: The figure presents an example of a model rollout within the multi-turn intervention process. In this
illustration, red segments indicate the Intervention Prompt (IP) introduced when the model’s response surpasses the
predefined response limit; blue tags represent the model’s autonomous actions during the rollout.
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