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Abstract

The world model enables agents to perform reasoning and001
planning through learning in the simulator, improving the002
sample efficiency in reinforcement learning. However, while003
diffusion-based models circumvent detail loss by operating004
in pixel space, their standard ℓ2 loss introduces a criti-005
cal physical inconsistency. Specifically, by averaging over006
plausible futures in partially observable scenarios, it gen-007
erates blurry boundaries and acausal displacements, arti-008
facts that violate the environment’s fundamental principle009
of finite-speed propagation. To address this challenge, we010
propose DIAMOND-LoL, a diffusion training framework,011
which adds a Lieb-Robinson Locality loss (LoL loss) to en-012
force the finite speed propagation of pixel dynamics. Based013
on the Lieb-Robinson bound, LoL loss penalizes structural014
changes outside the data-driven light cone radius, keeping015
the predictions within the reachable range of the environ-016
ment and avoiding mode averaging interpolation. More-017
over, we prove that LoL loss is zero only when the predic-018
tion boundary is within the finite propagation set, and we019
show that it converts the long-term error growth from expo-020
nential form to linear form. Experiments demonstrate that021
DIAMOND-LoL provides a principled and physically con-022
sistent training objective for diffusion world models, espe-023
cially having significant value in safety-critical scenarios.024

025

1. Introduction026

World models have become a central paradigm for enabling027
agents to reason and plan in complex domains [14, 17]. De-028
spite notable breakthroughs in areas such as vision [4, 24,029
38, 39, 54, 59, 61], medicine [10–13, 22], games, robotics,030
and science [53, 58], reinforcement learning (RL) remains031
inherently sample-inefficient, limiting its practical deploy-032
ment [6, 63]. Learned simulators address this limitation by033
providing a controllable training environment that improves034
sample efficiency [20] and enables learning from limited in-035
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Figure 1. Visualization of acausal transitions between consecutive
frames within a single rollout from DIAMOND. Each pair displays
two sequential predicted frames from the same imagined trajec-
tory, x̂t (left) and x̂t+1 (right), to highlight the sudden, physically
inconsistent mutations that occur in a single step. The overlays
on the right frame (x̂t+1) diagnose these violations. Specifically,
red areas denote new boundaries that materialize abruptly, out-
side the light-cone reachable from the preceding frame x̂t. Con-
versely, blue areas represent boundaries present in x̂t that disap-
pear in the very next step without a physically plausible succes-
sor. This teleportation is a direct consequence of the l2 objective,
which can cause the model to erratically jump between averaged
modes, compromising long-horizon stability.

teractions [25, 26, 62]. 036

Despite this promise, existing world models represent 037
environment dynamics through sequences of discrete latent 038
variables [47, 52]. Although discretization mitigates com- 039
pounding errors across long horizons, it inevitably discards 040
certain visual or structural details that may be critical for 041
decision making [35, 46, 55]. The limitation is particu- 042
larly pronounced in safety-critical applications such as au- 043
tonomous driving [9, 19], where subtle cues, for example, a 044
traffic signal or a distant pedestrian, can substantially alter 045
the agent’s policy. Increasing the number of discrete tokens 046
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can partially alleviate the problem but comes at the cost of047
significant computational overhead [46].048

Diffusion-based world models offer a complementary049
approach [1]. By learning to reverse a gradual nois-050
ing process, these models generate high-fidelity observa-051
tions directly in pixel space, thereby circumventing the052
bottlenecks introduced by discrete latent compression [1,053
29, 51]. Such models [18, 28] excel in conditioning on054
agent actions and capturing multimodal outcome distri-055
butions—capabilities that are particularly valuable for ro-056
bust world simulation. Across various implementations,057
diffusion-based world models have demonstrated the ability058
to capture intricate visual details, maintain temporal stabil-059
ity over long horizons, and serve not only as training envi-060
ronments for RL agents, but also as standalone interactive061
simulators [28, 31, 48].062

However, a central challenge in diffusion-based world063
models lies in the choice of training objective. Current ap-064
proaches, such as DIAMOND [1], typically adopt a loss065
of ℓ2 reconstruction preconditioned by EDM in the pixel066
space, which introduces a fundamental inconsistency be-067
tween learned dynamics and physical constraints of the un-068
derlying environment [1, 29]. Specifically, the pixel-wise069
ℓ2 loss minimizes the expected reconstruction error by av-070
eraging across multiple plausible future outcomes. In multi-071
modal or partially observable scenarios, this averaging pro-072
duces blurred object boundaries and interpolated structures073
that do not correspond to any physically realizable state (as074
shown in Figure 1) [2, 15]. Specially, such averaging can075
generate boundary displacements that exceed the maximum076
per-step motion permitted by the discrete environment dy-077
namics, effectively producing a causal teleportation of vi-078
sual elements [8, 45, 56]. When predictions are rolled out079
autoregressively, these violations of locality are amplified080
over time, leading to long-term trajectory drift, loss of fine081
details, and degraded consistency under low-NFE regimes082
[18, 34, 64].083

In this paper, we propose DIAMOND-LoL, a novel084
training framework that augments diffusion-based world085
models with a Lieb-Robinson Locality Loss (LoL loss).086
DIAMOND-LoL enforces finite-speed propagation in pixel087
dynamics, thereby eliminating acausal artifacts and enhanc-088
ing long-term stability under low-NFE regimes. Unlike089
conventional heuristic regularization techniques, our frame-090
work is grounded in the Lieb-Robinson bound, which con-091
strains the maximum spread of local interactions in lattice092
systems (more details in Section 4). By translating this con-093
cept into the evolution of pixel boundaries in Atari envi-094
ronments [35], we ensure that predicted structures remain095
confined to the reachable set of the environment’s discrete096
dynamics.097

Our main contributions are summarized as follows:098

• We provide a theoretical and empirical analysis showing099

that the standard EDM-preconditioned ℓ2 objective in- 100
duces super-local artifacts, where multimodal uncertainty 101
is collapsed into pixel averages that violate finite propa- 102
gation constraints. 103

• We introduce DIAMOND-LoL, a principled framework 104
for training diffusion-based world models. DIAMOND- 105
LoL encourages predictions that are both in the environ- 106
ment’s reachable set and physically plausible, thereby 107
avoiding blurred interpolations. At its core, the 108
Lieb-Robinson Locality Loss enforces finite-speed pixel 109
boundary propagation by penalizing acausal structural 110
changes beyond a data-driven light-cone radius. 111

• We prove that minimizing LoL loss yields zero loss if and 112
only if predicted boundaries fall within the finite propa- 113
gation set, and demonstrate that LoL loss enforces lin- 114
ear rather than exponential error accumulation in long- 115
horizon rollouts. 116

• The experimental results show that DIAMOND-LoL sig- 117
nificantly improves upon the original DIAMOND base- 118
line, achieving a higher mean Human Normalized Score 119
of 1.581 on the Atari 100k benchmark. 120

2. Related work 121

2.1. Diffusion-based world model 122

In recent years, RL based on world models has achieved 123
remarkable progress. Traditional world models typically 124
adopt recurrent state-space architectures to encode high- 125
dimensional environment observations into compact latent 126
representations in order to improve learning efficiency [1]. 127
However, such compression often leads to the loss of cru- 128
cial visual details. To preserve richer visual fidelity, re- 129
cent work has introduced diffusion models into world mod- 130
eling. For example, Alonso et al. [1] proposed the DIA- 131
MOND framework, which employs a diffusion process to 132
generate environment rollouts, producing high-quality im- 133
age sequences via iterative denoising. Experiments showed 134
that DIAMOND achieved human-level performance on the 135
Atari 100k benchmark [35], setting a new record for purely 136
world model-based methods. Similarly, Ding et al. [18] pre- 137
sented the Diffusion World Model (DWM), which leverages 138
conditional diffusion models to jointly predict multi-step fu- 139
ture states and rewards, thereby avoiding the compounding 140
error inherent in traditional recursive one-step prediction. 141
On offline RL benchmarks such as D4RL, DWM signifi- 142
cantly outperformed conventional models and established 143
state-of-the-art results. Moreover, diffusion models have 144
also been applied to trajectory planning. For instance, Jan- 145
ner et al. [32] introduced Diffuser, which directly gener- 146
ates full state-action trajectories through iterative denoising, 147
effectively mitigating error accumulation in long-horizon 148
planning. 149

Although DIAMOND and similar diffusion world mod- 150
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els improve visual fidelity, EDM and ℓ2 pixel reconstruc-151
tion tends to average multimodal futures, producing blurry,152
acausal boundary displacements. DIAMOND-LoL adds a153
Lieb-Robinson locality loss to constrain pixel boundaries154
within a data-driven light cone, preventing infeasible inter-155
polation artifacts.156

2.2. Physics-Informed Learning for World Models157

The core of Physics-informed neural networks (PINNs)[5]158
is to explicitly incorporate physical residuals, conserva-159
tion laws, and boundary conditions into the loss function,160
making the model simultaneously subject to both data and161
physical constraints, thereby enhancing extrapolation per-162
formance and physical consistency [36, 49]. DeepONet163
provides a functional approximation framework for map-164
ping input functions to the solution space, while FNO learns165
resolution-invariant solution operators through Fourier do-166
main kernel parameterization. Based on this, PINO com-167
bines multi-resolution data supervision with high-resolution168
PDE constraints to alleviate convergence and extrapolation169
issues in multi-scale dynamics [40–42]. These methods170
have been introduced into tasks closely related to world171
models, using the inclusion of dynamic structures or physi-172
cal priors in differentiable models for system identification173
and model-based control, to achieve more robust long-term174
rolling and extrapolation of unseen trajectories [21, 30, 43].175
In high-dimensional visual scenarios, physical consistency176
in a weak form is used to constrain world modeling, such177
as PhyDNet that decouples PDE-like physical units from178
appearance branches, or gradSim that places differentiable179
rendering and multi-physics simulation in a pixel supervi-180
sion loop, to infer dynamics and latent variables from the181
observation end [23, 33]. These papers demonstrate that if182
the prior information can be correctly and specifically in-183
corporated and matched with the observational scale, then184
the physical deviations can significantly reduce model er-185
rors and enhance long-term consistency, thereby providing186
a feasible approach for injecting structural inductive biases187
into the world model [60].188

The pixel-domain diffusion-based world model typically189
employs the pixel ℓ2 objective under the EDM precondition190
(such as DIAMOND). In multi-modal or partially observ-191
able scenarios, it will conditionally average multiple fea-192
sible futures, resulting in a blurred boundary and interpo-193
lation structure. More importantly, this averaging can in-194
duce boundary displacements beyond the single-step reach-195
able motion radius, violating the finite propagation prop-196
erty of discrete dynamics, and being amplified in autore-197
gressive rolling [1, 3, 7, 16, 37, 44, 57]. Therefore, in this198
paper, a local prior based on the LoL loss is introduced at199
the pixel boundary evolution level. Through data-driven200
cone radius penalties to punish causal violations across step201
sizes, the prediction always remains within the reachable202

set of the environmental discrete dynamics, thereby sup- 203
pressing blurry interpolation and stepwise teleportation, and 204
strengthening long-term stability under the low-NFE condi- 205
tion. 206

3. Preliminaries 207

3.1. Reinforcement learning for world models 208

We consider a partially observable Markov decision pro- 209
cess (POMDP). At each timestep t, the agent receives an 210
observation xt from the observation space O and executes 211
an action at from the action space A. In return, it receives a 212
scalar reward rt. Future rewards are discounted by a factor 213
γ. The agent’s decisions depend on the history of interac- 214
tions, which we define as ht = (x0≤t, a≤t), representing 215
the sequence of all past clean (original) observations and 216
actions up to timestep t. A world model, with parameters 217
θ, is trained to learn the environment’s dynamics by mod- 218
eling the conditional probability pθ(xt+1 | ht). Following 219
the DIAMOND framework, reward and termination predic- 220
tions are decoupled from the visual dynamics and handled 221
by a separate prediction head, Rψ , which is parameterized 222
by ψ. 223

Given a dataset of trajectories collected from the en- 224
vironment, we train the world model pθ by maximizing 225
the likelihood of the true next observation xt+1 given the 226
history ht. This learned model is then used as a neu- 227
ral simulator to generate imagined trajectories, or rollouts. 228
An agent policy πϕ(at | ht) and a corresponding value 229
function Vϕ(ht), both sharing parameters ϕ, are then opti- 230
mized exclusively on these imagined trajectories (e.g., using 231
an actor-critic algorithm with generalized λ-returns). The 232
overall pipeline alternates in a closed loop between data col- 233
lection in the real environment, world model updates, and 234
agent training in imagination. 235

3.2. Score-based models 236

Diffusion (or score-based) models are generative models 237
that operate by first corrupting data with gradually increas- 238
ing Gaussian noise, and then learning the reverse-time dy- 239
namics to restore the original data distribution. This for- 240
ward noising process, denoted by {xτ}, evolves along a 241
continuous time index τ ∈ [0, T ], with boundary conditions 242
defined by the data distribution p0 = pdata and a tractable 243
prior distribution pT = pprior (e.g., a standard normal dis- 244
tribution). The process can be formally described by an Itô 245
stochastic differential equation (SDE): 246

dx = f(x, τ) dτ + g(τ) dw, (1) 247

where f(x, τ) is the drift coefficient, g(τ) is the diffusion 248
coefficient, and w represents the standard Wiener process. 249
Anderson (1982) showed that the reverse of this process is 250
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also a diffusion process, described by the following reverse-251
time SDE:252

dx =
[
f(x, τ)− g(τ)2∇x log pτ (x)

]
dτ + g(τ) dw̄, (2)253

where pτ (x) is the marginal distribution of the data at dif-254
fusion time τ , the term ∇x log pτ (x) is the (Stein) score255
function, and w̄ is a reverse-time Wiener process.256

To generate data, one must estimate the unknown score257
function. Denoising score matching (DSM) trains a neu-258
ral network, a score model Sθ(x, τ), for this purpose. The259
model is trained by sampling a noised datapoint xτ from260
the perturbation kernel p0τ (xτ | x0) and minimizing the261
objective:262

ℓDSM(θ) = E
[
∥Sθ(xτ , τ)−∇xτ log p0τ (x

τ | x0)∥22
]
.
(3)263

For a Gaussian perturbation kernel, this objective is equiv-264
alent to a denoising regression task. In this formulation, a265
denoiser network Dθ(x

τ , τ) is trained to predict the origi-266
nal clean data x0 from its noised version xτ by minimizing267
a reconstruction loss:268

ℓrecon(θ) = Eτ
[
w(τ) ∥Dθ(x

τ , τ)− x0∥22
]
, (4)269

where w(τ) is the perturbation level (i.e., the standard de-270
viation of the Gaussian noise) at diffusion time τ , and w(τ)271
is a positive, τ -dependent weighting function. This weight272
is often chosen to de-emphasize noise levels where the loss273
variance is high, thereby stabilizing training.274

3.3. Diffusion-based world models and DIAMOND275

Diffusion-based world models adapt the generative frame-276
work described in Section 3.2 to learn the dynamics of an277
environment for RL. To achieve this, the model must learn278
from the agent’s history of interactions, which we define as279
ht = (x0≤t, a≤t), representing the sequence of past clean280
observations and actions. The primary objective is to train a281
model, parameterized by θ, to approximate the conditional282
probability distribution of the next observation xt+1 given283
this history. This can be formally expressed as learning a284
model for:285

pθ(xt+1 | ht). (5)286

This is achieved by conditioning the denoising process on287
the history ht. The model is trained to reconstruct the288
clean next observation x0t+1 from a noised version xτt+1 ∼289
N (x0t+1, σ(τ)

2I), yielding the following conditional de-290
noising objective:291

ℓrecon(θ) = E
[∥∥Dθ(x

τ
t+1, τ, x

0
≤t, a≤t)− x0t+1

∥∥2
2

]
. (6)292

Following the approach in DIAMOND, we adopt the293
Elucidated Diffusion Model (EDM) parameterization for its294
enhanced stability, especially during sampling with a low295

Denoiser

Denoiser

Light Cone
Constraints

Figure 2. Overview of the DIAMOND-LoL method. Compared
with the baseline DIAMOND model, the DIAMOND-LoL we pro-
posed introduces a crucial light cone constraint module. This mod-
ule implements our LoL loss, by imposing a physical constraint of
finite propagation speed, to ensure that the time series generated
by the model has better physical consistency.

number of function evaluations (NFE). In the EDM frame- 296
work, the denoiser Dθ is parameterized as a function of a 297
core neural network Fθ and several preconditioning coeffi- 298
cients : 299

Dθ(x
τ
t+1, y

τ
t ) = cτskip x

τ
t+1 + cτout Fθ

(
cτinx

τ
t+1, y

τ
t

)
, (7) 300

where yτt =
(
cτnoise, x

0
≤t, a≤t

)
encapsulates all condition- 301

ing variables, including an embedding of the noise level 302
σ(τ) via cτnoise. The preconditioners cτin and cτout are designed 303
to maintain the network’s input and output at unit variance 304
across all noise levels. This leads to the final EDM training 305
objective, which we will build upon later: 306

ℓEDM(θ) = E
[∥∥Fθ(cτinxτt+1, y

τ
t )− 1

cτout

(
x0t+1 − cτskipx

τ
t+1

)∥∥2
2

]
.

(8) 307
To form a complete agent, the diffusion dynamics model 308

pθ serves as the core visual simulator. As established pre- 309
viously, it is augmented with a separate reward and termi- 310
nation prediction head Rψ , while the agent’s policy πϕ and 311
value function Vϕ are trained on imagined trajectories gen- 312
erated by this world model. 313

4. Method 314

4.1. Limitations of Standard EDM Training 315

We train a diffusion-based world model on POMDP trajec- 316
tories to approximate the conditional dynamics pθ(xt+1 | 317
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x0≤t, a≤t). In practice, most systems adopt the EDM ob-318
jective 8, which stabilizes sampling under a low number319
of denoising steps. However, this approach leads to two320
fundamental inconsistencies with the physical constraints321
of the environment. Mode averaging arises in multimodal322
or partially observable settings; minimizing the pixelwise323
ℓ2 distance encourages the model to generate interpolated324
boundaries that do not correspond to any physically realiz-325
able state. Second, acausal artifacts appear when these av-326
eraged boundaries fall outside the one-step reachable set of327
the environment’s dynamics, effectively teleporting struc-328
tures. When rolled out autoregressively, these violations of329
locality are amplified, causing long-horizon trajectory drift330
and a loss of visual fidelity. In Figure 2, we give the frame-331
work of DIAMOND-LoL.332

We can formalize this inconsistency as follows. Let the333
true distribution of the next state, xt+1, be a mixture of dis-334
crete modes, where each mode corresponds to a transfor-335
mation Tδk (e.g., a translation by a displacement vector δk)336
of the current state xt with probability πk. The true data-337
generating process is thus xt+1 ∼

∑
k πkTδk(xt). A model338

trained to minimize the expected ℓ2 error will learn to pre-339
dict the conditional mean of this distribution:340

x̂t+1 = E[xt+1 | xt] =
∑
k

πkTδk(xt). (9)341

If the displacement between distinct modes is larger than342
the maximum physically allowable single-step motion, this343
expected value x̂t+1 will be an interpolation—a pixel-space344
average that synthesizes new boundaries in locations that345
no single mode occupies. This formally demonstrates how346
the ℓ2 objective compels the model to generate acausal347
structures that violate the environment’s finite propagation348
speed. These issues motivate a locality constraint that en-349
codes this principle of finite-speed propagation without re-350
quiring architectural changes.351

4.2. Lieb–Robinson Locality Loss (LoL loss)352

Our proposed Lieb-Robinson Locality Loss (LoL loss) en-353
forces a finite-speed propagation constraint on the learned354
dynamics. Its formulation relies on a set of geometric oper-355
ators and data-driven parameters. We first define a bound-356
ary extractor, E(x) ∈ [0, 1]H×W×C , using a normalized357
gradient operator, and a morphological dilation operator,358
Dilater(·), which expands a boundary set by a given radius359
r. We also define a static-source mask, M , derived from360
training data statistics to down-weight exogenous events361
like HUD updates. More details about r and M are de-362
fined in Appendix A. Using these, we estimate a data-driven363
light-cone radius, rt, for each timestep by finding the min-364
imal radius that satisfies the locality condition on ground-365
truth trajectories:366

supp
(
E(xt+1)

)
⊆ Dilater

(
supp(E(xt))

)
,367

where supp(A) denotes the support of a tensor A (i.e., the 368
set of indices of its non-zero elements). 369

Given a predicted frame x̂t+1, the LoL loss is composed 370
of two penalties. The emerge penalty, ℓemerge, quantifies 371
new boundaries that appear acausally outside the light-cone 372
of the previous frame. The vanish penalty, ℓvanish, quan- 373
tifies boundaries that disappear without a successor inside 374
the predicted light-cone. Their mathematical forms are: 375

ℓemerge = ∥vec (E(x̂t+1)⊙M ⊙ (1−Dilatert(E(xt))))∥1 ,
(10) 376377

ℓvanish = ∥vec (E(xt)⊙M ⊙ (1−Dilatert(E(x̂t+1))))∥1 ,
(11) 378

where ⊙ is the Hadamard (element-wise) product and 379
vec(·) is the vectorization operator. These two components 380
sum to the total locality loss: 381

ℓLoL = ℓemerge + ℓvanish. (12) 382

To integrate this geometric penalty into the stochastic 383
training of the diffusion model, we introduce a noise-time 384
gating function,wloc(τ) ∈ [0, 1]. This function is monotone 385
nonincreasing with the noise level σ(τ) and applies the LoL 386
loss penalty predominantly in near-clean regimes. For our 387
experiments, we define it as a simple linear ramp: 388

wloc(τ) = max(0, 1− σ(τ)/σgate), (13) 389

where σgate is a hyperparameter defining the noise level 390
threshold. The overall training objective for our model com- 391
bines the EDM objective from Equation 8 with our gated 392
LoL loss penalty, weighted by a hyperparameter λ > 0: 393

LEDM+LoL(θ) = ℓEDM(θ) + λEτ
[
wloc(τ) ℓLoL(x̂t+1;xt)

]
,

(14) 394
where the predicted frame x̂t+1 = Dθ(x

τ
t+1, τ, x

0
≤t, a≤t) 395

used to compute ℓLoL is the output of the full denoiser de- 396
fined in Equation 7. This objective enforces finite-speed 397
locality without requiring auxiliary labels or architectural 398
changes. 399

4.3. Theoretical Guarantees 400

Our proposed LoL loss is not merely a heuristic; it induces 401
three key theoretical properties that directly address the lim- 402
itations of the standard ℓ2 objective. These guarantees, 403
stated here and proven in Appendices B, C and D, provide 404
a formal basis for its effectiveness in promoting physically 405
plausible and stable dynamics. 406

4.3.1. Zero-Loss Condition and the Finite-Propagation 407
Set. 408

We establish the exact condition under which the LoL loss 409
vanishes. We define the finite-propagation set, Srt(xt), as 410
the set of all possible next frames whose boundaries are mu- 411
tually reachable from the boundaries of the current frame xt 412
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within the light-cone radius rt:413

Srt(xt) =
{
z : supp(E(z)) ⊆ Dilatert(supp(E(xt)))

∧ supp(E(xt)) ⊆ Dilatert(supp(E(z)))
}
.

414

The theorem states that the LoL loss is zero if and415
only if the predicted frame x̂t+1 belongs to this set, i.e.,416
ℓLoL(x̂t+1;xt) = 0 ⇐⇒ x̂t+1 ∈ Srt(xt). This provides a417
precise geometric characterization of a physically plausible418
one-step transition.419

4.3.2. Provable Selection of Modes over Averaging.420

We prove that the LoL loss resolves the mode-averaging421
problem. Consider a scenario where the true next state xt+1422
is drawn from a mixture of discrete modes {Tδk(xt)}k,423
where Tδk is a transformation by a displacement vector δk.424
If these modes are sufficiently separated (i.e., ∥δi−δj∥∞ >425
rt), the standard ℓ2 objective will optimally predict their426
pixel-space average, resulting in a physically unrealizable427
state. In contrast, we show that any such average incurs a428
strictly positive ℓLoL. The loss is minimized only by select-429
ing a single, valid mode from the mixture, thereby enforcing430
the generation of crisp and physically plausible outcomes.431

4.3.3. Linear Bound on Long-Horizon Error Accumula-432
tion.433

We demonstrate that enforcing local consistency leads to434
global, long-horizon stability. If the LoL loss is bounded by435
a small value ϵ at each step, we prove that the error between436
the predicted and ground-truth boundary sets, measured by437
the Hausdorff distance, grows at most linearly with the time438
horizon τ :439

dH
(
supp(E(x̂t+τ )), supp(E(xt+τ ))

)
≤ C0 + C1 τ ϵ,

(15)440
where C0 and C1 are constants determined by the dilation441
geometry. This linear bound contrasts sharply with the po-442
tential for exponential error accumulation in models that443
permit acausal single-step transitions, formally guarantee-444
ing that our method prevents the catastrophic trajectory drift445
observed in less constrained models.446

4.4. Training Pipeline447

Our training procedure follows a standard closed-loop,448
model-based RL pipeline that alternates between three core449
phases: data collection, world model learning, and policy450
optimization in imagination. First, the agent interacts with451
the real environment to collect a dataset of experience tra-452
jectories, {(xt, at, rt, donet)}Tt=0. This data is then used to453
update our diffusion-based world model by minimizing the454
LoL loss in Equation 14. During this phase, the EDM term455
ensures high-fidelity reconstruction, while the LoL loss456
term enforces the physical constraint of finite-speed prop-457
agation. The updated world model is employed as a neural458

simulator to generate vast quantities of imagined rollouts. 459
The agent’s policy, πϕ, and value function, Vϕ, are then 460
trained to optimality on this simulated data using an actor- 461
critic algorithm with generalized λ-returns. These phases 462
of interaction, model learning, and imagination-based train- 463
ing are repeated cyclically, yielding sample-efficient learn- 464
ing with high visual fidelity and temporal consistency, even 465
in low-NFE regimes. 466

5. Experiments 467

5.1. Experimental Setup 468

We conduct our primary evaluation on the Atari 100k 469
benchmark [35], a standard for assessing sample efficiency 470
in RL. For each of its 26 games, an agent is permitted only 471
100,000 environmental steps, roughly two hours of human 472
gameplay, to learn its policy before evaluation. All of our 473
results are averaged over 5 random seeds per game. All 474
models are trained and evaluated on a single NVIDIA RTX 475
5090D GPU. 476

To ensure that any observed performance improvements 477
are attributable solely to our proposed loss, the implemen- 478
tation of DIAMOND-LoL is identical to the original DI- 479
AMOND in all other aspects. We employ the same core 480
network architectures, RL algorithm, and closed-loop train- 481
ing paradigm. The training procedure runs for 1000 epochs, 482
each epoch consists of 100 environmental steps for data col- 483
lection (using an ϵ-greedy policy with ϵ = 0.01) followed 484
by 400 training updates with a batch size of 32. For the 485
agent, we use an imagination horizon of 15 steps, a dis- 486
count factor γ = 0.985, a λ-return coefficient of 0.95, and 487
an entropy weight of 0.001. The U-Net based DWM con- 488
ditions on the 4 most recent frames and actions and gen- 489
erates rollouts using the Euler sampler with 3 denoising 490
steps (NFE=3). All model components are trained using the 491
AdamW optimizer with a learning rate of 1e-4; we apply a 492
weight decay of 1e-2 to the world model and reward model, 493
and no weight decay to the actor-critic network. All Atari 494
environments use a frameskip of 4, provide 64×64×3 pixel 495
observations, and have rewards clipped to the set {−1, 0, 1}. 496
The total loss function is LEDM+LoL = ℓEDM + λℓLoL, where 497
the locality weight λ is the only new hyperparameter, set to 498
10−2 based on our sensitivity analysis. 499

5.2. Comparative Analysis 500

In the Atari 100k benchmark test [35], we compared and 501
evaluated the performance of DIAMOND-LoL with the 502
previously most advanced world model. Table 1 shows the 503
specific scores and comprehensive indicators for each game 504
and we report the results of DIAMOND in [1]. The re- 505
sults indicate that our method outperformed DIAMOND. It 506
is notable that the average human normalized score (HNS) 507
of DIAMOND-LoL was 1.581, and the interquartile mean 508
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Table 1. Returns on the 26 games of the Atari 100k benchmark after 2 hours of real-time experience, and human-normalized aggregate
metrics. Bold numbers indicate the best performing methods. DIAMOND-LoL notably achieves the highest mean score over 5 seeds.

Game Random Human SimPLe [35] TWM [50] IRIS [46] DreamerV3 [27] STORM [65] DIAMOND [1] DIAMOND-LoL (ours)

Alien 227.8 7127.7 616.9 674.6 420.0 959.0 983.6 744.1 1021.5
Amidar 5.8 1719.5 74.3 121.8 143.0 139.0 204.8 225.8 231.4
Assault 222.4 742.0 527.2 682.6 1524.4 706.0 801.0 1526.4 1598.2
Asterix 210.0 8503.3 1128.3 1116.6 853.6 932.0 1028.0 3698.5 4102.1
BankHeist 14.2 753.1 34.2 466.7 53.1 649.0 641.2 19.7 20.5
BattleZone 2360.0 37187.5 4031.2 5068.0 13074.0 12250.0 13540.0 4702.0 4688.0
Boxing 0.1 12.1 7.8 77.5 70.1 78.0 79.7 86.9 89.2
Breakout 1.7 30.5 16.4 20.0 83.7 31.0 15.9 132.5 165.3
ChopperCommand 811.0 7387.8 979.4 1697.4 1565.0 420.0 1888.0 1369.8 1402.7
CrazyClimber 10780.5 35829.4 62583.6 71820.4 59324.2 97190.0 66776.0 99167.8 101450.3
Demon Attack 152.1 1971.0 208.1 350.2 2034.4 303.0 164.6 288.1 295.6
Freeway 0.0 29.6 16.7 24.3 31.1 0.0 33.5 33.3 33.6
Frostbite 65.2 4334.7 236.9 1475.6 259.1 909.0 1316.0 274.1 280.9
Gopher 257.6 2412.5 596.8 1674.8 2236.1 3730.0 8239.6 5897.9 6015.4
Hero 1027.0 30826.4 2656.6 7254.0 7037.4 11161.0 11044.3 5621.8 5590.1
Jamesbond 29.0 302.8 100.5 362.4 462.7 445.0 509.0 427.4 433.8
Kangaroo 52.0 3035.0 51.2 1240.0 838.2 4098.0 4208.0 5382.2 5421.7
Krull 1598.0 2665.5 2204.8 6349.2 6616.4 7782.0 8412.6 8610.1 8695.3
KungFuMaster 258.5 22736.3 14862.5 24554.6 21759.8 21420.0 26182.0 18713.6 19004.2
MsPacman 307.3 6951.6 1480.0 1588.4 999.1 1327.0 2673.5 1958.2 2011.6
Pong -20.7 14.6 12.8 18.8 14.6 18.0 11.3 20.4 20.5
Private Eye 24.9 69571.3 35.0 86.6 100.0 882.0 7781.0 114.3 119.8
Qbert 163.9 13455.0 1288.8 3330.8 745.7 3405.0 4522.5 4499.3 4520.7
RoadRunner 11.5 7845.0 5640.6 9109.0 9614.6 15565.0 17564.0 20673.2 22541.6
Seaquest 68.4 42054.7 683.3 774.4 661.3 618.0 525.2 551.2 560.3
UpNDown 533.4 11693.2 3350.3 15981.7 3546.2 9234.0 7985.0 3856.3 3888.1

#Superhuman (↑) 0 N/A 1 8 10 9 10 11 13
Mean (↑) 0.000 1.000 0.332 0.956 1.046 1.097 1.266 1.459 1.581
IQM (↑) 0.000 1.000 0.130 0.459 0.501 0.497 0.636 0.641 0.695

(IQM) was 0.695, surpassing all benchmarks, including the509
direct predecessor DIAMOND and the previous leading510
method STORM. Moreover, our agent achieved superhu-511
man performance in 13 out of 26 games, outperforming any512
other method.513

This significant performance improvement is entirely at-514
tributed to the introduction of LoL loss. All other aspects515
of the experimental setup remained unchanged. The stan-516
dard ℓ2 objective would compress the multimodal uncer-517
tainty into a single, physically unreasonable average value.518
Our LoL loss counteracts this phenomenon by implement-519
ing finite propagation constraints, forcing the model to se-520
lect a physically coherent future from a series of possibili-521
ties. This advantage is particularly evident in games such as522
“Breakout”, “Asterix”, and “Racer”, where physically co-523
herent modeling of fast-moving objects provides a more sta-524
ble and reliable imagination environment for the agents. By525
preventing non-causal instantiation errors and ensuring that526
the evolution of all game elements is physically reasonable,527
the LoL loss promotes the learning of better strategies, ul-528
timately leading to higher game scores. Moveover, we pro-529
vide a comparison with DIAMOND and DIAMOND-LoL530
in Figure 3.531

5.3. Sensitivity Analysis 532

A key component of our method is the locality weight 533
hyperparameter, λ, which balances the influence of our 534
proposed geometric loss against the standard EDM recon- 535
struction loss. To evaluate the robustness of DIAMOND- 536
LoL to the choice of this hyperparameter, we conduct a 537
sensitivity analysis. We select “Boxing” and “breakout”, 538
high determinism with fast objects games. We train our 539
agent from scratch on these games while varying λ across 540
several orders of magnitude, including the baseline case: 541
{0, 10−4, 10−3, 10−2, 10−1}. A λ value of 0 is equivalent 542
to the original DIAMOND model. All other hyperparame- 543
ters are held constant as described in the experimental setup. 544

Figure 4 shows a consistent and informative trend. When 545
λ is too small (10−4), the locality constraint is too weak 546
to have a significant effect, and performance is compara- 547
ble to the original DIAMOND baseline (λ = 0). As λ in- 548
creases to 10−3 and 10−2, we observe a notable improve- 549
ment in scores, indicating that the LoL loss is effectively 550
regularizing the model. However, when λ becomes too 551
large (10−1), performance begins to decline. This suggests 552
that an overly strong locality penalty can compromise the 553
generative fidelity of the EDM term, making the model too 554
rigid. This analysis demonstrates that the benefits of our 555
LoL loss are robust across a reasonable range for λ, with an 556
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DIAMOND

DIAMOND-LoL

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

Figure 3. Qualitative comparison of long-horizon rollouts generated by DIAMOND and our DIAMOND-LoL. The figure displays two
9-step imagined trajectories (t=0 to t=8) from the Breakout environment.
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Figure 4. DIAMOND-LoL scores in the two games change with
the variation of the λ value.

optimal value that provides a clear advantage over the base-557
line. Based on these findings, we use a value of λ = 10−2558
for all other experiments in this paper.559

6. Complexity Analysis560

Our proposed LoL loss is designed for computational effi-561
ciency, introducing zero overhead at inference time. Since562

the loss is only computed during training and the network 563
architecture is unchanged, the per-frame sampling cost is 564
identical to the baseline. During training, our method adds a 565
marginal overhead from boundary extraction, morphologi- 566
cal dilation, and loss aggregation, which scales linearly with 567
the number of pixels, O(B·H ·W ·C). This cost is negligible 568
compared to the backpropagation through the main denoiser 569
network and is further reduced on average by a noise-gating 570
function that applies the loss selectively. Similarly, the addi- 571
tional space complexity for storing transient tensors is also 572
a negligible O(B ·H ·W ·C), and no new learnable param- 573
eters are introduced. Thus, in exchange for a minimal in- 574
crease in training cost, DIAMOND-LoL gains a significant, 575
theoretically-backed improvement in long-horizon stability, 576
providing a highly efficient method for enforcing physical 577
consistency in diffusion world models. 578

7. Conclusion 579

In this work, we addressed the physical inconsistency of 580
the standard ℓ2 objective in diffusion-based world models, 581
which leads to acausal artifacts and mode-averaging 582
failures. We introduced DIAMOND-LoL, a novel training 583
framework that incorporates a LoL loss to enforce a finite- 584
speed propagation constraint. Our theoretically-grounded 585
approach compels the model to select physically plausible 586
futures rather than generating unrealizable averages. This 587
results in a great performance on the Atari 100k bench- 588
mark by providing a more stable and reliable imagined 589
environment for the agent. Our research highlights the 590
value of integrating fundamental physical priors directly 591
into the training objective of generative models, a prin- 592
ciple that could be extended to more complex domains 593
like robotics to create more robust autonomous agents. 594

595
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