ICCV
#14

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025

026

027
028
029
030
031
032
033
034
035

ICCV 2025 Submission #14. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

DIAMOND-LoL: Enforcing Lieb-Robinson Locality in Diffusion World Models
for Long-Horizon Consistency

Anonymous ICCV submission

Paper ID 14

Abstract

The world model enables agents to perform reasoning and
planning through learning in the simulator, improving the
sample efficiency in reinforcement learning. However, while
diffusion-based models circumvent detail loss by operating
in pixel space, their standard {5 loss introduces a criti-
cal physical inconsistency. Specifically, by averaging over
plausible futures in partially observable scenarios, it gen-
erates blurry boundaries and acausal displacements, arti-
facts that violate the environment’s fundamental principle
of finite-speed propagation. To address this challenge, we
propose DIAMOND-LoL, a diffusion training framework,
which adds a Lieb-Robinson Locality loss (LoL loss) to en-
force the finite speed propagation of pixel dynamics. Based
on the Lieb-Robinson bound, LoL loss penalizes structural
changes outside the data-driven light cone radius, keeping
the predictions within the reachable range of the environ-
ment and avoiding mode averaging interpolation. More-
over, we prove that LoL loss is zero only when the predic-
tion boundary is within the finite propagation set, and we
show that it converts the long-term error growth from expo-
nential form to linear form. Experiments demonstrate that
DIAMOND-LoL provides a principled and physically con-
sistent training objective for diffusion world models, espe-
cially having significant value in safety-critical scenarios.

1. Introduction

World models have become a central paradigm for enabling
agents to reason and plan in complex domains [14, 17]. De-
spite notable breakthroughs in areas such as vision [4, 24,
38, 39, 54, 59, 61], medicine [10-13, 22], games, robotics,
and science [53, 58], reinforcement learning (RL) remains
inherently sample-inefficient, limiting its practical deploy-
ment [0, 63]. Learned simulators address this limitation by
providing a controllable training environment that improves
sample efficiency [20] and enables learning from limited in-
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Figure 1. Visualization of acausal transitions between consecutive
frames within a single rollout from DIAMOND. Each pair displays
two sequential predicted frames from the same imagined trajec-
tory, & (left) and Z:41 (right), to highlight the sudden, physically
inconsistent mutations that occur in a single step. The overlays
on the right frame (Z+41) diagnose these violations. Specifically,
red areas denote new boundaries that materialize abruptly, out-
side the light-cone reachable from the preceding frame Z;. Con-
versely, blue areas represent boundaries present in & that disap-
pear in the very next step without a physically plausible succes-
sor. This teleportation is a direct consequence of the /2 objective,
which can cause the model to erratically jump between averaged
modes, compromising long-horizon stability.

teractions [25, 26, 62].

Despite this promise, existing world models represent
environment dynamics through sequences of discrete latent
variables [47, 52]. Although discretization mitigates com-
pounding errors across long horizons, it inevitably discards
certain visual or structural details that may be critical for
decision making [35, 46, 55]. The limitation is particu-
larly pronounced in safety-critical applications such as au-
tonomous driving [9, 19], where subtle cues, for example, a
traffic signal or a distant pedestrian, can substantially alter
the agent’s policy. Increasing the number of discrete tokens
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can partially alleviate the problem but comes at the cost of
significant computational overhead [46].

Diffusion-based world models offer a complementary
approach [1]. By learning to reverse a gradual nois-
ing process, these models generate high-fidelity observa-
tions directly in pixel space, thereby circumventing the
bottlenecks introduced by discrete latent compression [1,
29, 51]. Such models [18, 28] excel in conditioning on
agent actions and capturing multimodal outcome distri-
butions—capabilities that are particularly valuable for ro-
bust world simulation. Across various implementations,
diffusion-based world models have demonstrated the ability
to capture intricate visual details, maintain temporal stabil-
ity over long horizons, and serve not only as training envi-
ronments for RL agents, but also as standalone interactive
simulators [28, 31, 48].

However, a central challenge in diffusion-based world
models lies in the choice of training objective. Current ap-
proaches, such as DIAMOND [1], typically adopt a loss
of /5 reconstruction preconditioned by EDM in the pixel
space, which introduces a fundamental inconsistency be-
tween learned dynamics and physical constraints of the un-
derlying environment [1, 29]. Specifically, the pixel-wise
{5 loss minimizes the expected reconstruction error by av-
eraging across multiple plausible future outcomes. In multi-
modal or partially observable scenarios, this averaging pro-
duces blurred object boundaries and interpolated structures
that do not correspond to any physically realizable state (as
shown in Figure 1) [2, 15]. Specially, such averaging can
generate boundary displacements that exceed the maximum
per-step motion permitted by the discrete environment dy-
namics, effectively producing a causal teleportation of vi-
sual elements [8, 45, 56]. When predictions are rolled out
autoregressively, these violations of locality are amplified
over time, leading to long-term trajectory drift, loss of fine
details, and degraded consistency under low-NFE regimes
[18, 34, 64].

In this paper, we propose DIAMOND-LoL, a novel
training framework that augments diffusion-based world
models with a Lieb-Robinson Locality Loss (LoL loss).
DIAMOND-LoL enforces finite-speed propagation in pixel
dynamics, thereby eliminating acausal artifacts and enhanc-
ing long-term stability under low-NFE regimes. Unlike
conventional heuristic regularization techniques, our frame-
work is grounded in the Lieb-Robinson bound, which con-
strains the maximum spread of local interactions in lattice
systems (more details in Section 4). By translating this con-
cept into the evolution of pixel boundaries in Atari envi-
ronments [35], we ensure that predicted structures remain
confined to the reachable set of the environment’s discrete
dynamics.

Our main contributions are summarized as follows:

* We provide a theoretical and empirical analysis showing

that the standard EDM-preconditioned /2 objective in-
duces super-local artifacts, where multimodal uncertainty
is collapsed into pixel averages that violate finite propa-
gation constraints.

* We introduce DIAMOND-LoL, a principled framework
for training diffusion-based world models. DIAMOND-
LoL encourages predictions that are both in the environ-
ment’s reachable set and physically plausible, thereby
avoiding blurred interpolations. At its core, the
Lieb-Robinson Locality Loss enforces finite-speed pixel
boundary propagation by penalizing acausal structural
changes beyond a data-driven light-cone radius.

* We prove that minimizing LoL loss yields zero loss if and
only if predicted boundaries fall within the finite propa-
gation set, and demonstrate that LoL loss enforces lin-
ear rather than exponential error accumulation in long-
horizon rollouts.

* The experimental results show that DIAMOND-LoL sig-
nificantly improves upon the original DIAMOND base-
line, achieving a higher mean Human Normalized Score
of 1.581 on the Atari 100k benchmark.

2. Related work

2.1. Diffusion-based world model

In recent years, RL based on world models has achieved
remarkable progress. Traditional world models typically
adopt recurrent state-space architectures to encode high-
dimensional environment observations into compact latent
representations in order to improve learning efficiency [1].
However, such compression often leads to the loss of cru-
cial visual details. To preserve richer visual fidelity, re-
cent work has introduced diffusion models into world mod-
eling. For example, Alonso et al. [1] proposed the DIA-
MOND framework, which employs a diffusion process to
generate environment rollouts, producing high-quality im-
age sequences via iterative denoising. Experiments showed
that DIAMOND achieved human-level performance on the
Atari 100k benchmark [35], setting a new record for purely
world model-based methods. Similarly, Ding et al. [18] pre-
sented the Diffusion World Model (DWM), which leverages
conditional diffusion models to jointly predict multi-step fu-
ture states and rewards, thereby avoiding the compounding
error inherent in traditional recursive one-step prediction.
On offline RL benchmarks such as D4RL, DWM signifi-
cantly outperformed conventional models and established
state-of-the-art results. Moreover, diffusion models have
also been applied to trajectory planning. For instance, Jan-
ner et al. [32] introduced Diffuser, which directly gener-
ates full state-action trajectories through iterative denoising,
effectively mitigating error accumulation in long-horizon
planning.

Although DIAMOND and similar diffusion world mod-
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els improve visual fidelity, EDM and /5 pixel reconstruc-
tion tends to average multimodal futures, producing blurry,
acausal boundary displacements. DIAMOND-LoL adds a
Lieb-Robinson locality loss to constrain pixel boundaries
within a data-driven light cone, preventing infeasible inter-
polation artifacts.

2.2. Physics-Informed Learning for World Models

The core of Physics-informed neural networks (PINNs)[5]
is to explicitly incorporate physical residuals, conserva-
tion laws, and boundary conditions into the loss function,
making the model simultaneously subject to both data and
physical constraints, thereby enhancing extrapolation per-
formance and physical consistency [36, 49]. DeepONet
provides a functional approximation framework for map-
ping input functions to the solution space, while FNO learns
resolution-invariant solution operators through Fourier do-
main kernel parameterization. Based on this, PINO com-
bines multi-resolution data supervision with high-resolution
PDE constraints to alleviate convergence and extrapolation
issues in multi-scale dynamics [40—42]. These methods
have been introduced into tasks closely related to world
models, using the inclusion of dynamic structures or physi-
cal priors in differentiable models for system identification
and model-based control, to achieve more robust long-term
rolling and extrapolation of unseen trajectories [21, 30, 43].
In high-dimensional visual scenarios, physical consistency
in a weak form is used to constrain world modeling, such
as PhyDNet that decouples PDE-like physical units from
appearance branches, or gradSim that places differentiable
rendering and multi-physics simulation in a pixel supervi-
sion loop, to infer dynamics and latent variables from the
observation end [23, 33]. These papers demonstrate that if
the prior information can be correctly and specifically in-
corporated and matched with the observational scale, then
the physical deviations can significantly reduce model er-
rors and enhance long-term consistency, thereby providing
a feasible approach for injecting structural inductive biases
into the world model [60].

The pixel-domain diffusion-based world model typically
employs the pixel {5 objective under the EDM precondition
(such as DIAMOND). In multi-modal or partially observ-
able scenarios, it will conditionally average multiple fea-
sible futures, resulting in a blurred boundary and interpo-
lation structure. More importantly, this averaging can in-
duce boundary displacements beyond the single-step reach-
able motion radius, violating the finite propagation prop-
erty of discrete dynamics, and being amplified in autore-
gressive rolling [1, 3, 7, 16, 37, 44, 57]. Therefore, in this
paper, a local prior based on the LoL loss is introduced at
the pixel boundary evolution level. Through data-driven
cone radius penalties to punish causal violations across step
sizes, the prediction always remains within the reachable

set of the environmental discrete dynamics, thereby sup-
pressing blurry interpolation and stepwise teleportation, and
strengthening long-term stability under the low-NFE condi-
tion.

3. Preliminaries

3.1. Reinforcement learning for world models

We consider a partially observable Markov decision pro-
cess (POMDP). At each timestep ¢, the agent receives an
observation x; from the observation space O and executes
an action a; from the action space A. In return, it receives a
scalar reward ;. Future rewards are discounted by a factor
v. The agent’s decisions depend on the history of interac-
tions, which we define as hy = (2%,,a<;), representing
the sequence of all past clean (original) observations and
actions up to timestep ¢. A world model, with parameters
0, is trained to learn the environment’s dynamics by mod-
eling the conditional probability pg(x¢11 | ht). Following
the DIAMOND framework, reward and termination predic-
tions are decoupled from the visual dynamics and handled
by a separate prediction head, 1%y, which is parameterized
by .

Given a dataset of trajectories collected from the en-
vironment, we train the world model py by maximizing
the likelihood of the true next observation x4 given the
history h;. This learned model is then used as a neu-
ral simulator to generate imagined trajectories, or rollouts.
An agent policy 7g(a; | h¢) and a corresponding value
function Vi (h¢), both sharing parameters ¢, are then opti-
mized exclusively on these imagined trajectories (e.g., using
an actor-critic algorithm with generalized A-returns). The
overall pipeline alternates in a closed loop between data col-
lection in the real environment, world model updates, and
agent training in imagination.

3.2. Score-based models

Diffusion (or score-based) models are generative models
that operate by first corrupting data with gradually increas-
ing Gaussian noise, and then learning the reverse-time dy-
namics to restore the original data distribution. This for-
ward noising process, denoted by {z"}, evolves along a
continuous time index 7 € [0, T'], with boundary conditions
defined by the data distribution py = pgaa and a tractable
prior distribution pr = pprior (€.g., a standard normal dis-
tribution). The process can be formally described by an 1t6
stochastic differential equation (SDE):

dz = f(z,7)dr + g(7) dw, (D

where f(x,7) is the drift coefficient, g(7) is the diffusion
coefficient, and w represents the standard Wiener process.
Anderson (1982) showed that the reverse of this process is
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also a diffusion process, described by the following reverse-
time SDE:

dw = [f(z,7) — g(r)2 V. log pr ()] dr + g(r) di, @

where p,(z) is the marginal distribution of the data at dif-
fusion time 7, the term V. logp,(z) is the (Stein) score
function, and w is a reverse-time Wiener process.

To generate data, one must estimate the unknown score
function. Denoising score matching (DSM) trains a neu-
ral network, a score model Sy(x, 7), for this purpose. The
model is trained by sampling a noised datapoint 7 from
the perturbation kernel po(z7 | z°) and minimizing the
objective:

losm(0) = E[||So (27, 7) — Vir logpor- (27 | 2%)|3] -
3)
For a Gaussian perturbation kernel, this objective is equiv-
alent to a denoising regression task. In this formulation, a
denoiser network Dy(x7, 7) is trained to predict the origi-
nal clean data z° from its noised version 27 by minimizing
a reconstruction loss:

erecon(e) = E.,— [UJ(T) ||D9($T,7') - xOH%] ’ (4)

where w(7) is the perturbation level (i.e., the standard de-
viation of the Gaussian noise) at diffusion time 7, and w(7)
is a positive, 7-dependent weighting function. This weight
is often chosen to de-emphasize noise levels where the loss
variance is high, thereby stabilizing training.

3.3. Diffusion-based world models and DIAMOND

Diffusion-based world models adapt the generative frame-
work described in Section 3.2 to learn the dynamics of an
environment for RL. To achieve this, the model must learn
from the agent’s history of interactions, which we define as
hy = (x%t, a<;), representing the sequence of past clean
observations and actions. The primary objective is to train a
model, parameterized by 6, to approximate the conditional
probability distribution of the next observation z;,; given
this history. This can be formally expressed as learning a
model for:

pa(l’t+1 | ht)~ @)

This is achieved by conditioning the denoising process on
the history h;. The model is trained to reconstruct the
clean next observation z, ; from a noised version 7, ; ~
N (2Y,, o(r)?I), yielding the following conditional de-
noising objective:

Erecon(e) = E|:HD9(:17175—+17 7, xogta agt) - x?_t,-l ||;:| . (6)

Following the approach in DIAMOND, we adopt the
Elucidated Diffusion Model (EDM) parameterization for its
enhanced stability, especially during sampling with a low

"DIAMOND
Tt €

Denoiser

" DIAMOND — LoL

Denoiser

‘ Light Cone
Constraints

Figure 2. Overview of the DIAMOND-LoL method. Compared
with the baseline DIAMOND model, the DIAMOND-LoL we pro-
posed introduces a crucial light cone constraint module. This mod-
ule implements our LoL loss, by imposing a physical constraint of
finite propagation speed, to ensure that the time series generated
by the model has better physical consistency.

number of function evaluations (NFE). In the EDM frame-
work, the denoiser Dy is parameterized as a function of a
core neural network Fy and several preconditioning coeffi-
cients :

Do({11,Y1 ) = Cikip Tit1 T Cout Fy(chalia, vi), ()

where y] = (I, 2%,,a<;) encapsulates all condition-
ing variables, including an embedding of the noise level
o(7) via ¢l ;... The preconditioners ¢], and ¢, are designed
to maintain the network’s input and output at unit variance
across all noise levels. This leads to the final EDM training

objective, which we will build upon later:

lepm(0) = E[HFe(C;fEtTH,Z/tT) - %(x(t)—&-l - CsTkiprtTJrl) ||§} .

®)

To form a complete agent, the diffusion dynamics model

Do serves as the core visual simulator. As established pre-

viously, it is augmented with a separate reward and termi-

nation prediction head R, while the agent’s policy 74 and

value function Vi are trained on imagined trajectories gen-
erated by this world model.

4. Method

4.1. Limitations of Standard EDM Training

We train a diffusion-based world model on POMDP trajec-
tories to approximate the conditional dynamics pg(z¢+1 |
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2%, , a<;). In practice, most systems adopt the EDM ob-
jective 8, which stabilizes sampling under a low number
of denoising steps. However, this approach leads to two
fundamental inconsistencies with the physical constraints
of the environment. Mode averaging arises in multimodal
or partially observable settings; minimizing the pixelwise
{5 distance encourages the model to generate interpolated
boundaries that do not correspond to any physically realiz-
able state. Second, acausal artifacts appear when these av-
eraged boundaries fall outside the one-step reachable set of
the environment’s dynamics, effectively teleporting struc-
tures. When rolled out autoregressively, these violations of
locality are amplified, causing long-horizon trajectory drift
and a loss of visual fidelity. In Figure 2, we give the frame-
work of DIAMOND-LoL.

We can formalize this inconsistency as follows. Let the
true distribution of the next state, x;1, be a mixture of dis-
crete modes, where each mode corresponds to a transfor-
mation 735, (e.g., a translation by a displacement vector d)
of the current state x; with probability m;. The true data-
generating process is thus z, 1 ~ >, mTs, (). A model
trained to minimize the expected {5 error will learn to pre-
dict the conditional mean of this distribution:

T = Elrpg | @) = Zﬂ'kTék (). ©)
k

If the displacement between distinct modes is larger than
the maximum physically allowable single-step motion, this
expected value ;1 will be an interpolation—a pixel-space
average that synthesizes new boundaries in locations that
no single mode occupies. This formally demonstrates how
the /5 objective compels the model to generate acausal
structures that violate the environment’s finite propagation
speed. These issues motivate a locality constraint that en-
codes this principle of finite-speed propagation without re-
quiring architectural changes.

4.2. Lieb—Robinson Locality Loss (L.oL loss)

Our proposed Lieb-Robinson Locality Loss (LoL loss) en-
forces a finite-speed propagation constraint on the learned
dynamics. Its formulation relies on a set of geometric oper-
ators and data-driven parameters. We first define a bound-
ary extractor, E(z) € [0, 1]#*W*C ysing a normalized
gradient operator, and a morphological dilation operator,
Dilate,(-), which expands a boundary set by a given radius
r. We also define a static-source mask, M, derived from
training data statistics to down-weight exogenous events
like HUD updates. More details about r and M are de-
fined in Appendix A. Using these, we estimate a data-driven
light-cone radius, r, for each timestep by finding the min-
imal radius that satisfies the locality condition on ground-
truth trajectories:

supp(E(z.41)) C Dilate, (supp(E(z¢))),

where supp(A) denotes the support of a tensor A (i.e., the
set of indices of its non-zero elements).

Given a predicted frame %, 1, the LoL loss is composed
of two penalties. The emerge penalty, femerge, quantifies
new boundaries that appear acausally outside the light-cone
of the previous frame. The vanish penalty, fyaisn, quan-
tifies boundaries that disappear without a successor inside
the predicted light-cone. Their mathematical forms are:

Cemerge = [[vec (E(Z¢41) © M © (1 — Dilate,, (E(z4))))]l; ,
(10)
Cuanish = [|[vec (E(xz;) © M © (1 — Dilate,, (E(Z141)))); »
(1)
where © is the Hadamard (element-wise) product and
vec(+) is the vectorization operator. These two components
sum to the total locality loss:

gLoL = Eemerge + evanish~ (12)

To integrate this geometric penalty into the stochastic
training of the diffusion model, we introduce a noise-time
gating function, wi(7) € [0, 1]. This function is monotone
nonincreasing with the noise level o(7) and applies the LoL
loss penalty predominantly in near-clean regimes. For our
experiments, we define it as a simple linear ramp:

Wioe(T) = max(0,1 — o(7)/0gate) (13)

where og. 1S a hyperparameter defining the noise level
threshold. The overall training objective for our model com-
bines the EDM objective from Equation 8 with our gated
LoL loss penalty, weighted by a hyperparameter A > 0:

Lepmsror (0) = lepm(0) + /\Er[wloc(T) lrot (®413 It)],

14
where the predicted frame 2,11 = Dg(27,1,7,2%,,a<;)
used to compute {1 o1, is the output of the full denoiser de-
fined in Equation 7. This objective enforces finite-speed
locality without requiring auxiliary labels or architectural
changes.

4.3. Theoretical Guarantees

Our proposed LoL loss is not merely a heuristic; it induces
three key theoretical properties that directly address the lim-
itations of the standard /5 objective. These guarantees,
stated here and proven in Appendices B, C and D, provide
a formal basis for its effectiveness in promoting physically
plausible and stable dynamics.

4.3.1. Zero-Loss Condition and the Finite-Propagation
Set.

We establish the exact condition under which the LoL loss
vanishes. We define the finite-propagation set, S, (z;), as
the set of all possible next frames whose boundaries are mu-
tually reachable from the boundaries of the current frame x;
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within the light-cone radius r;:

Sy, (z1) = {z : supp(E(z)) C Dilate,, (supp(E(z¢)))

A supp(E(z:)) C Dilate,, (supp(E(z)))}.

The theorem states that the LoL loss is zero if and
only if the predicted frame £,,; belongs to this set, i.e.,
lroL(Z441;2¢) =0 < dyy1 € Sy, (x¢). This provides a
precise geometric characterization of a physically plausible
one-step transition.

4.3.2. Provable Selection of Modes over Averaging.

We prove that the LoL loss resolves the mode-averaging
problem. Consider a scenario where the true next state ;1
is drawn from a mixture of discrete modes {75, (z:)}k,
where T}, is a transformation by a displacement vector dy.
If these modes are sufficiently separated (i.e., ||0; — ;|0 >
r¢), the standard ¢, objective will optimally predict their
pixel-space average, resulting in a physically unrealizable
state. In contrast, we show that any such average incurs a
strictly positive ¢ o . The loss is minimized only by select-
ing a single, valid mode from the mixture, thereby enforcing
the generation of crisp and physically plausible outcomes.

4.3.3. Linear Bound on Long-Horizon Error Accumula-
tion.

We demonstrate that enforcing local consistency leads to
global, long-horizon stability. If the LoL loss is bounded by
a small value € at each step, we prove that the error between
the predicted and ground-truth boundary sets, measured by
the Hausdorff distance, grows at most linearly with the time
horizon 7:

di (supp(E(Z¢4-)),supp(E(z¢4,))) < Co + Cy Te,

15)
where Cy and C are constants determined by the dilation
geometry. This linear bound contrasts sharply with the po-
tential for exponential error accumulation in models that
permit acausal single-step transitions, formally guarantee-
ing that our method prevents the catastrophic trajectory drift
observed in less constrained models.

4.4. Training Pipeline

Our training procedure follows a standard closed-loop,
model-based RL pipeline that alternates between three core
phases: data collection, world model learning, and policy
optimization in imagination. First, the agent interacts with
the real environment to collect a dataset of experience tra-
jectories, {(xy, az, r,done;) }1_,. This data is then used to
update our diffusion-based world model by minimizing the
LoL loss in Equation 14. During this phase, the EDM term
ensures high-fidelity reconstruction, while the LoL loss
term enforces the physical constraint of finite-speed prop-
agation. The updated world model is employed as a neural

simulator to generate vast quantities of imagined rollouts.
The agent’s policy, 7y, and value function, V3, are then
trained to optimality on this simulated data using an actor-
critic algorithm with generalized A-returns. These phases
of interaction, model learning, and imagination-based train-
ing are repeated cyclically, yielding sample-efficient learn-
ing with high visual fidelity and temporal consistency, even
in low-NFE regimes.

5. Experiments

5.1. Experimental Setup

We conduct our primary evaluation on the Atari 100k
benchmark [35], a standard for assessing sample efficiency
in RL. For each of its 26 games, an agent is permitted only
100,000 environmental steps, roughly two hours of human
gameplay, to learn its policy before evaluation. All of our
results are averaged over 5 random seeds per game. All
models are trained and evaluated on a single NVIDIA RTX
5090D GPU.

To ensure that any observed performance improvements
are attributable solely to our proposed loss, the implemen-
tation of DIAMOND-LoL is identical to the original DI-
AMOND in all other aspects. We employ the same core
network architectures, RL algorithm, and closed-loop train-
ing paradigm. The training procedure runs for 1000 epochs,
each epoch consists of 100 environmental steps for data col-
lection (using an e-greedy policy with e = 0.01) followed
by 400 training updates with a batch size of 32. For the
agent, we use an imagination horizon of 15 steps, a dis-
count factor v = 0.985, a A-return coefficient of 0.95, and
an entropy weight of 0.001. The U-Net based DWM con-
ditions on the 4 most recent frames and actions and gen-
erates rollouts using the Euler sampler with 3 denoising
steps (NFE=3). All model components are trained using the
AdamW optimizer with a learning rate of le-4; we apply a
weight decay of 1e-2 to the world model and reward model,
and no weight decay to the actor-critic network. All Atari
environments use a frameskip of 4, provide 64 x 64 x 3 pixel
observations, and have rewards clipped to the set {—1,0, 1}.
The total loss function is Lepmator. = YEpm + MioL, Where
the locality weight X is the only new hyperparameter, set to
10~2 based on our sensitivity analysis.

5.2. Comparative Analysis

In the Atari 100k benchmark test [35], we compared and
evaluated the performance of DIAMOND-LoL with the
previously most advanced world model. Table 1 shows the
specific scores and comprehensive indicators for each game
and we report the results of DIAMOND in [1]. The re-
sults indicate that our method outperformed DIAMOND. It
is notable that the average human normalized score (HNS)
of DIAMOND-LoL was 1.581, and the interquartile mean
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Table 1. Returns on the 26 games of the Atari 100k benchmark after 2 hours of real-time experience, and human-normalized aggregate
metrics. Bold numbers indicate the best performing methods. DIAMOND-LoL notably achieves the highest mean score over 5 seeds.

Game \ Random  Human \ SimPLe [35] TWM [50] RIS [46] DreamerV3[27] STORM [65] DIAMOND [I1] \ DIAMOND-LoL (ours)
Alien 227.8 7127.7 616.9 674.6 420.0 959.0 983.6 744.1 1021.5
Amidar 5.8 1719.5 74.3 121.8 143.0 139.0 204.8 225.8 2314
Assault 222.4 742.0 527.2 682.6 1524.4 706.0 801.0 1526.4 1598.2
Asterix 210.0 8503.3 1128.3 1116.6 853.6 932.0 1028.0 3698.5 4102.1
BankHeist 14.2 753.1 34.2 466.7 53.1 649.0 641.2 19.7 20.5
BattleZone 2360.0 37187.5 4031.2 5068.0 13074.0 12250.0 13540.0 4702.0 4688.0
Boxing 0.1 12.1 7.8 71.5 70.1 78.0 79.7 86.9 89.2
Breakout 1.7 30.5 16.4 20.0 83.7 31.0 15.9 132.5 165.3
ChopperCommand | 811.0 7387.8 979.4 1697.4 1565.0 420.0 1888.0 1369.8 1402.7
CrazyClimber 10780.5 35829.4 62583.6 71820.4 59324.2 97190.0 66776.0 99167.8 101450.3
Demon Attack 152.1 1971.0 208.1 350.2 2034.4 303.0 164.6 288.1 295.6
Freeway 0.0 29.6 16.7 24.3 31.1 0.0 335 333 33.6
Frostbite 65.2 4334.7 236.9 1475.6 259.1 909.0 1316.0 274.1 280.9
Gopher 257.6 2412.5 596.8 1674.8 2236.1 3730.0 8239.6 5897.9 6015.4
Hero 1027.0  30826.4 2656.6 7254.0 7037.4 11161.0 11044.3 5621.8 5590.1
Jamesbond 29.0 302.8 100.5 3624 462.7 445.0 509.0 427.4 433.8
Kangaroo 52.0 3035.0 51.2 1240.0 838.2 4098.0 4208.0 5382.2 5421.7
Krull 1598.0  2665.5 2204.8 6349.2 6616.4 7782.0 8412.6 8610.1 8695.3
KungFuMaster 258.5  22736.3 14862.5 24554.6 21759.8 21420.0 26182.0 18713.6 19004.2
MsPacman 307.3 6951.6 1480.0 1588.4 999.1 1327.0 2673.5 1958.2 2011.6
Pong -20.7 14.6 12.8 18.8 14.6 18.0 11.3 20.4 20.5
Private Eye 24.9 69571.3 35.0 86.6 100.0 882.0 7781.0 114.3 119.8
Qbert 163.9 13455.0 1288.8 3330.8 745.7 3405.0 4522.5 4499.3 4520.7
RoadRunner 11.5 7845.0 5640.6 9109.0 9614.6 15565.0 17564.0 20673.2 22541.6
Seaquest 68.4 42054.7 683.3 774.4 661.3 618.0 525.2 551.2 560.3
UpNDown 533.4 11693.2 3350.3 15981.7 3546.2 9234.0 7985.0 3856.3 3888.1
#Superhuman (1) 0 N/A 1 8 10 9 10 11 13
Mean (1) 0.000 1.000 0.332 0.956 1.046 1.097 1.266 1.459 1.581
IQM (1) 0.000 1.000 0.130 0.459 0.501 0.497 0.636 0.641 0.695

(IQM) was 0.695, surpassing all benchmarks, including the
direct predecessor DIAMOND and the previous leading
method STORM. Moreover, our agent achieved superhu-
man performance in 13 out of 26 games, outperforming any
other method.

This significant performance improvement is entirely at-
tributed to the introduction of LoL loss. All other aspects
of the experimental setup remained unchanged. The stan-
dard /5 objective would compress the multimodal uncer-
tainty into a single, physically unreasonable average value.
Our LoL loss counteracts this phenomenon by implement-
ing finite propagation constraints, forcing the model to se-
lect a physically coherent future from a series of possibili-
ties. This advantage is particularly evident in games such as
“Breakout”, “Asterix”, and “Racer”, where physically co-
herent modeling of fast-moving objects provides a more sta-
ble and reliable imagination environment for the agents. By
preventing non-causal instantiation errors and ensuring that
the evolution of all game elements is physically reasonable,
the LoL loss promotes the learning of better strategies, ul-
timately leading to higher game scores. Moveover, we pro-
vide a comparison with DIAMOND and DIAMOND-LoL
in Figure 3.

5.3. Sensitivity Analysis

A key component of our method is the locality weight
hyperparameter, A, which balances the influence of our
proposed geometric loss against the standard EDM recon-
struction loss. To evaluate the robustness of DIAMOND-
LoL to the choice of this hyperparameter, we conduct a
sensitivity analysis. We select “Boxing” and “breakout”,
high determinism with fast objects games. We train our
agent from scratch on these games while varying A\ across
several orders of magnitude, including the baseline case:
{0,107%,1073,1072,107'}. A X value of 0 is equivalent
to the original DIAMOND model. All other hyperparame-
ters are held constant as described in the experimental setup.

Figure 4 shows a consistent and informative trend. When
A is too small (10~%), the locality constraint is too weak
to have a significant effect, and performance is compara-
ble to the original DIAMOND baseline (A = 0). As X in-
creases to 10~ and 10~2, we observe a notable improve-
ment in scores, indicating that the LoL loss is effectively
regularizing the model. However, when )\ becomes too
large (10~ 1), performance begins to decline. This suggests
that an overly strong locality penalty can compromise the
generative fidelity of the EDM term, making the model too
rigid. This analysis demonstrates that the benefits of our
LoL loss are robust across a reasonable range for A, with an
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Figure 3. Qualitative comparison of long-horizon rollouts generated by DIAMOND and our DIAMOND-LoL. The figure displays two
9-step imagined trajectories (t=0 to t=8) from the Breakout environment.
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Figure 4. DIAMOND-LoL scores in the two games change with
the variation of the \ value.

optimal value that provides a clear advantage over the base-
line. Based on these findings, we use a value of A = 1072
for all other experiments in this paper.

6. Complexity Analysis

Our proposed LoL loss is designed for computational effi-
ciency, introducing zero overhead at inference time. Since

the loss is only computed during training and the network
architecture is unchanged, the per-frame sampling cost is
identical to the baseline. During training, our method adds a
marginal overhead from boundary extraction, morphologi-
cal dilation, and loss aggregation, which scales linearly with
the number of pixels, O(B-H-W-C). This cost is negligible
compared to the backpropagation through the main denoiser
network and is further reduced on average by a noise-gating
function that applies the loss selectively. Similarly, the addi-
tional space complexity for storing transient tensors is also
anegligible O(B - H-W - ('), and no new learnable param-
eters are introduced. Thus, in exchange for a minimal in-
crease in training cost, DIAMOND-LoL gains a significant,
theoretically-backed improvement in long-horizon stability,
providing a highly efficient method for enforcing physical
consistency in diffusion world models.

7. Conclusion

In this work, we addressed the physical inconsistency of
the standard /5 objective in diffusion-based world models,
which leads to acausal artifacts and mode-averaging
failures. We introduced DIAMOND-LoL, a novel training
framework that incorporates a LoL loss to enforce a finite-
speed propagation constraint. Our theoretically-grounded
approach compels the model to select physically plausible
futures rather than generating unrealizable averages. This
results in a great performance on the Atari 100k bench-
mark by providing a more stable and reliable imagined
environment for the agent. Our research highlights the
value of integrating fundamental physical priors directly
into the training objective of generative models, a prin-
ciple that could be extended to more complex domains
like robotics to create more robust autonomous agents.
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