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Abstract
Discrepancies in generation quality across demo-
graphic groups pose a substantial and critical chal-
lenge in image generative models. However, the
Fréchet Inception Distance (FID) score, which is
widely used as an image quality evaluation met-
ric for generative models, introduces unintended
bias when assessing quality across sensitive at-
tributes. This undermines the reliability of the
evaluation procedure. This paper addresses this
limitation by introducing the Difference in Qual-
ity Assessment (DQA) score, a novel approach
that quantifies the reliability of existing evaluation
metrics, e.g. FID. DQA assesses discrepancies
in evaluated quality across demographic groups
under strictly controlled conditions to effectively
gauge metric reliability. Our findings reveal that
traditional quality evaluation metrics can yield bi-
ased assessments across groups due to inappropri-
ate reference set selection and inherent biases in
image encoder in FID. Furthermore, we propose
DQA-Guidance within diffusion model sampling
to reduce quality disparities across groups. Exper-
imental results demonstrate the utility of the DQA
score in identifying biased evaluation metrics and
present effective strategies to mitigate these bi-
ases. This work contributes to the development
of reliable and fair evaluation metrics for genera-
tive models and provides actionable methods to
address quality disparities in image generation
across groups.

1. Introduction
In recent years, image generative models such as Generative
Adversarial Networks (GANs) (Goodfellow et al., 2020),
Denoising Diffusion Probabilistic Models (DDPMs) (Ho
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Input Prompt: “A photo of a female who works as a nurse” FID: 109.37

Input Prompt: “A photo of a male who works as a nurse” FID: 140.29

Figure 1. Using the same prompt template and seed, a generative
model may produce varying image quality across different de-
mographic groups, e.g., generating higher-quality nurse images
for females while producing obscured objects, distorted limbs, or
grayscale images for males.

et al., 2020), and text-to-image generation (Ramesh et al.,
2021; Rombach et al., 2022) systems have brought bias
concerns to the forefront of generative modeling. While
substantial research has focused on distributional fairness
to ensure balanced sample generation across sensitive at-
tributes (Choi et al., 2024; Shen et al.; Li et al., 2023; Parihar
et al., 2024; Jung et al., 2024), the fairness in generation
quality across demographic groups remains an equally crit-
ical yet underexplored issue. For example, Fig. 1 demon-
strates the existing bias in generation quality by producing
better quality of image for certain demographic group.

Furthermore, in the classification task, text-to-image gen-
erative models can be used as data augmentation tools to
improve classifier performance (Kim et al., 2024). However,
if the quality of generated images is inconsistent across de-
mographic groups, it can negatively impact classification
performance for certain groups, exacerbating fairness issues
in prediction and introducing biases in decision-making. We
empirically demonstrate in Appendix A that discrepancies
in image generation quality can adversely affect real-world
applications, e.g. medical imaging (Garcea et al., 2023),
particularly in classification performance and fairness (Lar-
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Inception: 5.6%
CLIP: 14.5%
DINO: -4.1%

Measured 
Quality Gap

Inception: 4.9%
CLIP: 7.2%
DINO: -3.8%

Firefighter Nurse
Male Female

Male Female Female Male

Female Male

Poor male-firefighters are measured as 
better quality than well-generated female.

Poor female-nurses are measured as 
better quality than well-generated male.

Figure 2. Using the same distance metric (Fréchet Distance, smaller is better), we compare image quality across varying professions
and genders, with each set consisting of 1,000 images. Each image set is carefully controlled to include both well-generated and
poorly-generated images. We evaluate three image encoders: InceptionV3 (FID), CLIP, and DINO. A biased encoder in quality evaluation
leads to two forms of unreliable measurement. First, InceptionV3 and CLIP exhibit significant measurement gaps across demographic
groups for images of the same quality, whereas DINO shows relatively smaller discrepancies. Second, InceptionV3 and CLIP misleadingly
assess poor-quality images as having better quality, while DINO more accurately reflects true quality assessments.

razabal et al., 2020). We also show that achieving fair qual-
ity in generated images can lead to improved outcomes,
underscoring the necessity of addressing this issue.

In response, recent studies (Perera & Patel, 2023; Naik &
Nushi, 2023) have highlighted quality discrepancies in gen-
erative models related to gender-profession biases, relying
on the Fréchet Inception Distance (FID) (Heusel et al., 2017)
to assess the quality of generated images. However, our anal-
ysis reveals that FID is unreliable for evaluating fairness in
image quality for two reasons.

First, FID is sensitive to the selection of reference dataset
due to distinct group distributions. As demonstrated in our
synthetic data analysis in Sec. 3 and Fig. 3, the reference
should be chosen group-specific manner. Choosing com-
bined dataset as reference for FID not only leads to inaccu-
rate quality evaluations for each group but also misidentifies
the direction of bias, making FID an unreliable metric for
detecting fairness issues in generative models observed in
(Perera & Patel, 2023; Naik & Nushi, 2023).

Secondly, even with group-specific evaluation, traditional
encoders can remain unreliable due to inherent biases in
image encoders, which may produce inconsistent represen-
tations for images of similar quality across demographic

groups. For example, as shown in Fig. 2, biased encoders
such as InceptionV3 and CLIP yield unreliable evaluation
results, misassessing certain demographic groups as having
better image quality.

We identify that this inconsistency arises from the biased
representations produced by the encoder. To validate this
issue, we use a t-SNE (Van der Maaten & Hinton, 2008)
plot of embeddings from a biased encoder, shown in Fig. 4
(b). The plot reveals a clear gender-based separation despite
similar image quality, highlighting the encoder’s failure to
reliably evaluate quality discrepancies across demographic
groups. Further details are provided in Sec. 3.2.

In summary, although quality bias exists in generative mod-
els, the commonly used evaluation metric, FID, and po-
tential alternatives leveraging different backbone networks
(Jayasumana et al., 2024) are not reliable for assessing this
bias. This raises the following key questions:
Q1: Which image encoder for evaluation metric can reli-
ably assess quality bias, and how can it be quantified?
Q2: What strategies can effectively mitigate quality bias
in generative models?
We summarize the contributions of this paper by addressing
these two questions.
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To address the first question, we introduce a novel score,
the Difference in Quality Assessment (DQA), which serves
as a reliability score for assessing the reliability of evalu-
ation metrics’ fairness across demographic groups. DQA
quantifies whether an encoder introduces bias, by measur-
ing discrepancies in evaluation results across demographic
groups based on strictly controlled test dataset. An encoder
with a lower DQA value is interpreted as more reliable and
suitable for group-specific quality assessments to be used as
an evaluation metric for image quality.

DQA can identify the most reliable pre-trained foundational
models in quality evaluation in Sec. 4, supporting fairness
and reliability in future generative model applications for
downstream tasks. Additionally, in Appendix A, we validate
DQA’s effectiveness by adopting a classification task with
data augmentation using a text-to-image generation, show-
ing that DQA-guided data augmentation improves fairness
in classification performance. Although DQA is not specifi-
cally designed to improve classification fairness, these re-
sults highlight its effectiveness as a reliability metric for
achieving quality fairness in generated dataset.

Furthermore, to address the second question, we propose
a DQA-based regularization method, DQA-Guidance for
diffusion models’ sampling stage, which enhances both
quality fairness and overall generation quality without re-
training the diffusion model, as discussed in Sec. 5.

2. Related Work
2.1. Generated Image Quality Assessment

FID is a widely used metric for assessing the quality of
generated images by measuring the Wasserstein-2 distance
(Vaserstein, 1969) between embeddings of synthetic and
real images extracted by the InceptionV3 (Szegedy et al.,
2016). This embedding-based distance measurement has
thus become standard in generative model research (Sauer
et al., 2025; Koh et al., 2024; Wang et al., 2024; Bansal
et al., 2024). To enhance representational richness and relax
distributional assumptions, MMD with the CLIP encoder
(Radford et al., 2021) has been proposed (Jayasumana et al.,
2024). While prior studies (Bińkowski et al., 2018; Chong
& Forsyth, 2020; Jain et al., 2023) have highlighted the
unreliability of evaluation metrics under finite or imbalanced
sample conditions, the reliability of these metrics from a
fairness perspective remains largely unexplored.

2.2. Fairness in Generative Models

Many studies have explored fairness in generative models
but have primarily focused on addressing distributional bias,
aiming to achieve an equal number of generated samples
across demographic groups from a neutral prompt such
as fine-tuning the entire model (Choi et al., 2024; Shen

et al.), utilizing a pretrained classifier (Li et al., 2023; Parihar
et al., 2024), and manipulating intermediate embeddings
(Jung et al., 2024). Some works concentrate on new metric
evaluating such biases (Cho et al., 2023; Sathe et al., 2024).

In contrast, beyond distributional bias, Perera & Patel (2023)
and Naik & Nushi (2023) highlighted that quality bias in
generated images across demographic groups, particularly
in associating certain careers with specific genders. How-
ever, methods for mitigating quality bias have not been
presented in the literature. We are the first to propose guid-
ing the diffusion model’s sampling stage to ensure fairness
in image quality.

3. Bias in Image Quality Assessment for
Generative Models

Recent studies have highlighted concerns about quality bias
in generated images (Perera & Patel, 2023; Naik & Nushi,
2023). To evaluate the quality of generated images and quan-
tify this bias, the Fréchet Inception Distance (FID) (Heusel
et al., 2017) is widely used as a metric for assessing the simi-
larity between the distributions of real and generated images.
FID calculates the statistical distance between embeddings
extracted from the InceptionV3 model (Szegedy et al., 2016)
for both generated images and a reference dataset (Brack
et al., 2023; Feng et al., 2022; Saharia et al., 2022; Podell
et al., 2023). However, as discussed in Sec. 1, relying on
FID for quality evaluation presents significant limitations.

3.1. Selection of Reference Dataset

Firstly, the measurement method should be group-specific to
accurately capture differences across demographic groups.
To formalize, let D(·, ·) denote a distance measurement
such as Maximum Mean Discrepancy (MMD) (Radford
et al., 2021) or Fréchet Distance (FD), and let f represent
an image encoder. Define two demographic groups A and
B, with corresponding reference datasets, Aref and Bref, and
generated datasets, Agen and Bgen. The combined reference
and generated datasets are given by Iref = Aref ∪ Bref and
Igen = Agen∪Bgen. In FID, D represents FD while f is typ-
ically the InceptionV3 model (Szegedy et al., 2016). In the
quality bias literature (Perera & Patel, 2023; Naik & Nushi,
2023), the generation quality of each group is calculated by
D(f(Agen), f(Iref)) and D(f(Bgen), f(Iref)) for groups A
and B, respectively, while the bias measurement is given by
D(f(Agen), f(Iref))−D(f(Bgen), f(Iref)). Here, the mag-
nitude represents the degree of bias, while the sign indicates
its direction.

However, as demonstrated in our synthetic data analysis in
Fig. 3, using a unified reference dataset can mask or am-
plify biases, potentially leading to unfair assessments of
image quality across different groups. In this figure, blue
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(a) Example of Fair Image Encoder (b) Example of Unfair Image Encoder

Similar shift ⇒ Similar Distance Skewed Shift ⇒	Skewed Distance

Shift Group B

Shift in Group A

Shift Group B

Misleading
Distance
Measure

No-Shift Group A

Figure 3. Illustration of quality bias in evaluation metrics using
distance measures such as Maximum Mean Discrepancy (MMD)
and Fréchet Distance (FD). The left figure depicts a fair scenario
where generated data embeddings for both groups exhibit the same
distribution shift, while the right figure shows an unfair scenario,
with embeddings for one generated group skewed towards the
other. Using group-specific references (e.g., Agen ↔ Aref ) more
accurately captures distribution shifts compared to an all-reference
approach (e.g., Agen ↔ Aref∪Bref ), which can produce mislead-
ing values in cases of biased image encoders. Thus, group-specific
distance measures more accurately evaluate the quality under the
biased representation.

and orange points represent reference embeddings for two
demographic groups, while green and red points denote
generated embeddings for each group. Fig. 3 (a) depicts a
scenario where the embeddings of the generated data are
similarly out-of-distribution from their respective reference
datasets, suggesting a fair assessment. In contrast, Fig. 3
(b) shows a scenario where the generated data embeddings
for one group are skewed toward the other group’s refer-
ence data, indicating potential quality bias. According to
Fig. 3 (b), the quality evaluation results for group B should
be worse (higher) than for group A. However, when us-
ing the combined reference set, as denoted as “All Ref.”,
the measured distances indicate D(f(Agen), f(Iref)) ≫
D(f(Bgen), f(Iref)), which is misleading. In contrast,
in Fig.3 (a), using group-specific references yields
D(f(Agen), f(Aref)) ≪ D(f(Bgen), f(Bref)), providing
an accurate evaluation. Thus, the quality bias evaluation
should be D(f(Agen), f(Aref))−D(f(Bgen), f(Bref)), in a
group-specific manner, rather than D(f(Agen), f(Iref)) −
D(f(Bgen), f(Iref)).

3.2. Bias in Image Encoder Used in Evaluation

Secondly, when discrepancies in group-specific quality eval-
uations are observed, it remains unclear whether these dif-
ferences stem from actual variations in image quality or
from biases inherent in the image encoder. A biased en-
coder can distort embeddings, impacting the interpreta-
tion of image quality across groups and leading to skewed
evaluation results, as observed in Fig. 2. We illustrate

this issue in Fig. 4 (a), and verify this in Fig. 4 (b) us-
ing t-SNE plot. In Fig. 4 (b), although well-generated
images are correctly located closer to each reference, a
poorly generated image of a “male nurse” may be embed-
ded closer to the “female nurse” reference due to encoder
bias, rather than reflecting its true quality. Conversely, a
similarly poor-quality image of a “female nurse” remains
within the in-distribution region of the “female nurse” refer-
ence, indicating inconsistency in quality evaluation across
demographic groups. This leads to inaccuracies in both
quality assessment and quality bias evaluation, such that
|D(f(Agen), f(Aref))−D(f(Bgen), f(Bref))| ≫ 0, even
though TrueQuality(Agen) ≈ TrueQuality(Bgen).

Given these limitations, it is crucial to identify evaluation
metrics that can reliably distinguish between distribution
shifts caused by actual quality discrepancies and those re-
sulting from biases in the image encoder. By employing
group-specific measurement and introducing a reliability
score for evaluation metrics using controlled, same-quality
images, we can better understand the sources of quality
bias and improve the fairness and accuracy of image quality
assessments across different demographic groups.

4. Reliability of Evaluation Metric for
Generated Image Quality

In this section, we introduce a novel method to assess the
reliability of evaluation metrics for generated image quality,
focusing primarily on metrics that measure the distributional
distance between generated and reference datasets. This
emphasis arises from concerns that biased image encoders
might handle poor-quality images inconsistently across sen-
sitive groups, even when distances are calculated in a group-
specific manner, as discussed in Sec. 3.1.

4.1. Difference in Quality Assessment

We consider two generated datasets, Agen and Bgen, each
containing images of comparable quality and equal quan-
tity. In our experiments, we use MMD as a distance metric
D(·, ·) instead of FD due to its efficiency and freedom from
distributional assumptions (Jayasumana et al., 2024).

Difference in Quality Assessment (DQA) aims to identify
bias in the evaluation metric D(f(·), f(·)). Recalling the
combined reference and generated datasets as Iref = Aref ∪
Bref and Igen = Agen ∪Bgen, DQA is formulated as:

DQA =

∣∣D(
f(Agen), f(Aref)

)
−D

(
f(Bgen), f(Bref)

)∣∣
D
(
f(Igen), f(Iref)

)
(1)

By employing group-specific distance measurements,
Eq. (1) isolates the bias inherent in the encoder by com-
paring the embeddings of generated images with consistent
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Close

Firefighter Nurse

(a) Example of Unreliable Image Quality Evaluation  (b) t-SNE Visualization of Unreliable Image Quality Evaluation

Far
Close

Close Close

Close Close

Far

Female

Male

Poor Male-Nurse
embedded too far from 
the reference

Poor Female-Firefighter
embedded too far from 
the reference

Figure 4. (a) Images in green boxes represent “good” quality generated images, while red boxes denote “poor” quality images. A biased
encoder embeds poor-quality images by associating specific genders with certain professions, leading to skewed evaluation results as
these images are unfairly placed far from their respective reference groups. (b) The t-SNE visualization using a CLIP (Radford et al.,
2021) image encoder illustrates this issue. While well-generated images show less bias, poor-quality images (e.g., red boxes in (a)) reveal
a tendency for being embedded within the wrong gender cluster, resulting in biased evaluation outcomes despite similar quality levels.

quality across different demographic groups. The numer-
ator captures the difference in quality between generated
data for groups A and B relative to their respective refer-
ence sets. A large numerator implies significant quality
disparity between groups, whereas a small or zero value
suggests the encoder treats both groups equally. The denom-
inator captures the global generation quality by measuring
the distance between the combined reference and generated
datasets. A smaller denominator value indicates generated
data closely matches the reference set, while a larger value
signifies deviation. Hence, DQA quantifies the relative qual-
ity discrepancy between groups compared to the overall
distribution shift in generation. A low DQA suggests fair
treatment of both groups by the encoder, while a high DQA
indicates significant bias. Therefore, DQA serves as a relia-
bility score for quantifying bias in image encoders.

4.2. Constructing the Evaluation Dataset for DQA

To effectively apply the DQA score for finding reliable
image encoders in practice, it is essential to construct con-
trolled reference and generated datasets. To assess the reli-
ability of image encoders, we construct a dataset with six
different versions, ranging from well-generated to poorly
generated sets, capturing realistic scenarios encountered
in text-to-image generation of human images using Stable
Diffusion XL (SDXL) (Podell et al., 2023). Following the
recommended settings from (Lui et al., 2024) as our base-
line, we degrade image quality in various ways by adjusting
hyperparameters. The scenarios include the baseline, weak
guidance, reduced sampling steps in diffusion, increased

noise influence on the initial image, and the absence of
refinement methods. The baseline serves as the reference
dataset, while the other scenarios represent controlled gen-
erated datasets. For each image seed, we prepare datasets
under all six scenarios. We generate 250 images for each
combination of profession, gender, and race, resulting in
20,000 images per scenario (10 professions, 2 genders, and 4
races). This ensures that each attribute has the same number
of reference images, avoiding inaccuracies caused by im-
balanced attribute distributions (Jain et al., 2023). Detailed
descriptions of each degradation, along with the professions
and races used, are provided in Appendix C, and visualiza-
tions are presented in Fig. 5 (a).

4.3. DQA for Multiple Attributes (e.g., Race)

Let Eq.(1) be denoted as DQA(Agen, Bgen; f) for groups
A and B given encoder f . Let G = {G1, · · · , Gn} rep-
resent the set of n groups. We aggregate pairwise DQA
across all combinations to provide a comprehensive mea-
sure of fairness in image quality assessment across multiple
attributes.

AvgDQA(G) = 1(
n
2

) ∑
1≤i<j≤n

DQA(Gi, Gj ; f), (2)

4.4. Reliability Analysis for Pre-trained Image Encoders

To assess the reliability of image encoders in evaluating
generated image quality fairly across demographic groups,
we apply the DQA score to various pre-trained models,
considering differences in architecture, training dataset, and
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Baseline (T1) Weak Guidance (T2) Fewer Steps (T3)

Strong Noise (T4) No Refiner (T5) T2+T3+T4 (T6)

(a) Example of Dataset for DQA with Controlled Degradation (b) DQA of Various Models for Controlled Evaluation Dataset

Figure 5. (a) Examples of generated images under controlled degradation scenarios. The figure illustrates samples from both the well-
generated baseline (reference, T1) and the intentionally degraded cases (T2 - T6), where image quality is systematically reduced by
adjusting specific hyperparameters. This controlled degradation enables effective measurement of the DQA score to assess the reliability
of an image encoder. (b) Across all pre-trained encoders and various degradation in generated images, DINO-RN50 achieves the lowest
DQA in average, indicating it is the most reliable encoder for evaluating the quality of generated images.

training scheme. In this analysis, we calculate the average
DQA score across all degradation types.

We evaluate models including InceptionV3, VGG (Si-
monyan & Zisserman, 2014), ResNet-50 (RN50), ViT-B/16
(Dosovitskiy, 2020), and Swin Transformer (Liu et al.,
2021), all trained on the ImageNet-1K (IN-1K) (Deng et al.,
2009) dataset using supervised learning. We also compare
models trained on IN-1K and ImageNet-21K (IN-21K) (Rid-
nik et al., 2021) for ViT-B/16 and Swin Transformer ar-
chitectures to examine the effect of training dataset size.
Additionally, we explore different training schemes by eval-
uating models trained with self-supervised methods like
MoCo-RN50 (He et al., 2020), MSN-ViT (Assran et al.,
2022), and DINO (Caron et al., 2021) and CLIP using both
RN50 and ViT-B/16 architectures.

Impact of Training Scheme on DQA. Our results, summa-
rized in Fig. 5 (b) indicates that self-supervised models using
the RN50 architecture, particularly DINO-RN50 and MoCo-
RN50, achieve the lower DQA scores in general compared
to supervised models. This suggests that the combination
of self-supervised learning and the RN50 architecture ef-
fectively reduces bias, leading to fairer embeddings across
demographic groups. We analyze this as self-supervised
models learn representations without explicit labels, which
helps them avoid inheriting biases tied to label information.

Impact of Backbone Network on DQA. In contrast, self-
supervised models using the ViT architecture, such as
DINO-ViT and MSN-ViT, exhibit slightly higher DQA
scores, implying that RN50 may be better suited for learn-
ing unbiased representations in self-supervised settings. We
analyze the architectural differences between convolutional
neural networks (CNNs) (Schmidhuber, 2015) and Trans-
formers (Vaswani, 2017). RN50, as a CNN, incorporates
locality and spatial patterns through its convolutional layers.

This structure allows CNNs to capture both local and global
image features, making them more robust to distortions in
the image (Tuli et al., 2021). In contrast, Transformer-based
models rely on self-attention mechanisms that process im-
ages as sequences of tokens, without the same spatial local-
ity constraints (Tuli et al., 2021). The token-based approach
enables the model to capture complex global dependencies,
but it may also make it more sensitive to specific variations
in distorted images (Guo et al., 2023), resulting in larger
discrepancies between reference and generated datasets.

Impact of Training Dataset on DQA. We also examine
the effect of training dataset size by comparing models
trained on IN-1K and IN-21K for both ViT-B/16 and Swin
Transformer. The results show that models trained on the
larger dataset, IN-21K, actually exhibit higher DQA scores
compared to their IN-1K counterparts. This suggests that in-
creasing the dataset size alone does not necessarily improve
fairness in the encoder’s representations. Similarly, models
like CLIP, despite being trained on large-scale image-text
datasets, show higher DQA scores especially in racial bias,
indicating that large-scale multimodal training does not nec-
essarily guarantee fairness in embeddings.

4.5. Validity of DQA

To validate the effectiveness of DQA for quality assessment,
we apply it to data augmentation in a medical image classi-
fication task. As detailed in Appendix A, datasets generated
by text-to-image models for medical images can be used
for data augmentation but often exacerbate fairness issues
due to quality bias in the generative model, resulting in
significant performance gaps across demographic groups
in classification. Leveraging a reliable image encoder, we
construct both fair and unfair generated datasets based on
their DQA scores as detailed in Algorithm 1. Fair dataset
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Figure 6. Experimental results for generation quality and quality disparities with DQA-Guidance with Stable DIffusion. The left plot
shows the impact of λ1 on generation quality for each demographic group (lower values indicate better quality) and displays the average
and maximum quality gap across all disease classes (lower values indicate reduced disparity). The right plot illustrates the effect of λ2 on
overall generation quality. Here, λ1 = 0 denotes no DQA-Guidance, while higher λ1 values reflect a stronger influence of DQA-Guidance.
DQA-Guidance effectively enhances generation quality and reduces quality disparities across demographic groups.

enhances classification fairness when used for augmentation,
whereas unfair dataset exacerbates disparities. This demon-
strates DQA’s ability to identify reliable image encoders
and its practical utility in enabling DQA-based data aug-
mentation. These findings underscore the benefit of DQA in
generative models for classification applications, as further
elaborated in Appendix A.

5. Mitigating Quality Bias in Diffusion Models
DQA serves not only as a reliability indicator for the eval-
uation metric but can also act as an energy function in
generative models to regularize equal image quality across
demographic groups. Specifically, we employ guided dif-
fusion (Liu et al., 2022; Epstein et al., 2023; Bansal et al.,
2023) during sampling in diffusion models rather than train-
ing a model from scratch. By interpreting DQA as an energy
function, we can incorporate its gradient into the diffusion
sampling process to mitigate bias in image generation. This
approach leverages the principles of energy-based guidance,
where gradients of an energy function are used to steer the
generation process toward desired outcomes without modi-
fying the pre-trained model parameters.

5.1. DQA-Guidance for Diffusion

In our context, the DQA score quantifies relative discrep-
ancies in image quality assessments across demographic
groups. By computing the gradient of DQA with respect to
latent variables zt at each diffusion timestep, we obtain the
latent direction that reduces this discrepancy. Incorporating
this gradient into noise prediction adjusts the sampling tra-
jectory to favor samples that minimize quality differences
across groups.

Assume we identify a reliable image encoder f∗ for evalu-
ating generated image quality. Let g be the base generative
model that samples from latent variable zAt and zBt for each
group. We apply DQA-Guidance in diffusion modeling by
taking the gradient of DQA with respect to zt = [zAt ; z

B
t ]:

ϵ̃θ(zt) = ϵθ(zt) + σtλ1∇ztDQA(g(zAt ), g(z
B
t ); f∗), (3)

where ϵθ(zt) is the estimated noise, θ represents the pre-
trained weights of the diffusion model, σt scales the gradi-
ent term according to the noise level at timestep t, and λ1

is a hyperparameter controlling the strength of the DQA-
Guidance in diffusion process.

Since reducing DQA could unintentionally increase the de-
nominator of DQA (representing the overall quality), we
introduce an additional term to ensure that both the numer-
ator and denominator are minimized. Specifically, we add
the gradient of the denominator of DQA, the overall distri-
butional distance between generated and reference datasets
D
(
f∗(Igen), f

∗(Iref)
)
, as a regularizer to improve quality:

ϵ̃θ(zt) =ϵθ(zt) + σt∇zt

(
λ1DQA(g(zAt ), g(z

B
t ); f∗)

+ λ2D
(
f∗(Igen), f

∗(Iref)
))

, (4)

where λ2 is a hyperparameter balancing the influence of the
quality regularizer. By incorporating both terms, we ensure
that the model not only reduces the quality bias but also
maintains high overall image quality.

Thus, by treating DQA as an energy function and integrat-
ing its gradient into the diffusion sampling process, we
effectively guide the generation toward reducing the qual-
ity disparity while preserving the fidelity of the generated
images.
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Figure 7. Qualitative results of DQA-Guidance for human image generation. The examples demonstrate improvements in artifact
reduction, color correction, and texture and background refinement (marked as red circle). These enhancements illustrate the impact of
DQA-Guidance in balancing quality across demographic groups.

5.2. Experimental Details for DQA-Guidance

To verify the effectiveness of DQA-Guidance in mitigating
quality bias, we conduct experiments generating human im-
ages using Stable Diffusion. We utilize the well-generated
(Baseline) dataset introduced in Appendix C as a reference
set to maintain consistency in quality and context across
demographic groups when computing DQA during the dif-
fusion process. To evaluate the impact of DQA-Guidance,
we apply it to Stable Diffusion (Rombach et al., 2022). In
this setup, images generated by the state-of-the-art model
(SDXL) (Podell et al., 2023) are used as the reference
set, and DQA-Guidance helps to mitigate quality dispar-
ities while enhancing overall image quality in the diffusion
model. The extension of DQA-Guidance for medical image
generation with ImageGen (Saharia et al., 2022) is intro-
duced in Appendix F.

5.3. Result Analysis for DQA-Guidance

Fig. 6 demonstrates the clear impact of DQA-Guidance
on image generation. Compared to the baseline (λ1 = 0),
increasing λ1 effectively reduces quality disparities in gen-
erated images while substantially improving overall image
quality, especially λ1 = 20 and λ1 = 30. However, setting
λ1 too high introduces excessive noise, leading to a decline
in image quality. These findings suggest that DQA not
only provides a reliable measure for evaluating fairness but
also serves as an effective regularizer, enhancing fairness

in image generation when applied as guidance in diffusion
models. Additionally, larger values of λ2 intuitively con-
tribute to improved generation quality, as demonstrated in
Fig. 6 (b). Qualitative results of DQA-Guidance are pre-
sented in Fig. 7, demonstrating improvements in average
quality (denoted as Avg MMD) while also reducing the
quality gap (denoted as Avg Quality Disparity).

6. Conclusion
In this paper, we address the underexplored issue of qual-
ity disparities in image generation models and introduce
the Difference in Quality Assessment (DQA) score as a
novel approach for assessing the reliability of evaluation
metrics in measuring generated image’s quality. Through
extensive analysis, we reveal that commonly used metrics,
such as FID, can introduce unintended biases, resulting in
misinterpretation of quality discrepancies due to the use of
combined reference sets and model sensitivity to specific de-
mographic features. DQA mitigates these issues by guiding
users in identifying reliable image encoders, thus providing
a more accurate and dependable measure of quality fairness
in generative tasks. We further enhance the utility of DQA
through DQA-Guidance in diffusion models, demonstrat-
ing that this approach effectively reduces quality disparities
across groups while preserving high image fidelity. These
findings establish a robust framework for advancing fairness
in generative models, setting a more reliable standard for
quality assessment across diverse demographic groups.
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Impact Statement
This work addresses critical gaps in fairness and reliability
in image quality evaluation for generative models, a pressing
concern in applications such as healthcare and social media.
The proposed Difference in Quality Assessment (DQA)
approach provides a novel approach to identifying biases in
existing evaluation methods that highlights the challenges
posed by pre-trained encoders, which may carry inherent
biases. This underscores the need for ongoing efforts to
refine foundational models.

The DQA-Guidance framework further demonstrates how
quality fairness can be integrated into the generation process
without retraining, promoting more inclusive and accessi-
ble applications of generative AI. These contributions are
particularly impactful in fields like medical imaging, where
biased models can exacerbate health disparities, and in do-
mains where equitable representation across demographics
is critical.

Overall, this research advances the development of equitable
and reliable generative AI, fostering responsible innovation
in technologies that promote societal fairness and support
decision-making.
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A. Impact of Quality Bias in Generative Models in Downstream Task and Validity of DQA
A.1. Negative Impact of Quality Bias in Generative Models

Unfairness in generated image quality across demographic groups poses a critical issue in generative modeling. Generative
models, especially those trained on uncurated datasets, often produce images of systematically lower quality for specific
demographic groups, such as those defined by gender, race, or age. This quality discrepancy not only undermines visual
representation fairness but also risks reinforcing biases when these generated images are used for data augmentation in
training pipelines, potentially transferring such biases into downstream models. Addressing this issue requires robust
strategies to ensure consistent image quality across all demographic attributes.

To highlight the practical implications of quality bias, we conduct a classification task with a ResNet-50 model (He et al.,
2016) using chest X-ray images from the Chest X-ray dataset (Wang et al., 2017), a dataset known to exhibit fairness
issues, as evidenced by differing AUC scores across demographic groups (Larrazabal et al., 2020). To enhance classifier’s
performance, a user might employ text-to-medical-image generation models (Saharia et al., 2022) trained on the ROCO
dataset (Pelka et al., 2018) as a data augmentation strategy. In our initial experiments, we generate 1,000 images per gender
and class for augmentation. The details of Chest X-ray dataset and the generation details are introduced in Appendix D.

However, despite using an equal quantity of generated images for each demographic group, fairness issues in the classification
model not only persist but, as shown in Table 1, even worsen. This is evidenced by higher values of Avg(∆AUC) and
max(∆AUC), calculated as

Avg(∆AUC) =
1

|C|
∑
c∈C
|AUCmale

c − AUCfemale
c |, max(∆AUC) = max

c∈C
|AUCmale

c − AUCfemale
c |,

where C denotes the set of classes. These results imply that generated images may exacerbate fairness issues, likely due to
quality discrepancies across demographic groups.

Table 1. Comparison of classification performance and fairness metrics using different data augmentation strategies on the Chest X-ray
dataset. Blue indicates an improvement in fairness, while Red denotes a deterioration compared to the baseline. All augmented data are
generated by a text-to-medical-image model, with Fair and Unfair subsets selected from the entire generated dataset using Algorithm
1. Full augmentation worsens fairness, suggesting quality bias issues in the generated images. Data augmentation with the Fair Subset
uses generated data of equal quality across genders, identified by lower DQA scores, yields lower Avg(∆AUC) and max(∆AUC) values
without applying any fairness-specific technique. This outcome suggests that DQA effectively identifies reliable evaluation metrics for
assessing fairness in generated image quality.

OVERALL AUC AUCMALE AUCFEMALE AVG(∆AUC) ↓ max(∆AUC) ↓ DQA

BASELINE 53.33 55.30 50.58 6.30 16.80 -
FULL AUGMENTATION 54.39 56.55 51.39 6.76 16.64 -

FAIR SUBSET (LOWER DQA) 53.91 55.84 51.24 6.19 15.72 0.0868
UNFAIR SUBSET (HIGHER DQA) 54.32 56.40 51.43 6.71 17.19 0.5495

A.2. Validity of DQA

To validate the effectiveness of DQA in identifying reliable image encoders for quality assessment, we construct both fair
and unfair generated datasets in terms of quality as identified by their DQA scores. The fair generated dataset is expected
to enhance fairness in classification when used for data augmentation, while the unfair generated dataset is anticipated to
exacerbate fairness issues.

These datasets are characterized by lower (fair) and higher (unfair) DQA scores, evaluated using a reliable image encoder
f∗. Specifically, let Agen and Bgen represent two groups of generated data, with subsets SA ⊂ Agen and SB ⊂ Bgen, each
of size k = 0.2 × |Agen|. We define the fair and unfair subsets as (Sfair

A , Sfair
B ) = argminm DQA(S

(m)
A , S

(m)
B ; f∗) and

(Sunfair
A , Sunfair

B ) = argmaxm DQA(S
(m)
A , S

(m)
B ; f∗), selected from M candidate subsets {(S(m)

A , S
(m)
B )}Mm=1.

To construct meaningful candidate pairs, we employ influence scores as a probabilistic measure of each image’s impact
on the DQA score, calculated via influence functions (Cook & Weisberg, 1980). These scores are normalized and used in
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a multinomial sampling scheme, allowing us to prioritize high-impact images in both fair and unfair selection processes.
Algorithm 1 in Appendix A.3 details the steps for sampling fair and unfair subsets, using influence-based probabilities to
guide the selection.

For the classification task, we train a ResNet-50 model on the Chest X-ray diagnosis dataset, as outlined in Sec. A.1.
Initial experiments in Sec. A.1 used an augmentation set containing 1000 images per gender and class. For DQA-guided
augmentation, we add either the fair subset (Sfair

A , Sfair
B ) or the unfair subset (Sunfair

A , Sunfair
B ), each consisting of 200 images

per gender and class, to assess how these augmentations impact model performance and demographic fairness. This setup
enables a comparative evaluation of overall accuracy and fairness across demographic groups, thereby justifying the validity
of DQA as an indicator of reliability.

The experimental results, shown in Table 1, demonstrate the effectiveness of the DQA score: the fair subset identified by
low DQA improves fairness in classification AUC scores across demographic groups, even though DQA is not specifically
designed for classification fairness, whereas the unfair subset (high DQA) worsens fairness outcomes.

A.3. Fair/Unfair Subset Sampling Algorithm with DQA

Algorithm 1 Finding Fair and Unfair Subsets Using Influence Scores for DQA
1: Input: Generated datasets Agen and Bgen; reference datasets Aref and Bref; reliable encoder f∗; subset size k; number

of samples M ; small constant ϵ
2: Output: Fair/Unfair subsets (Sfair

A , Sfair
B ), (Sunfair

A , Sunfair
B )

3: FA, FB , FAref , FBref ← {f∗(xi) | xi ∈ Agen, Bgen, Aref, Bref}
4: DQAoriginal ← DQA(FA, FB , FAref , FBref)
5: for each xi ∈ Agen and xj ∈ Bgen do
6: F−i

A , F−j
B ← FA \ {f∗(xi)}, FB \ {f∗(xj)}

7: δAi ← DQAoriginal − DQA(F−i
A , FB , FAref , FBref)

8: δBj ← DQAoriginal − DQA(FA, F
−j
B , FAref , FBref)

9: end for
10: Adjust influence scores for sampling:
11: For fair subsets, invert influence scores:
12: pA,fair

i , pB,fair
j ← −δAi −min{−δAi }+ϵ∑

i(−δAi −min{−δAi })+ϵ
,

−δBj −min{−δBj }+ϵ∑
j(−δBj −min{−δBj })+ϵ

13: For unfair subsets, use original influence scores:

14: pA,unfair
i , pB,unfair

j ← δAi −min{δAi }+ϵ∑
i(δ

A
i −min{δAi })+ϵ

,
δBj −min{δBj }+ϵ∑
j(δ

B
j −min{δBj })+ϵ

15: Initialize: best DQA←∞, worst DQA← −∞
16: for m = 1 to M do
17: Sample fair/unfair candidate subsets:
18: S

(m,fair)
A , S

(m,fair)
B ← Sample(Agen, k, p

A,fair
i ),Sample(Bgen, k, p

B,fair
j )

19: DQA(m,fair) ← DQA(S
(m,fair)
A , S

(m,fair)
B , FAref , FBref)

20: Compute DQA for fair/unfair candidate:
21: if DQA(m,fair) < best DQA then
22: best DQA← DQA(m,fair)

23: (Sfair
A , Sfair

B )← (S
(m,fair)
A , S

(m,fair)
B )

24: end if
25: S

(m,unfair)
A , S

(m,unfair)
B ← Sample(Agen, k, p

A,unfair
i ),Sample(Bgen, k, p

B,unfair
j )

26: DQA(m,unfair) ← DQA(S
(m,unfair)
A , S

(m,unfair)
B , FAref , FBref)

27: if DQA(m,unfair) > worst DQA then
28: worst DQA← DQA(m,unfair)

29: (Sunfair
A , Sunfair

B )← (S
(m,unfair)
A , S

(m,unfair)
B )

30: end if
31: end for
32: Return: (Sfair

A , Sfair
B ), (Sunfair

A , Sunfair
B )
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B. Details of Synthetic Data in Figure 3
To construct the synthetic dataset, we generated non-Gaussian data for groups A and B by combining multivariate normal
and exponential distributions. Each group has distinct means, covariances, and exponential scaling factors to ensure
variability and non-Gaussian characteristics in the data. For group A, we define the mean as µA and covariance as ΣA.
Samples for group A were drawn from a multivariate normal distribution, N (µA,ΣA), and combined with exponential
noise with a scale parameter λA. Similarly, for group B, we define the mean as µB and covariance as ΣB . Samples are
drawn from N (µB ,ΣB) and combined with exponential noise with a scale parameter λB .

Aref = N (µA,ΣA) + Exp(λA)

Bref = N (µB ,ΣB) + Exp(λB)

To introduce distribution shift as examples for fair and unfair case, translations are applied to each group. Let tA and tB
represent the translations for groups A and B respectively. The test data for each group is generated as:

Agen = N (µA,ΣA) + tA + Exp(λA)

Bgen = N (µB ,ΣB) + tB + Exp(λB)

where µA = [µA1, µA2] and ΣA =

[
σ2
A1 0
0 σ2

A2

]
denote the mean and covariance of group A, µB = [µB1, µB2] and

ΣB =

[
σ2
B1 0
0 σ2

B2

]
denote the mean and covariance of group B, λA and λB represent the exponential scaling factors for

groups A and B, and tA and tB are translations applied to groups A and B, respectively.

Using this structure, we introduce non-Gaussianity through the combination of multivariate normal and exponential
distributions with group-specific parameters µA,ΣA, λA, and µB ,ΣB , λB . Test (generated) datasets maintain only the
mean parameters for each group, but covariance and scaling factors are shifted as well as translations to mimic the distribution
shift in generative models.

For the reference set, we choose µA1 = µA2 = 0, σ2
A1 = σ2

A2 = 1, λA = 1, µB1 = µB2 = 15, σ2
B1 = σ2

B2 = 8,
and λB = 2. For the generated set, we change the covariance as σ2

A1 = σ2
A2 = 3 and σ2

B1 = σ2
B2 = 12, and shift the

scaling λA ← λA + 0.2, and λB ← λB + 0.2. Moreover, we apply different scaling and translations for fair and unfair
synthetic dataset. Specifically, we choose tA = [3, 3] and tB = [−3,−3], to depict a fair scenario, while tA = [1, 1] and
tB = [−11,−11] are chosen to simulate unfairly skewed distribution for group B.

C. Constructing Evaluation Dataset for DQA
We consider realistic scenarios encountered in text-to-image generation for human image datasets using Stable Diffusion
Inpainting (Rombach et al., 2022). Our baseline follows the recommended settings from (Lui et al., 2024), where image
quality degradation is achieved by adjusting specific hyperparameters. Specifically, the baseline parameters include a
sampling step size of T = 40, noise strength sn = 0.7, guidance scale sg = 7.5, and a refinement phase during the last 20%
of sampling, denoted by τrefine = 0.2. The scenarios we evaluate are as follows:

1. Baseline: Uses sufficient diffusion steps with a balanced influence between the initial image and noise, with parameters
(T, sn, sg, τrefine) = (40, 0.7, 7.5, 0.2).

2. Weak Guidance: Reduces the guidance scale, weakening the model’s adherence to the text prompt. This can result in
images that lack coherence or do not fully align with the desired content, (T, sn, sg, τrefine) = (40, 0.7, 1.0, 0.2).

3. Fewer Steps: Halves the number of diffusion steps compared to the baseline, reducing the model’s capacity to refine
details and potentially resulting in noisier outputs, (T, sn, sg, τrefine) = (20, 0.7, 7.5, 0.2).

4. Strong Noise: Increases the noise strength, introducing more randomness and potentially causing the image to deviate
from the prompt, (T, sn, sg, τrefine) = (40, 0.9, 7.5, 0.2).

5. No Refiner: Omits the refinement phase, leading to images with fewer details and a less polished appearance,
(T, sn, sg, τrefine) = (40, 0.7, 7.5, 0.0).
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6. Combination: Combines weak guidance, fewer steps, and strong noise, creating highly degraded images,
(T, sn, sg, τrefine) = (20, 0.9, 1.0, 0.0).

We select 10 professions commonly referenced in the literature (Lui et al., 2024; Gustafson et al., 2023; Cho et al.,
2023), including flight attendant, nurse, secretary, teacher, veterinarian, engineer, pilot, firefighter, surgeon, and builder.
Additionally, we considered four racial groups identified in (Lui et al., 2024): Asian, Black, Indian, and White Caucasian.
The examples of constructed datasets are visualized in Figure 12 in the last page.

D. Details in Chest X-ray Dataset and Generation
D.1. Details of the Chest X-ray Dataset

We use the NIH ChestX-ray14 dataset (Wang et al., 2017), a large repository containing 112,120 chest X-ray images
from 30,805 patients, annotated with 14 common thoracic disease categories, including Hernia, Pneumonia, Fibrosis,
Emphysema, Edema, Cardiomegaly, Pleural Thickening, Consolidation, Mass, Pneumothorax, Nodule, Atelectasis, Effusion,
and Infiltration. By including ‘No Findings’ as a benign case, the dataset expands to 15 classes. It also includes demographic
information, with approximately 56.5% male and 43.5% female patients.

D.2. Details of Synthetic Chest X-ray Generation

To generate synthetic Chest X-ray images, we use a pre-trained ImageGen model (Saharia et al., 2022) trained on the
ROCO dataset (Pelka et al., 2018), which contains paired image and text data for medical purposes. The pretrained model
is available on HuggingFace (Wolf, 2019) under the model ID Nihirc/Prompt2MedImage. We generate 1,000 images
per gender and class, resulting in a total of 30,000 images across 2 genders and 15 classes. The input prompt format for
generation is “Chest X-ray image of a {GENDER} patient showing a/an {DISEASE}.”

E. DQA analysis for Medical Image
E.1. Constructing Reference Dataset for Medical Image

In the medical image, we utilize the Chest X-ray diagnosis dataset in Sec. A.1 as the reference, given its consistent image
quality across genders, controlled through human annotations. This consistency makes it an effective benchmark for quality
assessment. Specifically, we designate the training set of Chest X-ray images as the reference dataset, while the test set and
its transformations are used as a mimic of the generated dataset to help identify a reliable image encoder. In more detail,
the real test data remains in-distribution relative to the training dataset, while we simulate generative model failures (Borji,
2023) by applying transformations to the test set, creating poor-quality images as shown in Fig. 8 (a).

E.2. Reliability Analysis for Image Encoders for Medical Image

For medical images, we assess encoders such as InceptionV3 and RN50 pretrained on IN-1K, alongside RN50 models
trained directly on the Chest X-ray dataset using supervised learning, self-supervised learning (SimCLR) (Chen et al.,
2020), and supervised learning on a single-gender subset. The RN50 pretrained on IN-1K achieves the lowest DQA score,
suggesting that pretraining on a diverse dataset helps mitigate biases inherent in domain-specific data. In contrast, models
trained directly on medical images exhibit higher DQA scores, potentially due to the amplification of existing biases within
the specialized dataset.

F. DQA-Guidance for Medical Image
F.1. Experimental Details

To verify the effectiveness of DQA-Guidance in mitigating quality bias, we utilize a medical dataset and a generative
model for medical images, consistent with the setup in previous sections. Specifically, we apply Eq. (4) to the text-to-
medical-image model during the sampling stage, generating 100 images per gender and class, resulting in a total of 3000
images (2 genders and 15 classes). For each gender, the prompt “Chest X-ray image of a {GENDER} patient showing
a {DISEASE NAME}.” is used, with the Chest X-ray training data for each gender serving as a reference to compute
empirical DQA during the sampling stage. In the experiments, we vary λ1 while fixing λ2 = 0 to examine the impact of
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(a) Example of Transforms Mimicking Image Generation Failure (b) DQA of Various Models for Distorted Images  

Figure 8. (a) To assess the DQA across varying qualities of generated medical images, we simulate generative model failures by
applying transformations to test images that reflect common failure patterns in generative models. (b) By incrementally applying these
transformations and evaluating the reliability of various pretrained encoders, we find that a ResNet-50 model pretrained on ImageNet-1K
demonstrates greater reliability in quality assessment, consistently handling poor-quality images across demographic groups by showing
lowest DQA in average. In contrast, the same model trained on reference data shows higher DQA scores, indicating unreliable image
quality assessment.

DQA-Guidance on both generation quality and the quality gap between groups.

F.2. Result Analysis for DQA-Guidance

Fig. 9 demonstrates the clear impact of DQA-Guidance on medical image generation. Compared to the baseline (λ1 = 0),
increasing λ1 effectively reduces quality disparities in generated images while substantially improving overall image
quality. However, setting λ1 too high introduces excessive noise, leading to a decline in image quality. These findings
suggest that DQA not only provides a reliable measure for evaluating fairness but also serves as an effective regularizer,
enhancing fairness in image generation when applied as guidance in diffusion models. Additionally, larger values of λ2

intuitively contribute to improved generation quality. Qualitative results of DQA-Guidance is shown in Fig. 10. Similar to
DQA-Guidance for human images, the improvements primarily focus on refining texture. While these improvements may
appear subtle from a user’s perspective, the measured quality confirms that the hyperparameters λ1 and λ2 play a significant
role in enhancing overall quality and reducing quality disparities.

Figure 9. Experimental results for generation quality and quality disparities with DQA-Guidance. The left plot shows the impact of λ1

on generation quality for each demographic group in Chest X-ray image generation (lower values indicate better quality) and displays
the average and maximum quality gap across all disease classes (lower values indicate reduced disparity). The right plot illustrates the
effect of λ2 on overall generation quality. Here, λ1 = 0 denotes no DQA guidance, while higher λ1 values reflect a stronger influence of
DQA-Guidance. DQA-Guidance effectively enhances generation quality and reduces quality disparities across demographic groups.
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Figure 10. Qualitative results of DQA-Guidance for medical image generation. The examples highlight improvements primarily in texture
refinement, demonstrating the method’s ability to enhance overall image quality while addressing disparities across different conditions.

G. DQA on Different Types of Image Quality Assessment
In addition to our approach, other methods for assessing image quality include visual question answering (VQA) (Lui et al.,
2024) and neural networks specifically trained for quality evaluation (Kolchinski et al., 2019; Tian et al., 2022; Chen et al.,
2024a).

In (Lui et al., 2024), VQA models are asked questions such as Prompt 1: “Is this image real or fake?” or Prompt 2: “Are
this person’s limbs distorted?” to detect unreal aspects of a given image. However, as the image encoder used in VQA
models may exhibit bias, the distribution of VQA answers could also be biased. To quantify this bias, we adapt DQA in
Eq. (1) by replacing D(f(·), f(·)) with p(h(·), T ), where h denotes the VQA model and p represents the probability of
detecting abnormalities based on the text prompt T . This approach utilizes the probability of realism detected by the VQA
model as the image quality assessment metric.

DQAVQA =
|p(h(Agen))− p(h(Bgen))|

p(h(Igen))

We also adapt DQA to image quality assessment (IQA) models that output indicators of general image quality. For example,
TOPIQ (Chen et al., 2024a) is a supervised network designed for image quality evaluation. It is trained on datasets such as
FLIVE (Ying et al., 2020) for general images or CGFIQA (Chen et al., 2024b) for facial images, using a regression task to
predict quality scores. Let s(·) an IQA model’s outcome, then we adapt DQA in Eq. (1) by replacing D(f(·), f(·)) with
s̄(·), the mean of quality score over each group.

DQAIQA =
|s̄(Agen)− s̄(Bgen)|

s̄(Igen)
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(a) DQA for visual question answering (VQA) models (b) DQA for image quality assessment (IQA) models

Figure 11. DQA on different types of image quality assessments. We compare DQA scores for gender and racial fairness across VQA
models (BLIP and PaliGemma) under two prompts, as well as IQA models trained on general and facial datasets. Results highlight
varying tendencies in DQA across models and prompts, with racial fairness remaining a significant challenge and facial dataset-trained
IQA models showing higher DQA scores.

To summarize the quality assessment methods utilized throughout the paper:

• Distance-based methods: Measure the similarity between the feature distributions of generated images and real images
to determine image quality (e.g., FID).

• VQA-based methods: Assess visual realism and detect whether images are free from noticeable distortions or errors.

• General IQA methods: Evaluate objective image quality metrics such as blur, noise, sharpness, and color saturation.

We use BLIP (Li et al., 2022) and PaliGemma (Beyer et al., 2024) as representative VQA models with two different prompts.
Additionally, we utilize two pre-trained versions of TOPIQ for general IQA: one trained on the FLIVE dataset for general
images and another trained on the CGFIQA dataset for facial images.

The experimental results for these different types of image quality assessments are visualized in Fig. 11. Interestingly, VQA
models exhibit varying tendencies. For gender-based DQA, PaliGemma demonstrates reliability with low DQA for Prompt
1 but shows relatively high DQA for Prompt 2. Conversely, BLIP achieves reliable results with Prompt 2 but exhibits high
DQA for Prompt 1. For racial DQA, both models exhibit similar tendencies with gender-based DQA; however, the overall
DQA values are significantly higher, indicating that racial bias remains a pressing concern in fair evaluation.

In the case of IQA models, the version trained on a general dataset exhibits greater reliability with low DQA, whereas
the version trained on facial datasets demonstrates significantly higher DQA. This result highlights potential challenges in
achieving fairness when applying models trained on specific datasets.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Reliable Image Quality Evaluation and Mitigating Quality Bias in Generative Models

H. Impact of DQA-Guidance on Downstream Tasks
In line with Sec. A.2, we further investigate the impact of DQA-Guidance on fairness in AUC across gender in medical
image classification. We compare the classification performance using different versions of generated samples. For this
analysis, we use 100 images per gender and class as augmentation, while Table 1 reports results based on 1,000 images per
gender and class for full augmentation and 200 images per gender and class for fair and unfair subsets.

Table 2 shows the classification performance when generative samples created with DQA-Guidance are used for data
augmentation. To isolate the impact of λ1, we eliminate the influence of λ2 by setting λ2 = 0.

Compared to baseline augmentation (No Guidance), DQA-Guidance improves the overall AUC and significantly reduces
both the mean and maximum AUC gaps between demographic groups. This enhancement is achieved without explicit
fairness constraints, relying solely on improved quality parity between groups.

Table 2. Classification performance and fairness metrics on the Chest X-ray dataset using DQA-Guidance for data augmentation. The
table compares results across augmentation strategies using 100 images per gender and class. λ1 is varied while λ2 is set to 0 to isolate
its effect. Compared to No Guidance, DQA-Guidance improves overall AUC and significantly reduces both the mean and maximum
AUC gaps between demographic groups, demonstrating its effectiveness in enhancing quality parity without applying explicit fairness
constraints.

OVERALL AUC AUCMALE AUCFEMALE AVG(∆AUC) ↓ max(∆AUC) ↓
BASELINE (NO AUGMENTATION) 53.33 55.30 50.58 6.30 16.80

NO GUIDANCE 54.22 56.48 51.08 6.90 16.87
DQA-GUIDANCE λ1 = 10 54.31 56.37 51.45 6.55 16.31
DQA-GUIDANCE λ1 = 20 54.31 56.19 51.69 6.46 16.30

DQA-GUIDANCE λ1 = 100 54.37 56.36 51.60 6.56 16.27
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Figure 12. Examples of constructed evaluation datasets for DQA under various text-to-image generation scenarios to controlled degradation
of generated image. The scenarios include Baseline, Weak Guidance (T2), Fewer Steps (T3), Strong Noise (T4), No Refiner, and a
combination of T2, T3, and T4. Each setting adjusts specific hyperparameters of Stable Diffusion Inpainting (Rombach et al., 2022) to
simulate realistic degradations in image quality. The datasets represent 10 professions and 4 racial groups, illustrating the diversity and
quality variations used for evaluation while four professions (Nurse, Pilot, Flight Attendant (FA), and fire fighter (FF)) are presented in the
example.
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