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ABSTRACT

Non-rigid alignment of point clouds is crucial for scene understanding, recon-
struction, and various computer vision and robotics tasks. Recent advancements
in implicit deformation networks for non-rigid registration have significantly re-
duced the reliance on large amounts of annotated training data. However, existing
state-of-the-art methods still face challenges in handling occlusion scenarios. To
address this issue, this paper introduces an innovative unsupervised method called
Occlusion-Aware Registration (OAR) for non-rigidly aligning point clouds. The
key innovation of our method lies in the utilization of the adaptive correntropy
function as a localized similarity measure, enabling us to treat individual points
distinctly. In contrast to previous approaches that solely minimize overall devia-
tions between two shapes, we combine unsupervised implicit neural representa-
tions with the maximum correntropy criterion to optimize the deformation of un-
occluded regions. This effectively avoids collapsed, tearing, and other physically
implausible results. Moreover, we present a theoretical analysis and establish the
relationship between the maximum correntropy criterion and the commonly used
Chamfer distance, highlighting that the correntropy-induced metric can be served
as a more universal measure for point cloud analysis. Additionally, we introduce
locally linear reconstruction to ensure that regions lacking correspondences be-
tween shapes still undergo physically natural deformations. Our method achieves
superior or competitive performance compared to existing approaches, particu-
larly when dealing with occluded geometries. We also demonstrate the versatility
of our method in challenging tasks such as large deformations, shape interpola-
tion, and shape completion under occlusion disturbances.

1 INTRODUCTION

Non-rigid point cloud registration is a critical and challenging problem within the domains of com-
puter vision, robotics, and medical imaging. Its objective is to optimize a deformation field that
enables precise alignment between geometric shapes. Due to its fundamental importance, this prob-
lem has diverse applications, including reconstructions Slavcheva et al. (2017); Bozic et al. (2021);
Park et al. (2021), generation Barber et al. (2007); Wang et al. (2008), and animations Chen et al.
(2021); Siarohin et al. (2023).

Thanks to recent advancements in neural representations for 3D modeling and rendering Park et al.
(2019); Mescheder et al. (2019); Sitzmann et al. (2020); Mildenhall et al. (2020), coordinate-based
networks (i.e., utilizing 3D spatial positions as inputs) have made significant progress in fully
automated non-rigid point cloud registration Li et al. (2021a); Li & Harada (2022b); Prokudin
et al. (2023). Despite their impressive results on benchmark tests, the systematic exploration of
coordinate-based networks for non-rigid point cloud registration involving occlusion geometries is
comparatively limited and presents substantial challenges. Actually, the occlusion regime is quite
relevant for practical applications. For instance, in Computer-Assisted Surgery (CAS) scenarios, ac-
curate registration of complete pre-operative CT or MRI models with occluded intra-operative scan
data is crucial for surgical navigation, as the camera attached to the surgical instrument only provides
a limited view of the abdomen during laparoscopic surgeries Robu et al. (2018). It is surprising that
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Figure 1: Non-rigid registration of point clouds under occlusion disturbances. The pre-operative
liver (complete) and the intra-operative liver (occluded) serve as the source and target models, re-
spectively. While competing approaches produce physically implausible results like collapses and
tearing, our method achieves successful registrations (top) while faithfully preserving the physical
structure (bottom) such as the blood vessel present in the source liver.

current state-of-the-art algorithms struggle when dealing with scenarios where the source shape is
complete and the target shape is occluded (see Fig. 1).

We analyze and argue that the unsatisfactory results can be attributed to the choice of the dis-
tance metric between two shapes. Previous approaches typically use the standard Chamfer Distance
(CD) Fan et al. (2017) as the similarity evaluation protocol Li et al. (2021a); Li & Harada (2022b);
Prokudin et al. (2023), which directly finds the nearest point in the other point cloud and minimizes
holistic deviations between shapes. While this is effective for registering two complete shapes, it
can lead to collapsed or physically implausible results when dealing with a complete source shape
and an occluded target geometry, as shown in Fig. 1.

To address the above issues, we present a novel and unsupervised non-rigid registration method for
point clouds under occlusion. A key aspect of our method is that, instead of blindly optimizing
the overall non-linear transformation, we introduce the use of the Maximum Correntropy Criterion
(MCC) from statistical and information-theoretic learning Erdogmus & Principe (2002) to effec-
tively handle occlusion. Correntropy serves as an adaptive and local similarity measure, allowing for
differential treatment of individual points within the neural representations. Consequently, occluded
points will make smaller contributions to the correntropy, enabling more precise and distinguished
handling of occlusion. As demonstrated in subsequent experiments, this correntropy-induced metric
effectively prevents collapses, tearing, and other physically implausible outcomes, in contrast to the
commonly used CD metric.

Moreover, ensuring the physical plausibility of the deformation field for regions of the source ge-
ometry that lack correspondence in the target shape presents another significant challenge. This
problem is considerably more complex than its rigid counterpart, as it is inherently ill-posed and
under-constrained. In non-rigid registration, there are numerous potential deformation solutions
that can align with the partial deformations of the source surface. To mitigate this challenge, we
draw inspiration from the concept of locally linear embedding in manifold learning Roweis & Saul
(2000) and develop a robust geometric prior termed Locally Linear Reconstruction (LLR). The LLR
approach formulates the problem as a constrained non-linear least-squares optimization, incorpo-
rating deformation regularity by linearly reconstructing the unknown out-of-part deformations using
information from neighboring regions. As a result, LLR significantly enhances the naturalness of the
deformation field and preserves higher-quality geometric details compared to previous approaches.

We conduct extensive experiments to demonstrate the superiority and competitiveness of the pro-
posed method to baselines, including both traditional optimization-based and neural network-based
approaches. This superiority is particularly pronounced in scenarios involving occlusion. Addition-
ally, our method provides continuous deformation representations, enabling downstream applica-
tions in shape interpolation and shape completion. To summarize, the main technical contributions
of this work are threefold as follows:

• We analyze the reasons why previous approaches fail to handle occlusion scenarios in non-
rigid registration and introduce a novel unsupervised deformation framework to address
this challenging problem.
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• We pioneer the combination of maximum correntropy criterion with implicit neural repre-
sentations to ensure physically plausible deformations and reveal its relationship to Cham-
fer distance.

• We formulate the deformation of regions lacking correspondence as a local linear recon-
struction problem. This formulation can be solved through non-linear least-squares opti-
mization and yields a closed-form solution.

2 RELATED WORK

We review the work that is closely related to ours. Readers are referred to Tam et al. (2012); Deng
et al. (2022) for more comprehensive studies.

Non-rigid point cloud registration. In contrast to shape matching, which aims to establish cor-
rect correspondences, non-rigid point cloud registration focuses on optimizing the deformation field.
Amberg et al. Amberg et al. (2007) extended the rigid Iterative Closest Point (ICP) algorithm Besl
& McKay (1992) to non-rigid registration (NICP) by introducing stiffness parameters to control the
deformation. Coherent Point Drift (CPD) represented point clouds using Gaussian mixture mod-
els (GMMs) and formulated the registration problem as a probabilistic density estimation process,
while Jian & Vemuri (2010) directly minimized the Euclidean distance between two GMMs for
registration. More recently, Hirose Hirose (2020; 2022) reformulated CPD in a Bayesian setting,
improving CPD in scalability and robustness. To enhance efficiency, deformation graph-based ap-
proaches Sumner et al. (2007); Bozic et al. (2021); Zhao et al. (2022); Qin et al. (2023) represent
shapes using sparsely sub-sampled node graphs, where deformation is associated with each graph
node and applied to nearby geometry.

With the advent of deep learning, neural network-based approaches have also been developed for
non-rigid point cloud registration. However, many of these methods rely on neural networks to
extract features for point correspondences and subsequently employ classical registration methods
like NICP for deformation optimization. For instance, SyNoRiM Huang et al. (2022) employed
3D CNN networks to learn non-orthogonal functional bases for shape matching without relying
on the Laplace-Beltrami operators Ovsjanikov et al. (2012). Lepard Li & Harada (2022a) disentan-
gled point cloud representations into feature and position spaces and developed a Transformer-based
method for point-wise matching. DFR Sun et al. (2024) conducted registration by aligning the source
mesh towards a target point cloud using correspondences induced by deep functional maps Litany
et al. (2017). Cao & Bernard (2023) presented a self-supervised network for multimodal shape
matching. While it shows promising performance, it does not address the deformations of occluded
parts. Sundararaman et al. (2022) utilized an auto-decoder structure to implicitly align two volumes,
which requires surface normals for training. Additionally, it employs a bi-directional Chamfer Dis-
tance for inferences, a metric that may be susceptible to occlusion. Unlike these approaches that
primarily focus on shape matching and heavily depend on data annotations, our method is unsuper-
vised, enabling us to achieve faithful registration that is more generalizable to unknown categories.

Neural deformation representation. The representation of deformation fields is a core aspect in
non-rigid point cloud registration. Traditional methods often rely on manually defined deforma-
tion functions, such as the thin-plate spline Bookstein (1989) and the radial basis function Yuille
& Grzywacz (1989). However, the emergence of implicit neural representations has introduced a
new paradigm to describe deformations. Specifically, the coordinate-based Multi-Layer Perception
(MLP) architecture utilizes an MLP to map the input coordinates to deformation fields, avoiding
the need for explicit deformation definitions. For instance, NSFP Li et al. (2021a) developed a
coordinate-based MLP that implicitly regularized non-rigid deformations in scene flow estimation.
This method directly minimizes the Chamfer distance at runtime without relying on extensive la-
beled data to capture prior statistics. Building upon NSFP, NDP Li & Harada (2022b) extended the
approach to a hierarchical motion decomposition using a pyramid structure. This enables controlling
of the coarse-to-fine motion (from rigid to non-rigid) across low to high-frequency signals. More
recently, DPF Prokudin et al. (2023) introduced a method for modeling non-rigid surfaces also based
on the Chamfer distance, where the deformation field was further regularized by the well-established
as-isometric-as-possible (AIAP) Kilian et al. (2007) constraint. We also utilize a coordinate-based
MLP to represent the continuous deformation field, which allows us to model and parameterize the
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deformations in an unsupervised and flexible manner. However, unlike previous approaches that of-
ten face challenges in occlusion scenarios, we thoroughly analyze and address these issues, leading
to higher-quality non-rigid point cloud registration results.

3 PRELIMINARIES

Definition 1 (Santamarı́a et al. (2006); Liu et al. (2007)). (Cross) correntropy V is a generalized
local similarity measure between two arbitrary scalar random variables X and Y defined as

V (X,Y ) = EXY [k(X,Y )] =

∫∫
x,y

k(x, y)pXY (x, y)dxdy, (1)

which is symmetric, positive, and bounded. Here k(·) is a kernel function that satisfies the Mercer
theorem Vapnik (2013), E denotes the expectation operator, and pXY is the joint probability density
function over the space (X,Y ).

In this work, we adopt the translation invariant Gaussian kernel kσ = exp(− x2

2σ2 ) to define the cor-
rentropy. This choice is motivated by the symmetric and positive definite nature of the Gaussian
kernel, as well as its property of approaching zero as points move away from the center. Moreover,
the kernel bandwidth Ã allows flexible control over the decaying factor and enables accurate reg-
istrations in the presence of various occlusion. We empirically investigate the influences of Ã on
deformations in Appendix D.

Definition 2 (Liu et al. (2007)). Given the finite number of data points in the sample space,
the correntropy-induced similarity metric (i.e., distance function) M between two vectors x =
(x1, x2, · · · , xn) ∈ R

n and y = (y1, y2, · · · , yn) ∈ R
n is defined as

M(x,y) = (kσ(0)−
1

n

n∑
j=1

kσ(xj − yj))
1

2 . (2)

In the machine learning community, for general optimization problems involving the unknown vari-
able Θ, minimizing M(x,y) is equivalent to maximizing the correntropy.

Lemma 1. [Liu et al. (2007)] M(x,y) is equivalent to the ℓ2 metric if x,y are close, behaves
similarly to the ℓ1 metric as x,y get apart and approaches the ℓ0 when they are far apart.

Therefore, Eq. (2) can be utilized as a novel cost function for adaptive training, referred to as the
Maximum Correntropy Criterion (MCC). The pioneering work He et al. (2010) utilizes MCC for
face recognition. We explore the combination of unsupervised implicit neural representations and
the MCC-induced local metric to address occlusion geometries in non-rigid point cloud registration.
We also demonstrate the superior performance of our method over previous competing approaches.

4 PROPOSED METHOD

Problem formulation. Let X = {xi ∈ R
3}Mi=1 and Y = {yj ∈ R

3}Nj=1 denote two input point
clouds, where X represents the target shape, possibly with occlusion, and Y is the source shape.
Our objective is to solve the optimal non-linear map TΘ parameterized by Θ to minimize the shape
deviation between the transformed source shape TΘ(Y) and X. Note that we also aim to preserve
the physical plausibility of the deformation TΘ regarding Y, ensuring that issues encountered in
previous approaches, such as collapsing or tearing of the geometric shape, are avoided.

4.1 NEURAL DEFORMATION CORRENTROPY

Motivation. Unlike previous approaches that directly minimize the overall difference between
two shapes, we leverage the advantage of local similarity induced by correntropy. This allows us
to adaptively differentiate between various parts of a shape, ensuring that occluded regions have
minimal influence on the deformation process.

4
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Correntropy-induced metric. We utilize the unsupervised neural presentations defined by a set
of network parameters Θ to implicitly parameterize the non-linear map T . Based on MCC, our goal
is to optimize the subsequent metric between X = {xi ∈ R

3}Mi=1 and Y = {yj ∈ R
3}Nj=1:

min
Θ

L(Θ) = E(M(xi, ỹi)) + E(M(TΘ(yj), x̃j)), (3)

where ỹi = minyj∈T (Y) ∥xi − TΘ(yj)∥2, x̃j = minxi∈X ∥TΘ(yj) − xi∥2. As a result, Eq. (3)
assigns adaptive importance during network training, i.e., giving significant importance to points
with corresponding parts, while penalizing deformations in occluded regions. As demonstrated in
subsequent experiments, our method effectively avoids physically implausible limitations, leading
to more accurate and reasonable deformations.

Relationship to Chamfer distance. We further analyze the relationship between the maximum
correntropy criterion and the Chamfer distance. Unlike CD that performs a holistic evaluation,
MCC is a local and adaptive similarity metric. Based on Lemma 1, we can draw the following
conclusion.

Proposition 1. The Chamfer distance is a special case of Eq. (3), applicable only when both the
source and target point clouds X and Y are complete and sufficiently close to each other. However,
this equivalence does not hold when either of the inputs X and Y is occluded.

Therefore, the correntropy-induced metric can serve as a more universal measure, potentially appli-
cable to a wider range of point cloud analysis tasks.

4.2 LOCALLY LINEAR RECONSTRUCTION

Neural deformation correntropy ensures physically plausible deformations for unoccluded parts
through a local measure. However, addressing the challenge of making reasonable deformation
of parts in the source shape that lack correspondence in the target shape remains highly ill-posed.
To tackle this, we propose incorporating a geometric prior by modeling the deformation field of
occluded parts through Locally Linear Reconstruction (LLR), which transforms the unconstrained
problem into a constrained non-linear optimization. This allows us not only maintaining a smooth
and coherent deformation field for unoccluded parts but also ensuring physically plausible results
for parts that lack correspondence.

Inspired by the principle of locally linear embedding in nonlinear spectral dimensionality reduc-
tion Roweis & Saul (2000), we develop a novel method to preserve the linear pattern of the local ge-
ometric structure and reconstruct each point in the deformation space, especially for points that lack
correspondences, by utilizing its neighboring structure. Concretely, for each source point yj ∈ R

3

in Y, we formulate the locally linear reconstruction process as the subsequent optimization problem:

min
wj

L(wj) =
1

2
∥yj − Zjwj∥22 =

1

2
w

¦
j Gjwj , s.t. w¦

j 1k = 1, (4)

where wj = [wj1, wj2, · · · , wjk]
T ∈ R

k is the set of unknown weight factors, Zj =
[zj1, zj2, · · · , zjk] ∈ R

3×k is the k-nearest neighbors of yj (the investigation of the influences

of k on deformations is presented in Appendix D), Gj = (yj1
¦ − Zj)

¦(yj1
¦ − Zj) ∈ R

k×k

is the Gram matrix, 1k ∈ R
k is the k-dimensional vector of all ones, and ¦ represents the matrix

transpose operator.

Eq. (4) is a constrained non-linear least-squares regression problem, utilizing the Lagrange multi-
plier, we obtain the closed-form solution of wj for each yj (derivations are presented in Appendix B)

wj = ¼jG
−1
j 1k =

G
−1
j 1k

1¦
k G

−1
j 1k

(5)

with the corresponding Lagrange multiplier

¼j =
1

1¦
k G

−1
j 1k

. (6)
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LLR regularization. Once obtaining the weight vectors {wj ∈ R
k}Nj=1 for each yj ∈ Y, we

keep them fixed. Then, we utilize these weight vectors to regularize the displacement field, aiming
to promote its smoothness and ensure physical plausibility in the deformation space throughout the
entire optimization process even without correspondences, i.e.,

R(Θ) =

N∑
j=1

∥TΘ(yj)− TΘ(Zj)
¦
wj∥2. (7)

Geometric meaning of LLR. Unlike rigid registration, where each point shares the same spa-
tial transformation (i.e., rotation and translation), non-rigid deformation requires solving for each
point’s individual displacement. In challenging occlusion scenarios, Eq. (7) demonstrates that the
deformation of occluded parts can be inferred from, or propagated through, the deformations of
neighboring points via locally linear reconstruction. Fig. 2 presents a schematic description of the
geometric meaning.

4.3 UNSUPERVISED OPTIMIZATION

1jw

2jwjkw
2jw

jkw
1jw

Deform

Figure 2: Geometric meaning of locally lin-
ear reconstruction. Left: The initial source
shape along with the reconstruction weight
vector wj . Right: The deformed shape re-
constructed using the same wj .

Given the active research and powerful fitting ability
of implicit neural representations across various do-
mains, we adopt a coordinate-based MLP with pe-
riodic activations Sitzmann et al. (2020) as our de-
formation network T . Our objective is to optimize a
set of network parameters Θ to define the deforma-
tion space. Additionally, as a test-time optimization
method, our method is unsupervised, requiring no
data annotations. The neural network is composed
of three hidden layers, each consisting of 128 neu-
rons. We obtain the optimal neural network param-
eters Θ

∗ by optimizing the following cost function
with automatic differentiation:

Θ
∗ = argmin

Θ

F(Θ) = ³1L(Θ) + ³2R(Θ), (8)

where ³1, ³2 ∈ R
+ are trade-off factors. Finally, the resulting deformed point cloud TΘ∗(Y) is

obtained by applying the learned deformation network TΘ∗ to the source model Y.

5 EXPERIMENTAL RESULTS

We conduct comprehensive experiments to validate the performance of our method and compare it
with state-of-the-art approaches in both occluded and complete settings. Additionally, we showcase
the versatility of our method by applying it to shape interpolation and shape completion tasks.

Implementation details. Our method is implemented using the PyTorch framework Paszke et al.
(2019), and we employ the Adam optimizer Kingma & Ba (2014) with default settings ´1 = 0.9,
´2 = 0.999, and ϵ = 10−8 to optimize the objective function defined in Eq. (8). The initial learning
rate is set to lr = 1e−4, and the network is trained for 200 epochs with a batch size of 1. To dynam-
ically update the learning rate, we utilize the ReduceLROnPlateau technique with a patience
value of 1. During optimization, we fix ³1 = 104 and ³2 = 102, which yield appealing results
across various scenarios. All experiments are conducted on a machine equipped with an NVIDIA
A30 GPU and an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz. We utilize publicly available
implementations of baseline approaches for evaluation, with their parameters either fine-tuned by
ourselves or suggested by the authors to obtain their best results.

Evaluation metrics. To quantitatively evaluate the results of non-rigid deformation, we adopt four
metrics described in Li & Harada (2022b). 1) End-Point Error (EPE): This metric calculates the
average norm of the 3D deformation error vectors across all points; 2) 3D Accuracy Strict (AccS):
AccS measures the percentage of points whose relative error is less than 2.5% or 2.5 cm. 3) 3D
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Table 1: Quantitative comparisons on the occluded Open-CAS liver dataset. ↑ means larger values
are better while ³ means smaller values are better. Bond fonts indicate the top performer.

Method

Metric Liver 1 Liver 2 Liver 3

EPE ³ AccS ↑ AccR ↑ Outlier ³ EPE ³ AccS ↑ AccR ↑ Outlier ³ EPE ³ AccS ↑ AccR ↑ Outlier ³

GBCPD Hirose (2022) 11.849 18.770 65.263 0.000 9.169 48.871 75.534 0.000 16.240 31.770 53.162 0.000

AMM NRR Yao et al. (2023) 28.505 21.549 36.683 1.353 19.188 36.997 47.030 0.000 18.744 35.593 49.289 0.000

NSFP Li et al. (2021a) 49.655 18.057 39.494 27.218 32.520 45.011 53.659 9.514 28.789 37.742 50.696 14.167

NDP Li & Harada (2022b) 58.470 2.795 8.504 25.961 37.456 10.357 21.674 11.131 29.508 26.675 43.407 12.780

DPF Prokudin et al. (2023) 35.090 9.065 21.797 1.225 25.180 20.158 46.976 0.000 23.045 26.507 43.491 5.041

OAR (Ours) 8.662 29.228 96.813 0.000 5.687 75.193 97.184 0.000 12.112 42.372 56.564 0.000

Accuracy Relaxed (AccR): AccR measures the percentage of points whose relative error is less than
5% or 5 cm; 4) Outlier Ratio: The outlier ratio calculates the percentage of points whose relative
error is greater than 30%. Concrete definitions of these metrics are presented in Appendix A. Note
that AccS and AccR are considered the most important metrics as they directly assess the ratio of
accurately registered points, providing a reliable assessment of the registration quality Li & Harada
(2022b).

5.1 COMPARISONS

We first assess the proposed algorithm on occlusion scenarios using the silico liver dataset from
Open-CAS ope. Open-CAS is an open collection of datasets specifically designed for validating
computer-assisted surgery systems. The silico liver dataset consists of three pairs of liver models
that have undergone deformation using a non-linear biomechanical model. Each pair, as illustrated
in Fig. 1, consists of a source complete liver model and a target occluded liver model, along with
its corresponding ground truth complete model. These pairs represent the pre-operative and intra-
operative shapes, respectively. We adopt state-of-the-art approaches for comparison, including both
traditional optimization-based methods GBCPD Hirose (2022), AMM NRR Yao et al. (2023) as
well as neural network-based competitors NSFP Li et al. (2021a), NDP Li & Harada (2022b), and
DPF Prokudin et al. (2023).

The quantitative comparison results presented in Tab. 1 demonstrate that our method consistently
outperforms competing approaches with higher registration accuracy across all livers, indicating
its robustness and stability to align the geometric shapes under occlusion disturbances. Notably,
our method achieves the highest AccS and AccR values in all tests, surpassing competitors by a
significant margin. Additionally, our method delivers the lowest EPE values among all approaches
and maintains a zero outlier ratio in all tests. These achievements highlight the success of our method
in avoiding significant registration errors such as collapses and tearing, thereby ensuring a high level
of accuracy. The qualitative comparison presented in Fig. 1 further illustrates the advantage of our
method in preserving detailed physical structures such as the blood vessel of the source liver.

5.2 REGISTRATION UNDER DIFFERENT TYPES OF OCCLUSION

To further investigate the performance of our proposed method in handling occlusion, we create three
occlusion datasets using three different shapes (cat, horse, and dog) from the TOSCA dataset Bron-
stein et al. (2008). Each dataset consists of five types of occlusion, such as the occlusion present
in the body of the cat and the tail of the dog, as shown in Fig. 3. We exclude the outlier ratio from
our analysis since the deformation solution is not unique in these cases. Additionally, we exclude
AMM NRR from our analysis due to its significant deviations from the target poses, which render
the error metrics unreliable. The average metrics of all tests are reported in Tab. 2. The results
indicate that our method still achieves the highest registration accuracy across different occlusion
scenarios, especially in terms of the AccR metric. Although our method is slightly slower than other
neural networks-based approaches, it is much faster than traditional optimization-based GBCPD.
Several qualitative comparison results are presented in Fig. 3. As observed, our method success-
fully retains the dog tail without any collapse. More comparison results are presented in Fig. 10 and
Fig. 11 of the Appendix.
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Table 2: Quantitative comparisons on different types of occlusion. ↑ means larger values are better
while ³ means smaller values are better. Bond fonts indicate the top performer.

Method

Metric Cat Horse Dog

EPE ³ AccS ↑ AccR ↑ EPE ³ AccS ↑ AccR ↑ EPE ³ AccS ↑ AccR ↑ Time (s)

GBCPD Hirose (2022) 4.118 17.123 41.104 3.273 38.353 52.435 4.359 54.472 77.375 185.621

NSFP Li et al. (2021a) 4.591 13.617 40.397 2.761 25.484 53.698 4.159 61.486 78.940 4.576

NDP Li & Harada (2022b) 7.280 13.401 32.340 4.147 30.922 48.070 11.141 14.710 42.522 5.858

DPF Prokudin et al. (2023) 2.688 50.048 75.350 2.885 27.819 55.056 3.888 64.480 80.814 9.518

OAR (Ours) 2.559 50.569 77.171 2.249 40.046 65.317 2.467 76.986 89.779 13.646

Source TargetGBCPD NSFP NDP DPF Ours Ground Truth

Figure 3: Qualitative comparison on different types of occlusion. We register the complete source
cat and dog model to the target shape with body and tail occlusion, respectively.

5.3 REGISTRATION WITH CORRESPONDENCE

In addition to handling occlusion scenarios, we also demonstrate the capability of the proposed
method for general large deformation registration tasks. To this end, we combine the pre-trained
geometric feature descriptor Lepard Li & Harada (2022a) with our method for non-rigid registration
on the 4DMatch and 4DLoMatch animation benchmark datasets Li & Harada (2022a) (details are
presented in Appendix Appendix I). These datasets are collected from the DeformingThings4D
sequence Li et al. (2021b), which contains challenging scenarios with partial overlap, occlusion,
and large motions. The 4DMatch dataset comprises point clouds with overlap ratios ranging from
45% to 92%, while the 4DLoMatch dataset exhibits lower overlap ratios of 15%− 45%. Following
Li & Harada (2022b), we adopt the filtered dataset that has undergone the removal of near-rigid
transformations for testing. Specifically, the 4DMatch dataset consists of 2,590 pairs of test, while
the 4DLoMatch dataset contains 1,175 pairs.

Tab. 3 summarizes the quantitative comparison results, with the exception of our method, where the
remaining results are taken from Li & Harada (2022b). It is important to note that all supervised
models are re-trained on 4DMatch’s training split prior to evaluation. Although our method is unsu-
pervised, it still consistently achieves superior or competitive results compared to the competitors,
particularly in terms of the two most important metrics, AccS and AccR. Moreover, it is worth not-
ing that our method also delivers competitive performance on the highly challenging 4DLoMatch
dataset even without any fine-tuning. Qualitative results are presented in Fig. 13 of the Appendix.

5.4 HUMAN REGISTRATION ON OCCLUDED DEPTH VIEWS

We further evaluate the proposed method for registering human point clouds captured from RGB-
D cameras, which can be used for non-rigid reconstruction. As shown in Fig. 16, the sequences
from Innmann et al. (2016) exhibit occlusion disturbances due to human motion. The qualitative
results presented in Fig. 17 evidence that our method still achieves high-quality deformations despite
these challenges. In contrast to DPF, which produces physically unreasonable deformations such
as collapse and distortion of body parts, our method consistently preserves realistic deformations,
particularly evident in the human hands and arms.

5.5 ROBUSTNESS TEST
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Table 3: Quantitative comparisons on the 4DMatch and 4DLoMatch benchmark datasets. The best
and second best performers of AccS and AccR are highlighted in bold and underlined, respectively.

Method

Metric 4DMatch 4DLoMatch

EPE ³ AccS ↑ AccR ↑ Outlier ³ EPE ³ AccS ↑ AccR ↑ Outlier ³
Lepard Li & Harada (2022a)+SVD 0.137 6.91 24.50 43.43 0.160 5.27 19.77 44.16

PointPWC Wu et al. (2019) 0.182 6.25 21.49 52.07 0.279 1.69 8.15 55.70

FLOT Puy et al. (2020) 0.133 7.66 27.15 40.49 0.210 2.73 13.08 42.51

GeomFmaps Donati et al. (2020) 0.152 12.34 32.56 37.90 0.148 1.85 6.51 64.63

SyNoRiM-pw Huang et al. (2022) 0.099 22.91 49.86 26.01 0.170 10.55 30.17 31.12

Lepard+NICP Li & Harada (2022a) 0.097 51.93 65.32 23.02 0.283 16.80 26.39 52.99

Lepard+NDP Li & Harada (2022b) 0.077 61.30 74.12 17.37 0.177 26.59 41.05 33.81

Lepard+OAR (Ours) 0.059 59.32 74.33 16.41 0.151 27.25 42.01 35.04

Source AIAP LLR Target 1 AIAP LLR Target 2

Figure 4: Qualitative comparison of AIAP and LLR with increasing occlusion. As observed, LLR
enables more natural registration results and maintains geometric details such as the facial expres-
sion more faithfully.

Intensity/Ratio 0.1 0.2 0.3 0.4 0.5 0.6

Noise 88.712 89.104 89.678 85.701 84.395 81.807
Outlier 84.122 88.017 86.719 89.074 86.171 83.999

We also assess the robustness of our developed
method against noise and outlier disturbances. To
this end, we introduce Gaussian noise with in-
creasing intensity and varying outlier ratios (%) to the point clouds. The inset table reports the
statistical results, while Fig. 19 and Fig. 20 present the qualitative outcomes. As observed, our
method demonstrates strong resilience against both noise and outliers, maintaining performance
even with noise levels up to 0.6% and in the contamination of 2, 350 outliers.

5.6 ABLATION STUDY

The effect of LLR. To demonstrate the effect of the proposed LLR for non-rigid point cloud reg-
istration under occlusion disturbances, we construct a series of models with progressively increasing
levels of occlusion. In Fig. 4, we illustrate this by manually removing some parts of the lion model,
starting from the tail and extending towards the body. The statistical results in Fig. 5 indicate that our
method equipped with the LLR constraint (i.e., MCC+LLR), which helps preserve the local neigh-
boring geometry, consistently produces higher-quality registration results compared to the single
MCC framework.

AIAP VS. LLR. We also compare the performance of the commonly used AIAP regular-
ization with the proposed LLR in handling challenging occlusion scenarios. As observed in
Fig. 5, MCC+AIAP delivers similar results to MCC, while MCC+LLR consistently outperforms
MCC+AIAP across different levels of occlusion. Moreover, benefiting from the reconstruction
scheme and maintaining the local structure, LLR excels at preserving essential geometric details,
such as the intricate facial features of the lion in Fig. 4, after non-rigid deformation. This stands in
contrast to AIAP under occlusion disturbances, which struggles to maintain such details.
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Figure 5: Ablation study of the LLR effect and the comparison between AIAP and LLR manners.
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t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9 t = 1.0

Figure 6: Application of the proposed non-rigid registration method to shape interpolation.

Source Shape 1 Result 1 Shape 2 Result 2 Shape 3 Result 3

Figure 7: Application of the proposed non-rigid registration method to mesh hole filling.

5.7 APPLICATIONS

Shape interpolation. Since our method successfully avoids physically implausible scenarios, such
as collapses and tearing, and employs an unsupervised neural implicit representation, it inherently
allows for continuous deformation. In Fig. 6, we illustrate the shape interpolation effect using our
non-rigid deformation under occlusion, where we vary the timestamp t within the range of [0.1, 1.0].
For instance, the interpolation shape with t = 0.5 is represented by Yt=0.5 = Y + t ∗ ¿(Y) =
Y + 0.5 ∗ ¿(Y) with ¿ denoting the learned displacement field. As observed, our method not only
achieves accurate registration at t = 1.0 but also maintains substantially smooth and physically
feasible interpolation configurations throughout the entire deformation process.

Shape completion. We also apply our method to address the problem of shape completion. In
Fig. 7, we utilize the source mesh model Yang et al. (2014) as the standard template, while the
other shapes exhibit various types of holes caused by occlusion, serving as the targets. It is evident
that by deforming the template model to align with the target shapes and leveraging the highly
accurate outcomes, our method offers a feasible solution to the ill-posed mesh hole filling task
without requiring any additional annotations and constraints. More hole filling results are reported
in Fig. 14 of the Appendix.

6 CONCLUSIONS

We introduced a novel unsupervised solution to address the challenging issue of occlusion distur-
bances in non-rigid point cloud registration, a problem that has not received adequate attention in
prior approaches. We provide a comprehensive analysis to elucidate the reasons why previous meth-
ods struggle with occlusion scenarios. The first contribution of our method is maximizing the local
similarity between source and target geometries, accomplished through the utilization of the adap-
tive maximization correntropy criterion. We also establish a connection between the correntropy-
induced metric and the commonly used Chamfer distance, highlighting that this correntropy-induced
metric can serve as a more general measure. Additionally, we develop a locally linear reconstruction
paradigm to ensure that deformations in the occluded regions are physically plausible while preserv-
ing intricate geometric details of deformed shapes, in contrast to the commonly used AIAP metric.
Our method achieves higher-quality non-rigid registration results across a range of datasets, while
effectively mitigating the issues of collapses and tearing that are encountered in previous approaches.
Moreover, our method ensures continuous deformation, allowing for promising applications in shape
interpolation and shape completion tasks.
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REPRODUCIBILITY STATEMENT

The main contribution of this work is the development of an unsupervised neural deformation
method that combines correntropy-induced metric and locally linear reconstruction with implicit
neural representations to ensure physically reasonable deformations of occluded point clouds. To
reproduce the experimental results, we elaborate on the data pre-processing, metric definitions, and
hyper-parameter settings in Appendix A and Appendix D. To facilitate reproducibility, we also pub-
licly release our code.
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Matthias Innmann, Michael Zollhöfer, Matthias Nießner, Christian Theobalt, and Marc Stamminger.
Volumedeform: Real-time volumetric non-rigid reconstruction. In Proc. Eur. Conf. Comput. Vis.,
pp. 362–379, 2016. 8

Bing Jian and Baba C Vemuri. Robust point set registration using gaussian mixture models. IEEE
Trans. Pattern Anal. Mach. Intell., 33(8):1633–1645, 2010. 3

Martin Kilian, Niloy J Mitra, and Helmut Pottmann. Geometric modeling in shape space. In ACM
SIGGRAPH 2007 papers, pp. 64–es. 2007. 3

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 6

Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural scene flow prior. Proc. Int. Conf.
Neural Inf. Process. Syst., 34:7838–7851, 2021a. 1, 2, 3, 7, 8

Xueqian Li, Jianqiao Zheng, Francesco Ferroni, Jhony Kaesemodel Pontes, and Simon Lucey. Fast
neural scene flow. In Proc. IEEE Int. Conf. Comput. Vis., pp. 9878–9890, 2023. 19

Yang Li and Tatsuya Harada. Lepard: Learning partial point cloud matching in rigid and deformable
scenes. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 5554–5564, 2022a. 3, 8, 9, 19

Yang Li and Tatsuya Harada. Non-rigid point cloud registration with neural deformation pyramid.
Proc. Int. Conf. Neural Inf. Process. Syst., 35:27757–27768, 2022b. 1, 2, 3, 6, 7, 8, 9

Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias Nießner. 4dcomplete: Non-
rigid motion estimation beyond the observable surface. In Proc. IEEE Conf. Comput. Vis. Pattern
Recog., pp. 12706–12716, 2021b. 8

Fangzhou Lin, Yun Yue, Songlin Hou, Xuechu Yu, Yajun Xu, Kazunori D Yamada, and Ziming
Zhang. Hyperbolic chamfer distance for point cloud completion. In Proc. IEEE Int. Conf. Comput.
Vis., pp. 14595–14606, 2023. 18

Or Litany, Tal Remez, Emanuele Rodola, Alex Bronstein, and Michael Bronstein. Deep functional
maps: Structured prediction for dense shape correspondence. In Proc. IEEE Int. Conf. Comput.
Vis., pp. 5659–5667, 2017. 3

Weifeng Liu, Puskal P Pokharel, and Jose C Principe. Correntropy: Properties and applications in
non-gaussian signal processing. IEEE Trans. Signal Process., 55(11):5286–5298, 2007. 4, 16

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proc. IEEE Conf. Comput.
Vis. Pattern Recog., pp. 4460–4470, 2019. 1

B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In Proc. Eur. Conf. Comput. Vis., 2020. 1

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Func-
tional maps: a flexible representation of maps between shapes. ACM Trans. Graph., 31(4):1–11,
2012. 3

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proc. IEEE
Conf. Comput. Vis. Pattern Recog., pp. 165–174, 2019. 1

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proc. IEEE Int.
Conf. Comput. Vis., pp. 5865–5874, 2021. 1

12



648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Proc. Int. Conf. Neural Inf. Process. Syst., 32, 2019. 6

Sergey Prokudin, Qianli Ma, Maxime Raafat, Julien Valentin, and Siyu Tang. Dynamic point fields.
In Proc. IEEE Int. Conf. Comput. Vis., pp. 7930–7942, 2023. 1, 2, 3, 7, 8

Gilles Puy, Alexandre Boulch, and Renaud Marlet. Flot: Scene flow on point clouds guided by
optimal transport. In Proc. Eur. Conf. Comput. Vis., pp. 527–544, 2020. 9

Zheng Qin, Hao Yu, Changjian Wang, Yuxing Peng, and Kai Xu. Deep graph-based spatial con-
sistency for robust non-rigid point cloud registration. In Proc. IEEE Conf. Comput. Vis. Pattern
Recog., pp. 5394–5403, 2023. 3

Maria R Robu, João Ramalhinho, Stephen Thompson, Kurinchi Gurusamy, Brian Davidson, David
Hawkes, Danail Stoyanov, and Matthew J Clarkson. Global rigid registration of ct to video in
laparoscopic liver surgery. Int. J. Comput. Ass. Rad., 13:947–956, 2018. 1

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000. 2, 5
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APPENDIX

In this appendix, we provide additional content to support our paper. Concretely, we present the data
pre-processing step of normalization and the definition of used evaluation metrics in Appendix A,
followed by the theoretical derivation of the closed-form weight solution in Appendix B. Appendix C
presents more details and analyses of Lemma 1. Appendix D investigates the influences of the num-
ber of nearest neighbors k for each yj ∈ Y and the kernel bandwidth Ã2 on registration under
occlusion disturbances. We present further ablation studies to investigate the regularization effect of
implicit neural networks and activation functions in Appendix E. The differences and connections
of MCC with robust functions are presented in Appendix F. Additional ablation studies of MCC and
Chamfer distance as well as its variants are reported in Appendix G and Appendix H, separately.
Appendix I gives the details of how to integrate the geometric descriptors with our proposed opti-
mization framework. Then, we discuss the limitations and future work of the proposed algorithm
in Appendix J. Finally, in Appendix K, we present more quantitative and qualitative results. These
results include the registration on various types of occlusion from the TOSCA dataset, liver dataset,
4DMatch and 4DLoMatch datasets, shape completion for the challenging mesh hole filling task,
human RGB-D views, failure cases, as well as robustness test.

A DATA PRE-PROCESSING AND THE METRIC DEFINITION

Given a pair of input point clouds X = {xi ∈ R
3}Mi=1 and Y = {yj ∈ R

3}Nj=1, where X and Y

represent the target and source point clouds, separately, we first normalize them to follow a normal
distribution, i.e.,

N (X) = (X− 1MµX)/ÃX, (9)

N (Y) = (Y − 1NµY)/ÃY, (10)

where µ∗ ∈ R
3 represents the mean point in the set of ∗ and Ã∗ ∈ R

+ is the farthest Euclidean
distance from µ∗ to the elements in ∗. 1M ∈ R

M and 1N ∈ R
N are the vectors of all ones.

However, when evaluating the registration results, we still use the original inputs by first performing
denormalization.

Specifically, we compute the deviations between the deformed shape Ŷ = ÃXT (N (Y)) + 1NµX

and the complete shape X̂ of X in terms of the metrics EnE, AccS, AccR, and Outlier Ratio by

EPE(Ŷ, X̂) =
1

N

√
Tr{(Ŷ − X̂)¦(Ŷ − X̂)},

AccS(Ŷ, X̂) =
1

N

N∑

j=1

I(∥ŷj − x̂j∥2 < 0.025)× 100%,

AccR(Ŷ, X̂) =
1

N

N∑

j=1

I(∥ŷj − x̂j∥2 < 0.05)× 100%,

Outlier(Ŷ, X̂) =
1

N

N∑

j=1

I(∥ŷj − x̂j∥2 > 0.3)× 100%,

(11)

where Tr and ¦ are the trace operator and transpose operator of a matrix, separately. I is the indicator
function and ∥∥2 represents the Euclidean distance.

B DERIVATION OF THE CLOSED-FORM SOLUTION IN EQ. (5) OF THE PAPER

To make the proposed method self-contained, we present the derivation of the closed-form solution
in Eq. (5) as follows. According to the Lagrange multiplier, we have

L(wj , ¼j) =
1

2
w¦

j Gjwj − ¼j(w
¦

j 1k − 1). (12)
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By equating the partial derivatives of L(wj , ¼j) to zero, we obtain

∂L
∂wj

= Gjwj − ¼j1k=0,

=⇒ wj = G−1

j ¼j1k = ¼jG
−1

j 1k.

∂L
∂¼j

= w¦

j 1k − 1=0 =⇒ w¦

j 1k = 1.

(13)

Then, we have

¼j =
1

1¦

k G
¦

j

−1
1¦

k

=
1

1¦

k G
−1

j 1¦

k

. (14)

Thus,

wj =
G−1

j 1k

1¦

k G
−1

j 1¦

k

. (15)

This completes the derivation of Eq. (5) and Eq. (6).

C MORE DETAILS AND ANALYSES OF LEMMA 1

We present more details of Lemma 1. We can rewrite the correntropy of Gaussian kernel as

Vσ(X,Y ) = 1/(
√
2ÃÃ)

∞
∑

n=0

((−1)n) / (2nn!)E
[(

(X − Y )2n
)

/
(

Ã2n
)]

, (16)

which involves all the even moments of the random variable X − Y . When two points are in
close proximity, the second-order moment tends to be dominant, causing correntropy to approach
correlation, as the higher-order moments decay more rapidly. As the points become more distant, as
shown in Liu et al. (2007), correntropy transitions from behaving like an ℓ1 norm to resembling an
ℓ0 norm. This transition further illustrates the inherent robustness of the MCC metric.

D INVESTIGATION OF k AND σ
2

ON DEFORMATION

We adopt the occluded liver 1 dataset ope and vary the number of neighbors k ∈ [2, 30] with ∆k = 2
and Ã2 ∈ [0.2, 2] with ∆Ã2 = 0.2 to investigate their influences on non-rigid registration under
occlusion disturbances. As shown in Fig. 8, our method consistently achieves significantly lower
outlier ratios across different values of k and Ã2. With increasing values of k, our method not only
demonstrates higher AccS and AccR results but also with slower EPE. Nevertheless, larger values of
k typically result in higher computational complexity due to the matrix inverse operation in Eq. (5)
of the paper. Therefore, we suggest setting k = 30 for general use. Regarding Ã2, we suggest using
Ã2 = 1.0 for general applications as its variation has a minimal impact on the results.
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Figure 8: Influences of k and Ã2 on non-rigid registration under occlusion disturbance scenarios.
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Table 4: Ablation study of the regularization effect of the activation functions on the occluded Open-
CAS liver dataset. ↑ means larger values are better while ³ means smaller values are better.

Method

Metric Liver 1 Liver 2 Liver 3

EPE ³ AccS ↑ AccR ↑ Outlier ³ EPE ³ AccS ↑ AccR ↑ Outlier ³ EPE ³ AccS ↑ AccR ↑ Outlier ³

ReLU+CD 47.994 9.106 20.466 17.957 39.171 9.684 23.321 8.533 27.494 28.766 44.443 11.272

ReLU+MCC 31.582 28.446 40.614 4.378 12.012 47.258 69.975 0.000 17.245 32.841 51.744 1.326

ReLU+MCC+LLR 14.690 34.144 57.860 0.000 6.984 66.543 89.956 0.000 14.306 36.670 52.982 0.000

Table 5: Ablation study of the intrinsic regularization effect of the activation functions on the com-
plete Open-CAS liver dataset. ↑ means larger values are better while ³ means smaller values are
better.

Method Liver 1→Liver 2 Liver 2→Liver 3 Liver 3→Liver 1

ReLU+CD 4.685 5.550 6.787
SIREN+CD 3.912 5.063 6.183

E ANALYSIS OF THE REGULARIZATION

Fig. 5 reveals that regularizing the deformation field of occluded regions is mainly from LLR rather
than the network. This is because a network alone is insufficient to handle occlusions effectively,
often resulting in significant deviations. We conduct additional ablation studies on the OpenCAS
dataset to investigate the role of activation functions (i.e., ReLU and SIREN) with the LLR for
regularization. The results presented in Tab. 4 reveal that the regularization of deformations in
occluded areas is primarily attributed to LLR rather than the activation function, as ReLU+CD and
ReLU+MCC still generate significant deformation errors, especially for both the EPE and Outlier
metrics.

Moreover, to investigate the intrinsic regularization capabilities of activation functions, we conduct
an additional experiment by applying recursive deformations to complete shapes without occlusion.
The EPE metric detailed in Tab. 5 demonstrates that ReLU and SIREN exhibit comparable perfor-
mance on complete shapes. This finding further substantiates our conclusion that while activation
functions do possess a regularization effect, they may fall short when addressing the complexities of
challenging occlusions (i.e., the motivation and core contributions of this work). In such cases, LLR
proves to be particularly beneficial.

F DIFFERENCES AND CONNECTIONS WITH ROBUST FUNCTIONS

Moreover, we conduct an in-depth analysis comparing correntropy with robust functions.

Differences. Unlike common robust functions, correntropy is initially proposed in information-
theoretic learning to handle nonzero mean and non-Gaussian noise (e.g., the occlusion part can be
seen as a certain type of non-Gaussian noise), which is related to the Renyi’s quadratic entropy.
Besides, MCC is a local measure that provides a probabilistic meaning of maximizing the error
probability density at the origin according to the information potential.

Connections. We derive the relationship between MCC and robust functions. By setting Ä(e) =
(

1− exp
(

−e2/2Ã2
))

/
√
2ÃÃ, we can prove that Ä(e) is an influence function satisfying all the

criteria of a robust function, i.e.,

Ä(e) g 0, Ä(0) = 0, Ä(e) = Ä(−e),

Ä (ei) g Ä (ej) for |ei| > |ej | .
(17)
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Figure 9: Ablation study of the MCC and the CD metrics.

Moreover,

min
θ

N
∑

i=1

Ä (ei) ô max
θ

N
∑

i=1

exp
(

−e2i /2Ã
2
)

/
√
2ÃÃ (18)

with the corresponding weight function of Ä(e) as w(e) = exp
(

−e2/2Ã2
)

/
√
2ÃÃ3. For compari-

son, the Bi-square’s weight function is

wBi(e) =

{

(1−(e/h)2)2, |e| f h

0, |e| g h
, (19)

where h is the tuning threshold. Therefore, the nonzero part of wBi(e) is equivalent to (with a
constant) the square of the first-order Taylor expansion of w(e). MCC is analogous to a robust
function but with the specific influence function Ä(e). However, unlike the Huber or Bi-square
function, correntropy does not need a predefined threshold such as h and the kernel size entirely
governs the properties. Moreover, our derivation between correntropy and robust functions offers a
practical way to select an appropriate threshold for robust functions or determining the kernel size
for correntropy.

G ABLATION STUDY OF MCC AND THE CHAMFER DISTANCE

Additionally, we conduct additional ablation experiments to replace MCC with CD on a series of
models used in Fig. 5, testing them with progressively increasing levels of occlusion (0-5). The
quantitative comparison results in Fig. 9 demonstrates that MCC consistently achieves higher-quality
deformation results, particularly with significantly high AccS and AccR metrics. Moreover, we
provide a detailed comparison of the time consumption of both the Chamfer Distance and MCC in
Tab. 6, measured in seconds. As observed, MCC also achieves significantly high efficiency with the
computation time around 1 millisecond for a dataset comprising around 104 points.

Table 6: Comparison of time for MCC and CD metrics in seconds (s).

Cases 0 1 2 3 4 5 Ave.

CD (×10−3s) 0.696 0.676 0.685 0.687 0.697 0.6900 0.689

MCC (×10−3s) 1.332 1.327 1.466 1.323 1.285 1.316 1.342

H FURTHER COMPARISON WITH OTHER CD VARIANTS

To further demonstrate the advantages and versatility of the MCC metric, we conduct additional ex-
periments to evaluate MCC against the most recent or state-of-the-art Hyperbolic Chamfer Distance
(HCD) in point cloud completion Lin et al. (2023). We use the author’s source code to implement
the HCD metric. Particularly, we adopt three distinct tests by adjusting the coefficient ³ within
the HCD framework to achieve comprehensive results. The quantitative results reported in Tab. 7
demonstrate that our proposed method consistently achieves higher-quality deformations. More-
over, MCC shows potential for further exploration and application in general point analysis tasks,
including point cloud completion.
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Table 7: Quantitative comparisons between the MCC and the HCD metrics on the occluded Open-
CAS liver dataset. ↑ means larger values are better while ³ means smaller values are better. Bond
fonts indicate the top performer.

Method

Metric Liver 1 Liver 2 Liver 3

EPE ³ AccS ↑ AccR ↑ Outlier ³ EPE ³ AccS ↑ AccR ↑ Outlier ³ EPE ³ AccS ↑ AccR ↑ Outlier ³

HCD with ³ = 1.0 28.946 15.533 33.077 0.054 29.164 15.455 32.369 0.169 29.384 15.042 33.103 0.216

HCD with ³ = 0.5 27.116 12.727 33.527 0. 000 26.451 11.944 32.145 0.000 26.815 12.826 32.750 0. 000

HCD with ³ = 0.3 23.535 10.414 33.338 0.000 23.074 9.730 32.881 0. 000 24.291 10.872 33.744 0. 000

MCC (Ours) 8.662 29.228 96.813 0.000 5.687 75.193 97.184 0.000 12.112 42.372 56.564 0.000

I HOW TO INCORPORATE THE GEOMETRIC DESCRIPTOR

Given the two matching sets S(X) and S(Y) extracted by the pre-trained geometric descriptor
Lepard, with |S(X)| = |S(Y)| < min(|X|, |Y|), our optimization function is formally defined as

Θ
∗ = argmin

Θ

F(Θ) + ´M(Θ) (20)

where F(Θ) and M(Θ) denote the deformation loss and the pointwise matching loss, separately.

J LIMITATIONS AND FUTURE WORK

While the proposed registration method demonstrates impressive performance on various occlu-
sion disturbances, it is worth noting that the problem itself is highly challenging and severely ill-
posed. When the occlusion region is significantly large, the method may yield unsatisfactory results
(Fig. 18). However, integrating shape analysis theory, such as the geometric symmetry of models,
could potentially mitigate this limitation.

Besides, the computational complexity of the locally linear reconstruction step is relatively high due
to the matrix inverse operation. One possible approach is to explore low-rank approximations of the
Gram matrix to further speed up the deformation process.

Another future work is to further speed up the computation of the MCC metric. As demonstrated
in Li et al. (2023), a distance transform is utilized to expedite the computation of the Chamfer dis-
tance, and in principle, this manner can be extended to the MCC-induced metric as our proposed
method also incorporates pairwise computation. However, as the authors noted, we must carefully
consider the trade-off between discretization error, grid resolution, memory consumption, and esti-
mation accuracy.

K MORE QUANTITATIVE AND QUALITATIVE RESULTS

We provide additional results in the following to show the superiority of the proposed method.
Specifically,

1. Fig. 10 to Fig. 11 showcase the test results on the occluded TOSCA dataset Bronstein et al.
(2008), where various occlusion scenarios are present.

2. Fig. 12 demonstrates the registration results of our proposed method by inversely deforming
the occluded geometry to the complete one. It can be seen that our method achieves highly
accurate registrations, preserves the original topology of the organs (including their distinct
parts), and avoids the generation of physically infeasible parts.

3. Fig. 13 presents qualitative results on the 4DMatch or 4DLoMatch datasets Li & Harada
(2022a), where our method performs impressively despite the existence of challenging sce-
narios such as large deformation, low overlap, and occlusion.

4. Fig. 14 showcases additional shape completion results by deforming the source model Yang
et al. (2014) to the shapes with occluded holes. Thanks to the highly accurate registration
results, our method provides a viable solution to this challenging mesh hole filling problem.
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5. Fig. 15 further reports the mesh hole filling results where the source or template models
also contain holes. The source models are selected from Fig. 7 and Fig. 14, with the middle
model in each case serving as the mean shape. It is observed that, due to the superior
non-rigid deformation capabilities of our method, the majority of the holes in the original
shapes have been effectively filled. Moreover, we present the boolean shapes, which are
obtained from the union operation between the deformed surfaces and their corresponding
target models (that is, Shape 1 ∪ Result 1 and Shape 2 ∪ Result 2). This boolean operation
not only further completes the holes but also demonstrates the seamless integration of the
deformed shapes with their target models.

6. Fig. 16 to Fig. 18 report the registration results of our method on real-world RGB-D point
clouds under occlusion disturbance.

7. Fig. 19 and Fig. 20 showcase qualitative registration results under significant disturbances
caused by noise and outliers, respectively. As demonstrated, our method continues to
achieve highly accurate deformations, attributable to the adaptive correntropy function.

Source

Target

Source GBCPD

Ground TruthOursDPF

Target Ground TruthOursDPF

Target Ground TruthOursDPF

NDPNSFPSourceSource GBCPD NSFP

Source NSFPGBCPD NDPNSFP

SourceSource GBCPD NSFPSourceSource GBCPD NDPNSFP

Figure 10: Qualitative comparisons on the occluded cat dataset, where the body and tail of the cat
are occluded.

Source

Target

Source GBCPD

Ground TruthOursDPF

Target Ground TruthOursDPF

Target Ground TruthOursDPF

NDPNSFPSourceSource GBCPD NSFP

Source NSFPGBCPD NDPNSFP

SourceSource GBCPD NSFPSourceSource GBCPD NDPNSFP

Figure 11: Qualitative comparisons on the occluded dog dataset, where the left front leg and the
tail of the dog are occluded.

20



1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2025

Input 1 Result 1 Input 2 Result 2 Input 3 Result 3

Figure 12: Application of the proposed method to register occluded livers to the complete ones.
As observed, our method not only delivers highly-accurate registration results but also preserves
the original topology of the organs, including their distinct parts, while avoiding the generation of
additional physically infeasible parts.

Source

Target

Source GBCPD

Ground TruthOursDPF

Target Ground TruthOursDPF

Target

Input Input

Ground TruthOursDPF

NDPNSFPSourceSource GBCPD NSFP

Source NSFPGBCPD NDPNSFP

SourceSource GBCPD NSFPSourceSource GBCPD NDPNSFP

Deformation Deformation

Figure 13: Non-rigid registration on point clouds from the challenging 4DMatch or 4DLoMatch
datasets, which exhibit significant deformations. The blue and gray point clouds represent the
source and target models, separately, while the yellow color indicates our registrations. Our method
still yields satisfactory results even in the presence of substantial deformations.
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Source Shape 1 Result 1 Shape 2 Result 2

Source Shape 1 Result 1 Shape 2 Result 2

Figure 14: Application of the proposed method to mesh hole filling by deforming the source model
to the target shape.
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Source Shape 1 Result 1 Boolean 1 Shape 2 Result 2 Boolean 2

Source Shape 1 Result 1 Boolean 1 Shape 2 Result 2 Boolean 2

Figure 15: Application of the proposed non-rigid registration method to mesh hole filling. This
figure illustrates the process of deforming a source model containing holes to align with other models
that also have holes. “Result 1” and “Result 2” represent the deformed shapes by our non-rigid
registration method, which consistently delivers high-quality deformations regardless of the holes.
“Boolean 1” and “Boolean 2” are obtained by taking the union operation of the deformed surfaces
with their respective targets (i.e., Shape 1 ∪ Result 1 and Shape 2 ∪ Result 2), highlighting the
seamless integration of the deformed shapes with their target models.

Figure 16: RGB sequence images with occlusion used in generating real RGB-D point clouds.
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Source Target Inputs Ours OutputsDPF

Figure 17: Non-rigid registration on RGB-D point clouds with occlusion indicated by the red box.
As observed, DPF suffers from physically implausible issues such as collapse or pull of the body
parts as shown in the green box, instead, our method not only delivers successful registration, but
also preserves the physical rationality of the human body, such as the hands and arms in the blue
box.

Figure 18: Failure cases due to significantly large occlusion (i.e., the occlusion of both human arms
and body). Nonetheless, our method preserves high-quality deformation in the overlapping regions
and still strives to deliver physically plausible deformation for occluded areas to the best extent
possible.

Figure 19: Non-rigid point cloud registration under heavy noise disturbances (intensity=0.6%).
Our method still delivers satisfactory registration thanks to the utilized adaptive correntropy func-
tion.
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Figure 20: Non-rigid point cloud registration under heavy outlier disturbances (#outliers=2,350).
Our method exhibits substantial robustness against outliers, attributed to the introduction of the
adaptive correntropy function.
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